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Abstract. The Classic McEliece cryptosystem is one of the most trusted
quantum-resistant cryptographic schemes. Deploying it in practical ap-
plications, however, is challenging due to the size of its public key. In
this work, we bridge this gap. We present an implementation of Clas-
sic McEliece on an ARM Cortex-M4 processor, optimized to overcome
memory constraints. To this end, we present an algorithm to retrieve
the public key ad-hoc. This reduces memory and storage requirements
and enables the generation of larger key pairs on the device. To further
improve the implementation, we perform the public key operation by
streaming the key to avoid storing it as a whole. This additionally re-
duces the risk of denial of service attacks. Finally, we use these results
to implement and run TLS on the embedded device.
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1 Introduction

Code-based cryptographic schemes are often named when researchers in the
field of post-quantum cryptography are asked which cryptosystem they recom-
mend until trusted standards exist, e.g., [1]. Since the code-based cryptosystem
McEliece [16] and its variant, the Niederreiter cryptosystem [18], date back to
the 1970s and 1980s, respectively, their security is widely trusted. The direct suc-
cessor of these schemes is the key encapsulation mechanism Classic McEliece [4],
which was selected as finalist in the ongoing PQC standardization process of the
US-American National Institute of Standards and Technology (NIST)3.

The prime reason that code-based cryptography - contrary to RSA and Diffie-
Hellman, which are comparably old -, has not gained general acceptance so
far, is the size of the public key. For instance, a McEliece public key of about
one megabyte and an RSA key of few kilobytes achieve the same pre-quantum
security level. Many works address this problem by replacing binary Goppa
codes with families of codes that lead to smaller public keys, e.g., [3,6,11,12,17].

∗The conference version of this work is published at CARDIS 2020
3https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/

0ieuPB-b8eg
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That, however, is no option when working with Classic McEliece: Since other
families of codes already led to security breaches, e.g., [2,8], or are not yet well-
studied (which might lead to future security breaches), Classic McEliece focuses
on binary Goppa codes since the scheme aims for conservative and well-studied
cryptography.

When it comes to using cryptography in practical applications, a huge public
key is especially problematic on memory-constrained devices, e.g., on embedded
systems. On the other hand, there is a great demand for (post-quantum) cryp-
tography for embedded devices, since on these devices, often sensitive data such
as medical data and other personal information is processed. Hence, to obtain
efficient and secure post-quantum cryptography for embedded devices by using
Classic McEliece, we need to solve the problem that the public key is too big.

Contribution. In this work, we present memory-optimized algorithms for key
generation and encapsulation of the Classic McEliece cryptosystem. We base
our work on the Classic McEliece reference implementation. In accordance with
NIST’s request on recommended hardware4, we use the ARM Cortex-M4 pro-
cessor as our target platform. We emphasize that our goals are memory rather
than speed optimizations. We demonstrate the practicability of our implemen-
tation by providing an operational instance of a Classic McEliece-based TLS on
an embedded device.

Related Work. To the best of our knowledge, in the field of code-based cryptog-
raphy there is not much related work addressing memory optimizations for han-
dling the public key on embedded devices. In [7, 10], a seed is used to generate
the inverse of the scramble matrix that is multiplied by the public parity-check
matrix. This considerably reduces the memory requirements for storing the pri-
vate key. However, it does not address issues with storing the public key. The
public key instead is stored on flash or external memory. In [20] it is demon-
strated in the context of public key infrastructures that the McEliece encryption
operation can be performed on a smart card, even though the public key is too
large to be held in memory. We adapt this approach in Section 4. In Section 4.1
we briefly compare an aspect of our results with the McTiny protocol [5].

Organization. This paper is organized as follows: In Section 2 we provide basic
background information on the notation and on the Classic McEliece cryptosys-
tem. Section 3 presents a memory-efficient algorithm to retrieve the public key
from the private key, thereby reducing storage requirements. Further, an adapted
key generation algorithm, that in combination with the public key retrieval al-
gorithm greatly reduces memory requirements, is presented. Section 4 describes
a memory-efficient variant of the encapsulation operation. In Section 5 we pro-
vide details on our implementation. Finally, Section 6 demonstrates the practical
relevance of our results in a proof of concept TLS implementation.

4https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/
cJxMq0_90gU
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2 Background

Notation To be consistent with the Classic McEliece notation, elements of Fn
2

are viewed as column vectors. All identity matrices in this work are of dimension
(n−k)×(n−k), which is why we omit subscripts and denote the (n−k)×(n−k)
identity matrix by I. The (Hamming) weight of a vector v ∈ Fn

2 is denoted by
wt(v). To represent the ith row of a matrix A, we write Ai, while A•i refers to
the ith column.

Classic McEliece We do not detail the Classic McEliece algorithms here, but
refer to the round-2 submission to NIST’s PQC standardization process [4]. For
readers not familiar with coding theory, we refer to [15].

We use symbols consistently with the Classic McEliece notation. Noteworthy
symbols that are not explicitly introduced in this work are the Classic McEliece
parameters n, t,m, k = n−mt, q = 2m, the public key T ∈ F(n−k)×k

2 , the parity-
check matrix H ∈ F(n−k)×n

2 , and its precursors Ĥ ∈ F(n−k)×n
2 and H̃ ∈ Ft×n

q .
Note that we omit the mceliece6960119 parameter set in this paper. These

parameters produce bit sequences of length that are not multiples of 8. However,
modern platforms operate on bytes. The trailing bits need an extra handling
which our current implementation does not consider. This has no influence on
the results.

3 Memory-Optimized Storing and Generation of the
Key Pair

The public key of Classic McEliece is a parity-check matrix for the binary Goppa
code that is chosen as private key. In McEliece and Niederreiter schemes, the
public key is usually scrambled by multiplying suitable matrices. Instead of
scrambling the rows by multiplying the parity-check matrix with a non-singular
random matrix, Classic McEliece applies Gaussian elimination. This serves the
same purpose and additionally transforms the parity-check matrix to systematic
form, i.e., H = (I | T ). Choosing the systematic form has the benefit of reducing
the public key size since the identity matrix I can be omitted.

For embedded devices, holding the parity-check matrix in memory and per-
forming Gaussian elimination to obtain the resulting public key is challenging
due to the size. To address this issue, we present an algorithm to generate a more
compact form of the key pair (Section 3.1). We further present an algorithm to
compute the public key ad-hoc in small chunks from the compact form (Sec-
tion 3.2). The combination of both algorithms enables us to stream the public
key to a peer without the need to hold it in memory in its entirety. This reduces
both, memory and storage requirements for handling Classic McEliece key pairs.

3.1 Extended Private Key Generation

Classic McEliece defines the public key as Kpub = T and the private key as
Kpriv = (Γ, s). Here, Γ = (g(x), (α1, ..., αn)) where g(x) is a polynomial in
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Fq[x], (α1, ..., αn) are finite field elements in Fq, and s is a uniformly random
generated n-bit string. Our proposal is to omit the public key T altogether, and
instead store a smaller matrix S ∈ F(n−k)×(n−k)

2 in the private key. We call the
new private key extended private key and define it as Kpriv_ext = (Γ, s, S). We
define S−1 as the leftmost (n−k)× (n−k) submatrix of Ĥ, and S as its inverse,
for which the relationship SĤ = H = (I | T ) holds. The x86-optimized SSE and
AVX code variants that have been submitted as additional implementations to
NIST already make use of this relationship. The authors use it to speed-up the
Gaussian elimination in the key generation operation, whereas we aim to reduce
memory requirements instead.

With Algorithm 1, we present an algorithm to generate the extended pri-
vate key. In comparison to the original Classic McEliece key generation [4, Sec-
tion 2.4], no public key is computed. Further, Algorithm 1 does not operate on
the complete matrix H and its precursors Ĥ and H̃. Instead, only the first n−k
columns are computed to produce S−1, which in line 5 is inverted to obtain S.

Algorithm 1: Extended Private Key Generation
Parameter: n, t,m, q = 2m, k = n−mt
Output: Kpriv_ext = ((g(x), (α1, ..., αn), s, S)

1 Generate a uniform random irreducible polynomial g(x) ∈ Fq[x] of degree t.
2 Select a uniform random sequence (α1, α2, ..., αn) of n distinct elements of Fq.
3 Compute the t× (n− k) matrix S̃−1 over Fq by letting (S̃−1)i,j = hi,j , where

hi,j = αi−1
j /g(αj) for i = 1, ..., t and j = 1, ..., n− k.

4 Form an (n− k)× (n− k) matrix S−1 over F2 by replacing each entry
c0 + c1z + ...+ cm−1z

m−1 of S̃−1 with a column of m bits c0, c1, ..., cm−1.
5 Compute S as the inverse of S−1.
6 if the previous step fails (i.e., S−1 is singular) then
7 go back to line 1.
8 end
9 Generate a uniform random n-bit string s.

Note that entries of Ĥ (and Ŝ) can be computed “on-the-fly” as the binary
representation of entries of H̃: we obtain H̃i,j by H̃i,j = αi−1

j /g(αj). To efficiently
access all entries of Ĥ and H̃, respectively, it is beneficial to produce the elements
top-down. For H̃i,j with i > 1, it holds that H̃i,j = αjH̃i−1,j , i.e., computing
H̃i,j from H̃i−1,j only encompasses one modular multiplication and preserves the
previous work of computing the modular exponentiation and inversion.

3.2 Public Key Retrieval
In the following, we describe an algorithm that obtains chunks of the public key
ad-hoc from the extended private key. We propose to call the process of obtaining
the public key from the extended private key retrieving the public key5.

5This wording avoids calling it generating the public key since the public key is
already uniquely defined after the private key is chosen. The term “generate” might be
misleading and imply that randomness is introduced into this process.
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The original Classic McEliece key generation algorithm already comprises a
possibility to retrieve the public key. That is, for a valid private key, in lines 3-
5 [4, Section 2.4], the corresponding public key is computed. This however entails
holding the (n − k) × n matrix Ĥ in memory and subsequently performing
Gaussian elimination. The matrix Ĥ is larger than the public key itself.

We therefore propose Algorithm 2 which operates on smaller matrices only.
The algorithm has the additional property that it does not retrieve the complete
public key in one large chunk, but instead can be used to retrieve single columns
at a time. The public key column retrieval algorithm can therefore be used to
stream the public key to a peer by ad-hoc retrieving single columns of it.

Algorithm 2: Public Key Column Retrieval
Input: Kpriv_ext = (Γ, s, S), Column c (Integer)
Parameter: n, t,m, q = 2m, k = n−mt
Output: cth column of the public key: T•c

1 Compute H̃•c as the t-dimensional vector over Fq with H̃j,c = αj−1
c /g(αc) for

j = 1, 2, ..., t.
2 Compute Ĥ•c as the mt-dimensional vector over F2 that results by replacing

each entry c0 + c1z + ...+ cm−1z
m−1 of H̃•c with a column of m bits

c0, c1, ..., cm−1.
3 Compute H•c = SĤ•c.

4 Streaming Encapsulation

In the previous Section 3 we specified the memory-efficient handling and the ad-
hoc generation of the public key on a device that holds the (extended) private key.
Now, we discuss the memory-efficient handling of the encapsulation operation [4,
Section 2.7] that takes place on the device of a peer that, naturally, does not
have access to the private key. The goal is to minimize the memory footprint
of the operation. This is achieved by not processing the complete public key at
once, but in smaller chunks. That is, we compute the encapsulation operation
while the public key is streamed from a peer, without buffering it completely. A
similar approach is already described for the McEliece PKE scheme in [20]. We
adapt this approach for Classic McEliece.

In Classic McEliece, the encapsulation operation calls the encoding subrou-
tine that is used to compute the syndrome of a weight-t error vector. The com-
putation of the syndrome is the only operation in the encapsulation algorithm
that makes use of the public key. We therefore need to address the syndrome
computation. The syndrome C0 of e is computed as C0 = He, where H is the
parity check matrix that is formed by H = (I | T ).

A naive implementation will form a buffer that contains the complete parity-
check matrix H and then perform the matrix-vector-multiplication. However, it
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is easy to see that for obtaining the matrix-vector-product all calculations are
independent of each other and each entry of H is only used once. This means
that it is not necessary to buffer more than a single byte of the public key at a
time. Furthermore, it does not matter in which order the public key is processed
as long as the order is defined.

With Algorithm 3 we introduce an encoding subroutine that operates on
single columns of the public key, in accordance with the public key column
retrieval algorithm (Algorithm 2). In lines 1 to 5, the implicit identity matrix
that is part of the parity-check matrix is handled. In line 10 the syndrome
computation is updated with the column that is received in line 9. Note that the
ith column, i.e. T•i, can be discarded after each iteration of the while-loop.

Algorithm 3: Single-Column Encoding Subroutine
Input: weight-t Vector e ∈ Fn

2

Parameter: n, t,m, q = 2m, k = n−mt
Output: C0

1 Initialize C0 as an n− k-dimensional zero-vector.
2 Set i := 1.
3 while i ≤ n− k do
4 Set C0i := ei.
5 Set i := i+ 1.
6 end
7 Set i := 1.
8 while i ≤ k do
9 Read the ith column of the public key T from some location into T•i.

10 Set C0 := C0 + ei · T•i.
11 Set i := i+ 1.
12 end

4.1 Mitigation of the Risk of Denial-of-Service Attacks

In a scenario where clients connect to a server and send Classic McEliece public
keys, a concern is that the server is vulnerable to denial-of-service attacks. If
the server accepts multiple connections and buffers public keys of the size of a
megabyte or more, an attacker can abuse this to exhaust the server’s memory.
This prevents any new connection to be made without dropping connections that
currently are in progress. It might even cause the server to behave erratically if
it does not properly handle the case of failed memory allocations.

Such concerns have already been addressed in [5] where the McTiny protocol
is described. In the McTiny protocol the server does not need to keep any per-
client state at all. The per-client state is instead stored encrypted (by the server)
on the client-side, thereby preventing such attacks.
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We argue that in protocols like TLS, there is already a per-client state of
significant size. E.g. the TLS standard implies the use of input/output-buffers
that can store record plaintext sizes of 214 bytes. By using the streaming encap-
sulation approach, the additional per-client state that results from performing
the streaming encapsulation is the size of the syndrome C0. For the largest pa-
rameter set, mceliece8192128, this amounts to 208 bytes. The input buffer that
temporarily holds public key data can be fully consumed each time data is re-
ceived as outlined previously.

To clarify, we do not suggest that the streaming encapsulation replaces the
McTiny protocol, as there is still a per-client state. However, with protocols such
as TLS, the risk of such an attack is greatly reduced by using the streaming
encapsulation as described in this paper.

5 Implementation

We implemented the algorithms presented in Sections 3 and 4 on an STM32
Nucleo-144 development board with an STM32F429ZI MCU. It features an ARM
Cortex-M4 with 256KiB RAM and 2MiB flash memory. The RAM is separated
into two blocks: 192KiB and 64KiB of core coupled memory. The clock speed
is set to 168MHz. We use FreeRTOS v10.0.1 as operating system.

In the following, the network setup for the network-related measurements is
detailed. We report our measurements for completeness, but we emphasize that
we did not optimize the implementation for speed. This includes the Classic
McEliece reference code, the SPHINCS+ reference code, as well as the network
stack. The lwIP library v2.0.3 is used to implement the TCP/IP stack. The de-
velopment board is connected via ethernet to a PC that features an Intel i5-8400
CPU. The throughput of the TCP connection that we measured depends on the
sending direction and the size of the packets that are sent. For receiving data on
the board, we measured speeds between 3.04MiB/s and 3.60MiB/s. For sending
data from the board, we measured speeds between 53.10KiB/s and 2.07MiB/s.
The throughput for sending data from the board seems to drop to low speeds
when exceeding the TCP MSS (Maximum Segment Size). This is the case when
streaming the Classic McEliece public key in our current implementation. We
further measured the average round-trip time of the connection as 0.39ms. No
package-loss has been observed. Measurements are generally rounded to two
decimal places.

5.1 Memory-Efficient Matrix Inversion

The algorithms presented in Section 3 reduce the sizes of the involved matrices
from (n − k) × n for H and (n − k) × k for T to (n − k) × (n − k) for S.
Therefore, the total memory requirements now largely depend on the size of S
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as the dominating factor.6 Furthermore, the temporary memory that is required
to obtain S from S−1 determines how memory-efficiently Algorithm 1 can be
implemented. For example, to obtain the inverse of S−1, it suggests itself to use
the Gaussian elimination algorithm. However, this induces the memory overhead
of transforming an (n− k)× (n− k)-identity matrix. We propose a variant that
can be implemented more memory-efficiently, i.e. almost in-place with 2(n− k)
bytes of non-constant overhead. We outline the steps in Algorithm 4.

Algorithm 4: LU-Decomposition-based Matrix Inversion
Input: S−1 ∈ F(n−k)×(n−k)

2

Output: S
1 Find the LU decomposition of S−1, i.e. PS−1 = LU where

P,L, U ∈ F2
(n−k)×(n−k) and P is a permutation matrix and L and U are

lower and upper triangular matrices.
2 Invert L and U .
3 Compute the product U−1L−1.
4 Undo the permutation to obtain S = U−1L−1P .

The correctness of this approach follows by verifying PS−1 = LU ⇐⇒
S−1 = P−1LU ⇐⇒ S = U−1L−1P . We now outline how these steps can be
implemented almost-in-place.

Step 1 LU Decomposition. We implement the LU decomposition as in Algo-
rithm 5. This is essentially the “kij-variant” of the outer-product formulation
of Gaussian elimination [9, Section 3.2.9]. In the binary case, however, it be-
comes a bit simpler since there is no need to divide by the diagonal elements.
The algorithm can be implemented to replace the buffer of S−1 by L as its lower
triangular matrix and U as its upper triangular matrix in a straightforward man-
ner. That is, the memory access pattern shown in line 10 of Algorithm 5 already
leads to an in-place implementation. However, the permutation matrix P cannot
be stored in-place. Thus, the algorithm does not entirely run in-place. Since P
is a sparse matrix with exactly n − k non-zero entries, we implement it as a
2(n− k)-byte vector that keeps track of which rows are swapped. Two bytes per
entry are enough to handle the indices of matrices with up to 216 = 65,536 rows,
enough to handle all Classic McEliece parameter sets. Additional care has to be
taken to implement the pivoting in constant-time. For instance, this is achieved
by not explicitly branching at the two distinct cases in line 3 of Algorithm 5, but
masking the operations with all-zero or all-one masks, respectively. Further, the

6While there are other significant, temporary memory-overheads in the Classic
McEliece code, none of them is as big as that for S. Furthermore, for the extended
private key generation, temporary buffers can often be placed in the buffer where S
is written into at the end of the key generation process. This results in a decreased
overall memory consumption.
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Algorithm 5: LU Decomposition
Input: A ∈ F(n−k)×(n−k)

2

Output: P,L, U ∈ F(n−k)×(n−k)
2 , s.t. PA = LU . Return ⊥ (error) if A is

singular.
1 for k := 1 to n− 1 do
2 for i := k + 1 to n do
3 Swap row i with row k if the ith row has a non-zero entry at the kth

column and update P accordingly (partial-pivoting).
4 end
5 if Pivoting fails (i.e. A is singular) then
6 return ⊥
7 end
8 for i := k + 1 to n do
9 for j := k + 1 to n do

10 A(i, j) := A(i, j)−A(i, k) ·A(k, j)
11 end
12 end
13 end

return command in line 6 can safely abort the key generation. Doing so possibly
leaks at which step the key generation failed. However, as the Classic McEliece
authors already argue, doing so does not leak any information on the actually
generated key since separate random numbers are used for each attempt [4].

Step 2 Inversion of U and L. The inversion of U and L amounts to backwards and
forwards substitution respectively. Implementing this in-place is straightforward
as well as to achieve the constant-time property because no code path depends
on secret values.

Step 3 Multiplication of U−1L−1. U−1 and L−1 are both stored in the mem-
ory where S−1 used to be – as upper and lower triangular matrix, respectively.
To obtain an algorithm that multiplies both matrices in-place, we utilize the
triangular structure of U−1 and L−1. First, let us give a formula with which
an element of the product can be computed. For convenience, we define Ā
as the matrix that contains L−1 and U−1 as a lower and an upper triangu-
lar matrix and A as A := U−1L−1. Each entry A(i, j) can then be written as
A(i, j) =

∑n
k=max(i,j)+1 Ā(k, j) · Ā(i, k). By appropriately ordering the compu-

tations of entries of A, we prevent overriding values that are needed for future
computations. More precisely, our solution is to first compute the element in the
top-left corner, i.e. the first diagonal element A(1, 1). Then, the three remaining
elements in the top-left 2× 2-matrix can be computed in any order. Continuing
like this, i.e. computing the remaining five elements in the top-left 3× 3-matrix
in any order, and so on, all elements of A can be computed. Each evaluation
of the given formula only depends on values of Ā that have not been overwrit-
ten by elements of A yet. Therefore, the outlined approach can be implemented
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in-place. Implementing this as constant-time is again straightforward since no
computation path depends on secret values.

Step 4 Undo Permutation. Finally, the permutation needs to be undone. Since
P is now multiplied from the right, this amounts to swapping the columns that
are indicated by P .

5.2 Extended Private Key Generation

In Table 1 we list the performance of the extended private key generation (Algo-
rithm 1) for the mceliece348864 parameter set for different numbers of attempts
that are made. Each time the key generation fails because S−1 is singular, the
number of attempts is increased by one. One can see that the key generation
is linear in the number of attempts. Each failed attempt roughly adds 1.77 s to
the key generation time. On average, the key generation succeeds after 3.4 at-
tempts [4]. We extrapolate the runtime for 3.4 attempts from our measurements
as 1,938,512,183 cycles or 11.54 seconds.

# Attempts Algorithm 1 Algorithm 1
Cycles s

1 1,226,192,185 7.30
2 1,522,914,956 9.06
3 1,819,628,971 10.83
4 2,116,353,011 12.60
...

...
...

Table 1. Timings for the private key generation for the mceliece348864 parameter
set on our development board. The key generation time depends on the number of
attempts that have to be made until a non-singular matrix is found.

In Table 2 we specify the size of the extended private key for different pa-
rameter sets and compare it to the size of the Classic McEliece key pair. We
note that the private key size is implementation-dependent. In contrast to the
reference implementation, we store the field elements (α1, α2, ..., αn) as two-byte
values. The reference implementation stores these elements by generating the
control bits of a Beneš network. The benefits of the Beneš network are not uti-
lized in the reference implementation, but only play a role in x86-optimized
implementations that have been submitted as additional implementations. Since
the implementation that generates the control bits has a large memory footprint
and our implementation does not benefit from it, we omit this step.

Table 3 depicts the reduction of the memory footprint when performing the
extended private key generation instead of the Classic McEliece key generation.
For the Gaussian elimination we assume the required memory as the size of the
matrix Ĥ. For the inversion of S we assume that this is done in-place with the
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Parameter Set Key Pair Extended Private Key Difference Ratio
Bytes Bytes Bytes

mceliece348864 267,572 81,268 186,304 0.30
mceliece460896 537,728 204,672 333,056 0.38
mceliece6688128 1,058,884 360,580 698,304 0.34
mceliece8192128 1,371,904 363,776 1,008,128 0.27

Table 2. Size of the extended private key compared to the Classic McEliece key pair.
Note that for the extended private key, it is intended to omit storing the public key.

Parameter Set m n t
Gaussian Matrix

Elimination Inversion Difference Ratio
of Ĥ of S−1

mceliece348864 12 3488 64 334,848 75,264 259,584 0.22
mceliece460896 13 4608 96 718,848 197,184 521,664 0.27
mceliece6688128 13 6688 128 1,391,104 349,440 1,041,664 0.25
mceliece8192128 13 8192 128 1,703,936 349,440 1,354,496 0.21

Table 3. Comparison of the memory footprint (in bytes) for producing the public
key T or S−1, respectively, from Γ . The original Classic McEliece algorithm applies
Gaussian elimination to the (n − k) × n matrix Ĥ. We propose to (almost) in-place
invert the (n− k)× (n− k) matrix S−1 instead (Algorithm 1 and Section 5.1).

addition of storing 2(n−k) bytes for the pivoting (see Section 5.1). The reduction
in the memory footprint is considerable, since the explicit representation of the
public key is not stored. This amounts to over a megabyte of memory that is
saved for the largest parameter set.

5.3 Public Key Column Retrieval

In Table 4 we list the timings for the public key column retrieval algorithm
(Algorithm 2) for consecutively retrieving the complete public key. The numbers
are the raw computation time, i.e. the cycle count does not include sending the
resulting columns over a network to a peer. As an implementation detail, we do
not operate on chunks of single columns but on eight columns at a time. This
is easier to implement and also faster since bytes (i.e. eight bits) usually are the
smallest addressable memory unit. Working on eight columns at a time therefore
saves unnecessary operations that are needed to access single bits within a byte.
This is true at least, when the matrices are stored in a row-major order. The
size of each generated chunk is therefore n− k bytes instead of (n− k)/8 bytes.
Our implementation has a memory overhead of 17/8(n− k) bytes, including the
output buffer and intermediary results (but excluding control variables). Table 4
also illustrates the memory footprint for each parameter set.

5.4 Streaming Encapsulation

We implemented a variant of the encapsulation algorithm by adapting it to use
the single-column encoding subroutine (Algorithm 3). For the same reason as
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Parameter Set Algorithm 2 k mat-vec-muls Memory Overhead
Cycles s Cycles s bytes

mceliece348864 667,392,425 3.97 623,672,694 3.71 1632
mceliece460896 2,250,917,383 13.40 1,965,249,172 11.70 2652
mceliece6688128 5,820,127,974 34.64 5,152,221,701 30.67 3536
mceliece8192128 7,558,882,087 44.99 6,694,439,348 39.85 3536

Table 4. Timings for retrieving the public key with Algorithm 2. We include the biggest
contributor to its runtime, the k matrix-vector-multiplications with the (n−k)×(n−k)
matrix S. We also list the total memory footprint of our implementation.

before, we work on chunks of eight columns instead of single columns, again
leading to chunks of n − k bytes instead of (n − k)/8 bytes. Table 5 lists the
runtime and the memory footprint of our implementation for the encoding sub-
routine. The memory footprint includes the error vector and the chunk of eight
columns as the input buffers and the syndrome as the output buffer and amounts
to n/8+ 9/8(n− k) bytes. We note that processing the public key in row-major
order can be implemented faster than processing it in column-major order. In
comparison to the reference implementation that processes the public key in
row-major order, our implementation is around twenty to fifty percent slower
(depending on the parameter set).

Parameter Set Algorithm 3 Algorithm 3 Algorithm 3 Memory Overhead
Pubkey origin local buffer local buffer network –

Cycles ms ms bytes
mceliece348864 3,106,183 18.49 92.37 1300
mceliece460896 5,868,529 34.93 183.14 1980
mceliece6688128 11,464,900 68.24 358.67 2708
mceliece8192128 14,696,239 87.48 463.64 2896

Table 5. Measured speed of the streaming encapsulation operation. Columns 2 and 3
give the timings when operating on a local buffer in the RAM of the device. This is
given as a reference point for the speed of the operation itself. Column 4 depicts the
timing when streaming the public key to the board over a TCP/IP connection.

6 TLS 1.2 Implementation

We implemented the algorithms in Sections 3 and 4 into the mbedTLS library7

by defining a new cipher suite for TLS 1.2. The current version of mbedTLS
supports only TLS 1.2 and a prototype implementation of TLS 1.3 is work in
progress. Our algorithms function both for TLS 1.2 and TLS 1.3 because the
changes between these two versions do not affect them. In addition TLS 1.3
also does not have accepted standards for PQC yet. Later in this section we

7https://tls.mbed.org/

https://tls.mbed.org/
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discuss the relevant changes for a TLS 1.3 implementation. We do not describe
our implementation in full detail but outline our prototype that serves as a proof
of concept. The cipher suite uses Classic McEliece as a key exchange algorithm
and a server certificate with a SPHINCS+ key [14].

In our cipher suite, the server generates an ephemeral extended private key
for Classic McEliece, using Algorithm 1. In the server key exchange message the
public key is streamed to the client by utilizing Algorithm 2. A SPHINCS+ sig-
nature is appended to the key. The client performs the streaming encapsulation
operation (Algorithm 3) and verifies the signature. The premaster secret is then
generated analogously to RSA cipher suites by turning the Classic McEliece
scheme into a PKE scheme through a KEM-DEM conversion [19, Section 5].
That is, the key from the encapsulation is used as an AES-256 key which is then
used to encrypt a 48-byte premaster secret, which is defined and used analo-
gously to the RSA-encrypted premaster secret. The client sends the encrypted
premaster secret in the client key exchange message. If the server can successfully
decrypt the premaster secret, both parties form the same master secret.

The parameter sets that we use in our cipher suite are mceliece348864 and
SPHINCS+-256f. For Classic McEliece, the size of the public key is 261,120B
and the size of the required memory for the matrix inversion during the key
generation is 73,728B. A SPHINCS+-256f signature amounts to 49,216B. The
client verifies two of these signatures: One in the server certificate, since we
chose to generate a root CA with a SPHINCS+-256f key in order to have a full
post-quantum handshake, and one in the server key exchange message. While
SPHINCS+ signatures can in principle be processed in a streaming fashion [13],
our implementation stores the signature in a buffer on the device’s memory.

Board as Server
KeyGen Decapsulation Sign 2x Verify send CERT+PK+SIG

Server 10.83 s 0.99 s 109.71 s – 4.29 s
Client – – – 0.01 s –

Total Handshake Time 126.30 s

Board as Client
KeyGen Decapsulation Sign 2x Verify send CERT+PK+SIG

Server 0.14 s 0.00 s 0.11 s – 0.34 s
Client – – – 5.18 s –

Total Handshake Time 5.83 s

Table 6. Total handshake time (client hello to second finished message) including
noteworthy sub-operations. Sign and Verify refer to the SPHINCS+ sign and verify
operation. The client verifies two signatures, the server certificate signature and the
signed public key. The other listed operations are performed by the server. The last col-
umn depicts the measured time to send the server certificate (containing a SPHINCS+

signature), as well as the signed Classic McEliece public key (the public key retrieval
algorithm is used). Results are averaged and we chose seeds for the key generation that
result in three key generation attempts.
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We report the timings for the handshake in Table 6. The SPHINCS+ opera-
tions on the board take about 86.86% and 88.85% of the total handshake time.
Since we focus on a memory-efficient implementation of Classic McEliece, we
do not optimize the SPHINCS+ operations. We chose to set the number of key
generation attempts fixed to three by choosing appropriate seeds. This approxi-
mates the mean of 3.4 key generation attempts but avoids the need to measure a
vast amount of handshakes only to average the variance in key generation. The
number of round-trips is the same as in common TLS 1.2 connections, i.e., two
full round-trips before application data is sent.

With regard to using our approach in TLS 1.3, the following differences have
to be considered: First, in TLS 1.3, to maintain the 1-RTT benefit over TLS
1.2, the client would have to generate the key pair. This might be unwanted for
embedded-client scenarios. Second, in TLS 1.3 sending a Classic McEliece public
key is not straightforward. The natural place to convey the public key and the
ciphertext is the key_exchange-field in the KeyShareEntry struct which is part of
the key_share-extension. However, the field only holds keys of size up to 216−1 B.
Classic McEliece keys exceed this limit. Therefore, an implementer would have
to consider a strategy to circumvent this limit. Other than that, we see only
minor changes for the sake of employing our proof of concept implementation in
TLS 1.3.

A complete handshake has been performed with the outlined cipher suite
on our development board. Both, the server side and the client side can be
executed on the development board that features only 256KiB RAM. Our proof
of concept implementation demonstrates that our results can be applied in the
real world and leave enough room to handle large signatures, as well as the
memory overhead in the TLS and TCP stack.
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