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Abstract. Attribute-Based Encryption (ABE) is a cryptographic primitive which supports fine-grained
access control on encrypted data, making it an appealing building block for many applications. Multi-
Authority Attribute-Based Encryption (MA-ABE) is a generalization of ABE where the central au-
thority is distributed across several independent parties.
We provide the first MA-ABE scheme from prime-order pairings where no trusted setup is needed and
where the attribute universe of each authority is unbounded. Our constructions rely on a common
modular blueprint that uses an Identity-Based Functional Encryption scheme for inner products (ID-
IPFE) as an underlying primitive. Our presentation leads to simple proofs of security and brings new
insight into the algebraic design choices that seem common to existing schemes. In particular, the well-
known MA-ABE construction by Lewko and Waters (EUROCRYPT 2011) can be seen as a specific
instantiation of our modular construction.
Our schemes enjoy all of their advantageous features, and the improvements mentioned. Furthermore,
different instantiations of the core ID-IPFE primitive lead to various security/efficiency trade-offs: we
propose an adaptively secure construction proven in the generic group model and a selectively secure
one that relies on SXDH. As in previous work, we rely on a hash function (to generate matching
randomness for the same user across different authorities while preserving collusion resistance) that is
modeled as a random oracle.

1 Introduction

Attribute-Based Encryption (ABE) [SW05, GPSW06] subsumes traditional public-key encryption by pro-
viding fine-grained access to the encrypted data. Namely, each ciphertext is associated with an access policy,
and each user receives a so-called user secret key according to certain credentials. If these credentials fulfill
the policy access, then the user secret key can be used to successfully decrypt the ciphertext. Otherwise, the
plaintext remains hidden. In fact, security should hold even in the presence of colluding users.

Despite generating significant interest in the research community, the notion of ABE suffers from several
drawbacks. Indeed, the user secret keys are generated from a so-called master secret key, which can potentially
decrypt any generated ciphertext. Consequently, user secret key generation must be performed by a trusted
third party, who controls such a master secret key and that must be online every time that a user secret
key is requested (not just when setting up the scheme). This third party is a single point of failure for the
system and will be a target of choice for adversaries. Spreading the master secret key among different users
to alleviate this bottleneck will increase the chance of key exposure. Moreover, the trusted third party can
impersonate any user of their choice, acting as an escrow (see [Rog15] for further details on the key-escrow
issue faced by ABE). Furthermore, in many scenarios, the access policy used to generate a ciphertext includes
attributes coming from different organizations.

To mitigate these shortcomings, [Cha07] and later [MKE08] considered a variation of ABE where any
party can become an authority by publishing some public key; these authorities, created on the fly, handle
different attributes, and no coordination is required among them. In fact, a user equipped with a global
identifier can collect different credentials associated with different attributes from each authority. However,
the user must then interact with a trusted central authority that will provide the ABE user secret keys.

1 Most of this work was done while the author was employed by NTT Laboratories.



The advantage of their approach is that this central authority is agnostic to the meaning of the attributes
and credentials of the user, and does not need to communicate with the actual authorities. However, most
of the aforementioned shortcomings remain. Afterward, [LCLS08] removed the need for a central authority,
but the set of authorities in their construction is fixed and they must interact during the setup phase.
Another limitation is that the security of their scheme is only proven for an a priori bounded number of
collusions. [CC09] also presented a scheme with no central authority relying on distributed PRF. However,
their scheme is still limited in terms of expressiveness (it can only express a strict AND policy) and only
handles a pre-determined set of attributes. In [LW11], the authors gave the first construction where there is
no central authority, authorities can join the system on the fly without communicating with each other and
the ciphertexts can be associated with a rich class of expressive access policies (including Boolean formula).
Despite these impressive features, their construction still suffers from some limitations: it requires a trusted
setup; it uses inefficient composite-order pairings; each authority can only handle a small (poly-size) set
of attributes, in fact the public key of each authority grows with the number of attributes owned by the
authority.

Our contribution. We address the disadvantages of [LW11]. Namely, we provide the first Multi-Authority
ABE (MA-ABE) from prime-order pairings, where there is no trusted setup beyond the mere agreement of
which groups and which hash function to use. Moreover, the attribute set of each authority is unbounded.
Our constructions also keep the advantageous features of [LW11], in particular, the fact authorities can join
the system dynamically and autonomously i.e without any interaction with other authorities. Individual
authorities cannot generate a full-fledged user secret key, which means they cannot decrypt a ciphertext on
their own, or impersonate a user. Only if sufficiently many authorities collude, should they be allowed to
generate a given user secret key (that is the correctness of the scheme).

The use of prime-order pairing vastly improves the performance of our scheme (see [Gui13] for a compar-
ison between composite vs prime-order pairings). Moreover, existing techniques to convert composite-order
pairing to their prime-order counterpart (see e.g. [OT09, Fre10, Lew12, CGW15, Att16, AC16]) do not seem
to a apply straightforwardly to the case of multi-authority ABE. However, we do not consider this achieve-
ment to be the most technically challenging part of our contribution. Instead, our most valuable technical
insight is to remove some of the idiosyncrasies of Lewko-Waters’ scheme that are detrimental for its effi-
ciency. As an example, the construction by Lewko and Waters uses a target group element (whose order of
magnitude is much larger than source group elements) in the ciphertext for no obvious reason. We instead
adopt a more systematic approach, where all of our constructions rely on a common blueprint that makes
use of practical Functional Encryption for simple function, namely, identity-based products (we refer to our
technical overview for more details about FE). Apart from the practical features highlighted above, our
principled viewpoint has the advantage that, by using different FE schemes, we can obtain diverse MA-ABE
schemes with various security/efficiency trade-offs.

Our first construction uses an FE which is proven secure in the Generic Group Model (GGM). Note that
we do not argue that the GGM is a good replacement of security reductions from standard assumptions.
However, our result shows that using the GGM opens up to new qualitative improvements upon existing
constructions (e.g. the unbounded attribute space). Moreover, recent standardization efforts (e.g., by the
European Telecommunications Standards Institute, ETSI [Ins18]) call for truly practical schemes at the
price of arguably aggressive security assumptions (note that the state of the art MA-ABE from [LW11] is
patented; we plan to provide an open source implementation of our MA-ABE in the future). Our second
construction uses an FE whose security is proven from standard pairing assumptions (namely, SXDH). The
resulting MA-ABE is restricted in the sense that the access policies in the ciphertexts must use at most B
attributes owned from a given authority, where B is an a priori bound. The total number of attributes used
in the access policy, the number of authorities involved, or the attribute spaces of each authority are still
unbounded (and in that sense, the scheme is still an improvement upon Lewko-Waters). The features are
summarized in Table 1.

Finally, we prove that in our construction, the randomness used in the different FE ciphertexts contained
in an MA-ABE ciphertext can be re-used (the MA-ABE encryption uses as sub-routine several calls to the
FE encryption), at the price of more sophisticated security analysis. Doing so yields an improved decryption
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Reference [LW11] scheme #1 scheme #2

|usk| |G| 2|G2| 4B|G2|

|ct| 3`(|G|+ |Gt|) (3`+ t)|G1| (2 + 4`)|G1|

TDec (pairings) 2` 2 + `+ t 2(1 + `+B)

TDec (exponentiations) `Et `(2E1 + E2) 2`(E1 + E2)

assumption composite GGM SXDH

attribute universe poly-size unbounded unbounded

attributes per authority bounded unbounded bounded

Table 1. Comparison among MA-ABE schemes with respect to an access policy (M , ρ) where M has dimension n×`,
and ρ : [`]→ U . Es stand for exponentiation in Gs, where s ∈ {1, 2, t}, respectively. The group operations are omitted,
since much more efficient than exponentiations and pairing operations. Note that [LW11] uses symmetric, composite-
order groups, whereas we use asymmetric, prime-order groups, which are more efficient. The key encapsulation is
omitted in the ciphertexts size. Here, t denotes the maximal number of attributes used in (M , ρ) owned by a given
authority, i.e. maxj∈[`] ξ(j). When t is a priori bounded, we denote by B the bound. Note that in [LW11] this number
is bounded by the size of the attribute universe of the authorities. Scheme #1 refers to the construction from Fig. 3,
when instantiated with the ID-IPFE from Fig. 4. Scheme #2 refers to the construction from Fig. 5, when instantiated
with the ID-IPFE from Fig. 2

procedure, with a first step that only computes exponentiations in source groups, and the second step that
computes more costly pairing operations. Only the first step will involve a number of operations that grows
with the size of the access policy in the ciphertext; the second step only incurs a number of operations
that grows with the number of attributes owned by the same authority (this is typically much lower than
the size of the policy itself, e.g. bounded by B in the second construction). Dealing with randomness re-
use for optimized decryption, and handling unbounded attribute universe are the most significant technical
challenges we face compared to prior works.

Technical overview. We consider an MA-ABE where access policies are represented by monotone span
programs (MSP), as per Definition 1), which capture Boolean formulas. In a nutshell, a MSP allows users to
produce shares s1, . . . , s` of a secret s, where ` is the size of the MSP, and each share sj is associated with
an attribute ρ(j). The ABE uses cyclic groups G1,G2,Gt of prime order p, equipped with a bilinear map
e : G1×G2 → Gt. We use additive bracket notations, where for all groups s ∈ {1, 2, t}, all exponents x ∈ Zp,
we write JxKs = xPs where Ps is a generator of Gs.

For encryption, an exponent s is uniformly sampled from Zp and the encapsulation key is defined as
JsKt (we consider the KEM variant of ABE). The MSP is used to create shares {sj}j∈[`] of s and shares
{uj}j∈[`] of 0. The MA-ABE ciphertext consists of one Functional Encryption (FE) of vector (sj , uj) per
j ∈ [`]. The public key of the FE used for j ∈ [`] is published by the authority that owns the attribute ρ(j).
That is, to register into the system, each authority runs the FE setup algorithm to create its pair of keys
(FE.pk,FE.msk).

The FE we are using is for identity-based inner products. That is, each ciphertext encrypts a vector x
(of some fixed dimension, say d, which is then set to 2 for our modular construction), and an identity id.
Each functional secret key is associated with a vector JyK2 ∈ Gd2 and an identity id′. The decryption of the
ciphertext with the functional secret key succeeds if the identities match, in which case it recovers the inner
product

q
x>y

y
t
. Nothing else is revealed about the encrypted vector x. However, we do not require that the

identities id and id′ or the vector JyK2 remain hidden. These functional secret keys can be generated from
the master secret key of the FE scheme.
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The MA-ABE ciphertext will contain the FE encryption of vector (sj , uj) with the identity set to be the
attribute ρ(j), under the FE.pk of the authority that owns the attribute ρ(j), for all j ∈ [`].

The secret key of a user identified by a global identifier gid, for an attribute a, will contain the FE
functional secret key for vector J1, zgidK2 and identity a, where JzgidK2 is the output of the hash value H(gid).
This FE functional secret key is computed using the FE master secret key of the authority that owns the
attribute a.

The user gid collects all the FE functional secret keys skJ1,zgidK2,a, by making a request (a, gid) to the
relevant authorities. Each FE key skJ1,zgidK2,a yields the value Jsj + zgidujKt for ρ(j) = a. If sufficiently many
such values are revealed, then they can be combined to obtain Js+ zgid · 0Kt = JsKt, the encapsulation key.
Here we rely on the fact that the share reconstruction for an MSP is linear. Otherwise said, if the user gid
possesses enough attributes to satisfy the MSP in the ciphertext, it recovers the encapsulation key.

To argue security, we rely on the simulation security of the underlying FE scheme, which states that
only Jsj + zgidujKt is revealed by the ciphertext and the FE functional secret key for identity ρ(j) and vector
J1, zgidK2 (together with the value H(gid), which is public). Note that the term JzgidujKt prevents collusions
across different gid. If for any given gid there are not enough attributes to satisfy the access structure
associated to the ciphertext, then there are not enough values Jsj + zgidujKt to recover JsKt.

We implement this general approach with different concrete FE schemes. The notion of identity-based
inner product FE was originally put forth in [DP19, TT18] where they defined an indistinguishability-
based security notion. However, for our MA-ABE we need simulation security. [ACGU20] gave the first
simulation secure ID-inner-product FE, but the simulation security is only proven when the adversary gets one
challenge ciphertext. Recall that in the IND-based setting, one challenge ciphertext implies many challenge
ciphertexts via a standard hybrid argument, but this is not the case in the simulation setting. In fact, an
incompressibility argument shows that simulation secure ID-inner-product FE for B challenge ciphertexts
must have parameters (either the ct or sk size) growing with B, in the standard model. Imposing a bound
on the challenge ciphertexts implies a bound on the number of attributes owned by a given authority in
our MA-ABE. This is essentially our construction from standard assumptions. Another limitation is that
our ID-inner-product FE is only selectively secure. On the plus side, we show that security also holds when
the same randomness is used for different FE instances. This way, instead of decrypting all FE ciphertexts
one by one naively, one can leverage the simple structure of the FE ciphertexts to combine them, obtaining
an aggregated ciphertext (this only involves computing exponentiations in source groups) that only then
is paired with the functional secret keys (the pairing computation cost far exceeds the cost of computing
exponentiations in the source groups). To circumvent these limitations, we also provide an ID-inner-product
FE which is adaptively simulation secure for an unbounded number of ciphertexts, with randomness re-use,
proven in the GGM.

All of these schemes (and also prior schemes) crucially rely on the pseudo-randomness of the values JzgidK2
generated by the hash function. Intuitively, the terms computed during decryption cancel out when using
the same gid, but combining values JzgidK2 for different in an attempts to get extra information that provided
by the correctness of the scheme will fail. This formally argued in the random oracle model.

Related works. [Kim19] builds a multi-authority ABE for all circuits from LWE for a slightly different notion
that the GID model presented here (it can be seen as a relaxation of the GID model). In a very recent work,
[DKW21] builds an MA-ABE for DNF formula from LWE. In [MJ18], the authors present a decentralized
ABE, which is similar to an MA-ABE except the number of authorities of the system is fixed ahead of time,
and each authority requires the public keys of the other authorities to generate its share of the user secret
key. They realized this notion for the orthogonality-testing predicate, which captures NC0 circuits. Later
on, [AGT20] extended their construction to partially hide the predicate in the user secret keys. In the same
paper, they also presented a distributed ciphertext-policy ABE for NC1, based on the LWE assumption and
the bilinear generic group model. A distributed ABE is like an MA-ABE except the number of authorities
is fixed ahead of time, and the adversary cannot create corrupted authority with arbitrary public keys, but
is instead restricted to (statistically) recovers the secret key of honestly generated authorities.
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Open problems: building an MA-ABE with the desirable qualitative efficiency features offered by the GGM,
namely unbounded attribute space, and access structure with an unbounded number of attributes owned by
a given authority, from standard assumptions. A different paradigm that does not rely on simulation security
of the FE scheme would likely be required. Achieving adaptive security from standard assumptions would also
be worthwhile (although this would qualify more as a quantitative than a qualitative improvement, since a
guessing argument already provides adaptive security with an exponential security loss). Also, we believe the
GGM is a valuable tool that leaves a lot of room for creativity when designing pairing-based constructions;
it deserves further investigation, for the sake of expanding the functionality of existing schemes.

2 Preliminaries

2.1 Notations

We say a function f : N→ R is negligible if f is asymptotically dominated by the inverse of any polynomial,
i.e for every polynomial p ∈ R[X], there exists λp ∈ N such that |f(λ)| ≤ |1/p(λ)| for all λ ≥ λp. We
denote by |v| the length or dimension of vector v and by vi its i-th component. For any n ∈ N, we denote
{1, . . . , n} by [n]. For any column vector u ∈ Zn and v ∈ Zm, we denote by (v,u) ∈ Zn+m the column vector
obtained by concatenating them. Given two matrices (or vectors) A ∈ Zm1×n1 and B ∈ Zm2×n2 , we denote
by A⊗B ∈ Zm1m2×n1n2 their Kronecker product, aka. tensor product defined as follows. For all i ∈ [m1m2]
and j ∈ [n1n2] which we can write i = m1i1 + i2 with i1 ∈ [m2], i2 ∈ [m2], j = n1j1 + j2 with j1 ∈ [n2],
j2 ∈ [n2], the (i, j)’th coordinate of A⊗B is ai1,j1 · bi2,j2 .

2.2 Access Structure

We recall the definition of monotone access structures using the language of monotone span programs [KW93],
which capture Boolean formulas.

Definition 1 (access structure [Bei96, KW93]). A monotone access structure for attribute universe U
is a pair (M , ρ) where M ∈ Zn×`p and ρ : [`]→ U . The matrix M is used to generate shares as described in
Fig. 1, and ρ maps each share to its associated attribute. Given a set of attributes S ⊆ U , we say that

S satisfies (M , ρ) iff 1 ∈ Span(MS),

Here, 1 := (1, 0, . . . , 0) ∈ Zn; MS denotes the collection of vectors {Mj : ρ(j) ∈ S} where Mj denotes the
j’th column of M ; and Span refers to linear span of collection of vectors over Zp.

That is, S satisfies (M , ρ) iff there exists constants ω1, . . . , ω` ∈ Zp such that∑
ρ(j)∈S ωjMj = 1 (1)

Observe that the constants {ωi} can be computed in time polynomial in the size of the matrix M via
Gaussian elimination.

Share(M ∈ Zn×`p , α ∈ Zp):

Sample u←R Zn−1
p , and for all j ∈ [`], set αj := (α,u)>Mj ∈ Zp.

Return {αj}j∈[`].

Fig. 1. Share generation algorithm. Here, Mj denotes the j-th column of M .
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2.3 Pairing Groups

Let GGen be a PPT algorithm that on input the security parameter 1λ, outputs a description PG =
(p,G1,G2, P1, P2,Gt, e) of pairing groups where G1,G2 and Gt are cyclic groups of order p for a 2λ-bit prime
p; P1 and P2 are generators of G1 and G2 respectively and e : G1 × G2 → Gt is an efficiently computable
(non-degenerate) bilinear map, thus Pt := e(P1, P2) generates Gt.

We use implicit representation of group elements. For s ∈ {1, 2, t} and a ∈ Zp, define JaKs = a · Ps ∈ Gs
as the implicit representation of a in Gs. More generally, for a matrix A = (aij) ∈ Zn×mp we define JAKs as
the implicit representation of A in Gs:

JAKs :=


a11 · Ps ... a1m · Ps

an1 · Ps ... anm · Ps

 ∈ Gn×ms .

Given JaK1 and JbK2, one can efficiently compute Ja · bKt using the pairing e. For matrices A and B of matching
dimensions, define e(JAK1 , JBK2) := JABKt. For any matrix A,B ∈ Zn×mp , any group s ∈ {1, 2, t}, we denote
by JAKs + JBKs = JA + BKs.

Definition 2 (DDH assumption). For any adversary A, any group s ∈ {1, 2, t} and any security param-
eter λ, let

AdvDDH
Gs,A(λ) := |Pr[1← A(PG, JaKs, JarKs)]− Pr[1← A(PG, JaKs, JuKs)]|,

where the probabilities are taken over PG ←R GGen(1λ, d), a ←R Z2
p, r ←R Zp, u ←R Z2

p, and the random

coins of A. We say DDH holds in Gs if for all PPT adversaries A, AdvDDH
Gs,A(λ) is a negligible function of λ.

Definition 3 (SXDH assumption). For any security parameter λ and any pairing group PG = (G1,G2,
GT , p, P1, P2, e)←R GGen(1λ), we say SXDH holds in PG if DDH holds in G1 and G2.

3 ID-Based Inner-Product Functional Encryption

First we recall the notion of identity-based inner-product functional encryption — note that a similar defi-
nition was already given in [DP19], although with a weaker security notion. We provide a simulation-based
security definition in the multi-instance setting, and we define a so-called decomposable structural property
which is satisfied by most existing schemes. Then we present a variant of the ID-based IPFE from [ACGU20],
which we prove simulation secure in the multi-instance setting under the SXDH assumption (the original
proof was given in the weaker single-instance setting).

3.1 Definition

Let d be a polynomial. An identity-based inner product functional encryption scheme (ID-IPFE) for d-
dimensional vectors consists of the PPT algorithms described below. For our purposes, we consider a two-
step setup where global parameters are generated first, then used to derive the public key and master secret
key. Note that the global parameters can be re-used for generating independent public key, master secret key
pairs. We restrict our attention to schemes where the global parameters contain the description of a pairing
group.

• GlobalSetup(1λ)→ gp. On input the security parameter λ in unary, it outputs the global parameters
gp, which contain a pairing group (p,G1,G2, P1, P2,Gt, e). The global parameters gp are (sometimes
implicitly) given as input to all other algorithms described here.

• Setup(gp) → (msk, pk). On input the global parameters gp, it outputs a master secret key msk and a
public key pk, defining an identity space I and randomness space R.
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• Enc(pk,x, id; r) → ctid. On input the public key pk, a message x ∈ Zd(λ)p , an identity id ∈ I, and the
random coins r ←R R, the encryption algorithm outputs a ciphertext ctid.

• KeyGen(msk, JyK2 , id)→ skid. On input the master secret key msk, a vector JyK2 ∈ Gd(λ)2 and an identity
id ∈ I, the key generation algorithm outputs a functional secret key skid.

• Dec(ctid, skid′ , JyK2) → JzKt /⊥. The decryption algorithm gets a ciphertext ctid, a functional secret key
skid′ and vector JyK2 associated to it. It outputs a group element in Gt if id = id′, ⊥ otherwise.

Identities are not intended to be hidden and we assume that ciphertexts and keys implicitly contain the
identity they have been created for. To ease the notations, we write d(λ) as d when clear from context.

Correctness. For all λ ∈ N, all gp in the support of GlobalSetup(1λ), all (msk, pk) in the support of
Setup(gp), all id ∈ I, x,y ∈ Zdp:

Pr [Dec (pk,Enc(pk,x, id), KeyGen(msk, JyK2, id), JyK2) = Jx>yKt] = 1 ,

where the probability is taken over the random coins of Enc and KeyGen.

Decomposability. We say an ID-based inner-product FE is decomposable if each ciphertext consists of
two parts, one header hd that is independent of the message x and the identity id, and one payload pl that
depends on those. We additionally require that the payload can be computed deterministically from the
header with the master secret key. More precisely, we have a PPT algorithm Enchd and a PPT deterministic
algorithm Encpl such that for all λ ∈ N, all gp in the support of GlobalSetup(1λ), all (pk,msk) in the support
of Setup(gp), all vectors x ∈ Zdp, all identities id ∈ I, the following distributions are identical:

{ct← Enc(pk, JxK1 , id) : ct},
{hd← Enchd(pk), pl = Encpl(msk, id, JxK1 , hd) : (hd, pl)}.

Multi-instance simulation security. An ID-IPFE scheme is said to be multi-instance simulation secure
if there exist a tuple of PPT algorithms Sim = (GlobalSetup,Setup,KeyGen,Enc) such that for every admis-
sible PPT adversary A, there exists and a negligible function ν such that, for all λ ∈ N, |Pr[Real(A, λ) →
1] − Pr[Ideal(Sim,A, λ) → 1]| ≤ ν(λ), where the experiments Real(A, λ) and Ideal(Sim,A, λ) are defined
below. An adversary is said to be admissible if it queries OEnc at most once on a given instance.

Real(A, λ):

gp← GlobalSetup(1λ)

α← AOEnc(·,·,·),OKG(·,·,·),Ocreate(gp)

Output α.

Ideal(Sim,A, λ):

(gp, td)← GlobalSetup(1λ)

α← AOEnc(·,·,·),OKG(·,·,·),Ocreate(gp)

Output α.

In the real experiment:

• On its i’th query, the oracle Ocreate generates (pki,mski)← Setup(gp) and adds the pair (pki,mski) to a
list L, initially empty. We denote by |L| the length of the list L. It returns pki.

• The oracle OEnc samples the random coins r ←R R once at the beginning of the experiment. Then,
for each query (x, id, i) it receives, if i > |L|, it outputs nothing. Otherwise, it outputs Enc(pki,x, id; r),
where pki is in L. Note that the same randomness r ∈ R is used to compute all ciphertexts. Recall that
admissible adversaries can query OEnc on a given instance i at most once.

• When queried on (JyK2 , id, i), if i > |L|, it outputs nothing. Otherwise, it outputs KeyGen(mski, JyK2 , id),
where mski is in L.
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In the ideal experiment:

• On its i’th query, the oracle Ocreate generates (pki,mski)← Setup(gp) and adds the pair (pki,mski) to a
list L, initially empty. It returns pki.

• When queried on (x, id, i), provided i ≤ |L|,OEnc adds (x, id) toQCT and outputs Enc(td, pki, id, i, leakage),
where pki is in L. The case i > |L| is handled as in the real experiment.

• When queried on (JyK2 , id, i), OKG adds (JyK2 , id) to QKG and outputs KeyGen(td, JyK2 , id, i, leakage).

Here, leakage is defined based on the current state of the sets QCT and QKG that are initially empty, as
follows:

leakage := {(Jx>yK2 , id) | (x, id)∈QCT ∧ (JyK2 , id)∈QKG} .

Selective security. we say the scheme is selectively simulation secure when security only holds for restricted
adversaries that make all their queries to OEnc before any query to OKG.

Remark on the leakage. Observe that the above definition assumes that the simulator has access to the
inner product Jx>yK2 in G2. In contrast, correctness allows one to recover the inner product only in Gt. This
seemingly inconsistent definition makes it easier to design IB-IPFE constructions and argue their security,
and it does not hinder the security of primitives which use IB-IPFE as a building block.

3.2 ID-based Inner-Product FE from SXDH

We recall the ID-based inner-product from [ACGU20] for vectors of dimension d ∈ poly(λ) with identity
space Zp in Fig. 2. It was originally proven simulation in the single instance from SXDH. We adapt the proof
to the (stronger) multi-instance setting with randomness re-use, as defined in Section 3.1.

GlobalSetup(1λ) :

Samples PG = (p,G1,G2, P1, P2,Gt, e)← GGen(1λ), a, b←R Z2
p.

Return gp = (PG, JaK1 , JbK2).

Setup(gp) :

Sample U0,U1 ←R Z2×2
p , V ←R Zd×2

p .

Set msk := (V ,U0,U1), pk := (JV aK1 , JU0aK1 , JU1aK1) and return (msk, pk).

Enc(pk,x, id; r) :

Given pk, x ∈ Zdp, id ∈ Zp, and random coins r ∈ Zp,
return ct := (JarK1 , J(U0 + idU1)arK1 , JV ar + xK1) ∈ G2+2+d

1 .

KeyGen(msk, JyK2 ∈ Gd2 , id ∈ Zp):

Sample s←R Zp and return sk = (JbsK2 ,
q
V >y + (U0 + idU1)>bs

y
2
) ∈ G2+2

2 .

Dec(ct, sk, JyK2):

Parse ct= (Jc1K1 , Jc2K1 , Jc3K1) ∈ G2
1 ×G2

1 ×Gd1 .

Parse sk= (Jk1K2 , Jk2K2 , JyK2) ∈ G2
2 ×G2

2 ×Gd2 .

Compute JdKt = e(
q
c>3

y
1
, JyK2) · e(

q
c>2

y
1
, Jk1K2)/e(

q
c>1

y
1
, Jk2K2).

Fig. 2. ID-based inner-product FE for d-dimensional vectors and ID space = Zp. Its multi-instance selective simulation
security is proven under the SXDH assumption.
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Correctness. For all λ ∈ N, all gp in the support of GlobalSetup(1λ), all (pk,msk) in the support of
Setup(gp), all x ∈ Zdp, id ∈ Zp, writing ctid = (Jc1K1 , Jc2K1 , Jc3K1) where Jc1K1 ∈ G2

1, Jc2K1 ∈ G2
1, Jc3K1 ∈ Gd1 ,

and skid = (Jk1K2 , Jk2K2) where Jk1K2 ∈ G2
2, Jk2K2 ∈ G2

2, we have:
q
c>3 y + c>2 k1 − c>1 k2

y
t

=
q
y>V ar + y>x + (bs)>(U0 + idU1)ar − (bs)>(U0 + idU1)ar − y>V ar

y
t

=
q
x>y

y
t
.

Decomposability. We define PPT algorithms Enchd and Encpl as follows. Given as input the public key
pk = (JV aK1 , JU0aK1 , JU1aK1), Enchd(pk) samples r ←R Zp and outputs the header JarK1 ∈ G2

1. Given
as input msk = (V ,U0,U1), an identity id ∈ Zp, a message x ∈ Zdp, and a header hd = Jc1K1 ∈ G2

1,

Encpl(msk, id,x, hd) outputs the payload pl = (J(U0 + idU1)c1K1, JV c1 + xK1) ∈ G2×d
1 . Note that pl is of the

form (J(U0 + idU1)arK1, JV ar + xK1), which the same as the payload computed by Enc.

Theorem 1 (Security). The scheme in Fig. 2 is selective multi-instance simulation secure, assuming
SXDH.

The proof of this theorem is given in the Appendix C.

4 Definition of Multi-Authority ABE

We recall the definition of multi-authority ABE from [LW11]. We assume every authority is identified by
a public key. For every authority pk, we denote by Upk the associated attribute universe. Without loss of
generality, we assume that attribute universes are disjoint for different authorities.

We consider access structures (M , ρ) where M ∈ Zn×`p , and ρ maps each row j ∈ [`] to an attribute in
Uθ(j), where θ maps a row j ∈ [`] to the authority who owns the attribute ρ(j). Because several attributes
used in M can be owned by the same authority, it is convenient for us to define a map ξ : [`]→ N that maps
each row j ∈ [`] to an ordinal number such that ρ(j) is the ξ(j)’th attribute used in the access structure
owned by authority θ(j), when ordered arbitrarily. To keep notations simple, we assume the maps θ and ξ
are implicitly part of the description of the access structure.

We consider the following restriction on the access structures in the multi-authority setting.

Bounded number of attributes per authority in the ciphertexts: There exists a bound B such that
any authority owns at most B attributes used by the access structure, i.e. for all j ∈ [`], ξ(j) ≤ B.

Definition. A MA-ABE scheme consists of the following PPT algorithms:

• GlobalSetup(1λ)→ gp. On input the security parameter, it outputs global parameters, which are input
to all other algorithms (usually implicitly).

• AuthSetup(gp)→ (pk, sk). Each authority runs a setup procedure to generate its own pair of keys. The
public key serves as a univocal identifier for the authority, which is associated with an attribute universe
denoted by Upk.

• Enc(M , ρ,Π)→ (ct, κ). On input an access structure M ∈ Zn×`p , ρ : [`]→ {0, 1}∗ and a set of authorities
Π such that for all columns j ∈ [`], we have θ(j) ∈ Π, the encryption algorithm outputs a ciphertext
ct and a symmetric encryption key κ ∈ K. The ciphertext implicitly contains a description of the access
structure (M , ρ).

• KeyGen(pk, sk, gid, a)→ skgid,a. On input an authority’s public key pk and the corresponding secret key
sk, a global identifier gid and an attribute a ∈ Upk, the key generation algorithm outputs a user secret
key skgid,a, which implicitly contains a description of gid and a.
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• Dec(ct, {skgid,a}a∈S)→κ/⊥. On input a ciphertext ct and a set of user secret keys {skgid,a}a∈S created
for the same global identifier, decryption deterministically outputs a symmetric key κ or ⊥.

Correctness. For all λ ∈ N, all gp in the support of GlobalSetup(1λ), all ν ∈ N, all (pk1, sk1), · · · , (pkν , skν) in
the support of Setup(gp), all access structures (M , ρ) associated with the set of authoritiesΠ = {pk1, . . . , pkν},
all pairs (ct, κ) in the support of Enc(M , ρ,Π), all sets of attributes S ⊂ ∪pk∈ΠUpk that satisfy (M , ρ) and
all global identifiers gid ∈ {0, 1}∗:

Pr [Dec(ct, {skgid,a}a∈S) = κ] = 1 ,

where the probability is taken over skgid,a ← KeyGen(pk, sk, gid, a) for all a ∈ S and where pk ∈ Π is the
authority who owns attribute a.

Adaptive security. Given a multi-authority ABE denoted by ABE, for any stateful adversary A and
security parameter λ, we define the advantage function:

AdvABEA (λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



gp← GlobalSetup(1λ)

(M , ρ,Πhon, Πcorr)← AOcreate,Ocorr(·),OKeyGen(·,·,·)(gp)

(ct?, κ)← Enc(M , ρ,Π)

β ←R {0, 1}; K0 := κ; K1 ←R K
β′ ← AOcorr(·),OKeyGen(·,·,·)(ct?,Kβ)

: β′ = β


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The oracles are defined as follows:

• Ocreate: runs (pk, sk)← AuthSetup(gp), adds pk to the sets of honest authorities denoted by Shon (initially
empty) and returns pk.

• Ocorr(pk): if pk ∈ Shon, it returns the associated secret key sk and removes pk from Shon.
• OKeyGen(pk, gid, a): if pk ∈ Shon, a ∈ Upk, it returns KeyGen(pk, sk, gid, a), otherwise, it returns ⊥.

The adversary A outputs an access structure (M , ρ) with respect to the authorities Πhon ∪ Πcorr, where
Πhon denotes the set of honest authorities, that is, which have been created via Ocreate, and which have not
been queried to Ocorr (they can still be queried to Ocorr later on), whereas Πcorr denotes the set of corrupted
authorities, that is, authorities created via Ocreate that have been subsequently queried to Ocorr, or authorities
whose public key was maliciously created by the adversary A himself.

We require that Πcorr contains not only the public keys of the corrupted authorities, but also their
associated secret keys3.

We denote by QKeyGen the set of queries to OKeyGen, Shon ⊆ Πhon the set of authorities in Πhon that
are still honest at the end of the experiment, Scorr = Πcorr ∪ Πhon \ Shon and for all gid ∈ {0, 1}∗, Sgid =
∪pk∈ScorrUpk ∪ {a s.t. ∃pk ∈ Shon, (pk, gid, a) ∈ QKeyGen}. We say the adversary A is admissible if for all
gid ∈ {0, 1}∗, Sgid does not satisfy (M , ρ) (as per Definition 1). We say ABE is adaptively secure if for all

PPT admissible adversaries A, there exists a negligible function ν such that for all λ ∈ N, AdvABEA (λ) ≤ ν(λ).

Static corruptions. We say an ABE is secure with static corruptions if the adversary does not have access
to the oracle Ocorr. He can still create authorities maliciously as part of Πcorr, but all authorities created by
Ocreate remain honest throughout the experiment. Note that security with static corruptions implies adaptive
corruptions via a standard guessing argument that incurs a security loss of 2q where q denotes the number
of queries to Ocreate.

3 Note that this restriction of having to provide the secret keys of the corrupted authorities in Πcorr can be lifted via
a generic use of Zero-Knowledge Argument of Knowledge. See Remark 1 for further details.

10



Selective security. We say an ABE is selectively secure if the adversary does not make any query to
OKeyGen before receiving the challenge ciphertext ct?. Similarly, selective security implies adaptive security
via a standard guessing argument that incurs an exponential security loss.

Remark 1 (Stronger security via ZK-AoK). In the security definition above, we require the adversary to
provide not only the public keys, but also the secret keys of all the authorities in Πcorr. It is possible to lift
this restriction, and thereby strengthen the security definition, using standard techniques involving Zero-
Knowledge Argument of Knowledge (ZK-AoK, see Definition 4). Any authority must publish not only a
public key, but also an argument of knowledge of the associated secret key. The zero-knowledge property
ensures that nothing is revealed about the secret key, and the argument of knowledge property forces the
issuer to know the associated secret key. This way, the adversary must know the secret key associated to any
authority it creates maliciously, since it has to provide an argument of knowledge. Note that in our ABE
constructions we use a ZK-AoK for a very simple language that admits an efficient sigma protocol, that can
be made non-interactive with the Fiat-Shamir heuristic. Consequently, strengthening the security comes at
a modest efficiency cost. In the rest of this paper, we focus on the weaker security definition, which is easier
to prove. Definitions regarding Zero-Knowledge are given in the Appendix B.

5 Modular Constructions of Multi-Authority ABE

We present several modular constructions of multi-authority ABE for access structures represented by mono-
tone span programs, based on identity-based inner-product FE. This approach yields several schemes with
various efficiency, security trade-offs.

The first construction relies on the multi-instance simulation security of the underlying FE, and assumes
no a-priori bound on the number of attributes per authority used in the ciphertext or user secret keys. We
present an FE that fulfills the security requirements, whose proof is given in the GGM. Note that randomness
re-use yields an efficient two-step decryption which reduces the number of pairing operations required.

Then, we present a similar modular construction that only requires the simulation security of the un-
derlying FE to hold in the single ciphertext setting. The advantage is we can build such FE from standard
assumptions (in fact we sketch an impossibility result showing that the number of ciphertexts must be
bounded in the simulation setting in the standard model), in the selective setting. The inconvenient is that
the number of attributes in the access structure owned by a given authority must be a priori bounded, and
the size of the user secret key grows (linearly) with that bound.

5.1 MA-ABE with an Unbounded Number of Attributes per Authority

We show that our modular construction from Fig. 3 yields an adaptively secure MA-ABE, against generic
adversaries, when it is instantiated with the ID-based inner-product FE from Fig. 4, if the hash function is
modeled as a random oracle.

Correctness. Let JzgidK2 := H(gid) and observe that, by the correctness of Γ :∑`
j=1 ωjΓ.Dec(pkθ(j), ctj , skρ(j),gid, J1, zgidK2)

=
∑`
j=1 Jωj(sj + ujzgid)Kt = Js+ 0zgidKt = κ .

Optimized decryption. We show that the above computation for correctness, presented generically for
any ID-IPFE Γ , can be performed significantly more efficiently by leveraging the structure of the ID-IPFE
from Fig. 4 with randomness re-use. It favors exponentiations in source groups rather than pairing operations
or exponentiations in the target group, which are more costly. Namely, for all j ∈ [`], we have:

ctj = (
q
rξ(j)

y
1
,
r

(u
θ(j)
0 + ρ(j)u

θ(j)
1 )rξ(j)

z

1
,
r
vθ(j)rξ(j) + (sj , uj)

z

1
).
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GlobalSetup(1λ) :

Run Γ.gp ← Γ.GlobalSetup(1λ), Γ.gp defines a pairing group (p,G1,G2, P1, P2,Gt, e). Set a hash function
H : {0, 1}∗ → G2 and return gp := (Γ.gp, H).

AuthSetup(gp) :

Return (pk, sk)← Γ.Setup(Γ.gp).

Enc
(
(M ∈ Zn×`p , ρ : [`]→{0, 1}∗), {pki}i∈[ν]

)
:

Sample s←R Zp, and {sj}j∈[`] ← Share(M , s), {uj}j∈[`] ← Share(M , 0).

Sample r1, . . . , rt ←R {0, 1}∗ where t = maxj∈[`]{ξ(j)}.
For all j ∈ [`], ctj := Γ.Enc(pkθ(j), (sj , uj), ρ(j); rξ(j)).

Return
(
{ctj}j∈[`], κ := JsKt

)
.

KeyGen
(
sk, gid, a):

Write H(gid) = JzgidK2. Return ska,gid ← Γ.KeyGen(sk, J1, zgidK2 , id = a).

Dec
(
ctM,ρ := {ctj}j∈[`], {ska}a∈S

)
:

Compute ω1, . . . , ω` ∈ Zp such that
∑
j∈[`] ωjMj = 1 ∧ ωj = 0 if ρ(j) /∈ S

Return
∑`
j=1 ωjΓ.Dec(pkθ(j), ctj , skρ(j), J1, zgidK2)

Fig. 3. Multi-Authority ABE from IB-IPFE. Here, Γ is an identity-based inner product functional encryption scheme
(for 2-dimensional vectors). Recall that θ maps a row j ∈ [`] to the authority that owns the attribute associated to
that row, and ξ is just used to number the attributes owned by a given authority.

For all gid and all j ∈ [`], we have:

skρ(j),gid =
(q
sρ(j),gid

y
2
,
r
vθ(j)>(1, zgid) + (u

θ(j)
0 + ρ(j)u

θ(j)
1 )sρ(j),gid

z

2

)
.

Optimized decryption computes the following.

• First step: JcK1 =
∑`
j=1 ωj

q
vθ(j)rξ(j) + (sj , uj)

y
1
. For all m ∈ [t],

JkmK2 =
∑

j:ξ(j)=l

ωj

r
vθ(j)>(1, zgid) + (u

θ(j)
0 + ρ(j)u

θ(j)
1 )sρ(j),gid

z

2
.

• Second step: Jd0Kt = e(JcK>1 , J1, zgidK
>
2 ). For all m ∈ [t], Jd1,mKt = e(JrmK1 , JkmK2). For all j ∈ [`],

Jd2,jKt = e(
r

(u
θ(j)
0 + ρ(j)u

θ(j)
1 )rξ(j)

z

1
,
q
sρ(j),gid

y
2
)ωj . It returns Jd0Kt −

∑
m∈[t] Jd1,mKt +

∑
j∈[`] Jd2,jKt.

The total cost of the optimized decryption are given in Table 1.

Theorem 2. The scheme from Fig. 3, instantiated with the ID-based inner-product FE from Fig. 4, is an
adaptively secure multi-authority CP-ABE in the generic group, random oracle model.

Proof. Consider the adaptive security game for multi-authority ABE, defined in Section 4. We focus on its
symbolic security, which implies its security in the generic group model (some background on the symbolic and
generic group model is given in the Appendix A). Note that the global setup consists of sampling a pairing
group Γ.gp := (p,G1,G2, P1, P2,Gt, e) for the given security parameter λ ∈ N. In the symbolic security
experiment, group elements will be represented by polynomials stored in three lists, one corresponding to
each of the groups G1,G2 and Gt.
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GlobalSetup(1λ) :

Given λ ∈ N, sample PG := (p,G1,G2, P1, P2,Gt, e)← GGen(1λ) and output gp = PG.

Setup(gp) :

Given gp, sample u0, u1 ←R Zp, v ←R Zdp.
Set msk = (v, u0, u1), pk = (JvK1 , Ju0K1 , Ju1K1) and output (msk, pk).

Enc(pk,x, id; r) :

Given pk, x ∈ Zdp, id ∈ Zp, and random coins r ∈ Zp.
Return ct = (JrK1 , J(u0 + idu1)rK1 , Jvr + xK1) ∈ G2+d

1 .

KeyGen(msk, JyK2 ∈ Gd2 , id ∈ Zp):
Given msk, sample s←R Zp.
Return sk = (JsK2 ,

q
v>y + (u0 + idu1)s

y
2
, JyK2) ∈ G2+d

2 .

Dec(ct, sk, JyK2):

Parse ct as (Jc1K1 , Jc2K1 , Jc3K1 ∈ Gd1 ) and sk as (Jk1K2 , Jk2K2).
Return e(

q
c>3

y
1
, JyK2) · e(Jc2K1 , Jk1K2) / e(Jc1K1 , Jk2K2).

Fig. 4. ID-based inner-product FE for d-dimensional vectors and ID space = Zp. We directly prove its security in
combination with our modular construction of MA-ABE from Fig. 3, in the GGM.

On the i-th authority creation query, a pair of keys will be created following Γ.Setup(Γ.gp). In particular,
consider new formal variables V (i)

0 , V (i)

1 , U (i)

0 , U (i)

1 representing the random values during the ID-IPFE key
generation. The adversary gets handles to each of these variables as polynomials in G1.

On the i-th key generation query, say with respect to authority Ai and on input (gidi, ai) such that
ai ∈ UAi

⊂ Zp, let Zgidi be the formal variable associated to value H(gidi). Let Si be a new formal vari-
able corresponding to the sampled randomness during Γ.KeyGen. The adversary will be given handles to
polynomials Si as well as ski (all in G2), defined as:

ski := V (Ai)

0 + V (Ai)

1 Zgidi + (U (Ai)

0 + aiU
(Ai)

1 )Si .

Eventually, the adversary will perform an encryption query, say on policy M ∈ Zn×`p , ρ : [`]→{0, 1}∗, and
for a chosen set of public keys Π (let Πcorr⊂Π be the set of corrupted authorities). Let S∗ and R1, . . . , Rt, for
t := maxj∈[`]{ξ(j)}, and T2, . . . , Tn, W2, . . . ,Wn be new formal variables corresponding to the randomness
generated during Γ.Enc. The adversary will be given handles to polynomials R1, . . . , Rt as well as the
following (all in G1):

ctj := (U (θ(j))

0 + ρ(j)U (θ(j))

1 )Rξ(j) ∀j ∈ [`] : θ(j) /∈ Πcorr

ct′j := V (θ(j))

0 Rξ(j) +
∑n
k=2Mk,jTk +M1,jS

∗ ∀j ∈ [`] : θ(j) /∈ Πcorr

ct′′j := V (θ(j))

1 Rξ(j) +
∑n
k=2Mk,jWk ∀j ∈ [`] : θ(j) /∈ Πcorr ,

where Mk,j represents the element of M in the k-th row and j-th column. Furthermore, for every j ∈ [`]
such that θ(j) ∈ Πcorr, the adversary will get handles to polynomials in the same form as above, with the

exception that variables U
θ(j)
0 , U

θ(j)
1 , V

θ(j)
0 and V

θ(j)
1 will be replaced by values Zp chosen by the adversary.

However, note that the adversary has handles to all Rm, for m ∈ [t], so polynomials ctj corresponding to a
corrupted j do not add symbolic power to the adversary. A similar reasoning allows us to conclude that we
can focus on the case where the adversary gets handles to the following polynomials in the case of corrupted
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authorities (we define ctj := 0 if θ(j) ∈ Πcorr):

ct′j :=
∑n
k=2Mk,jTk +M1,jS

∗ ∀j ∈ [`] : θ(j) ∈ Πcorr

ct′′j :=
∑n
k=2Mk,jWk ∀j ∈ [`] : θ(j) ∈ Πcorr .

The adversary will win the symbolic experiment if it can produce a handle pointing to polynomial S∗ in
Gt, which corresponds to the encapsulation key. In particular, let L1 and L2 be lists (or vectors) containing
the polynomials that the adversary is given access to, in G1 and G2 respectively, at the end of its interaction
with the oracles (note that the adversary is not directly given any polynomial in Gt). We have:

L1 =
(
1, {V (i)

b , U (i)

b }i∈[qA],b∈{0,1}, {Rm}m∈[t], {ctj , ct′j , ct′′j }j∈[`]
)

L2 =
(
1, {Zgidi , Si, ski}i∈[qsk]

)
,

where qA denotes the total number of authorities that were created and qsk denotes the total number of key
generation queries. Also, note that although the random oracle gives the adversary access to other monomials
of the form Zx for an arbitrary x ∈ {0, 1}∗, only those corresponding to a requested gid are relevant for the
experiment. We will show that no linear combination of the polynomials in Lt := L1 ⊗ L2 (representing the
polynomials in Gt that the adversary can get access to) can be equal to polynomial S∗, for any value of
(gidi, ai) for all i ∈ [qsk] and policy (M , ρ) that make the adversary admissible.

Notice that the only polynomials which contain monomial S∗ are in the form of ct′j · 1 for j ∈ [`]. This
means that the linear combination producing S∗ must contain a summand of the following form, for certain
coefficients ωj ∈ Zp:∑

j∈[`] ωj ct
′
j =

∑
j∈[`]:θ(j)/∈Πcorr

ωj
(
V (θ(j))

0 Rξ(j) +
∑n
k=2Mk,jTk +M1,jS

∗)
+
∑
j∈[`]:θ(j)∈Πcorr

ωj
(∑n

k=2Mk,jTk +M1,jS
∗) . (2)

Furthermore, observe that monomials Tk, for k = 2, . . . , n do not appear in any other polynomial. Conse-
quently, for all k ∈ [2, n], we must have:∑

j∈[`] ωjM1,j = 1 and ∀k ∈ [2, n],
∑
j∈[`] ωjMk,j = 0 ,

or, more compactly, Mω = 1. Also, notice that the linear combination from (2) leaves the following residue:∑
j∈[`]:θ(j)/∈Πcorr

ωjV
(θ(j))

0 Rξ(j) , (3)

which needs to be cancelled out with other available polynomials. However, monomials of the form V (A)

0 Rm
for some non-corrupted authority A and some m ∈ [t], only appear in polynomials (from Lt) in the form of
Rm · ski for i ∈ [qsk] such that Ai = A. The only way the above residue can be cancelled is by adding the
following term to it, for some coefficients δm,i ∈ Zp:∑

m∈[t],i∈[qsk]:Ai /∈Πcorr
δm,iRm ·

(
V (Ai)

0 + V (Ai)

1 Zgidi + (U (Ai)

0 + aiU
(Ai)

1 )Si
)
, (4)

Furthermore, our randomness re-use policy (no re-use across the same authority) implies that all monomials
in residue (3) are different, for all j. For a fixed j ∈ [`] : θ(j) /∈ Πcorr, by focusing on the coefficients
of monomial V (θ(j))

0 Rξ(j), we conclude that wj +
∑
i:Ai=θ(j)

δξ(j),i = 0 (?). Also, note that term (4) has
introduced the following new residues:∑

m∈[t],i∈[qsk]:Ai /∈Πcorr

(
δm,iRmV

(Ai)

1 Zgidi + δm,i (U (Ai)

0 + aiU
(Ai)

1 )RmSi
)
.

These residues can (only) be cancelled by adding the following terms, for some coefficients αj,i, βj,i ∈ Zp:∑
j∈[`]:θ(j)/∈Πcorr,i∈[qsk]:Ai /∈Πcorr

αj,i
(
V (θ(j))

1 Rξ(j) +
∑n
k=2Mk,jWk

)
Zgidi [ct′′j · Zgidi ]∑

j∈[`]:θ(j)∈Πcorr,i∈[qsk]:Ai /∈Πcorr
αj,i

(∑n
k=2Mk,jWk

)
Zgidi [ct′′j · Zgidi ]∑

j∈[`]:θ(j)/∈Πcorr,i∈[qsk]:Ai /∈Πcorr
βj,i (U (θ(j))

0 + ρ(j)U (θ(j))

1 )Rξ(j)Si [ctj · Si] ,
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As before, for a fixed j ∈ [`] : θ(j) /∈ Πcorr and a fixed gid, by considering the coefficients of the following
monomials we get:

V (θ(j))

1 Rξ(j)Zgid →
∑
i:gidi=gid αj,i +

∑
i:Ai=θ(j)∧gidi=gid δξ(j),i = 0 (5)

U (θ(j))

0 Rξ(j)Si → βj,i + δξ(j),i = 0 ∀i ∈ [qsk] : Ai = θ(j) (6)

U (θ(j))

1 Rξ(j)Si → βj,i ρ(j) + δξ(j),i ai = 0 ∀i ∈ [qsk] : Ai = θ(j) . (7)

From equations (6) and (7) we can deduce that for every j ∈ [`] : θ(j) /∈ Πcorr and all i ∈ [qsk] such that
Ai = θ(j), we have δξ(j),i (ρ(j) − ai) = 0. Which means that δξ(j),i must be zero unless ρ(j) = ai in the
case of non-corrupted authorities. Furthermore, from looking at the coefficient of WkZgid, for any k ∈ [2, n],
we get that

∑
j∈[`],i:gidi=gid αj,iMk,j = 0. Using these two facts over equation (5) and summing over all

j ∈ [`] : θ(j) /∈ Πcorr (after multiplying it by Mk,j for a fixed k ∈ [2, n]), we deduce that:

0 =
∑
j∈[`]:θ(j)/∈Πcorr, i:Ai=θ(j)∧ ρ(j)=ai ∧ gidi=gid δξ(j),iMk,j

−
∑
j∈[`]:θ(j)∈Πcorr, i:gidi=gid αj,iMk,j ∀k ∈ [2, n] . (8)

Note that, for any fixed gid, equation (8) represents a linear combination of columns of M that adds up
to zero in all rows k ∈ [2, n]. Furthermore, it only involves columns corresponding to corrupted authorities
or authorities for which the corresponding attribute has been requested (for the specified gid). We will now
deduce that if such a combination exists, the adversary must be non-admissible. In particular, we will show
that there must be at least one gid for which the above linear combination of columns is non zero on the
first row (corresponding to k = 1), concluding the proof.

Consider the following equation, relative to the right-hand side of equation (8), with 1 instead of k and
having added up over all gid:∑

j∈[`]:θ(j)/∈Πcorr, i:Ai=θ(j)∧ ρ(j)=ai δξ(j),iM1,j −
∑
j∈[`]:θ(j)∈Πcorr, i∈[qsk] αj,iM1,j . (9)

We conclude the proof by arguing that the value of the expression in equation (9) must be non-zero. This
implies that it must also be non-zero when projected to at least one of the gid’s, as desired. First recall that
our equation (?), updated with our new information about δξ(j),i (when ρ(j) 6= ai) tells us that for every
j ∈ [`] : θ(j) /∈ Πcorr, ∑

i:Ai=θ(j)∧ρ(j)=ai δξ(j),i = −ωj ,

which implies that, for every k ∈ [n] (multiply by Mk,j and sum over j):∑
j∈[`]:θ(j)/∈Πcorr,i:Ai=θ(j)∧ρ(j)=ai δξ(j),iMk,j = −

∑
j:θ(j)/∈Πcorr

ωjMk,j , (10)

Finally, applying equation (10) on expression (9); using equation (8) for all k ∈ [2, n], and leveraging the
fact that Mω = 1, we can express (9) as −1 plus a linear combination of only corrupted columns that has
all components k = 1, . . . , n equal to zero, and thus, vanishes. This implies that expression (9) is non-zero,
as desired. ut

5.2 MA-ABE with a Bounded Number of Attributes per Authority in the Ciphertexts

We present a modular construction in Fig. 5 that is similar to the one in Fig. 3 except this time, we assume
the encryptor only uses access structures where the number of attributes owned by a given authority is
a-priori bounded. It uses as underlying building blocks an ID-based inner-product FE. When instantiated
with the ID-based inner-product FE from Fig. 2 with vectors of dimension d = 2, it yields a selectively secure
MA-ABE from standard assumptions in the random oracle model.
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GlobalSetup(1λ) :

Run Γ.gp← Γ.GlobalSetup(1λ), Γ.gp defines a pairing group (p,G1,G2, P1, P2,Gt, e).

Set a hash function H : {0, 1}∗ → G2 and return gp := (Γ.gp, H).

AuthSetup(gp) :

For all i∈ [B], compute (Γ.pki, Γ.mski)← Γ.Setup(Γ.gp).

Set pk = (Γ.pk1, . . . , Γ.pkB) and sk = (Γ.msk1, . . . , Γ.mskB).

Return (pk, sk).

Enc(M ∈ Zn×`p , ρ : [`]→ Zp, {pk1, . . . , pkν}):
For all t ∈ [ν], parse pkt = (Γ.pk1t , . . . , Γ.pk

B
t ).

Sample s←R Zp, {sj}j∈[`] ← Share(M , s), {uj}j∈[`] ← Share(M , 0), r ←R R.

Set Γ.ctj := Γ.Enc
(
Γ.pk

ξ(j)

θ(j), (sj , uj), ρ(j); r
)
, for all j ∈ [`], θ(j) ∈ [ν].

Return
(
{Γ.ctj}j∈[`], κ := JsKt

)
.

KeyGen
(
sk, gid, a

)
:

Parse H(gid) = JzgidK2 and sk = (Γ.msk1, . . . , Γ.mskB).

For all i ∈ [B], set Γ.ski ← Γ.KeyGen(Γ.mski, J1, zgidK2 , a).

Return skgid,a = (Γ.sk1, . . . , Γ.skB).

Dec
(
ct(M,ρ), {skgid,a}a∈S

)
:

Compute ω1, . . . , ω` ∈ Zp such that
∑
j∈[`] ωjMj = 1 ∧ ωj = 0 if ρ(j) /∈ S.

Parse ct = {Γ.ctj}j∈[`] and for all a ∈ S, parse skgid,a = (Γ.sk1a , . . . , Γ.sk
B
a ).

For all j ∈ [`] s.t. ρ(j) ∈ S, compute JγjKt = Γ.Dec
(
Γ.ctj , Γ.sk

ξ(j)

ρ(j), J1, zgidK2
)
.

Return
∑`
j=1 ωj JγjKt.

Fig. 5. MA-ABE from ID-IPFE for a bounded number of attributes per authority in the ciphertexts. Here, Γ is the
ID-based inner-product FE from Fig. 2, for 2-dimensional vectors. Recall that θ maps a row j ∈ [`] to the authority
that owns the attribute ρ(j) associated to that row, and ξ is just used to number the attributes owned by a given
authority. Finally, B upper bounds the number of attributes per authority. That is, for all j ∈ [`], ξ(j) ≤ B.

Correctness. By correctness of the inner-product FE Γ , for all j ∈ [`] such that ρ(j) ∈ S, we have

Γ.Dec
(
Γ.ctj , Γ.sk

ξ(j)
ρ(j)

)
= Jsj + ujzgidKt. By correctness of the access structure,

∑`
j=1 ωjJsj + ujzgidKt =

Js+ 0 · zgidKt = JsKt.

Optimized decryption. When the underlying Γ is the ID-IPFE from Fig. 2, we can use an optimized,
two-step decryption to minimize the number of costly pairing operations and exponentiations in the target
group, by doing some pre-computations that involve less costly exponentiations in source groups. This relies
on the structure of the ID-IPFE from Fig. 2 with randomness re-use. Namely, for all j ∈ [`], we have:

ctj =
(
JarK1 ,

r
(U

ξ(j)
θ(j),0 + ρ(j)U

ξ(j)
θ(j),1)ar

z

1
,
r
V
ξ(j)
θ(j) ar + (sj , uj)

>
z

1

)
.

For all gid and all j ∈ [`], we have:

skρ(j),gid =
(r

bsmρ(j),gid

z

2
,
r
V m>
θ(j) (1, zgid) + (U

ξ(j)
θ(j),0 + ρ(j)U

ξ(j)
θ(j),1)>bsmρ(j),gid

z

2

)
m∈[B]

.

Optimized decryption computes the following.
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• First step: JcK1 =
∑`
j=1 ωj

r
V
ξ(j)
θ(j) ar + (sj , uj)

>
z

1
. For all m ∈ [B],

JkmK2 =
∑̀
j=1

ωj

r
V m>
θ(j) (1, zgid) + (U

ξ(j)
θ(j),0 + ρ(j)U

ξ(j)
θ(j),1)>bsmρ(j),gid

z

2
.

• Second step: Jd0Kt = e(JcK>1 , J1, zgidK
>
2 ). For all m ∈ [t], Jd1,mKt = e(JarK>1 , JkmK2). For all j ∈ [`],

Jd2,jKt = e(
r

(U
ξ(j)
θ(j),0 + ρ(j)U

ξ(j)
θ(j),1)ar

z>

1
,
r
bs
ξ(j)
ρ(j),gid

z

2
)ωj . It returns Jd0Kt−

∑
j∈[`]

q
d1,ξ(j)

y
t
+
∑
j∈[`] Jd2,jKt.

The total cost of the optimized decryption are give in Table 1.

Theorem 3 (Security). For any ID-based inner-product FE scheme Γ that is multi-instance simulation
selectively secure, the scheme from Figure 5 that builds upon Γ is selectively secure in the random oracle
model.

Proof (Security). We prove security via a sequence of hybrid games.

Game0: The first game corresponds to the selective security game for MA-ABE, with static corruptions,
defined in Section 4. We recall it here for completeness. We call A the admissible adversary for the selec-
tive security of the MA-ABE scheme. First, A receives the global parameters gp = (Γ.gp, H). Then, it can
query its oracle Ocreate that creates a new (honest) authority with an associated (pk, sk) pair when invoked,
and returns pk to A. We have sk = (Γ.msk1, . . . , Γ.mskB) and pk = (Γ.pk1, . . . , Γ.pkB). Then, A sends
(M , ρ,Πhon, Πcorr) to its challenger, where M ∈ Zn×`p , ρ : [`] → Zp is an access structure with attributes
owned by the authorities in the set Π. We write Π = {pk1, . . . , pkν}, and we define θ : [`]→ [ν], which maps
each column j ∈ [`] to the authority that owns the attribute associated with that column. Because several
attributes used in M can be owned by the same authority, recall that we define a map ξ : [`] → [B] that
maps each column j ∈ [`] to an ordinal number such that ρ(j) is the ξ(j)’th attribute used in the access
structure owned by authority θ(j), sorted according to some linear ordering on the columns.

Upon receiving (M , ρ,Π), the challenger samples s ←R Zp, and computes (s1, . . . , s`) ← Share(M , s),
(u1, . . . , u`)← Share(M , 0)4, κ0 = JsKt, κ1 ←R Gt, b←R {0, 1}, κ = κb, r ←R Zp, for all j ∈ [`],

Γ.ctj = Γ.Enc
(
Γ.pk

ξ(j)
θ(j), (sj , uj), ρ(j); r

)
, ct? = {Γ.ctj}j∈[`] ,

and returns (ct?, κ) to A. Note that the same randomness r ←R Zp is used to compute every Γ.ctj . By
the decomposablility property of the FE scheme Γ , we have Γ.ctj = (hd, pl), where the header hd does not
depend on (sj , uj) or ρ(j), and a payload pl that can be computed deterministically from hd and the secret
keys of the authority θ(j). Note that some of the authorities in the set Π may be created by A itself (and
not via Ocreate); these are referred to as corrupted authorities, whereas the authorities created via Ocreate

are called honest. Also note that A cannot query its oracle OKeyGen before receiving the challenge ciphertext
(ct?, κ) since we are in the selective setting.

The adversary A can then query its oracle OKeyGen, which given as input (pk, a, gid) where pk is an honest

authority associated with secret key sk = (Γ.msk1, . . . , Γ.mskB), returns (Γ.sk1a , . . . , Γ.sk
B
a )← KeyGen(sk, a, gid),

where for all i ∈ [B], Γ.skia ← Γ.KeyGen(Γ.mski, J1, zgidK2 , a),with H(gid) = JzgidK2. It can also query its or-
acle Ocreate again which has the same effect as before. Finally, A outputs a guess b′ ∈ {0, 1}. Recall that A
is admissible which means it cannot compute κ0 from ct? simply by correctness of the scheme with the user
secret keys it queried and the secret key of the corrupted authorities (see Section 4 for more details). The
experiment outputs 1 if b = b′, 0 otherwise.

Game1: is the same as Game0 except that the challenge ciphertext is computed as follows. Upon receiv-
ing (M , ρ,Π), the challenger computes ct? = {Γ.ctj}j∈[`], where for all j ∈ [`], if θ(j) is honest, then

Γ.ctj = Γ.Enc
(
Γ.pk

ξ(j)
θ(j), ρ(j), (sj , uj); r

)
= (hd, pl) ,

4 See Fig. 1 for the definition of the algorithm Share.
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as in Game0. By the decomposablility property of Γ (see the definition in Section 3.1), we know that the

header hd does not depend on the identity ρ(j) or the vector (sj , uj), i.e. hd = Γ.Enc
(
Γ.pk

ξ(j)
θ(j); r

)
. Since the

same randomness r is used to compute all ciphertexts Γ.ctj for all j ∈ [`], this defines a unique header hd.

If θ(j) is corrupted instead of computing the ciphertext Γ.ctj using the algorithm Γ.Enc, it computes

pl = Γ.Encpl(Γ.sk
ξ(j)
θ(j), ρ(j), (sj , uj), hd), which can be computed since the adversary is restricted to provide

the secret key associated to corrupted authorities. Finally it outputs ctj = (hd, pl). Consequently, given the
decomposablility property of Γ , we have Game0 = Game1.

Game2: is the same as Game1 except that the keys and ciphertexts from the honest authorities are now
computed using a simulator for Γ . Namely, the global parameters gp = (Γ.gp, H), where (Γ.gp, Γ.td) ←
Γ.GlobalSetup(1λ).

Every time Ocreate is queried, it generates (Γ.pk1, Γ.msk1), . . ., (Γ.pkB , Γ.mskB) by running Γ.Setup(Γ.gp),
and it computes the key pair (pk, sk) for the newly created authority, where pk = (Γ.pk1, . . . , Γ.pkB), and
sk = (Γ.msk1, . . . , Γ.mskB).

When A sends (M , ρ,Π), the challenge ciphertext ct? is computed as follows: ct? = {Γ.ctj}j∈[`], where for

all j ∈ [`], if θ(j) is an honest authority with key pair (pkθ(j), skθ(j)) where pkθ(j) = (Γ.pk1θ(j), . . . , Γ.pk
B
θ(j)),

we have: Γ.ctj ← Γ.Enc(Γ.td, Γ.pk
ξ(j)
θ(j), ρ(j), leakage), where leakage = ∅. Note that by the decomposable

property of Γ , Γ.ctj = (hd, pl), where the header hd is the same for all Γ.ctj . If θ(j) is a corrupted authority,
then Γ.ctj = (hd, pl), where hd is the same as the header for honest authorities (we know there is at least

one honest authority in the set Π since A is admissible), and pl = Γ.Encpl
(
Γ.msk

ξ(j)
θ(j), ρ(j), (sj , uj), hd

)
, where

secret keys Γ.msk1θ(j), . . . , Γ.mskBθ(j) are provided as in the previous game.

Later on, when A queries its oracle Ocreate, a new honest authority is created in the same way as before.
When A queries OKeyGen on input (a, gid, pk) where pk is an honest authority, the game returns skgid,a =

(Γ.sk
1
, . . . , Γ.sk

B
) where for all i ∈ [B], Γ.sk

i ← Γ.KeyGen(Γ.td, a, pk, leakage), where leakage is the set of all
pairs (

q
sj + zgid′uj

y
2
, ρ(j)) for all queries (ρ(j), θ(j), gid′) sent by A to OKeyGen.

Here, (GlobalSetup,Setup,Enc,KeyGen) is a simulator for Γ , which is a selective multi-instance secure
ID-based inner-product FE. It is clear that Game1 corresponds to the real experiment for the security of Γ ,
whereas Game2 corresponds to the ideal experiment. Thus, we have Game1 ≈c Game2.

Game3: is the same as Game2 except for the shares s1, . . . , s` used to generate the challenge ciphertext
and the functional secret keys. In Game2, they are generated as sj = (s,w)>Mj for all j ∈ [`], where
Mj denotes the j’th column of M , and w ←R Zn−1p . In Game3 however, the shares are generated as

sj = (s,w)>Mj+s(0,w?)>Mj where w ←R Z`−1p as before, and (1,w?) ∈ Znp is a vector sampled uniformly
at random in the affine space of vectors whose first coordinate is 1 and which are orthogonal to all vectors
{Mj}j:θ(j)∈Scorr , where Scorr denotes the set of corrupted authorities. We call A⊥Scorr this affine space. Since A
is admissible, we know that {Mj}j:θ(j)∈Scorr does not span the vector 1 ∈ Znp , so A⊥Scorr is not empty. The fact
that Game2 and Game3 are identically distributed follows from the fact that for all w? ∈ Zn−1p and s ∈ Zp, the
following distributions are identical: {w ←R Zn−1p : w} and {w ←R Zn−1p : w + sw?}. The first distribution
corresponds to Game2 (with some post-processing), whereas the second distribution corresponds to Game3
(with the same post-processing). Note that the challenge ciphertext in Game3 does not depend on s anymore,
thanks to the orthogonality properties of (1,w?). Namely, for any j ∈ [`] such that θ(j) is corrupted, we
have sj = (s,w)>Mj + s(0,w?)>Mj = (0,w)>Mj + s(1,w?)>Mj = (0,w)>Mj . It only appears in leakage
used to generate the functional secret keys as J(sj + zgidujK2 =

q
(0,w)>Mj + s(1,w?)>Mj + zgiduj

y
2

for
all queries (ρ(j), θ(j), gid) sent by A to OKeyGen.

Game4: is the same as Game3 except for the shares u1, . . . , u` used to generate the challenge ciphertext
and the functional secret keys. In Game3, they are generated as uj = (0,h)>Mj for all j ∈ [`], where
h ←R Zn−1p . In Game4 however, they are generated as uj = (0,h)>Mj + (0,u?)>Mj where h ←R Zn−1p

as before and (1,u?)> ∈ Z`p is a vector sampled uniformly at random in A⊥Scorr . Game3 and Game4 are
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identically distributed, which follows from the fact that for all u? ∈ Zn−1p , the following distributions are
identical: {h ←R Zn−1p : h} and {h ←R Zn−1p : h + u?}. The first distribution corresponds to Game3
(with some post-processing), whereas the second distribution corresponds to Game4 (with the same post-
processing). Note that the vector u? does not appear in the challenge ciphertext in Game4, thanks to
the orthogonality properties of (1,u?). Namely, for any j ∈ [`] such that θ(j) is corrupted, we have
uj = (0,h)>Mj + (0,u?)>Mj = (−1,h)>Mj + (1,u?)>Mj = (−1,h)>Mj . It only appears in leakage
used to generate the functional secret keys as Jsj + zgidujK2 =

q
sj + zgid(−1,h)>Mj + zgid(1,u

?)>Mj

y
2

for
all queries (ρ(j), θ(j), gid) sent by A to OKeyGen.

Game5: is the same as Game4 except that leakage which is used to generate the functional secret keys is

now defined as the set of all pairs: (Jsj +zgiduj +
(
M⊥
Scorrvgid

)>
MjK2, ρ(j)) for all queries (ρ(j), θ(j), gid) sent

by A to OKeyGen, where M⊥
Scorr ∈ Z`×dp is a basis for the vector space that contains all vectors orthogonal to

{Mj}j:θ(j)∈Scorr , which is of dimension d (d may be 0), and for all gid, vgid ←R Zdp.

We prove that Game4 ≈c Game5 using the DDH assumption in G2, in the random oracle model. First,
recall that for all j ∈ [`], we have:

Jsj + zgidujK2 =
q
(0,w)>Mj + s(1,w?)>Mj + zgid(−1,h)>Mj + zgid(1,u

?)>Mj

y
2
,

where (1,w?) and (1,u?) are uniformly random over A⊥Scorr . For any vector x ∈ A⊥Scorr , we can write A⊥Scorr =

x + Span(M⊥
Scorr). Thus, we can write (1,u?) = (1,w?) + M⊥

Scorrv where v ←R Zdp.

Then, we argue that for all gid, (JzgidK2 , JzgidvK2) ≈c (JzgidK2 , JvgidK2) ≡ (JzgidK2 , Jzgidv + vgidK2), where
vgid ←R Zdp. Note that the first distribution corresponds to Game4, whereas the last distribution corresponds
to Game5. The computational indistinguishability (denoted by ≈c) is justified by the DDH assumption in G2,
whereas the second equality is information theoretic. Note that in fact to use the DDH assumption, we first
need to argue that the values JzgidK2 can be generated as truly random values computed on the fly. Then,
we need to apply a hybrid argument over all gid that are part of a query to OKeyGen, and guess which query
to the random oracle is going to correspond to the gid of the current hybrid, so that the DDH challenge can
be embedded in the output of H(gid). We refrain from giving too many details on this argument which is
routine in proofs in the ROM.

Game6: is the same as Game5, except that leakage is now the set of all pairs of the form: (Jsj + zgiduj +(
M⊥
Scorrs · vgid

)>
MjK2, ρ(j)), for all queries (ρ(j), θ(j), gid) sent by A to OKeyGen. We have Game5 ≈s Game6,

which follows from the fact that the following distributions have statistical distance 1/p: {s ←R Zp,∀gid ∈
Q,vgid ←R Zdp :

(
s, {vgid}gid∈Q

)
} and {s←R Zp,∀gid ∈ Q,vgid ←R Zdp :

(
s, {s ·vgid}gid∈Q

)
}, where Q denotes

the set of queried gid. Note that the first distribution corresponds to Game5 (with some post processing),
whereas the second distribution corresponds to Game6 (with the same post-processing).

Game7: is the same as Game6, except that leakage is now the set of all pairs of the form: (J(0,w)>Mj +

uj +
(
M⊥
Scorrs · vgid

)>
MjK2, ρ(j)), for all queries (ρ(j), θ(j), gid) sent by A to OKeyGen. We show that Game7

is identically distributed to Game6 as follows.

For all gid that is part of a query to OKeyGen, we define Sgid = ∪pk∈ScorrUpk∪{a s.t. ∃pk ∈ Shon, (pk, gid, a) ∈
QKeyGen}, where Shon denotes the set of honest authorities, and QKeyGen denotes the set of queries made to
OKeyGen; and we define the affine space A⊥Sgid as the set of all vectors whose first coordinate is 1 and which

are orthogonal to {Mj}j:ρ(j)∈Sgid . The adversary A is admissible, which exactly means that for all gid that

are part of a query to QKeyGen, Sgid does not satisfies the access structure (M , ρ), i.e. A⊥Sgid is not empty, and

let (1,w?
gid) ∈ A⊥Sgid . It is clear that (1,w?

gid) ∈ A⊥Scorr . Thus, for all gid that are part of a query to QKeyGen we

can write A⊥Scorr = (1,w?
gid) + Span(M⊥

Scorr).
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For all j ∈ [`] and gid such that (ρ(j), θ(j), gid) ∈ QKeyGen, we have:

sj +
(
M⊥
Scorrs · vgid

)>
Mj = (0,w)>Mj + s(1,w?)>Mj + M⊥

Scorrs · vgid

= (0,w)>Mj + s ·
(
(1,w?) + M⊥

Scorrvgid

)>︸ ︷︷ ︸
uniformly random from A⊥Scorr

Mj

= (0,w)>Mj + s ·
(
(1,w?

gid) + M⊥
Scorrvgid

)>︸ ︷︷ ︸
uniformly random from A⊥Scorr

Mj

= (0,w)>Mj + s ·
(
M⊥
Scorrvgid

)>
Mj + (1,w?

gid)
>Mj︸ ︷︷ ︸

=0

= (0,w)>Mj +
(
M⊥
Scorrs · vgid

)>
Mj .

In the second equality, we use the fact that the value
(
(1,w?) + M⊥

Scorrvgid

)>
Mj is uniformly random A⊥Scorr .

This is because (1,w?) ∈ A⊥Scorr , so we can write A⊥Scorr = (1,w?) + Span(M⊥
Scorr). In the penultimate equality,

we used the fact that for all j ∈ [`] such that (ρ(j), θ(j), gid) ∈ QKeyGen, we have (1,w?
gid)
>Mj . This is

because (1,w?
gid) ∈ A⊥Scorr . The first distribution corresponds to Game6 (with some post-processing), whereas

the last distribution corresponds to Game7 (with the same post-processing). Thus, we have Game6 = Game7.

Game8: is the same as Game7, except that leakage is now the set of all pairs of the form: (J(0,w>)Mj +uj +(
M⊥
Scorrvgid

)>
MjK2, ρ(j)), for all queries (ρ(j), θ(j), gid) ∈ QKeyGen. This is the reverse transition that from

Game5 to Game6 (where we switch from vgid to s · vgid), so we have Game7 ≈s Game8, following the same
statistical argument. Note that in Game8 the view of A does not depend on the secret s←R Zp that is used
to compute κ0 = JsKt. Thus, the advantage of A in Game8 is 0, which conclude the proof. ut
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Supplementary Material

A The Generic Group Model

The generic group model is an idealized cryptographic model, first introduced by Nechaev [Nec94], designed
to analyze the security of cryptographic constructions (defined over an algebraic group) with respect to
adversaries that do not exploit the representation of the group (and, consequently, are called generic).
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This model can be used to argue that (possibly non-standard) cryptographic assumptions meet minimal
requirements of security. Furthermore, although we do not advocate proving security of cryptographic con-
structions in the generic group model over the standard model, generic security can be considered sufficient
for practical use, when the primitives are implemented over group representations for which all best known
algorithms are generic.

Shoup, Schnorr and Jakobsson, were among the first to prove security of cryptographic constructions in
the generic group model. In particular, Shoup [Sho97] proved generic security of an identification scheme,
whereas Schnorr and Jakobsson [SJ00] focused on signed ElGamal encryption. The model became an im-
portant tool for establishing the security of pairing-based cryptographic constructions [Gro15, AKOT15,
AGHO11, AGOT14, BFF+15, KLM+18] and even several automated tools have been developed to prove se-
curity in this model [BFF+14, BFF+15, ABS16, ABGW17] given that the generic group model is particularly
amenable for symbolic reasoning.

Generic adversaries have been modeled in different and independent ways in the literature, for example,
Nechaev [Nec94], Shoup [Sho97] and Maurer [Mau05] provided independent (although equivalent [JS08])
approaches, which were then extended to the framework of bilinear groups [BBS04, BBG05]. The approach
of Nechaev and Shoup lets the adversary access group elements through a randomly selected representation.
Instead, we adopt Maurer’s approach, which gives the adversary oracle access to the group elements via
so-called handles or identifiers. The adversary can evaluate the group law between group elements, by
referring to their handles, and will be given a fresh handle pointing to the result of the evaluation. (Other
operations like pairing evaluation can be modeled in a similar fashion, and the adversary is allowed to
perform equality checks between the content of their available handles.) Note that they way the group is
internally implemented is completely transparent to the adversary. In fact, any group of order n could be
simply internally implemented as (Zn,+).

The symbolic group model. The symbolic group model is a very useful abstraction that allows us to reduce
complex security experiments to the satisfiability of purely algebraic conditions. In a nutshell, an experiment
in the symbolic group model is exactly as our above generic group model experiment, where the underlying
group that the adversary is given access to (via handles) is implemented by formal polynomials. More
precisely, a group of order n is represented by polynomials with coefficients over Zn, involving formal variables
that correspond to randomly sampled values during the experiment. (Note that equality checks, in this case,
are performed between polynomials.) Also, note that such a representation makes the experiment completely
deterministic, an essential property that can be used to argue that if a certain system of polynomial equations
is unsatisfiable, then all adversaries have 0 probability of winning the symbolic experiment.

Once a cryptographic construction is shown to be symbolically secure, its security can be extended
to the desired generic group model by using the fact that any adversary, performing a polynomial num-
ber of operations, has a negligible advantage in distinguishing between the symbolic and the generic im-
plementations of their underlying group. This step is usually proven once in a so-called master theo-
rem [BBG05, BFF+14, ABS16, ABGW17], usually giving an explicit bound on the distinguishing probability,
dependent on the degree of the polynomials that the adversary can create after polynomially many queries
to their oracles. In a nutshell, these master theorems exploit the fact that the only way that an adversary
can distinguish between the symbolic and the generic implementation, is by triggering a so-called bad event.
Namely, a successful equality check that would not hold in the symbolic world (which is deterministic and
can therefore be simulated by the adversary). The probability of such bad events is commonly bounded by
the Schwartz-Zippel lemma [Sch80, Zip79]:

Lemma 1 (Schwartz-Zippel). Let K be a field, let f ∈ K[X1, . . . , Xn] be a non-zero polynomial of degree
d and let S be a finite subset of K. It holds:

Pr [ r1, . . . , rn ←R S : f(r1, . . . , rn) = 0 ] ≤ d/|S| .

Roughly, the lemma guarantees that any possible equality check between different polynomials (which
does not hold in the symbolic model) will hold in the generic model only with negligible probability (when
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the value of the formal variables is chosen uniformly at random in a set S that is much larger than the
degree d). Extra care needs to be taken into account when the adversary performs queries adaptively, since
future queries could potentially depend on already sampled values, but standard hybrid arguments over the
adversary’s queries can be used to formalize these cases (for example, see [ABGW17]).

Given that proofs in the generic group model have been intensively studied in the literature and the
relations between symbolic security and actual generic security are now well consolidated, in this work we
will focus on proving the symbolic security of our primitives. Our symbolic model includes a formal variable
for every group element (uniformly) sampled during the corresponding security experiment. Furthermore,
in order to model our random oracle that produces group elements, we consider a formal variable for every
possible random oracle input.

B Zero-knowledge proofs

A zero-knowledge (ZK) proof [GMR85] is a two party protocol executed between a prover and a verifier that
allows the prover to convince the verifier about the validity of a certain statement, without revealing any
other information, e.g., why the statement is true. More formally, given a binary relation R : X ×W → {0, 1}
defined over a set of statements X and a set of witnesses W, let LR be the language defined as LR := {x ∈
X | ∃w ∈ W : R(x,w) = 1}, a zero-knowledge proof system allows a prover in possession of (x,w) ∈ R
to convince a verifier of the fact that x ∈ LR without revealing any information about w. The soundness
property ensures that no proof can convince the verifier of the validity of a false statement. Non-interactive
ZK proof systems [BFM88] are a version of ZK proof systems where the prover sends one single message to
the verifier, no further interaction is required. Proof systems that only satisfy computational soundness are
called argument systems. We require a strong soundness property which coins the system an argument of
knowledge defined below.

Definition 4 (NIZK-AoK). A Non-Interactive Zero-Knowledge Argument of Knowledge (NIZK-AoK) for
a relation R consists of the following PPT algorithms:

• CRSGen(1λ)→ crs. On input the security parameter, it (probabilistically) generates a common reference
string.

• Prove(crs, x, w) → π. On input a crs, a statement x and a witness w, it (probabilistically) generates an
argument π.

• Verify(crs, x, π)→ 1/0. On input the crs, a statement and an argument, it deterministically outputs a bit
representing acceptance (1) or rejection (0).

Completeness. For all (x,w)∈R, all λ∈N, all crs in the support of CRSGen(1λ), and all π in the support of
Prove(crs, x, w), it holds that Verify(crs, x, π) = 1.

Zero-knowledge. There exist two additional PPT algorithms CRSGen and Prove such that for every PPT
adversary A, the following difference is negligible in λ:

Pr
[
crs← CRSGen(1λ) : 1 = AOr(crs)

]
− Pr

[
(crs, td)← CRSGen(1λ) : 1 = AOs(crs)

]
,

where Or, Os are oracles that take (x,w) as input, and return Prove(crs, x, w) and Prove(crs, td, x) respectively
if R(x,w) = 1; they both return ⊥ otherwise.

Knowledge-soundness. There exists a polynomial-time extractor E such that for all PPT adversaries A, the
following probability is negligible in λ:

Pr

 (crs, td)← CRSGen(1λ)
(x, π)← AProve(crs,td,·)(crs)

w ← EA(crs, x, π)

: Verify(crs, x, π) = 1 ∧ R(x,w) = 0

 ,
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where the adversary is restricted to not have queried x to its oracle.
Σ-protocols, introduced in [Cra97], are public-coin interactive protocols that consist of only three data

transfers between the prover and the verifier, and that must satisfy weaker notions of zero-knowledge and
so-called special soundness. We refer to [GK15] for a formal definition of Σ-protocols and note that they can
be compiled into fully secure NIZK systems by leveraging the Fiat-Shamir heuristic [FS87].

C Security Proof of the ID-based Inner-Product FE from SXDH

Proof (of Theorem 1). We proceed via a series of hybrid games described bellow (the differences from one
game to the next are highlighted in red).

Game0: is the real experiment from the security definition in Section 3.1. We recall it here for complete-
ness. The adversary A first receives gp = (PG, JaK1). Then, it can query its oracle Ocreate, that on the i-th
query, creates the new pair (pki,mski) where pki = (

q
V ia

y
1
,
q
U i

0a
y
1
,
q
U i

1a
y
1
) and mski = (V i,U i

0,U
i
1)

where V i ←R Zd×2p , U i
0,U

i
1 ←R Z2×2

p are sampled freshly. Since we are in the selective setting, A must
choose all its encryption queries before making any functional key queries. For each encryption query of
the form (x, id, i), it receives the ciphertext ct = (JarK1 ,

q
(U i

0 + idU i
1)ar

y
1
,
q
V iar + x

y
1
) where the same

randomness r ←R Zp is used to generate all ciphertexts. Recall that A can make at most one encryption
query per instance (pki,mski), which we denote by (xi, id

?
i , i) — if it exists. Then, A sends queries of the form

(JyK2 , id, i) to OKeyGen, upon which it gets sk = (JbsK2 ,
q
V i>y + (U i

0 + idU i
1)>bs

y
2
, JyK2), for fresh s←R Zp.

Game1: we change the way ciphertexts are computed. Namely, each query (xi, id
?
i , i) to the encryption

oracle is now answered with

ct =
(
JzK1 ,

q
(U i

0 + id?iU
i
1)z

y
1
,
q
V iz + xi

y
1

)
,

where the same random coins z ←R Z2
p are used to generate all ciphertexts. We prove that Game0 ≈c Game1

by the DDH assumption in G1. Namely, we have (JaK1 , JarK1) ≈c (JaK1 , JzK1) where the leftmost distribution
corresponds to Game0, whereas the rightmost distribution corresponds to Game1.

Game2: we change the way ciphertexts are computed. Namely, each query (xi, id
?
i , i) to the encryption

oracle is now answered with

ct =
(
JzK1 ,

q
(U i

0 + id?iU
i
1)z

y
1
,
q
V iz + xi

y
1

)
,

where the same random coins z ←R Z2
p \ Span(a) are used to generate all ciphertexts. Here Span(a) denotes

the set of vectors proportional to a. The cardinal of Span(a) is p, thus, the statistical distance between the
uniform distribution over Z2

p \ Span(a) and uniform over Z2
p is 1/p, and Game1 ≈s Game2.

Game3: we change the way the functional keys and challenge ciphertexts are computed. Namely, each query
(xi, id

?
i , i) to the encryption oracle is now answered with

ct =
(
JzK1 ,

q
(U i

0 + id?iU
i
1)z

y
1
,
q
V iz

y
1

)
.

Note that this ciphertext does not depend on the message xi anymore. Each query (JyK2 , id, i) to OKeyGen is
now answered with (

JbsK2 ,
q
V i>y − a⊥ · x>i y + (U i

0 + idU i
1)>bs

y
2
, JyK2

)
,

where a⊥ ∈ Z2
p is the vector such that a>a⊥ = 0 and z>a⊥ = 1. Game1 and Game2 are identically dis-

tributed, since for all i, all xi ∈ Zdp, all a⊥ ∈ Z2
p, the following are identically distributed: {V i ←R Zd×2p : V i}

and {V i ←R Zd×2p : V i − xi(a
⊥)>}. The former distribution corresponds to Game2, whereas the latter cor-

responds to Game3. Note that here we are crucially relying on the fact that there is only one encryption
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query per instance.

Game4: we change the way the functional keys are computed. Namely, each query (JyK2 , id, i) to OKeyGen

is now answered with (
JbsK2 , JV

i>y − 1id=id?i
a⊥x>i y + (U i

0 + idU i
1)>bsK2, JyK2

)
.

That is, now we only add the terms a⊥x>i y for functional key queries (y, id, i) where id = id?i , i.e. the identity
matches that of the ciphertext for instance (pki,mski) — if there is no ciphertext queried for instance i then
1id=id?i

is set to 0. To transition from Game3 to Game4, we use the following hybrid games.

Game3.j : for all j ∈ {0, . . . , Q}, where Q denotes the number of functional key queries, Game3.j is de-
fined as Game4 for the first j’th key queries and as Game3 for the last Q− j queries. By definition we have
Game3 = Game3.0 and Game4 = Game3.Q. It suffices to show that for all j ∈ [Q], Game3.j−1 ≈c Game3.j . To
do so, we introduce new intermediate games, defined as follows.

Game3.j−1.1: is defined as Game3.j−1, except the j’th query to OKeyGen, denoted by (JyjK2 , idj , ij), is now
answered with (

JdK2, JV
ij>yj − a⊥x>ijyj + (U

ij
0 + idjU

ij
1 )>dK2, JyjK2

)
,

where d←R Z2
p. We have Game3.j−1 ≈c Game3.j−1.1 by the DDH assumption in G2, which states that

(JbK2 , JbsjK2) ≈c (JbK2 , JdK2) where b,d←R Z2
p, sj ←R Zp. The former distribution corresponds to Game3.j−1,

whereas the latter corresponds to Game3.j−1.1.

Game3.j−1.2: is defined as Game3.j−1.1, except the vector d used to compute the j’th queried functional

secret key is sampled as d ←R Z2
p \ Span(b), instead of uniformly random over Z2

p. Since the cardinal of
Span(b) is at most p, the uniform distribution over Z2

p \ Span(b) has statistical distance at most 1/p with
the uniform distribution over Z2

p. Thus, Game3.j−1.1 ≈s Game3.j−1.2.

Game3.j−1.3: is defined as Game3.j−1.2, except the j’th query to OKeyGen is now answered with(
JdK2 ,

r
V ij>yj − 1idj=id?ij

a⊥x>ijyj + (U
ij
0 + idjU

ij
1 )>d

z

2
, JyjK2

)
,

where d ←R Z2
p \ Span(b). Note that if id?ij = idj , then the two games Game3.j−1.2 and Game3.j−1.3 are

identical. Thus we focus on the case id?ij 6= idj . In that case we show that Game3.j−1.3 is also identically

distributed to Game3.j−1.2 using a statistical argument, which roughly says that the vectors U
ij
0 b and U

ij
0 d

are statistically independent since b and d are linearly independent. The same holds with respect to the
matrix U

ij
1 . Thus, because the vectors U

ij
0 d and U

ij
1 d are fresh and used only for the j’th functional secret

key, we can use a pairwise independence argument to conclude. More formally, we use the fact that for all
idj , id

?
ij ∈ Zp such that id?ij 6= idj , all vectors a⊥, b⊥ ∈ Z2

p, the following distributions are the same:{
U
ij
0 ,U

ij
1 ←R Z2×2

p : (U
ij
0 ,U

ij
1 )
}

and
{
U
ij
0 ,U

ij
1 ←R Z2×2

p :
(
U
ij
0 +

−id?ijx
>
ij
yjb
⊥(a⊥)>

idj − id?ij
,U

ij
1 +

x>ijyjb
⊥(a⊥)>

idj − id?ij

)}
.

The former distribution corresponds to Game3.j−1.2 (with pre and post-processing), whereas the latter dis-
tribution corresponds to Game3.j−1.3 (with the same pre and post processing).

Game3.j−1.4: is defined as Game3.j−1.3, except the vector d used to compute the j’th queried functional secret

key is sampled d←R Z2
p, instead of uniformly random over Z2

p \Span(b). This is the reverse to the transition
from Game3.j−1.2 to Game3.j−1.3. By the same statistical argument, we obtain Game3.j−1.3 ≈s Game3.j−1.4.
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Finally, note that Game3.j−1.4 is the same as Game3.j except the j’th queried key is computed us-
ing JdK2 ←R G2

2 in the former, and JbsjK2 ∈ G2
2 with sj ←R Zp in the latter. Therefore, we have

Game3.j−1.4 ≈c Game3.j by the DDH assumption, which states that (JbK2 , JdK2) ≈c (JbK2 , JbsjK2) where
b,d ←R Z2

p, sj ←R Zp. The former distribution corresponds to Game3.j−1.4, whereas the latter distribution
corresponds to Game3.j . Note that this transition is exactly reverse to the transition from Game3.j−1.1 to
Game3.j−1.2. This concludes the proof that Game3.j−1 ≈c Game3.j and consequently, that Game3 ≈c Game4.

Note that Game4 exactly corresponds to the ideal experiment from the security definition in Section 3.1
for the simulator defined in Fig. 6, which concludes the proof. ut

GlobalSetup(1λ) :

(a|z)←R GL2, let a⊥ ∈ Z2
p be a vector such that a>a⊥ = 0 ∧ z>a⊥ = 1; set b←R Z2

p.

For every i ∈ [n], sample U i
0,U

i
1 ←R Z2×2

p , V i ←R Zd×2
p .

Set st := (V i,U i
0,U

i
1)i∈[n].

Return (st, gp).

Enc
(
st, pki, id

?
i , i, leakage

)
:

(Note that leakage = ∅.a) Return ct := (JzK1 ,
q
(U i

0 + id?iU1)z
y
1
,
q
V iz

y
1
).

KeyGen
(
st, JyjK2 , idj , ij , leakage

)
:

(Note that leakage contains the value
r
x>ijyj

z

2
if idj = id?ij .)

Sample sj ←R Zp and return:(
JbsjK2 , JV

ij>yj + 1idj 6=id?ij
a⊥ · x>ijyj + (U

ij
0 + idjU

ij
1 )>bsjK2

)
.

a Since we are in the selective setting, no queries to OKeyGen can be made before all queries to OEnc have been sent.

Fig. 6. Simulator for the security proof of the ID-IPFE from Fig. 2.

27


	Multi-Authority ABE, Revisited.

