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Abstract. We propose a multi-party computation (MPC) protocol over
Z2k secure against actively corrupted majority from somewhat homo-
morphic encryption. The main technical contributions are: (i) a new
efficient packing method for Z2k -messages in lattice-based somewhat ho-
momorphic encryption schemes, (ii) a simpler reshare protocol for level-
dependent packings, (iii) a more efficient zero-knowledge proof of plain-
text knowledge on cyclotomic rings Z[X]/ΦM (X) with M being a prime.
Integrating them, our protocol shows from 2.2x upto 4.8x improvements
in amortized communication costs compared to the previous best results.
Our techniques not only improve the efficiency of MPC over Z2k consid-
erably, but also provide a toolkit that can be leveraged when designing
other cryptographic primitives over Z2k .
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1 Introduction

Secure Multi-Party Computation (MPC) aims to jointly compute a function f
on input (x1, · · · , xn) each held by n parties (P1, · · · , Pn), without revealing any
information other than the desired output to each other. Through steady de-
velopment from the feasibility results in 1980s (e.g., [GBOW88]), MPC research
is now at the stage of improving practicality and developing applications to di-
verse use-cases: auction [BCD+09], secure statistical analysis [BJSV15], privacy-
preserving machine learning [DEF+19], etc.

Among various settings of MPC, the most important setting in practice is
the actively corrupted dishonest majority case: corrupted majority is the only
meaningful goal in two-party computation (2PC), and modeling the security
threat as passive (honest-but-curious) adversaries is often unsatisfactory in real-
life applications. At the same time, however, it is notoriously difficult to handle
actively corrupted majority efficiently. It is a well-known fact that lightweight
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information-theoretically secure primitives are not sufficient in this setting and
we need rather heavier primitives [CK89].

A seminal work BeDOZa [BDOZ11] observed that one can push the use of
heavy public key machinery into a preprocessing phase, without knowing input
values and functions to compute. Meanwhile in an online phase, one can securely
compute a function using only lightweight primitives. This paradigm, so-called
preprocessing model, spotlighted the possibility of designing an efficient MPC
protocol even in actively corrupted dishonest majority setting. From then, there
have been active and steady research on improving efficiency of MPC protocol
in this setting: [DPSZ12, DKL+13, KOS16, KPR18, BCS19].

All previously mentioned works consider MPC only over finite fields where
arithmetic message authentication code (MAC), the main ingredients of the pro-
tocols, is easily defined. Recently, SPDZ2k [CDE+18] initiated a study of efficient
MPC over Z2k in actively corrupted dishonest majority setting by introducing
an arithmetic MAC for Z2k -messages. This is to leverage the fact that integer
arithmetic on modern CPUs is done modulo 2k, e.g. k = 32, 64, 128; using MPC
over Z2k , one can naturally deal with such arithmetic. Also, there is no need to
emulate modulo prime P operations on CPUs, simplifying the online phase im-
plementation. The authors of SPDZ2k claimed that these advantages are much
beneficial than the loss from the modified MAC for Z2k . The claim was convinced
by the recent implementation and experimental results [DEF+19].

In regard to the cost of the preprocessing phase, however, there still remains
a substantial gap between the finite field case and the Z2k case. Particularly,
the authors of SPDZ2k , which is based on oblivious transfer (OT), left an open
problem to design an efficient preprocessing phase for MPC over Z2k from lattice-
based homomorphic encryption (HE). The motivation here is that the HE-based
approach has proved the best performance in the finite field case.

The main difficulty is that the conventional message packing method using

the isomorphism of cyclotomic ring Zt[X]/ΦM (X) ∼= Zϕ(M)
t does not work when

t is not prime, especially when t = 2k. In fact, cyclotomic polynomials ΦM (X)
never fully split in Z2k [X] (see e.g. [CL21]). This makes it hard to fully leverage
the batching technique of HE and causes inefficiency compared to the finite field
case. Followup works, Overdrive2k [OSV20] and MonZ2ka [CDRFG20], proposed
more efficient preprocessing phases for MPC over Z2k , yet they do not give a
satisfactory solution to this problem.

1.1 Our Contribution

MHz2k — MPC from HE over Z2k . We propose MHz2k, an MPC over Z2k

from Somewhat HE (SHE) in actively corrupted dishonest majority setting. It is
based on our new solution to the aforementioned problem (of developing high-
parallelism in SHE with Z2k -messages) and non-trivial adaptations of techniques
used in the finite field case to the Z2k case.

Note that the core of an SHE-based MPC preprocessing phase is the triple
(or authenticated Beaver’s triple [Bea91]) generation protocol which consists of
the following building blocks (see Section 2.5):
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• a packing method for SHE which enables parallelism of the protocol and
enhances amortized performance;

• the reshare protocol which re-encrypts a level-0 ciphertext to a fresh cipher-
text allowing two-level SHE to be sufficient for the generation of authenti-
cated triples;

• and ZKPoPK (zero-knowledge proof of plaintext knowledge) which guar-
antees that ciphertexts are validly generated from a plaintext and restricts
adversaries from submitting maliciously generated ciphertexts.

We present improvements on all of these building blocks for Z2k -messages and
integrate them into our new preprocessing phase, which is compatible with the
online phase of SPDZ2k .

New Packing Method for Z2k-messages. We suggest a new efficient Z2k -
message packing method for SHE which can be applied to a preprocessing phase
over Z2k (Section 3). Under the plaintext ring of degree N , our packing method
achieves near N/2-fold parallelism while providing depth-1 homomorphic cor-
respondence which is enough for the preprocessing phase. Previously, the best
solution over Z2k of Overdrive2k [OSV20] only achieved roughly N/5-fold paral-
lelism. Thus, our packing method directly offers 2.5x improvement in the overall
(amortized) performance of the preprocessing phase.

When constructing our packing method, to remedy the impossibilityiv of
interpolation on Z2k , we devise a tweaked interpolation, in which we lift the
target points of Z2k to a larger ring Z2k+δ (Lemma 1).

Reshare Protocol for Level-dependent Packings. A seeming problem is
that it is difficult to design a level-consistent packing method for Z2k -messages
with high parallelism (see [CL21]), while the previous reshare protocol for mes-
sages in finite fields (with level-consistent packing) should be modified to be uti-
lized in this setting. To this end, in the reshare protocol of Overdrive2k [OSV20],
an extra masking ciphertext with ZKPoPK, which is the most costly part, is pro-
vided. We propose a new reshare protocol for level-dependent packings, which
resolves this problem and closes the gap between the field case and the Z2k case
(Section 4). Concretely, in our triple generation, the total number of ZKPoPK
is five as using the original reshare, whereas Overdrive2k requires seven. From
this aspect, we gain an additional 1.4x efficiency improvement in total commu-
nication cost.

TopGear2k — Better ZKPoPKs over Z[X]/Φp(X). When the messages
are in Z2k , using power-of-two cyclotomic rings Z[X]/Φ2m(X) introduces a huge
inefficiency in packing, since Φ2m(X) has only one irreducible factor in Z2k [X].
Thus, it is common to use odd cyclotomic rings for Z2k -messages. In this case,

iv For example, over Z2k , a polynomial f(X) of degree 2 such that f(0) = f(1) = 0
and f(2) = 1 does not exist.
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however, we cannot leverage known efficient ZKPoPKs over the ciphertexts re-
garding Z[X]/Φ2m(X), such as TopGear [BCS19]v.

To this end, we develop an efficient ZKPoPK over Z[X]/Φp(X) where p is
a prime (Section 5). This new protocol named TopGear2k is an adaptation of
TopGear to the Z2k case. The essence of TopGear2k is that the core properties of
power-of-two cyclotomic rings, which was observed in [BCK+14], hold similarly
also in prime cyclotomic rings (Lemma 4). This fact not only improves the amor-
tized communication cost, latency, and memory consumption of our ZKPoPK,
but can also has ramifications on works derived from [BCK+14].

ZKP of Message Knowledge. For the MPC preprocessing for messages from
a finite field ZP , where SHE has the plaintext space ZP [X]/Φ2m(X) isomorphic

to the message space Zϕ(2m)
P , ZKPoPK is sufficient. In the Z2k case, however,

packing methods are not surjective (see [CL21]). In other words, there exist
invalidly encoded plaintexts which do not correspond to any messages. Thus,
we must also make sure that malicious adversaries had not deviated from the
packing method when generating the ciphertext. To this end, we propose a Zero-
Knowledge Proof of Message Knowledge (ZKPoMK) which guarantees that the
given ciphertext is generated with a plaintext which is a valid encoding with
respect to our new packing method (Section 6).

Performance. MHz2k achieves the best efficiency in amortized communication
cost among all state-of-the-art MPC protocols over Z2k in the actively corrupted
dishonest majority setting. Concretely, in our preprocessing phase, the amortized
communication costs for triple generationvi (in kbit) over Z232 and Z264 , respec-
tively, are 27.4 and 43.3 which outperforms the current best results, 59.1 of
MonZ2ka [CDRFG20] and 153.3 of Overdrive2k [OSV20], respectively showing
2.2x and 3.5x improvements. Comparing our protocol with TopGear2k optimiza-
tion (MHz2k-TG2k) and without it (MHz2k-Plain), our ZKPoPK together with
our ZKPoMK improves memory requirement over 5.6x.

1.2 Roadmap

In Section 2, we define notations and recall some known ideas which we fre-
quently refer to in our paper. In Section 3, 4, 5, and 6, we present our results on
packing, reshare, ZKPoPK, and ZKPoMK, respectively. In Section 7, we present
a performance analysis of our protocols: MHz2k-plain (which exploits our new
packing and reshare protocol) and MHz2k-TG2k (which additionally exploits
our ZKPoPK and ZKPoMK).

Fig. 1 describes dependencies of this paper. Arrows denote dependencies, and
the dashed arrow denote rather weak dependency. Section 4 refers to Section 3

v It is the recent refinement with the most efficient ZKPoPK among the line of
works [DPSZ12, KPR18, BCS19] exploiting (S)HE to MPC over a finite field.

vi We assume a two-party case, and similar improvements occur in multi-party cases.
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Section 3
(Packing)

Section 4
(Reshare)

MHz2k-Plain

Section 5
(ZKPoPK)

Section 6
(ZKPoMK)

MHz2k-TG2k

Fig. 1. Dependencies of This Paper

only in Section 4.2 to note that our new packing method is compatible with the
new reshare process. Section 3, 4, and 5 can be read (except Section 4.2) and
employed independently.

1.3 Related Work

We present the previous works achieving the same goal as ours: MPC over the
ring Z2k secure against actively corrupted dishonest majority. All of the works
(including ours) share the same online phase proposed by SPDZ2k [CDE+18],
whereas the preprocessing phases are all different.

SPDZ2k [CDE+18] is the first MPC protocol over Z2k secure against actively
corrupted dishonest majority. Their main technical contribution is the online
phase with an efficient MAC for Z2k (see Section 2.5). Their preprocessing phase
resembles that of MASCOT [KOS16] which is based on oblivious transfers. The
authors of SPDZ2k left an open problem to design an efficient HE-based pro-
tocol over Z2k since, in the finite field setting, it is the approach with the best
performance.

Overdrive2k [OSV20] is an HE-based MPC protocol over Z2k , partially solv-
ing the open problem given in SPDZ2k . The protocol mainly follows the approach
of SPDZ [DPSZ12] with the BGV SHE scheme [BGV14]. Their main idea is a
new HE-packing method for Z2k messages supporting one homomorphic multi-
plication only (See Section 2.4). Using their method, however, packing density
for their parameters stay below 0.25. Moreover, to remedy their level-dependent
packing, they provide extra masking ciphertexts with ZKPoPKs, substantially
increasing the cost of the preprocessing phase.

MonZ2ka [CDRFG20] is a 2PC protocol over Z2k which mainly follows the
linear-HE-based approach of BDOZ [BDOZ11] and Overdrive [KPR18], but with
a different HE scheme by Joye-Libert [JL13]. Note that the Joye-Libert scheme
does not provide packing for batched computations, whereas major and fastest
approaches of MPC over finite fields leverage packing. Also note that MonZ2ka
provides only 2PC and does not provide general MPC.
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2 Preliminaries

2.1 Notations

The ring Zq := Z/qZ is identified with the set of integers in (−q/2, q/2]. We de-
note the set {1, 2, · · · , d} by [d] and the set {0, 1, · · · , d} by [0, d]. The additive
share of i-th party is denoted as [·]i. For a positive integer a, let ν2(a) be the
exponent of the largest power of two that divides a. All logarithms log(·) are
of base 2. On homomorphic encryption, ciphertext additions, subtractions, and
multiplications are denoted as �, �, and �, respectively. We denote the M th

cyclotomic polynomial as ΦM (X) and reserve N for its degree, i.e., N = ϕ(M)
where ϕ(·) denotes Euler’s totient function. Each elements of Z[X]/f(X) is iden-
tified with its representative of minimal degree. For an element a ∈ Z[X]/f(X),
we measure the size of a by ||a||∞, the largest absolute value of its coefficients.

2.2 The BGV Homomorphic Encryption Scheme

Following the approach of SPDZ [DPSZ12], our preprocessing only requires se-
cure computations of multiplicative depth one. Hence, it is enough to initiate
the BGV [BGV14] homomorphic encryption scheme supporting only two levels.
Here, we only give a brief description of the scheme, focusing on the necessary
parts for our proposal.

Two-Level BGV Scheme with Power-of-Two Plaintext Modulus. Let
R := Z[X]/ΦM (X). The scheme consists of six algorithms (KeyGen,Enc,ModSwitch,
Dec,Add,Mult), has a ring R2t := R/2tR = Z2t [X]/ΦM (X) as a plaintext space,
and each ciphertext has a level ` ∈ {0, 1}.

For a given security parameter λ, the public parameter ppλ fixes a cyclotomic
polynomial ΦM (X) with a sufficiently large degree; ciphertext moduli q1 = p1 ·p0

and q0 = p0 for some prime p0, p1. Now, the algorithms are as follows: We only
give a brief description which is necessary for our proposal.

- KeyGen(ppλ): Given a public parameter ppλ, outputs a secret key sk ∈ R,
a public key pk = (a, b) ∈ R2

q1 , and relinearization data [BGV14] for the
ciphertext multiplication.

- Enc(m, r; pk): For given plaintext m ∈ R2t , samples randomnesses r =
(e0, e1, v) ∈ R3 as e0, e1 ← DG(3.162) and v ← ZO(0.5), vii then sets,

c0 = b · v + 2t · e0 +m (mod q1), c1 = a · v + 2t · e1 (mod q1).

Then, outputs a level-one ciphertext ct(1) = (c0, c1) ∈ R2
q1 .

- ModSwitch(ct(1) = (c0, c1)): Given a level-one ciphertext ct(1), outputs a
level-zero ciphertext ct(0) = (c′0, c

′
1) ∈ R2

q0 having the same message as ct(1).
We call this a modulus-switching operation.

vii DG(σ2) samples each coefficient from discrete Gaussian distribution, ZO(ρ) samples
from {−1, 0, 1} with probability ρ/2 for each of −1 and 1, probability 1− ρ for 0.
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- Dec(ct(`) = (c0, c1); sk): If ` 6= 0, it gets a level-zero ciphertext ct(0) = (c′0, c
′
1)

via ModSwitch. Then, it decrypts as

(c′0 − sk · c′1 (mod q0)) (mod 2t),

and outputs an element of R2t .

- Homomorphic Operations: Ciphertexts at the same level can be added (�) or
multiplied (�) with each other, resulting in a ciphertext encrypting the sum
or the product of the plaintexts in R2t . Only level-one ciphertexts can be
multiplied (with each other) to result in a ciphertext of level-zero.

2.3 Cyclotomic Rings and CRT Isomorphism in Z2T [X]

For an odd M , the cyclotomic polynomial ΦM (X) of degree N is factorized as∏r
i=1 fi(X) in Z2[X] where each irreducible fi(X) has the same degree d =

ordM (2), the order of 2 modulo M . Hence, N = r · d holds. The factorization
induces the following ring isomorphism by the CRT, for any power of two 2T :

Z2T [X]/ΦM (X) ∼= (Z2T [X]/F1(X))× · · · × (Z2T [X]/Fr(X)), (1)

where each Fi(X) ∈ Z2T [X] is the Hensel lifting of fi(X) with degree d. Each
Z2T [X]/Fi(X) is often referred to as a slot of Z2T [X]/ΦM (X). In this paper, we
frequently refer to the isomorphism Eq.(1) and the notation ϕ(M) = N = r · d.

2.4 Packing Methods for SHE Schemes

Message, Plaintext, and Packing. This paper carefully distinguishes be-
tween the use of the terms message and plaintext. Messages are those we want
to compute with using HE. On the other hand, plaintexts are defined by the
HE scheme we are using. In this paper, messages are in Zt and plaintexts are in
Zt[X]/ΦM (X), for possibly different t’s.

Packing is the process of encoding multiple messages into a plaintext while
satisfying (somewhat) homomorphic correspondence. Then, when performing
homomorphic computations on a ciphertext packed with multiple messages, one
can have the effect of batching. The idea of packing [SV14] is very useful in most
cases, since plaintext space Zt[X]/ΦM (X) of practical lattice-based HE schemes
is usually not the space we want to compute in.

Basic Packing Methods. In lattice-based SHE schemes, including [BGV14],
it is common to choose the plaintext modulus as a prime P such that ΦM (X)
fully splits in ZP [X]. Then, we can pack N messages of ZP into one plaintext
in ZP [X]/ΦM (X) by the CRT ring isomorphism ZP [X]/ΦM (X) ∼= ZNP .

Above method, however, does not work for the case of Z2k -messages, since
ΦM (X) never fully splits in Z2k [X]. A common way [GHS12a, HS15] to de-
tour this problem is to identify each Z2k -message with each constant term of
Z2k [X]/Fi(X) in Eq.(1). It provides fully homomorphic correspondence between
r messages of Z2k and one element of Z2k [X]/ΦM (X), but with extremely low
packing density 1/d, following the notations of Section 2.3.
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Overdrive2k Packing. Overdrive2k [OSV20] observed that what we actually
need for MPC protocol is a packing method which provides somewhat homo-
morphic correspondence supporting one multiplication (See Section 2.5). For a
given degree d = degF1(X), they consider a subset A = {ai}wi=1 of [0, d − 1]
such that 2ai 6= aj1 + aj2 for all (i, i) 6= (j1, j2) and ai + aj < d for all i, j. They
pack w messages in Z2k as the ai-th coefficients (ai ∈ A) of a polynomial in
Z2k [X]/F1(X), putting zeroes in the other coefficients. Repeating this r times
for each slot in Eq.(1), we can pack r · w messages into one plaintext achieving
the packing density of w/d. Since the set A is carefully chosen, if we multiply
two packed plaintexts, the (2ai)-th coefficient of the result equals to the product
of ai-th coefficients of the original plaintexts, providing depth-1 homomorphic
correspondence. Note that the Overdrive2k packing is level-dependent : messages
are at ai-th coefficients for level one plaintexts, and (2ai)-th coefficients for level
zero plaintexts. The authors of Overdrive2k note that the packing density of
their method with an optimal subset A seems to follow the trend of d0.6/d,
approximately.

2.5 Preprocessing Phase — Generation of Authenticated Triples

Since our MPC protocol follows the online phase of SPDZ2k [CDE+18], the
goal of our preprocessing phases is to generate authenticated triples with re-
spect to SPDZ2k -MAC. That is, n parties together securely generate secret
shares [a]i, [b]i, [c]i and [αa]i, [αb]i, [αc]i in Z2k̃ such that

∑
i[a]i = a (mod 2k),∑

i[αa]i = αa (mod 2k̃), and similar for the others, satisfying c = ab (mod 2k).

Here, k̃ := k+ s with s as a security parameterviii, and α ∈ Z2k̃ is a single global
MAC key of which share [α]i ∈ Z2s is given to the i-th party. Then, in the online
phase, the parties can securely compute any arithmetic circuit via Beaver’s trick
[Bea91, CDE+18] with these authenticated triples.

Overview of Triple Generation. We give an overview of our preprocessing
phase, focusing on the triple generation protocol, which follows the standard
methods of SPDZ [DPSZ12] (and Overdrive2k [OSV20]) exploiting two-level
SHE and zero-knowledge proofs (ZKP) on it. We remark that message pack-
ing of SHE enable the parties to generate multiple authenticated triples (repre-
sented by vectors) in one execution of the triple generation protocol, significantly
reducing the amortized costs.

First, each party Pi generates and broadcasts ciphertexts ctai and ctbi each
encrypting the vectors [a]i and [b]i of random shares from Z2k̃ ; we omit the

superscript(1) for level-one ciphertexts. Then, all parties run ZKPs (ZKPoPK
and ZKPoMK in Section 5 and 6) on cta =

∑
i ctai and ctb =

∑
i ctbi to guarantee

that each ciphertext is generated correctly. Next, all parties compute a ciphertext

ct
(0)
c := cta � ctb whose underlying message is the Hadamard product c = a �

viii SPDZ2k -MAC provides sec = s− log(s+ 1)-bit statistical security ([CDE+18, The-
orem 1]).
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b. Similarly, given ciphertexts ctαi , all parties can also compute ct
(0)
αa and ct

(0)
αb

with homomorphic operations on the ciphertexts. The parties, however, cannot

directly compute ctαc from ciphertext multiplication between ct
(0)
c and ctα since

the former is of level-zero.
Thus, the parties perform so-called reshare protocol [DPSZ12] which, given

ct
(0)
c as the input, outputs a level-one ciphertext ctc having the same message as

the input and/or the random shares [c]i of the message to each party. Roughly,

it proceeds by decrypting the masked input ModSwitch(ctf ) � ct
(0)
c to get a

(masked) message f+c, then subtracting the mask ctf from the fresh encryption
ctf+c of the message, resulting in ctc = ctf+c � ctf . Then, parties can compute

ct
(0)
αc := ctc � ctα. Here, ZKPs for the masking ciphertext ctf is also required.

Finally, parties jointly perform distributed decryption on the ciphertexts ctαa,
ctαb, and ctαc to get random shares of the underlying messages: [αa]i, [αb]i, and
[αc]i. The parties already have the other components of the triple ([a]i, [b]i, and
[c]i), so the authenticated triple is generated.
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3 New Packing Method for Z2k-Messages

In this section, we present a new and efficient Z2k -message packing method for
contemporary SHE schemes, e.g. BGV [BGV14]. Since the conventional plaintext

packing method of using the isomorphism Zt[X]/ΦM (X) ∼= Zϕ(M)
t does not work

when t = 2k, an alternative method is required to provide high parallelism.

To tackle this problem, unlike previous approaches which packed messages in
coefficients of a polynomial (Section 2.4), we pack messages in evaluation points
of a polynomial. Here, we detour the impossibilityix of interpolation on Z2k by
introducing a tweaked interpolation on Z2k .

3.1 Tweaked Interpolation

The crux of our packing method is the following lemma: we can perform in-
terpolation on Z2k if we lift the target points of Z2k upto a larger ring Z2k+δ ,
multiplying an appropriate power of two to eliminate the effect of non-invertible
elements.

Lemma 1 (Tweaked Interpolation on Z2k). Let µ0, µ1, . . . , µn be elements
in Z2k . Assume that an integer δ is not smaller than ν2(n!), the multiplicity of
2 in the factorization of n!. Then, there exists a polynomial Λ(X) ∈ Z2k+δ [X] of
degree at most n such that

Λ(i) = µi · 2δ ∀i ∈ [0, n].

Proof. Recall that, for i ∈ [0, n], an i-th Lagrange polynomial on [0, n] is defined
as λi(X) :=

∏
j∈[0,n]\{i}

X−j
i−j ∈ Q[X]. Lagrange polynomial satisfies

λi(X) =

{
0 if X ∈ [0, n] and X 6= i,

1 if X = i.

Note that 2δλi(X) has no multiples of 2 in denominators of its coefficients since
δ ≥ ν2(n!). Then, we can identify 2δλi(X) as a polynomial over Z2k+δ of degree
at most n, since the denominator of each coefficient is now invertible in Z2k+δ .
Let λ̃i(X) ∈ Z2k+δ [X] denote the polynomial. Then,

λ̃i(X) =

{
0 if X ∈ [0, n] and X 6= i,

2δ if X = i.

Now, Λ(X) :=
∑n
i=0 µi · λ̃i(X) ∈ Z2k+δ [X] satisfies the claimed property. ut

ix For example, over Z2k , a polynomial f(X) of degree 2 such that f(0) = f(1) = 0
and f(2) = 1 does not exist.
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3.2 New Packing Method from Tweaked Interpolation

Our tweaked interpolation on Z2k gives an efficient Z2k -message packing into
Z2k+2δ [X]/ΦM (X), while providing depth-1 homomorphic correspondence. Notice
the extra δ added to preserve packed messages: after multiplying two polyno-
mials constructed from tweaked interpolation, the resulting polynomial carries
a factor of 22δ. In bird’s eye view, our new packing method applies tweaked
interpolation on each CRT slots (Eq. (1), Section 2.3), while preventing degree
overflow and modulus overflow when multiplying two packed polynomials. Recall
the isomorphism Eq. (1) and the notation ϕ(M) = r · d of ΦM (X) (Section 2.3).

Theorem 1 (Tweaked Interpolation Packing). Let {µij}i,j be Z2k -messages
for i ∈ [r] and j ∈ [0,

⌊
d−1

2

⌋
]. For integers δ, t satisfying δ ≥ ν2(

⌊
d−1

2

⌋
!) and

t ≥ k+δ, there exists L(X) ∈ Z2t [X]/ΦM (X) satisfying the following properties:

Let Li(X) be the projection of L(X) onto the i-th slot Z2t [X]/Fi(X). Then,
for each i and j,

(i) deg(Li(X)) ≤
⌊
d−1

2

⌋
,

(ii) Li(j) = µij · 2δ mod 2k+δ.

We call such L(X) a tweaked interpolation packing of {µij}.

Proof. By Lemma 1, the condition on δ guarantees that there exists Li(X) ∈
Z2k+δ [X] ⊂ Z2t [X] of degree not greater than

⌊
d−1

2

⌋
such that Li(j) = µij · 2δ

mod 2k+δ for all j ∈ [0,
⌊
d−1

2

⌋
]. Now, we can define L(X) ∈ Z2t [X]/ΦM (X)

as the isomorphic image of (L1(X), · · · , Lr(X)) ∈
∏r
i=1 Z2t [X]/Fi(X) from the

CRT isomorphism; L(X) satisfies the property. ut

The next theorem suggests that the tweaked interpolation packing (Theo-
rem 1) homomorphically preserves the messages under (multiplicative) depth-1
arithmetic circuits. This property implies that we can naturally plug our pack-
ing method into the two-level BGV scheme (Section 2.2) with a plaintext space
Z2k+2δ [X]/ΦM (X) and exploit it for MPC preprocessing phase.

Theorem 2 (Depth-1 Homomorphic Correspondencex). Let L(X) and
R(X) be polynomials in Z2k+2δ [X]/ΦM (X) which are tweaked interpolation pack-
ings (Theorem 1, t = k+ 2δ) of Z2k -messages {µLij} and {µRij}, respectively. For

α ∈ Z2k , let α̃ denote an element of Z2k+2δ such that α̃ = α (mod 2k). Then,

(a) L(X) +R(X) is a tweaked interpolation packing of {µLij + µRij}.
(b) α̃ · L(X) is a tweaked interpolation packing of {α · µLij}.

x Our packing (Zn2k ↪→ Z2k+2δ [X]/Fi(X)) can be interpreted as an analogue of reverse
multiplication-friendly embeddings (Fnq ↪→ Fqd) [CCXY18]. The composition lemma
holds similarly in Z2k case, since a Galois extension of a Galois ring is again a Galois
ring.
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(c) From LR(X) := L(X) ·R(X), one can decode homomorphically multiplied
Z2k -messages {µLij · µRij}.

Proof. Properties (a) and (b) are straightforward from the linearity of projec-
tion map and evaluation map, together with the fact that additions and scalar
multiplications preserves the degree of polynomial.

To prove (c), let Li(X), Ri(X), and LRi(X) respectively be the projection
of L(X), R(X), and LR(X) onto the i-th slot Z2k+2δ [X]/Fi(X). Then,

LRi(X) = Li(X) ·Ri(X) in Z2k+2δ [X]/Fi(X).

Note that the above equation holds also in Z2k+2δ [X]: Since the degree of Li(X)
and Ri(X) are at most

⌊
d−1

2

⌋
, the sum of their degree is less than the degree d

of Fi(X). Therefore,

LRi(j) = Li(j) ·Ri(j) = µLij · µRij · 22δ (mod 2k+2δ),

from which one can decode the desired values. ut
Remark 1. We call the packing structure of LR(X) in Theorem 2(c) the level-
zero tweaked interpolation packing, whereas the original packing in Theorem 1
is called level-one packing. We omit the level when the packing is of level-one.

3.3 Performance Analysis

Efficiency (Packing Density). As a measure of the efficiency of packing meth-
ods, we define packing density as the ratio of the total (bit)-size of points packed
in a polynomial to the (bit)-size of the polynomial. For example, in the case of
finite field F, we can pack N points (of F) to one polynomial (over F) of degree
N − 1 (having N coefficients), which gives the perfect packing density of 1.

Now, let κk(d) denote the packing density of tweaked interpolation packing
method for Z2k -messages when the cyclotomic polynomial ΦM (X) splits into
irreducible factors of degree d. Then,

κk(d) =
k · bd+1

2 c(
k + 2ν2(bd−1

2 c!)
)
d
≈ k

2(k + d)
,

where the approximation follows from ν2(bd−1
2 c!) ≈

d
2 and bd+1

2 c ≈
d
2 .

Remark 2. For a fixed Z2k , the packing density of our method (Theorem 1)
depends only on d: it is better to use ΦM (X) with smaller d. When d is sufficiently
smaller than k, the packing density of our method approaches 1

2 .

Comparison with Overdrive2k. Let κρ̌3(d) denote the packing density of
Overdrive2k packing [OSV20] for given d (Section 2.4). In Fig. 2a, the rough
plots of packing densities according to d are presented: the lowest one is the plot
of d0.6/d which was mentioned as a rough estimate of κρ̌3(d) in [OSV20]. The
graph suggests that our method has higher packing density than theirs when k
is not too small compared to d. For practical parameters, this is always the case:
in Fig. 2b, the exact plots of packing densities on 13 ≤ d ≤ 68 demonstrates
that the density of our method is higher than that of Overdrive2k.
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Fig. 2. Comparison of packing densities on each method according to d

3.4 Predicates for Valid Packing

In this subsection, we define some predicates P : R → {true, false} over a cyclo-
tomic ring R = Z[X]/ΦM (X), with which we can formally describe the state of
a plaintext in regards to our new packing method. We will use these predicates
when describing our Reshare protocol (in Section 4) and our ZKP of Message
Knowledge (ZKPoMK) (in Section 6). Readers may skip this subsection and
consult it when succeeding sections refer to the definitions.

Definition 1 (Predicates). The predicates Deg
(D)
T ,Div

(D,∆)
T , and Pack

(D,∆)
T ,

each mapping R to {true, false}, are defined as follows:
For an element a ∈ R, let ã ∈ R2T be defined by ã ≡ a (mod 2T ), and let

(ãi)
r
i=1 be the CRT projections (Eq. (1)) of ã.

• Deg(D)
T (a) = true ⇐⇒ deg ãi ≤ D ∀i ∈ [r]

• Div(D,∆)
T (a) = true ⇐⇒ 2∆ divides ãi(j) ∀i ∈ [r] & j ∈ [0, D]

• Pack(D,∆)
T (a) = true ⇐⇒ Deg

(D)
T (a) = true ∧ Div

(D,∆)
T (a) = true.

In addition, the predicate DivCheck
(D,∆)
T : R × R̂ → {true, false} is defined as

follows, where R̂ = Z[X]/ΦM̂ (X) is another cyclotomic ring:

For b ∈ R̂, let b̃ij ∈ Z2T be b̃ij ≡ bij (mod 2T ), where bij is the ((i− 1)(D +
1) + j)-th coefficient of b.xi

• DivCheck(D,∆)
T (a, b) = true ⇐⇒ ãi(j) = 2∆ · b̃ij ∀i ∈ [r] & j ∈ [0, D]

We omit T when it is obvious from the context.

Remark 3. Theorem 1 states that, for ν =
⌊
d−1

2

⌋
, the predicate Pack

(ν,δ)
t (a) =

true if and only if a ∈ R contains Z2k -messages with respect to the tweaked

xi Such tricky definition is useful when describing our ZKPoMK (Section 6.1).
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interpolation packing. We call a polynomial a a (D,∆, T )-tweaked interpolation

packing if it satisfies Pack
(D,∆)
T (a).

Remark 4. The essence of Theorem 2(c) is the following fact:

If Pack
(ν,δ)
k+2δ(a) ∧ Pack

(ν,δ)
k+2δ(b) = true, then Deg

(2ν)
k+2δ(a · b)∧Div

(ν,2δ)
k+2δ (a · b) = true.

3.5 Sampling Zero Polynomials in Z2k [X]

We propose efficient random sampling algorithms from the sets of elements sat-
isfying the predicates defined in Section 3.4. These play important roles when we
construct our Reshare protocol (in Section 4) and our ZKP of Message Knowl-
edge (ZKPoMK) (in Section 6). Readers may skip this subsection and consult it
when succeeding sections refer to the definitions.

Due to the unique feature of Z2k , sampling process is not trivial and has
a deep connection with zero polynomialsxii in Z2k [X]. Our result possibly has
ramifications on cryptographic works regarding polynomial evaluation (or inter-
polation) over Z2k , outside of our protocols.

Definition 2 (Distribution with Predicate). Let U(B) be the uniform dis-
tribution over {a ∈ R : ||a||∞ ≤ B}. For a predicate P ∈ {Deg,Div} (we omit
the superscripts) over R = Z[X]/ΦM (X), the distribution UP(B) is the uniform
distribution over the following set:

{a ∈ R : ||a||∞ ≤ B ∧ P(a) = true}.

To show that one can efficiently sample elements from UP(B) with P = Div,
we first identify all zero polynomials in Z2k [X] as follows.

Lemma 2. For χ0(X) := 1 and χi(X) :=
∏i−1
`=0(X − `) ∈ Z2k [X], let f(X) =∑d

i=0 ciχi(X). Then, f(j) = 0 (mod 2k) for all j ∈ [0, n] if and only if ci · i! = 0
(mod 2k) for all i ∈ [0, n].

Proof. Assume f(j) = 0 (mod 2k) for all j ∈ [0, n]. We proceed by mathematical
induction on i. First, since f(0) = 0 (mod 2k), c0 ·0! = c0 = 0 (mod 2k). Assume
ci ·i! = 0 (mod 2k) holds for all 0 ≤ i < s ≤ n. Then, from the fact that χi(s) = 0
for i > s and that i! divides χi(s), along with the induction hypothesis, the
following equations hold.

0 = f(s) =

n∑
i=0

ciχi(s) =

s∑
i=0

ciχi(s) = csχs(s) = cs · s! (mod 2k)

For the other direction, assume ci · i! = 0 (mod 2k) holds for all i ∈ [0, n].
Since i! always divides χi(j) for any j ∈ Z, ciχi(j) = 0 (mod 2k) holds. Then,
f(j) =

∑n
i=0 ciχi(j) = 0 (mod 2k) for all j ∈ [0, n]. ut

xii A zero polynomial is a polynomial whose evaluations at certain points are all zero.



MHz2k: MPC from HE over Z2k 15

Corollary 1 (Zero Polynomials over Z2k). Let f(X) be a polynomial in
Z2k [X]. Then, for a positive integer n, f(j) = 0 (mod 2k) for all j ∈ [0, n] if
and only if f(X) is of the form χn+1(X) · q(X) +

∑n
i=0 ciχi(X) where ci’s are

such that ci · i! = 0 (mod 2k) for all i ∈ [0, n].

Proof. Note that {χi(X)}ni=0 form a basis of the polynomials of degree at most
n and χn+1(j) = 0 for all j ∈ [0, n]. Then, the claim follows from Lemma 2. ut

With the identification of zero polynomials from Corollary 1, we can effi-
ciently sample an element from the distribution UP(B) as follows.

Corollary 2 (Efficient Sampling from UP(B)). Let P ∈ {Deg(D)
T ,Div

(D,∆)
T ,

Pack
(D,∆)
T } be a predicate over R = Z[X]/ΦM (X). Then, one can efficiently

sample an element from the distribution UP(B), given that T ≥ ∆ ≥ ν2(D!).

Proof. In both cases, it suffices to sample an element satisfying the predicate
from Z2T [X]/ΦM (X) first with CRT isomorphism (Eq.(1)), then add an element
from the distribution U(B) conditioned on multiples of 2T .

The case of P = Deg is straightforward, since one can sample a polynomial
of bounded degree on each CRT slot. For the cases of P = Div and P = Pack,
first note that differences of tweaked interpolation packings with same messages
are zero polynomials. Fixing the representative (e.g., the one from Lemma 1) for
tweaked interpolation packings with same messages, each CRT slot of an element
satisfying P can be uniquely represented modulo 2T by sum of the tweaked
interpolation and a zero polynomial. Thus, to uniformly sample from each CRT
slot of Z2T [X]/ΦM (X), first compute a tweaked interpolation (Lemma 1 with

δ = ∆,n = D) with uniform random points from Z2T−∆ . Then, for Div
(D,∆)
T and

Pack
(D,∆)
T , add a random zero polynomial of degree at most d (Eq. (1)) and D,

respectively, using Corollary 1 with n = D. ut

Finally, for the construction of ZKPoMK (Section 6), we present the adap-
tation of usual statistical masking method to our case with the predicates.

Lemma 3 (Statistical Masking). For a positive integer B < B∞ and a pred-
icate P ∈ {Deg,Div,Pack}, let a ∈ R = Z[X]/ΦM (X) be an element such that
||a||∞ ≤ B and P(a) = true. Then, the statistical distance between a + UP(B∞)
and UP(B∞) is bounded by NB

B∞
where N = ϕ(M). The similar holds for U .

Proof. The case of N = 1 directly follows from the definition of statistical dis-
tance, and the claim is a generalization with (B∞−B)N > BN∞−NBN−1

∞ B. ut
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4 Reshare Protocol for Level-dependent Packings

When designing a packing method for Z2k -messages with high parallelism, it is
inevitable to design a level-dependent packing, e.g., the Overdrive2k [OSV20]
packing (Section 2.4) and our tweaked interpolation packing (Section 3, Re-
mark 1). However, this leads to a complication in the reshare protocol for
Z2k -messages, which does not occur in the case of a finite field ZP with level-

consistent packing from the isomorphism ZP [X]/Φ2m(X) ∼= Zϕ(2m)
P . In partic-

ular, the reshare protocol of Overdrive2k [OSV20] exploits an extra masking
ciphertext with ZKPoPK on it, which is the most costly part, to remedy the
issue.

In this section, we propose a new reshare protocol for level-dependent pack-
ings, which resolves this complication: our protocol extends the previous reshare
protocol of the finite field case to operate also with level-dependent packings
without any extra cost. Our result closes the gap between the finite field and the
Z2k cases which originates from the level-dependency.

4.1 Improved Reshare Protocol for Level-dependent Packings

The Problem of Level-dependent Packings. Recall that the goal of the
reshare protocols is, for an input level-zero ciphertext, to output shares of the
underlying message along with a level-one ciphertext having the same message
as the input (Section 2.5). The complication, with a level-dependent packing, is
that we have to manage not only the ciphertext level but also the packing level.

Recall that one masking ciphertext ctf is used twice in the reshare protocol
for the finite field case: once to mask the input ciphertext of level-zero and once
to reconstruct the fresh ciphertext of level-one by subtracting it (Section 2.5).
While the difference of ciphertext levels can be managed easily with modulus-
switching, that of the packing levels seems to be problematic.

Solution of Overdrive2k. To resolve this problem, Overdrive2k [OSV20] pro-
vides two masking ciphertexts having the same messages but in different packing :
one with level-zero packing and the other with level-one packing. This approach
requires an extra ZKPoPK with the additional broadcast of the masking cipher-
text, doubling the cost of the reshare protocol. It results in substantial increase
of cost in the whole preprocessing protocol. In the triple generation protocol,
the number of ZKPoPK with broadcasts of ciphertexts is five using the original
reshare protocol in the field case, whereas Overdrive2k requires seven due to
their reshare protocol, resulting roughly a 1.4x reduction in efficiency.xiii

Our Solution. The crux of our reshare protocol for level-dependent packings
is the idea of generating the ciphertext ctα of the MAC key α ∈ Z2s by treat-
ing α as a constant in the cyclotomic ring Z2t/ΦM (X), i.e. ctα = Enc(α) for

xiii The number of ZKPoPK is counted regarding the correlated sacrifice tech-
nique [KOS16].
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α ∈ Z2t/ΦM (X) without any packing structure. Then, we actually do not need
the fresh ciphertext to be of packing level-one: it is okay to be of packing level-
zero. This is because, whereas multiplying ctα to a ciphertext consumes a ci-
phertext level, multiplying α to a plaintext does not consumes a packing level,
i.e. multiplying α is a linear operation in the aspect of packing (Theorem 2(b)).

Our reshare protocol itself is more or less verbatim of the previous reshare
protocol for the finite field cases [DPSZ12]. Thus, we omit the formal description
and proof of our reshare protocol for general level-dependent packings. Instead,
we present an instantiation of our reshare protocol with our tweaked interpola-
tion packing in the next subsection.

4.2 Compatibility with Our Packing Method

We present our reshare protocol instantiated with our tweaked interpolation
packing (Section 3). While our protocol resembles the Reshare protocol of [DPSZ12]
with Zp messages, it is slightly more involved due to the nontrivial task of mask-
ing the Z2k messages encoded with our tweaked interpolation packing (we borrow
the results of Section 3.5 for this). We give an overview focusing on our modifi-
cation and correctness of the protocol, and refer to Appendix B.3 for the formal
proof.

Our reshare protocol ΠReshare is presented in Figure 3. The protocol exploits a
zero-knowledge proof on a ciphertext, depicted as ZKPoPK and ZKPoMK, which
will be described in Section 5,6. For now, we simply assume that they guarantee
that the messages are encoded correctly in the ciphertext with respect to our
packing method.

A noticeable difference of our protocol from other reshare protocols of [DPSZ12,
OSV20] is that each party samples the message fi of a mask ciphertext from the

distribution with predicate, UP(2T ) with P = Div
(D,∆)
T (Definition 2, Corol-

lary 2). It not only preserves the packing structure, but also prevent the infor-
mation leakage from our packing method in the following distributed decryption
(5.-7. in Fig. 3). If fi was sampled from a random polynomial without any restric-

tion, Div
(D,∆)
T (v) = false (with high probability) and each party cannot retrieve

[m]i. On the other hand, if fi was not added as a mask, each party can get
additional information from the plaintext polynomial v which may contain more
coefficients than the messages.

Since the mask ri together with fi can be seen as a statistical masking from
UP(BDDec) of Lemma 3, we can utilize the protocol to implement our preprocess-
ing phase (Section 2.5, or formally, ΠPrep in Appendix B.4). See Appendix B.3
and B.4 for detailed descriptions.
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Protocol ΠReshare

Implicitly call FRand (Appendix B.2) when it is required in ZKPoPK (or ZKPoMK).
Each party Pi has (pk, [sk]i) given from FKeyGen (Appendix B.2).
Parameters:

- BDDec: a bound on the coefficients of the mask values.
- Bnoise: a bound on the noise of input ciphertext.
- n: the number of participating parties Pi.

Common Input:

- The parameter pp = (D,∆, T ) for the predicate Div
(D,∆)
T (Definition 1).

- ct
(0)
m : a level-zero ciphertext satisfying that Div

(D,∆)
T (Dec(ct

(0)
m , sk)) = true, i.e.,

having a message m ∈ Zν2k encoded with our tweaked interpolation packing (The-
orem 1) with pp = (D,∆, T ) (Section 3.4, Remark 3).

D2: On input ciphertext ct
(0)
m (see Common Input), parties do as follows.

1. Set P = Div
(D,∆)
T . Each Pi samples a polynomial fi ← UP(2T−1) and set fi ∈ Zν2k

as the uniform random points used in the sampling process, i.e., fi are messages of
fi when regarded as a tweaked interpolation packing (see the proof of Corollary 2).

2. Each Pi generates level-one ciphertext ct
(1)
fi

having the polynomial fi as a plaintext,

then broadcasts this ciphertext. All parties compute ct
(1)
f =

∑
i∈[n] ct

(1)
fi

, then per-

form ZKPoPK and ZKPoMK (Section 5, 6) on it with parameter pp = (D,∆, T ).
If the proof of ZKPoPK or ZKPoMK is rejected, then abort.

3. All parties compute ct
(0)
f = ModSwitch(ct

(1)
f ), then compute ct

(0)
m+f = ct

(0)
m � ct

(0)
f .

Let ct
(0)
m+f be (c0, c1).

4. Each Pi computes wi =

{
c0 − [sk]1 · c1 if i = 1

−[sk]i · c1 if i 6= 1
.

5. Each Pi samples a mask ri ← U(BDDec/2
T ) (Definition 2),

then broadcasts vi = wi + 2T · ri (mod q0).

6. All parties compute v =
∑
i vi (mod q0), then check if ||v||∞ < Bnoise + n · BDDec

and Div
(D,∆)
T (v) = true. If not, abort.

7. All parties retrieve m + f from v by regarding v as a Tweaked Interpolation
Packing (Theorem 1) with δ = ∆,

⌊
d−1

2

⌋
= D, and t = T .

8. Each Pi sets [m]i =

{
(m+ f)− f1 if i = 1

−fi if i 6= 1
.

9. All parties compute, using default value (e.g., 0) for the randomness,

c̄t(1)
m = (Enc(m+ f,0; pk)) � ct

(1)
f ,

where the polynomial m+ f ∈ Z2t [X]/ΦM (X) is the Tweaked Interpolation Pack-
ing (Theorem 1) for the message m + f ∈ Zν2k with δ = ∆,

⌊
d−1

2

⌋
= D, and

t = T .

Fig. 3. Our reshare protocol
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5 Better ZKP for Lattice Encryption on Z[X]/Φp(X)

We present an improved ZKP of Plaintext Knowledge (ZKPoPK) for [BGV14]
ciphertexts over prime cyclotomic rings Z[X]/Φp(X), which proves that a cipher-
text is generated with appropriate sizes of noises and a plaintext. ZKPoPK plays
an important role in SHE-based MPC preprocessing phases [DPSZ12, KPR18,
OSV20] as it restricts adversaries from submitting maliciously generated cipher-
texts.

Note that power-of-two cyclotomic polynomials Φ2m(X) are detrimental for
Z2k -messages.xiv Accordingly, Overdrive2k [OSV20] proposed a ZKPoPK over
prime cyclotomic rings, adapting the High Gear approach of Overdrive [KPR18]
which is over power-of-two cyclotomic rings. Likewise to Overdrive, the challenge
space of Overdrive2k is restricted to a rather small set: {0, 1}.

Taking one step further, we propose a ZKPoPK named TopGear2k for prime
cyclotomic rings, adapting the state-of-the-art ZKPoPK over power-of-two cy-
clotomic rings called TopGear [BCS19]. Our ZKPoPK, similarly as TopGear,
allows a larger challenge space {Xj}j ∪ {0}, resulting in a better efficiency. The
essence is a new observation that the core properties of power-of-two cyclotomic
rings (observed in [BCK+14]) also hold similarly in prime cyclotomic rings. Our
result possibly has ramifications on works derived from [BCK+14], outside of
our specific ZKPoPK.

5.1 A Technical Lemma on Cyclotomic Polynomials of Primes

We present a technical lemma on cyclotomic polynomials of primes, which is the
essence of our ZKPoPK protocol. We first recall some facts on R = Z[X]/ΦM (X)
when M is a power-of-two, which are the main ingredients of the TopGear pro-
tocol [BCS19] and its forebear [BCK+14].

(a) For all a(X) ∈ R and i ∈ Z, it holds that ||a(X) ·Xi||∞ = ||a(X)||∞.
(b) ([BCK+14, Lemma 4]) For all 1 ≤ j < i ≤M , there exists h(X) ∈ R such

that
• (Xi −Xj) · h(X) ≡ 2 (mod ΦM (X))
• and ||h(X)||∞ = 1.

Statement (a) indicates that the coefficients do not grow when multiplied by Xi,
which is straightforward from the fact that multiplication by Xi acts as skewed
coefficient shift in Z[X]/(XM/2 + 1). On the other hand, (b) says, roughly, that
there is a scaled inverse of (Xi −Xj) in R with small coefficients.

We now present an analogue of the above facts when M is a prime.

Lemma 4. For a prime p and R := Z[X]/Φp(X), the followings hold.

(a) For all a(X) ∈ R and i ∈ Z, it holds that ||a(X) ·Xi||∞ ≤ 2||a(X)||∞.
(b) For all 1 ≤ j < i ≤ p, there exists h(X) ∈ R such that

xiv For k > 1, the ring Z2k [X]/Φ2m(X) never split into a product of smaller rings,
resulting low packing density (see e.g. [CL21]).
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• (Xi −Xj) · h(X) ≡ p (mod Φp(X))
• and ||h(X)||∞ ≤ p− 1.

Proof. (a) Let ã(X) ∈ Z[X] be the representative of a(X) with the minimal
degree. When reduced modulo (Xp−1), every monomials of ã(X)·Xi are reduced
to distinct-degree monomials preserving the coefficients. Let us denote the `-

th coefficient of (ã(X) ·Xi mod (Xp − 1)) as ã
(i)
` . Applying modulo Φp(X) to

(ã(X)·Xi mod (Xp−1)), the `-th coefficients of (ã(X)·Xi mod Φp(X)) equals

(ã
(i)
` − ã

(i)
(p−1)), and the inequality ||a ·Xi||∞ ≤ 2||a||∞ follows.

(b) Consider the following polynomial in Z[X].

v(X) :=
Φp(X)− p
X − 1

=

p−1∑
k=0

(p− 1− k) ·Xk

We claim that h̃(X) := −Xp−j · v(Xi−j) ∈ Z[X] satisfies the conditions after
being reduced by Φp(X). By definition, the first condition can be easily checked
with the fact that Φp(X) divides Φp(X

i−j) since p does not divide (i− j).
Since p does not divide (i−j), when reduced modulo (Xp−1), every monomi-

als of h̃(X) are reduced to distinct-degree monomials with coefficients remaining
in the interval [1−p, 0]. Let us denote the `-th coefficient of (h̃(X) (mod (Xp−1)))
as h̃` ∈ [1−p, 0]. Applying modulo Φp(X) to (h̃(X) (mod (Xp−1))), the `-th co-

efficients of (h̃(X) (mod Φp(X))) equals (h̃`−h̃(p−1)). Certainly, (h̃`−h̃(p−1)) lies

in the interval of [1−p, p−1]. Thus, the inequality ||h̃(X) (mod Φp(X))||∞ ≤ p−1
holds. ut

5.2 TopGear2k: Better ZKPoPK over Z[X]/Φp(X)

We describe our ZKPoPK protocol named TopGear2k for BGV ciphertexts with
prime cyclotomic rings Z[X]/Φp(X). In a high level, our ZKPoPK is a batched
Schnorr-like protocol as those of SPDZ-family [DPSZ12, KPR18, OSV20].

ZKPoPK Framewok — Schnorr-like Protocol with Predicates. We first
introduce the ZKPoPK framework of SPDZ-family which proceeds as the stan-
dard batched Schnorr-like protocols [CD09] to prove that the underlying plaintext
satisfies a certain predicate. While our protocol (Fig. 4) follows the global proof
style of Overdrive [KPR18] for efficiency, we describe in per-party proof style of
SPDZ [DPSZ12] for simplicity.

To prove that a plaintext vector a = (ai)
u
i=1, (ai ∈ R := Z[X]/ΦM (X))

of input ciphertexts cta = (Enc(ai))
u
i=1 satisfy a given predicate P : R →

{true, false}xv, the prover publishes a vector of masking ciphertexts cty for a
plaintext vector y ∈ Rv satisfying P. Then, after the verifier queries a challenge
matrix W ∈ Rv×u, the prover publishes a plaintext vector z ∈ Rv with which

xv The predicate, for example, can capture the boundedness of the sizes of plaintext
and randomnesses, or the correctness of packing (Definition 1).



MHz2k: MPC from HE over Z2k 21

the verifier checks if P(z) = true and cty +W · cta = ctz. The prover/verifier do
similar proofs/checks on the randomnesses required in the encryptions.

Then, the usual rewinding argument guarantees that the elements of a also
satisfy P as follows: by inverting the equation on plaintexts (W − W ) · a =
z−z̄ derived from the two accepting transcripts with different challenge matrices
W and W , we deduce that a also satisfies the predicate P given that P(z) =
P(z̄) = true. Note, for this argument to work, two conditions are required: (a)
the difference (W −W ) should satisfy some types of invertibility, so that one can
derive, e.g., a = (W −W )−1 · (z− z̄), (b) the predicate should be homomorphic
under (additions and) multiplications by challenge matrices W (and also by
pseudo-inverses of their differences), i.e. P(a) = true =⇒ P(W · a) = true (and
similarly for the pseudo-inverse).

Here, the difficulty is to identify a nice challenge space, where the elements
of W are sampled from, which meets all of the above conditions. In the previous
works [DPSZ12, KPR18, OSV20], the challenge space is restricted to the set
{0, 1} (and the form of W was also restricted) to satisfy the above conditions. In
this case, however, v (the size of masking ciphertext vector) should be as large
as the soundness security parameter, leading to substantial inefficiency.

TopGear Review. TopGear [BCS19] offers the most efficient ZKPoPK among
the line of works [DPSZ12, KPR18] exploiting (S)HE to MPC over finite fields
with power-of-two cyclotomic rings. It is also a batched Schnorr-like protocol
(described above) with global proof approach. The essence of their work is to use
a larger challenge space Chal = {Xj}2mj=1 ∪ {0} than {0, 1} of the other previous
works. This is an adaptation of the nice properties (Section 5.1) of power-of-two
cyclotomic ring Z[X]/Φ2m(X) from [BCK+14] to the ZKPoPK framework, and
is desirable in communication cost, latency, and memory consumption.

Extending the result of TopGear to other cyclotomic polynomials, however,
was an open problem, e.g., Overdrive2k [OSV20] exploited a rather small chal-
lenge space of {0, 1}, mentioning that “TopGear improvements cannot be applied
directly” to their work.

TopGear2k: Our ZKPoPK over Z[X]/Φp(X). Following the above frame-
work, we propose ZKPoPK named TopGear2k which is a batched Schnorr-like
protocol with global proofs, working over prime cyclotomic rings Z[X]/ΦM (X)
(M = p is a primexvi) with larger challenge space Chal = {Xj}Mj=1 ∪ {0}, adapt-
ing Lemma 4. Our ZKPoPK is a prime cyclotomic ring analogue of the ZKPoPK
of TopGear [BCS19] over power-of-two cyclotomic rings. The full description of
our ZKPoPK protocol TopGear2k (ΠTG2k

PoPK) is given in Fig. 4.

Our TopGear2k aims to prove that the given ciphertexts are generated with
appropriate sizes of a plaintext and randomnesses. If all parties run Sampling

xvi We denote p as the smallest prime factor of M . This is to consider the general case
of M = ps and M = psqt in Section 5.4.
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Protocol ΠTG2k
PoPK

Parameters:

- ZK sec: the zero-knowledge security parameter.
- 2t: the plaintext modulus.
- u: the number of ciphertexts to be verified in one protocol execution.
- v: the number of masking ciphertexts (related to soundness probability).
- n: the number of participating parties Pi (i ∈ [n]).

Samplingi (Sampling phase for the ith party Pi)

1. For each k ∈ [u] do

(a) Choose a plaintext aik ∈ Z2t [X]/ΦM (X) and proper randomness (r
(i)
ak ). xvii

(b) Compute a ciphertext ctiak = Enc(aik, r
i
ak ; pk).

2. Let ctia = (ctia1 , ct
i
a2 , . . . , ct

i
au), ai = (ai1, a

i
2, . . . , a

i
u), and ria = (ria1 , r

i
a2 , . . . , r

i
au).

3. Output (ctia,a
i, ria).

Commit (Commitment phase)

1. To generate v masking ciphertexts, each party Pi do the followings, for each l ∈ [v].

(a) Pi samples yil ← U(2ZK sec · 2t−1) and riyl = (r
i,(`)
yl ← U(2ZK sec · ρ`))`∈[3].

(b) Pi computes ctiyl = Enc(yil , r
i
yl ; pk).

2. Party Pi keeps statei = (yi, riy) where yi = (yil )l∈[v] and riy = (riyl)l∈[v].

3. Party Pi broadcasts commi = ctiy where ctiy = (ctiyl)l∈[v].

Challenge (Challenge phase)

1. Parties together uniformly sample challenge matrix W of size v× u, whose entries
are sampled from the challenge space Chal = {Xj}Mj=1 ∪ {0}.

Response (Response phase)

1. Each party Pi computes zi = yi +W · ai and riz = riy +W · ria.xviii

2. Party Pi sets respi = (zi, riz) and broadcasts respi.

Verify (Verification phase)

1. Each party Pi computes,
(a) ctiz = (Enc(zil , r

i
zl ; pk))l∈[v].

(b) cta =
∑n
i=1 ct

i
a, cty =

∑n
i=1 ct

i
y, ctz =

∑n
i=1 ct

i
z.

(c) z =
∑n
i=1 z

i, rz =
∑n
i=1 r

i
z.

2. Parties accept if all of the followings hold, otherwise they reject.
(a) ctz = cty +W · cta.

(b) For l ∈ [v],

||zl||∞ ≤ n · 2ZK sec · 2t, ||r(`)
zl ||∞ ≤ n · 2

ZK sec+1 · ρ` for ` ∈ [3]. (2)

xvii Sample (r(1), r(2), r(3)) where r(1), r(2) ← DG(σ2) and r(3) ← ZO(ρ) (Section 2.2).
xviii This means that r

i,(`)
z = r

i,(`)
y +W · ri,(`)a for each ` ∈ [3].

Fig. 4. Protocol ΠTG2k
PoPK



MHz2k: MPC from HE over Z2k 23

honestly, then the outputs satisfy the following relation:

RuPoPK :=

{
input

({(
ctiak

)n
i=1

}
k∈[u]

, pk

)
,witness

({(
aik, r

i
k

)n
i=1

}
k∈[u]

)
:

For all k ∈ [u], ctak =

n∑
i=1

ctiak , ak =

n∑
i=1

aik, rk =

n∑
i=1

rik,

ctak = Enc(ak, rk; pk), ‖ak‖∞ ≤ n · 2t−1, ‖r(j)
k ‖∞ ≤ nρj (∀j ∈ [3])

}
,

where ρ1 = ρ2 = 20, and ρ3 = 1 are the bound of noises and randomnesses,
while 2t is the plaintext modulus.

However, our protocol only guarantees that the given ciphertexts {ctk}k∈[u]

satisfies the following relation RS,uPoPK which is relaxed from RuPoPK:

RS,uPoPK :=
{

the same input and witness as RuPoPK :

For all k ∈ [u], ctak , ak, rk are defined the same as RuPoPK,
ctak = Enc(ak, rk; pk),

‖ak‖∞ ≤ nS · 2t−1, ‖r(j)
k ‖∞ ≤ nSρj (∀j ∈ [3])

}
,

(3)

where S is called a soundness slack. This soundness slack S comes from the
rewinding process and appears also in the previous ZKPoPKs [DPSZ12, KPR18,
BCS19, OSV20] for MPC and ZKPs for lattice encryptions [BCK+14]. Mean-
while, it is standard to design the (S)HE-based MPC preprocessing phase so that
it runs correctly even with the soundness slack, e.g., by enlarging the ciphertext
modulus.

5.3 Correctness, Zero-Knowledge, and Soundness

We show that ΠTG2k
PoPK satisfies the correctness, soundness, and zero-knowledge

properties. For correctness, it suffices to show that honest inputs pass the checks
in line 2 of Verify algorithm, which can be done by setting the parameters con-
sidering Lemma 4(a).

Theorem 3 (Correctness). The n-party ZKPoPK protocol ΠTG2k
PoPK (Fig. 4)

with u ≤ 2ZK sec−1 satisfies the following Correctness:

– If all parties Pi, with inputs sampled using Sampling algorithm, follow the
protocol honestly, then Verify algorithm outputs accept with probability one.

Proof. The correctness of the equality check (a) in line 2 of Verify is trivial. For
the bound checks (b), let (W )l ·ai denotes the innerproduct between the l-th row
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of W and the vector ai. Then, by the equality zi = yi+W ·ai and Lemma 4(a),

||zl||∞ = ||
n∑
i=1

zil ||∞ ≤
n∑
i=1

||yil + (W )l · ai||∞

≤ n · (2ZK sec · 2t

2
+ u · 2 · 2t

2
) ≤ n · 2ZK sec · 2t,

where the final inequality follows from our assumption u ≤ 2ZK sec−1. The bound

on r
(`)
zl can be proved similarly. ut

Zero-knowledgeness essentially follows from the fact that the yi’s in protocol
ΠTG2k

PoPK can statistically mask the responses with Lemma 3.

Theorem 4 (Zero-Knowledge). The n-party ZKPoPK protocol ΠTG2k
PoPK (Fig. 4)

satisfies the following Honest-verifier Zero-knowledge:

– There exists a PPT algorithm SI′ indexed by a (honest) set I ′ ⊂ [n], which
takes as input an element in RuPoPK and a challenge W , and outputs tuples
{commi, respi}i∈I′ such that this output is statistically indistinguishable from
a valid execution of the protocol (with statistical distance ≤ 8Muv/2ZK sec).

Proof. Let the simulator SI′ output respi by sampling each component from the
uniform distribution with sufficiently large bound, e.g., sample zi = (zil )l∈[v]

where zil ← U(2ZK sec · 2t−1). Then it outputs commi by computing each com-
ponent from the challenge W and corresponding input ciphertexts, e.g., ctiy =

Enc(zi, riz; pk)−W · ctia.
Note that the statistical distance between the simulated and the real execu-

tion is determined by that between the distribution of respi in both executions
(since each commi is computed in the same way from respi). In the real execu-
tion, zi is computed by sampling yi and adding W · ai. Thus, Lemma 3 (with-
out P) gives that the distance between zi from both executions are bounded by

ϕ(M) ||(W )l·ai||∞
2ZK sec·2t−1 · ≤ 2Mu

2ZK sec , and similar results hold for riz. ut

Finally, the soundness of ΠTG2k
PoPK follows from the usual rewinding argument

leveraging Lemma 4(b) on invertibility.

Theorem 5 (Soundness). Assume that the n-party ZKPoPK protocol ΠTG2k
PoPK

(Fig. 4) is parameterized with v ≥ (Snd sec + 2)/ log(|Chal|) where Snd sec is
the soundness security parameter and |Chal| is the size of the challenge space.
Then, it satisfies the Soundness (see [BCS19, Definition 1] or Appendix B.6)
with soundness probability 2−Snd sec and slack S = 8ϕ(M) · 2ZK sec.

Proof. The proof mostly resembles that of [BCS19, Theorem 1], and we give
detailed description focusing on the unique aspects of our protocol. With a usual
rewinding argument (we refer to [BCS19, Theorem 1] for formal description of an
extractor), an extractor can output (W, {zi, riz}ni=1) and (W, {z̄i, r̄iz}ni=1), which
are two accepting transcripts corresponding to cta and cty such that W and W
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are identical except k-th column. Let z :=
∑n
i=1 z

i and similarly for rz, z̄, r̄z.
Then, since these values satisfy the equation at line 2(a) of Verify algorithm
(Fig. 4) and ciphertexts have homomorphic property, we get z = y + W · a
and z̄ = y +W · a. With subtraction, since W and W are identical except k-th
column, we get,

zl − z̄l = (wl,k − w̄l,k) · ak for some l ∈ [v],

where wl,k and w̄l,k are entries of W and W and are from {Xj}Mj=1. Thus,
multiplying h(X) (of Lemma 4 (b)) according to (wl,k − w̄l,k) on both sides, we
get

||p · ak||∞ = ||h(X) · (z1,l − z̄1,l)||∞ ≤ 2 · ϕ(M) · ||h(X)||∞ · ||z1,l − z̄1,l||∞
≤ 2 · ϕ(M) · (p− 1) · ||z1,l − z̄1,l||∞
≤ 2 · ϕ(M) · (p− 1) · 2

(
n · 2ZK sec · 2t

)
.

The first inequality follows by regarding h(X) as sum of monomials then ap-
plying Lemma 4 (a). The second inequality is obtained by the definition of
h(X) (Lemma 4 (b)). The last inequality follows from Eq. (2) (Fig. 4). Hence,
||ak||∞ ≤ nS · 2t−1 with the desired soundness slack S = 8ϕ(M) · 2ZK sec. Sim-
ilarly, one can derive the bound and slackness on the rak from rz, r̄z in the
transcripts. ut

5.4 Extension to Φps(X) and Φpsqt(X)

In fact, we can extend our ZKPoPK to work over cyclotomic polynomials ΦM (X)
with M = ps or M = psqt where p, q are primes satisfying p < q and s, t are
positive integers. Then, we can increase the packing density of our packing by
taking cyclotomic polynomials of composites into consideration, which allow
parameters with smaller d = ordM (2) (see Section 3.3).

These follow from the results of [CKKL21] which are generalization of Lemma 4
to the cases with M = ps or M = psqt. Then, in both cases of Φps(X) and
Φpsqt(X), the protocol ΠTG2k

PoPK is exactly the same with the prime case. In the
case of ps, the statements and the proofs of Theorem 3, 4, 5 also stay exactly
the same. (We carefully distinguished the role of M and p for this.) In the
case of psqt, the major changes are the followings: the condition on u in The-
orem 3 is u ≤ 2ZK sec−1/p, the statistical distance in Theorem 4 is bounded by
8pMuv/2ZK sec, and the soundness slack in Theorem 5 is S = 8p2M · 2ZK sec.
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6 Zero-Knowledge Proof of Message Knowledge

In SHE with messages from a finite field ZP , the plaintext space ZP [X]/Φ2m(X)

can be taken to be isomorphic to Zϕ(2m)
P , a product of message spaces. When

we deal with messages from Z2k , however, the plaintext space Z2t [X]/ΦM (X)
is never isomorphic to a product of Z2k ’s. It is inevitable that some plaintexts
do not correspond to any packing of messages (see [CL21]). Thus, we must
guarantee, in MPC preprocessings for Z2k -messages, that each party encrypted
a valid plaintext according to a specific packing method, in addition to the
guarantee of valid encryption. This is an intricacy of the Z2k -case that differs
from the ZP -case where ZKPoPK (for the guarantee of valid encryption) is
sufficient [DPSZ12, KPR18, BCS19].

Therefore, we propose, in addition to ZKPoPK, a Zero-Knowledge Proof of
Message Knowledge (ZKPoMK) which guarantees that the given ciphertext is
generated with a plaintext which is a valid encoding with respect to our tweaked
interpolation packing (Section 3).xix

6.1 ZKPoMK for Tweaked Interpolation Packing

As our ZKPoPK, our ZKPoMK is a batched Schnorr-like protocol with pred-
icates, and it proceeds similarly but with appropriate challenge spaces for the
predicates which capture the valid plaintexts of our packing method. Since most
parts of our ZKPoMK are similar to the ZKPoPK, here we only give an overview
and refer to Appendix B.5 (Fig. 12,13, ΠPoMK) for the full description.

Overview of Our ZKPoMK. Recall the predicates (Definition 1) presented
in Section 3.4 and that a ∈ R is a valid plaintext, i.e. a tweaked interpolation
packing of Theorem 1, if and only if, for D =

⌊
d−1

2

⌋
, ∆ = δ, and T = t,

Pack
(D,∆)
T (a) ⇐⇒ Deg

(D)
T (a) ∧ Div

(D,∆)
T (a).

Our ZKPoMK separately proves those two statements (i) Deg
(D)
T (a) = true and

(ii) Div
(D,∆)
T (a) = true as follows.

For the statement (i), we run the same as our ΠTG2k
PoPK (Fig. 4) but with two

modifications: (1) set the predicate P = Pack
(D,∆)
T then sample the masks yil

from UP(2ZK sec · 2t−1) using Corollary 2 and check if P(zl) = true, instead of the
bound check on it; (2) set the challenge space Chal = [−2E + 1, 2E ] ∩ Z for a
positive integer E. Note that these constants from the challenge space preserve
the degree of given element a when multiplied, giving the key equation for the
rewinding argument (and the soundness), while enlarging the challenge space.
We remark that this approach introduces a new type of slackness which will be
described later in this section.

xix Overdrive2k [OSV20] performs ZKPoMK implicitly in their ZKPoPK. If we set
Chal = {0, 1} as their ZKPoPK, our ZKPoMK can also be integrated into ZKPoPK
(by additionally checking if z is a valid encoding), resulting in our MHz2k-Plain
protocol.
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For the statement (ii), a prover provides a′ such that DivCheck
(D,∆)
T (a, a′) =

true (see Definition 1), or very roughly, a′ = a/2∆. For zero-knowledgeness,
a′ must be provided as a ciphertext ĉta′ with the proof that ĉta′ is generated
correctly as well. Then, the parties (simultaneously) execute Schnorr-like pro-
tocol on cta′ with the same challenge matrix W from the above proof on cta
for the statement (i) and the masks y′il such that DivCheck

(D,∆)
T (yil , y

′i
l ) = true.

Then verifiers check if DivCheck
(D,∆)
T (z, z′) = true from which one can derive

DivCheck
(D,∆)
T (a, a′) = true with a rewinding argument (see Appendix B.5).

A caveat here is that we cannot use tweaked interpolation packing for ĉta′ : a
factor of 2T will also arise in the tweaked interpolation packing for ĉta′ ; and we
again need ZKPoMK on ĉta′ to check that it is encoded correctly.

The key observation for our solution is that ĉta′ (in contrasts to cta) does not
need to satisfy multiplicative homomorphism (on message space) since it is only
used in ZKPoMK for cta, which requires linear homomorphism only. Therefore,
we exploit coefficient packing (i.e., each message is encoded as each coefficient
of a′) for ĉta′ ,

xx which makes ZKPoPK ΠTG2k
PoPK (without any ZKPoMK) suffices

to guarantee that ĉta′ is correctly encoded. As a bonus, we can use consider-
ably smaller parameters for ĉta′ , providing almost perfect packing density and
resulting better efficiency.

A New Type of Slackness. We now describe the new type of slackness arises
from our ZKPoMK ΠPoMK. If all parties run Sampling honestly, then the outputs
satisfy the following relation:

Ru,PackPoMK :=
{

the same input and witness as RuPoPK :

For all k ∈ [u], Pack
(D,∆)
T (ak) = true

}
Note that, however, a verifier cannot be guaranteed that Deg

(D)
T (ak) = true

with our ZKPoMK (for the statement (i) in above). This is because, in the

rewinding argument, Deg
(D)
T ((wl,k − w̄l,k) · ak) = true can occur even with

Deg
(D)
T (ak) = false, since there is a possibility of some non-zero coefficients of

ak becoming zero when multiplied by (wl,k− w̄l,k). However, since the difference
wl,k − w̄l,k of elements from the challenge space Chal = [−2E + 1, 2E ] ∩ Z is at
most divisible by 2E , our ZKPoMK protocol can only guarantee that the given
ciphertexts {ctk}k∈[u] satisfies the following relation Ru,Pack sl

PoMK which is relaxed

from Ru,PackPoMK :

Ru,Pack sl
PoMK := {the same input and witness as RuPoPK :

For all k ∈ [u], Pack slT (ak) = true},

where the predicate Pack sl : R → {true, false} is defined as follows (see Sec-
tion 3.4 for comparison with the original predicates). For a ∈ R, let (ãi)

r
i=1

xx This is why we denoted it as ĉta′ (not cta′) and DivCheck is defined in such a way.
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denote the CRT projections (Eq. (1)) of ã = a (mod 2T ).

• Pack sl
(D,∆,E)
T (a) = true ⇐⇒ Deg sl

(D,E)
T (a) = true ∧ Div

(D,∆)
T (a) = true.

• Deg sl
(D,E)
T (a) = true ⇐⇒ All CRT projections ãi of a satisfy that

coefficients at deg > D are divisible by 2T−E .

While the soundness slack S of ZKPoPK appeared also in the previous liter-
ature, above slackness represented by the predicate Pack sl is a unique feature
of our ZKPoMK protocol.

6.2 Managing the Slackness in MPC Preprocessing

In this subsection, we clarify that the new type of slackness which arises in our
ZKPoMK (ΠPoMK, Appendix B.5) can be managed, i.e., that the guarantee of
ZKPoMK is sufficient for the MPC preprocessing phase (Section 2.5).

The idea is to reserve an extra space in the plaintext modulus for the slackness
E: for Z2k -messages, we apply the tweaked interpolation packing (Theorem 1)
with t = E + k + 2δ instead of t = k + 2δ (Theorem 2)xxi.

Let cta be a ciphertext encrypting a(X), which passed the verification of our
ZKPoMK parameterized by D =

⌊
d−1

2

⌋
, ∆ = δ, T = t, and E. For simplic-

ity, we assume that the plaintext space Z2T [X]/ΦM (X) does not split. Since

Pack sl
(D,∆,E)
T (a) = true and T − E = k + 2δ, we can regard a(X) (mod 2T−E)

as a tweaked interpolation packing of Z2k -messages in Z2k+2δ [X]/ΦM (X) as be-
fore. We have to make sure that, in the Reshare protocol ΠReshare(Section 4.2),
ctab := cta � ctb is a valid ciphertext that can be securely decrypted via dis-
tributed decryption. Due to the slackness, it is only guaranteed that a(X) =
ã(X) + 2T−E · sa(X) where deg(ã) ≤ D, and similarly for b(X). Note, how-
ever, that the terms sa(X) and sb(X) arising from the slackness do not af-
fect the messages, since they are multiplied by 2T−E . Therefore, it holds that
ab(j) = a(j) · b(j) (mod 2T−E) ∀j ∈ [0;D], and the most significant 2E bits
(which contains unnecessary information) can be masked. One can also see that
similar argument holds for ctαa := ctα � cta.

xxi Our ZKPoMK does not produce the slackness when E = 0. Nevertheless, an appro-
priate E > 0 enlarges the challenge space in a cost of only a slight reduction in the
packing density.
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7 Performance Analysis

In this section, we analyze the performance of our MHz2k with comparison
to other works in the literature. We can summarize the improvements by our
packing (Section 3) and reshare protocol (Section 4) as follows: (i) Our tweaked
interpolation packing achieves near 1/2 packing density, 2.5x compared to 1/5
of Overdrive2k [OSV20], (ii) Our reshare protocol requires only 5 ZKPoPKs
which is 1.4x less than 7 ZKPoPKs of Overdrive2k. In total, we can expect that
the amortized communication costs of MHz2k-Plain (without the Topgear2k
optimization) will show 3.5x improvements from Overdrive2k.

On the other hand, how our ZKPoPK and ZKPoMK (Section 5,6) affect the
performance in MHz2k is a bit more involved. In the following subsection we
provide a brief cost analysis on our ZKPs.

7.1 Cost Analysis on ZKPoPK and ZKPoMK

The communication cost of ZKPoPK and ZKPoMK per party can be estimated
by the size of ciphertexts arise in protocols, which dominates the others. Ex-
cluding the u input ciphertexts ctia, using our ZKPoPK and ZKPoMK, there

arise additional u ciphertexts ĉt
i

a′ , 2v masking ciphertexts ctiy, and 2v masking

ciphertexts ĉt
i

y′ . Assuming that u = 2v (as in Topgear [BCS19]) and that the

size of ĉt is a half of that of ct, we can conclude that the total cost is roughly
2u · |ct| in ZKPoPK and ZKPoMK on u input ciphertexts ctia.

On the other hand, following the approach of Overdrive2k [OSV20], MHz2k
can also be initiated with the challenge space of {0, 1} without TopGear2k opti-
mization, which we call MHz2k-Plain. In this case, while the challenge space is
restricted to {0, 1}, it requires only one Schnorr-like protocol (contrary to four
in our case) but with v = 2u − 1. Hence, the size of masking ciphertexts ctiy
will be roughly 2u · |ct|, and in amortized sense, the communication cost does
not differ seriously between the case with TopGear2k and without it. The main
advantage of our TopGear2k with ZKPoMK (similarly as TopGear [BCS19] to
[DPSZ12, KPR18, OSV20]) is that u can be chosen much smaller than that
of ZKPoPK of [DPSZ12, KPR18, OSV20] where u is forced to be as large as
statistical security parameter at least. This contributes to the substantial reduc-
tion of latency and memory requirement (Table 2). Moreover, since there is a
trade-off between amortized communication cost versus latency and memory re-
quirement along the choice of u, we can shift the improvements to the amortized
communication cost.

7.2 Comparison

For comparison, we present the communication costs of our schemes and previous
works. Though we restrict our discussion to secure two-party computation (2PC),
similar efficiency improvements occur in any multi-party case. We refer to Table 3
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Table 1. Amortized communication (in kbit) of producing triples (2PC)

(k, s) SPDZ2k MonZ2ka Overdrive2k
MHz2k
Plain

MHz2k
TG2k

(u = 2v)

MHz2k
TG2k

(u = 4v)

(32,32) 79.9 59.1 101.8 ( 72.8) 27.2 26.4 20.1
(64,64) 319.5 175.5 171.4 (153.3) 46.2 43.3 31.9
(128,64) 557.1 176.6 190.4 (212.2) 56.6 55.0 40.9

Table 2. Memory usage (in MB) of producing triples (2PC)

(k, s) Overdrive2k MHz2k-Plain
MHz2k-TG2k

(u = 2v)
MHz2k-TG2k

(u = 4v)

(32,32) 272 503 44 74
(64,64) 1273 1392 137 229
(128,64) 2555 2237 241 402

in Appendix A for the detailed description on the parameters for our schemes
and others.

In Table 1, we compare the previous works [CDE+18, CDRFG20, OSV20] and
ours with respect to (amortized) communication costs for triple generation. For
lattice-based HE approaches (Overdrive2k, MHz2k-Plain, and MHz2k-TG2k),
the results are computed from the parameters given in Table 3 (Appendix A).
For reader’s convenience, we also present communication costs of Overdrive2k
which are listed in the paper [OSV20] in parentheses.xxii Note that MonZ2ka
only provides secure two-party computation, whereas other protocols can be
used for general multi-party computation. MHz2k-Plain shows substantial im-
provements in communication costs from previous works. In particular, we can
check that MHz2k-Plain shows roughly 3.5x improvement from Overdrive2k as
we predicted in Section 7.1. As mentioned, applying TopGear2k technique to
MHz2k-Plain does not significantly effect the communication costs, if we choose
parameters as u = 2v. However, increasing the ratio between u and v, we can fur-
ther reduce the communication costs utilizing more memory (still, less memory
than Overdrive2k).

In Table 2, we compare the memory consumption of SHE-based approaches,
which are computed as (u+v)·2ϕ(M) log q with parameters in Table 3. Applying
TopGear2k optimization, we can significantly reduce the memory consumption.
With Table 1, we can also check the trade-off between the amortized communi-
cation costs and the memory utilization along the choice of u.

xxii Due to the lack of information, it was hard to reproduce the communication costs
of Overdrive2k. In particular, their parameters does not seem to achieve 128 bits
security if we consider key-switching modulus which is not noted.
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Table 3. Parameter sets for 2PC

Protocol M log q log q0 t k s sec κ u v E

Overdrive2k 23311 290 190 64

32 32 26

.177 54 107 -
MHz2k-Plain 42799 320 220 80 .419 55 109 -
MHz2k-TG2k 42799 330 220 80 .419

8 4 7
(u = 2v) 20161 200 200 64 .999

MHz2k-TG2k 42799 330 220 80 .419
16 4 7

(u = 4v) 20161 210 210 64 .999

Overdrive2k 38737 500 350 128

64 64 57

.180 88 175 -
MHz2k-Plain 42799 530 380 144 .466 88 175 -
MHz2k-TG2k 42799 520 380 144 .466

16 8 7
(u = 2v) 20161 330 330 128 .999

MHz2k-TG2k 42799 530 380 144 .466
32 8 7

(u = 4v) 20161 330 330 128 .999

Overdrive2k 61681 630 480 196

128 64 57

.200 88 175 -
MHz2k-Plain 60787 660 510 208 .462 88 175 -
MHz2k-TG2k 60787 650 510 208 .462

16 8 7
(u = 2v) 27281 400 400 192 .999

MHz2k-TG2k 60787 660 510 208 .462
32 8 7

(u = 4v) 27281 400 400 192 .999

A Parameters

In Table 3, concrete parameter sets for our two schemes MHz2k-Plain and
MHz2k-TG2k are presented. For MHz2k-TG2k, two parameter sets are presented
with different ratio between u and v. For each parameter set of MHz2k-TG2k,
two sets of SHE parameters are given, and the below one is for ĉta′ . In the column
κ, packing densities are provided.

For parameter choice, we basically follow the analysis of [GHS12b] and [DKL+13].
We chose the ciphertext modulus q to be a product of moduli q0 and q1. We use
key-switching modulus Q, which is the largest modulus used in our SHE scheme,
as Q = q · q0. We chose parameters with more than 128-bit computational secu-
rity according to LWE Estimator [APS15]. The parameter M ’s are chosen from
integers with two or less prime factors with d < 40 to optimize packing densities
(Section 5.4). We can also choose smaller M ’s, if we slightly sacrifice packing
densities. The column sec is the statistical security of MAC protocols we are
using in our online phase (from SPDZ2k [CDE+18, Theorem 1]). We carefully
chose parameters so that all parts of protocols satisfy sec-bit statistical security.

For a fair comparison, in Table 3, we also present parameter sets of Over-
drive2k which are computed by our analysis.xxiii For Overdrive2k, the parameter
M ’s are selected as the smallest prime providing 128-bit computational security
among recommended parameters listed in the paper [OSV20].

xxiii Due to the lack of information, it was hard to reproduce the communication costs
of Overdrive2k. In particular, their parameters does not seem to achieve 128 bits
security if we consider key-switching modulus which is not noted.
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B Formal Descriptions

In this section, we give deferred more formal descriptions of MHz2k preprocessing
phase. While the functionality of our preprocessing phase (ΠwPrep in Fig. 8) is the
same as that of previous works, the protocol itself and constituting functionalities
are slightly different due to the particularity of our packing method. We present
our preprocessing phase focusing on these differences.

B.1 Security Model and Notations

We prove that our protocols are secure in the universal composable (UC) frame-
work [Can01]. Specifically, we consider static (i.e., corruption takes place before
the protocol starts) malicious adversaries corrupting upto n − 1 parties among
n participants (P1, P2, . . . , Pn). We say that a protocol Π implements a func-
tionality F with computational (resp. statistical) security parameter λ (resp.
sec) if the advantage of any environment Z in distinguishing the ideal and real
executions is O(2−λ) (resp. O(2−sec)).

As other line of works, we rely on the registered public-key model. In par-
ticular, we assume that there is a functionality FKeyGen (Appendix B.2) that
generates and distributes secret key shares for given encryption scheme. We also
assume a coin-tossing functionality FRand (Appendix B.2) which outputs, to all
parties, a common uniform random element.

For consistency, we use boldface to denote vectors, e.g. m ∈ Zν2k , and regu-
lar typeface to denote polynomials, e.g. m ∈ Z2T [X]/ΦM (X). We remark that
the functionalities (FKeyGenDec, FPrep) will be described according to vectors of
messages, while the protocols will be more relevant with polynomials. The sim-
ulators will manage these discrepancies based on the properties of our packing
method.

B.2 Basic Functionalities - FRand, FKeyGen

As other line of works in MPC [DPSZ12, KPR18, OSV20], we assume that the
following basic functionalities FKeyGen and FRand can be efficiently implemented.

– The functionality FRand:
On input (Rand,D) from all parties, randomly sample r ← D, then output
r to all parties.

– The functionality FKeyGen:

1. On receiving (Init) form all honest parties, run (pk, sk)← BGV.KeyGen(ppλ).
Send pk to the adversary A.

2. Receive shares {[sk]i}i∈A from A.
3. Construct other shares {[sk]i}i/∈A for the honest parties such that sk =∑

i∈[n] ski, where n is the number of all participating parties.

4. Send pk to all parties, and [sk]i to each party Pi.
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Protocol ΠDistrDec

Parameters:

- BDDec: a bound on the coefficients of the mask values.
- Bnoise: a bound on the noise of input ciphertext.
- n: the number of participating parties Pi.

Init: Each party Pi calls FKeyGen (Appendix B.2) receiving (pk, [sk]i).

D1: On input parameter pp = (D,∆, T ) and a ciphertext ct
(0)
m = (c0, c1) satisfying

that Div
(D,∆)
T (Dec(ct

(0)
m , sk)) = true, parties do as follows.

1. Each Pi computes wi =

{
c0 − [sk]1 · c1 if i = 1

−[sk]i · c1 if i 6= 1
.

2. Set P← Div
(D,∆)
T . Each Pi samples a mask ri ← UP(BDDec) (Definition 2),

then broadcasts vi = wi + ri (mod q0).

3. For v =
∑
i vi (mod q0), parties check if ||v||∞ < Bnoise +n ·BDDec and P(v) = true.

If not, abort.

4. Each Pi computes ui =

{
(
∑
i vi (mod q0))− r1 (mod 2T ) if i = 1

−ri (mod 2T ) if i 6= 1
.

5. Each Pi retrieves [m]i from ui by regarding ui as a Tweaked Interpolation Packing
without the condition (i) (Theorem 1), with δ = ∆,

⌊
d−1

2

⌋
= D, and t = T .

Fig. 5. Protocol for distributed decryption

B.3 Distributed Decryption Protocol

We first describe a distributed decryption protocol ΠDistrDec in Fig. 5. Given that
each party is distributed with a share ski of the secret key sk for a ciphertext
having a message m ∈ Zν2k encoded with our packing method, the protocol
distributes each share [m]i of the underlying message to each party.

Similarly as other usual distributed decryption protocols in the literature
(e.g., [DPSZ12, OSV20]), each party adds a mask ri to their partial decryption
wi to prevent leakage of information. The crucial difference is that each mask

ri is sampled from the distribution UP(BDDec) with P = Div
(D,∆)
T (Definition 2).

Not only the mask statistically prevents the information leakage (by Lemma 3),

since Div
(D,T )
T (ri) = true, it also preserves the packing structurexxiv so that each

party can retrieve the share of message.

Theorem 6 (Distributed Decryption). On a cyclotomic ring Z[X]/ΦM (X),
the protocol ΠDistrDec in Fig. 5 implements the functionality FKeyGenDec in Fig. 6
against any static, active adversary corrupting up to n−1 parties in the FKeyGen-
hybrid model with statistical security ϕ(M)·2−sec if BDDec > 2sec+1 ·max((Bnoise+
2T ), n · 2T ), and Bnoise + n · BDDec < q0/2.

xxiv If ri is sampled from a random polynomial without any restriction, Div
(D,∆)
T (ui) =

false (with high probability) and ui can not be seen as a tweaked interpolation
packing.
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Functionality FKeyGenDec

Parameters:

- A : the set of corrupted parties.
- BDDec, Bnoise, n: the same as those of ΠDistrDec (Fig. 5).

Init: Run (pk, sk)← BGV.KeyGen(ppλ) then store sk.

1. Receive shares {ski}i∈A of the secret key from the adversary.

2. Randomly sample shares {skj}j /∈A of the secret key for the honest parties such
that sk =

∑
i∈[n] ski.

3. Send pk to all parties and skj to each honest party Pj .

D1: On receiving input (same as those of ΠDistrDec.D1 (Fig. 5)) from all parties,
performs the following steps.

1. Execute Dec(ct
(0)
m , sk) then retrieve m regarding it as a tweaked interpolation pack-

ing (possible since Div
(D,∆)
T (Dec(ct

(0)
m , sk)) = true).

2. Wait for the adversary to input either abort or η. If abort, then forward abort to
the honest parties and halt.

3. Otherwise, uniformly sample the honest shares [m]i, i /∈ A such that
∑
i/∈A[m]i =

m+ η. Send each share to corresponding Pi, i /∈ A.

Fig. 6. Functionality for distributed decryption

Proof. The proof resembles those of [DPSZ12, Theorem 3] and takes into account
the specificity of our packing method.

Correctness. In command D1 of ΠDistrDec, if all parties are honest, each

Pi can retrieve [m]i since Div
(D,∆)
T (ri) = true. Note that the decryption can be

done correctly since
∑
i ||vi||∞ ≤ (Bnoise + n · BDDec) ≤ q0/2 where Bnoise is the

noise bound of the input ctm.

Security. Under the UC framework, we need to show the indistinguishability
between the ideal execution and real execution to an environment Z, which can
be proved similarly as in [DPSZ12]. In ideal execution, the corrupted parties
interact with, instead of honest parties, the simulator SDistrDec (Fig. 7) having
access to the functionality FKeyGenDec (Fig. 6).

The essence is that the mask ri ← UP(BDDec) with P = Div
(D,∆)
T in the com-

mand D1 statistically hides the output of each party by Lemma 3 (Section 3.5).
More precisely, it suffices to prove the following:

– The output {ṽi}i/∈A from SDistrDec to the corrupted parties A and the output
for honest parties from functionality FKeyGenDec, are indistinguishable from
those outputs from the honest parties to A in the real execution.

To this end, we introduce following hybrid machine then show that its output
is statistically indistinguishable from the output of honest parties (in the real
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Simulator SDistrDec

Init: From corrupted parties A obtain {ski}i∈A. Then, passing these to the functional-
ity FKeyGenDec, obtain pk. Set random {ski}i/∈A such that

∑
i∈[n] ski = 0, a zero vector.

Send pk to A.

D1: On input pp = (D,∆, T ) and ct
(0)
m ,

1. Compute all w̃i and ṽi values the same as the protocol ΠDistrDec.D1 (Fig. 5), but
with ski’s at Init, except for one j /∈ A.

2. For above j, set ṽj = −
∑
i 6=j w̃i + r̃j (mod q0) where r̃j ← UP(BDDec) with P =

Div
(D,∆)
T .

3. Send {ṽi}i/∈A to A and receive {v∗i }i∈A from A.

4. On
∑
i∈A v

∗
i +

∑
i/∈A ṽi, if the check (3. in ΠDistrDec.D1) does not pass, send abort

to the functionality.

5. Otherwise, if P1 is honest: retrieve η from
∑
i∈A(v∗i −w̃i) regarding it as a tweaked

interpolation packing.
If P1 is corrupt, retrieve η from

∑
i/∈A(−r̃i) regarding it as a tweaked interpolation

packing.

6. Send η to the functionality.

Fig. 7. Simulator for FKeyGenDec

protocol) and from outputs of SDistrDec and FKeyGenDec (in the ideal execution).

Hybrid: outputs {ṽi}i/∈A as SDistrDec then outputs {[̃m]i}i/∈A as ΠDistrDec with

r̃i’s of SDistrDec, except that for the j chosen in SDistrDec, outputs [m] + [̃m]j .

(Instead of {[̃m]i}i/∈A, output abort if the check 3. does not pass.)

For indistinguishability from real execution, note that SDistrDec computes each
ṽi exactly the same as honest parties from the real execution, except for the
party Pj . Let ṽj and vj be the output of simulator and Pj (from real execution),
respectively. Then,

ṽj = −
∑
i 6=j

w̃i + r̃j ,

vj = wj + rj = c0 − sk · c1 −
∑
i 6=j

wi + rj ,

and since the size of decryption c0 − sk · c1 is bounded by Bnoise + 2T , Lemma 3
(Section 3.5) implies that the statistical distance between vj and ṽj is less than
φ(M) · 2−sec−1 (the distribution of wi and w̃i is identical for i 6= j). We also

mention that the distribution of output [̃m]i’s (and [m] + [̃m]j) is identical
to that of [m]i’s from real execution: it is obvious for i 6= j while for i = j,
both outputs are added by [m] after being retrieved from −ṽj −

∑
i 6=j w̃i and

−vj −
∑
i 6=j wi, respectively.
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For indistinguishability from ideal execution, we first assume that P1 is honest
and that j = 1 in SDistrDec without loss of generality. The only difference between

hybrid machine and ideal execution is that the output {[̃m]i}i/∈A is sampled
randomly subject to the condition

∑
i/∈A[m]i = m + η in the latter one. We

can see that both output distribution is statistically indistinguishable as follows.
For i 6= 1, rewrite SDistrDec’s output with ṽi = w̃′i + r̃′i where w̃′i = w̃i + r̃i − r̃′i
and r̃′i is sampled from the same distribution as r̃i and one can retrieve [̃m]i
from −r̃′i. Then, for i = 1, SDistrDec’s output ṽ1 = −

∑
i 6=1,i/∈A w̃

′
i −

∑
i∈A w̃i +∑

i6=1,i/∈A(r̃i − r̃′i) + r̃1 is statistically close to that of hybrid machine with the

distance bounded by φ(M) · 2−sec−1 since ||
∑
i 6=1,i/∈A(r̃i − r̃′i)||∞ is bounded by

n · 2T (again from Lemma 3 with r̃1 ← UP(BDDec)). Finally, let [̃m]1 and [m]1
be the output of P1 in the ideal execution and hybrid machine, respectively, and
ṽi and v∗i respectively are generated from the SDistrDec and corrupted Pi’s. Then,

[̃m]1 = m+ η −
∑

i 6=1,i/∈A

[̃m]i where η is retrieved from
∑
i∈A

(v∗i − w̃i),

[m]1 is retrieved from
∑
i/∈A

ṽi +
∑
i∈A

v∗i − r̃1.

Substituting
∑
i∈A v

∗
i by

∑
i∈A w̃i +

∑
i∈A(v∗i − w̃i) in the second equation,

and recalling that
∑
i/∈A ṽi +

∑
i∈A w̃i =

∑
i/∈A ri + Dec(ct

(0)
m , sk), we can see

that [̃m]1 and [m]1 is indisginguishable (note that both [m]i and −ri are sam-
pled uniformly for i 6= 1). Here, with overwhelming probability, the check (3.
in ΠDistrDec.D1) on

∑
i∈A v

∗
i +

∑
i/∈A ṽi by the simulator (and hybrid machine)

passes if and only if the check passes on v =
∑
i∈A v

∗
i +
∑
i/∈A vi in the real execu-

tion. If the former check passes, the simulator can retrieve η from
∑
i∈A(v∗i −w̃i)

which satisfies P(·) = true, since the difference
∑
i/∈A ṽi+

∑
i∈A w̃i (from the for-

mer one) passes the check with overwhelming probability.
The case with corrupted P1 can be proved similarly as above with the same

hybrid machine, and the claim follows.
ut
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B.4 Preprocessing Protocol

Now we construct our preprocessing phase using the functionality FKeyGenDec

(Fig. 6) from the previous section and the protocol ΠReshare (Fig. 3, Section 4).
Our preprocessing protocol ΠwPrep (Fig. 8) implements the same (weak) prepro-
cessing functionality FwPrep given in [OSV20] and resembles the corresponding
protocol of [OSV20] in high level. A slight but noteworthy difference is that we
use a constant encoding for the ciphertext ctα for a global mac key α (Section 4).
Though our ΠwPrep describes triple generation only, we can also implement In-
put, Square, and Bit commands as those of [OSV20]. The whole preprocessing
phase can be obtained by combining this FwPrep with the standard sacrifice step
(See e.g. [OSV20]).

For the proof, we follow the high level idea of one given in [DPSZ12].

Theorem 7 (Preprocessing). On a cyclotomic ring Z[X]/ΦM (X), the proto-
col ΠwPrep in Fig. 8 implements the functionality FwPrep [OSV20] with computa-
tional security against any static, active adversary corrupting up to n−1 parties
in the (FKeyGen, FRand)-hybrid model.

Proof. Simiarly to [DPSZ12], we will construct an algorithm B that can distin-
guish a valid public key pk and a meanigless one pk∗ with non-negligible ad-
vantage ε/2 using an environment that can distinguish real and ideal execution
with non-negligible advantage ε. Then, given that pk and pk∗ is computation-
ally indistinguishable, there is no coputationally bounded environment that can
distinguish those two executions.

The algorithm B works as follows, given a valid pk or a meaningless pk∗ from a
challenger. It first randomly decides to simulate idea or real execution. For ideal
execution, it imitates the simulator SwPrep (Fig. 11) and works almost the same as
it except the following differences: (i) It uses pk or pk∗ given from the challenger
and does not have access to the sk. Therefore, when decryption is required, it
extracts the underlying message using the extractor of ZKPoPK (and ZKPoMK)
and rewinding the environment (who controlls the adversary). Note that every
ciphertext that requires decryption for SwPrep is performed by ZKPoPK (and
ZKPoMK) and B can imitate SwPrep with this strategy. (ii) When generating
proofs for ZKPoPK (and ZKPoMK), B uses the ZK simulator instead of gen-
erating it with its underlying messages of ciphertexts it has generated.xxv (iii)
When emulating FKeyGenDec.D1, algorithm B uses extracted messages and skj ’s it
has generated at the SDistrDec.Init phase, which is sufficient (see SDistrDec(Fig. 7)
and FKeyGenDec(Fig. 6)).

For real execution, B also works the same as abvoe B, except that it outputs
the final shares based on what it has chosen to generate the simulated output
(instead of the one from functionality FwPrep).

Now, we can see that when a valid pk is given to B, its output is statistically
indistinguishable to that of the ideal or real execution, respectively, according to

xxv This is required to show the indistinguishability of B’s output in ideal and real
executions when the given pk∗ is a meaningless one.
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the decision B had made: the statisticall Zero-Knowledgeness and the soundness
of our ZKPoPK (and ZKPoMK) make the differences between B and SwPrep
statistically indistinguishable; similar reasoning (and Theorem 6) gives that the
difference between B and real execution (ΠPrep) is statistically indistinguishable
also.

On the other hand, if meaningless pk∗ is given to B, its outputs for ideal and
real execution is statistically indistinguishable. It follows from the factxxvi that
ciphertexts encrypted with a meaningless key are statistically indistinguishable
from encryptions of zero. Note that the only difference between B for real and
ideal execution is that B reuses the internal input (e.g., [α]i, [m]i, [a]i, ...) to
output the final share in the former case. Still, since other outputs of B such as
zk proofs and ciphertexts (which may leak some information on those internal
input) do not leak any information to the adversary (the proofs are simulated and
ciphertexts are statistically indistinguishable from those of zero), both executions
are statistically indistinguishable.

Now if there is an environment that can distinguish real and ideal execution,
B can distinguish the valid pk and meaningless pk∗ as follows: with given public
key, B randomly decides to output real or ideal execution to the environment
then see the decision of the environement. If the environment gives a correct
guess with non-negligible advantage, the given public key is pk. If it is not, the
given public keye is pk∗.

We finally remark that our ZKPoPK and ZKPoMK ensures that the adver-
saries can only modify its messages (possibly, a polynomials in general) of the
ciphertexts in a way that the simulator SwPrep can extract the appropriate vec-
tors (e.g., δm, δγ) from it. The point is that, the other part of the underlying
messages of adversaries’ input ciphertexts — that is not captured by SwPrep’s
extracted vectors — can not affect the final output (vectors of shares) of honest
parties, e.g., see Section 6.2. ut

xxvi We need to assume that our encryption scheme satisfies this propoerty as [DPSZ12]
does.
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Protocol ΠwPrep

Parameters:

– A cyclotomic ring Z[X]/ΦM (X).
– n: the number of participating parties Pi.
– ρ = r × (d̄ + 1): the number of authenticated triples we produce for each

call of the following commands. Here, r and d̄ are from the CRT isomorphism
Z2t [X]/ΦM (X) ∼=

∏r
i=1 Z2t [X]/(Fi(X)) with d̄ = b d−1

2
c where d = degFi(X)

(Section 2.3).
– Set t = k+δ+δ, where k = k̃+s and k̃ = 32, 64, or 128 (the bit-size of messages),
s is the statistical security parameter of MAC (in the online-phase), and δ ≥ ν2(d̄ !)
(the condition for tweaked interpolation packing, Theorem 1).

– We work over the plaintext modulus Z2t to get input masks and triples over Z2k .

Init: distributes shares of secret key and MAC key.

1. Parites call FKeyGenDec.Init to obtain pk and ski for each Pi.

2. Each Pi samples a random [α]i ← Z2k then generates and broadcasts a level-one

ciphertext ct
(1)

[α]i
having the constant [α]i as a message polynomial.

3. All parties compute ct
(1)
α =

∑
i∈[n] ct

(1)

[α]i
, then perform ZKPoPK and ZKPoMK

(Section 6 or Fig. 12) on it with parameter pp = (D = 0,∆ = 0, T = t).

Input, PI : produces ρ random masks for inputs from PI .

1. PI samples a random m ∈ Z2k , generates shares {[m]i}i∈[n] of m, then sends each
to designated party Pi. Hence each Pi obtains [m]i (and PI obatins m addition-
ally).

2. Each Pi generates and broadcasts ct
(1)

[m]i
by encoding [m]i as a tweaked interpola-

tion packing with D = d̄, ∆ = δ, T = t (Section 3.4, Remark 3).

3. All parties compute ct
(1)
m =

∑
i∈[n] ct

(1)

[m]i
, then performs ZKPoPK and ZKPoMK

on it with parameter (D = d̄, ∆ = δ, T = t).

4. Parties run ΠAuth (Fig. 9) on input ct
(1)
m with pp = (d̄, δ, t) to obtain [γm]i.

Triple: produces ρ authenticated triples.

1. Each Pi samples a random [a]i ∈ Zρ
2k

, generates and broadcasts ct
(1)

[a]i
by encoding

[a]i as a tweaked interpolation packing with D = d̄, ∆ = δ, T = t (Section 3.4,
Remark 3).

2. All parties compute ct
(1)
a =

∑
i∈[n] ct[a]i , then performs ZKPoPK and ZKPoMK

on it with parameter (D = d̄, ∆ = δ, T = t).

3. All parties repeat 1. and 2. for [b]i ∈ Zρ
2k

to get ct
(1)
b .

4. Parties locally compute ct
(0)
c ← ModSwitch(ct

(1)
a � ct

(1)
b ).

5. The parties run ΠReshare.D2 (Section 3.4, Fig. 3) on input ct
(0)
c and pp = (2d̄, 2δ, t),

but each party decodes d̄+ 1 values on each CRT ring only (instead of 2d̄) so that

each Pi receives [c]i and a fresh ciphertext c̄t(1)
c .

6. Parties run ΠAuth (Fig. 9) on inputs ct
(1)
a and ct

(1)
b each with pp = (d̄, δ, t), then

run ΠAuth on input c̄t(1)
c with pp = (2d̄, 2δ, t) to obtain (〈aj〉, 〈bj〉, 〈cj〉)j∈[ρ].

∗

∗ Notation 〈a〉 denotes ([a]i, [γa] := [α · a]i)i∈[n].

Fig. 8. Offline (weak) preprocessing protocol
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Subprotocol ΠAuth

On input (ctm, pp),

1. Parties locally compute ctα·m ← ctα � ctm.
2. Parties call FKeyGenDec.D1 on input ctα·m and pp, each Pi receives [γm]i := [α ·m]i.

Fig. 9. Subprotocol ΠAuth for ΠwPrep

Functionality FwPrep

Init:

1. Wait for an input from the adversary, if it is abort, then abort.

2. Otherwise, receive [α]A ∈ Z2k from the adversary, then uniformly sample {[α]j ∈
Z2k}j /∈A. Store α := [α]A +

∑
j /∈A[α]j .

Input, PI :

1. If I ∈ A, set m = 0 and receive shares {[m]j ∈ Zρ
2k
}j /∈A for honest parties from

the adversary.
If I /∈ A, uniformly sample m and {[m]i ∈ Zρ

2k
}i∈[n].

2. Send each shares to corresponding parties (and m to PI). Wait for an input from
the adversary, if it is abort, then abort.

3. Otherwise, receive δm and δγ from the adversary, then run the macro Auth(m+
δm, δγ) to get [γm]j ’s. Output [γm]j ’s to each honest Pj ’s.

Triple:

1. If adversary sends abort, then abort. Otherwise, receive {[a]A, [b]A ∈ Zρ
2k
} and

{δγa , δγb , δγc , δc ∈ Zρ
2k
} from the adversary.

2. Uniformly sample {[a]j , [b]j ∈ Zρ
2k
}j /∈A and set a = [a]A +

∑
j /∈A[a]j , b = [b]A +∑

j /∈A[b]j .

3. Set c = a � b + δc.
∗ Uniformly sample honest shares {[c]j ∈ Zρ

2k
}j /∈A such that∑

j /∈A[c]j = c.

4. Run the macros to get followings:∗∗

〈a〉 ← Auth(a, δγa), 〈b〉 ← Auth(b, δγb), 〈c〉 ← Auth(c, δγc).

5. Output (〈a〉j , 〈b〉j , 〈c〉j) to each honest Pj .

Auth(x, δγ ∈ Zρ
2k

):

1. Set γx = α · x where α ∈ Z2k is stored at Init.

2. Uniformly sample honest shares {[γx]j ∈ Zρ
2k
}j /∈A such that

∑
j /∈A[γx]j = γx+δγ .

3. If adversary sends abort, then abort. Otherwise, return ([γx]j)j /∈A

∗ � denotes Hadarmad product, i.e., componenet-wise product.
∗∗ Notation 〈a〉 denotes ([a]j , [γa]j := [α · a]j)j /∈A.

Fig. 10. Functionality for preprocessing phase
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Simulator SwPrep

Let A be the set of corrupted parties.

Init:

1. With ski from A, emulate (internally run) FKeyGenDec.Init (Fig. 6) to obtain pk, sk′,
and (sk′j)j /∈A.

2. Run the step 2. and 3. of the protocol ΠwPrep.Init (Fig. 8) A, participating as the
honest parties Pj with sk′j ’s.

3. If the ciphertext ct
(1)
α does not pass the ZKPoPK or ZKPoMK, send abort to the

functionality. Otherwise, decrypt ct
(1)
α to get α, then send [α]A := α −

∑
j /∈A[α]j

to the functionality.

4. Store α.

Input, PI :

1. Run the step 1., 2., and 3. of the protocol ΠwPrep.Input (Fig. 8) with A, partic-
ipating as the honest parties. Meanwhile, if I ∈ A, transmit to the functionality
FwPrep, {[m]j}j /∈A given from A; if I /∈ A, transmit to A, {[m]i}i∈A given from
the functionality FwPrep.

2. If the ciphertext ct
(1)
m does not pass the ZKPoPK or ZKPoMK, send abort to the

functionality. Otherwise, decrypt ct
(1)
m to get m. Then, compute

δm :=

{
m−

∑
j /∈A[m]j if I ∈ A

m−
∑
i∈[n][m]i if I /∈ A

.

3. Run the step 4. of the protocol ΠwPrep.Input (Fig. 8) with A, but emulate
FKeyGenDec.D1 (Fig. 6) to get abort or η from the adversary. Send abort or δm
(computed as above) and δγ = η accordingly to the functionality FwPrep.

Triple:

1. Run the step 1., 2., 3., and 4. of the protocol ΠwPrep.Triple (Fig. 8) with A,

participating as the honest parties. Meanwhile, if the ciphertext ct
(1)
a or ct

(1)
b does

not pass the ZKPoPK or ZKPoMK, send abort to the functionality.

2. Otherwise, decrypt ct
(1)
a to get a, compute [a]A = a −

∑
j /∈A[a]j . Repeat this

process for ct
(1)
b to get [b]A.

3. Run the step 5. of the protocol ΠwPrep.Triple (Fig. 8) with A, participating as the
honest parties: send abort to the functionality if it occurs during execution. When
running ΠReshare.D2, if P1 is honest, retrieve δc from

∑
i∈A(v∗i − wi) (where v∗i ’s

denote the vi’s given from A) regarding it as a tweaked interpolation packing. If
P1 is corrupt, set δc =

∑
j /∈A(−fj).

4. Run the step 6. of the protocol ΠwPrep.Triple (Fig. 8) with A, but emulate

FKeyGenDec.D1 (Fig. 6) on ct
(1)
a , ct

(1)
b , c̄t(1)

c to get abort or ηa,ηb,ηc from the ad-
versary. Send abort or δγa = ηa, and similarly for δγb , δγc accordingly to the
functionality FwPrep.

Fig. 11. Simulator for FwPrep
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B.5 ZKPoMK

We give a full description of ΠPoMK (Fig. 12, Fig. 13) and show that it satisfies
correctness, soundness, and zero-knowledge, assuming that subroutine ZKPoPKxxvii

for ĉta′ has perfect correctness, zero-knowledge, and soundness. For readability,
we use the same notation as the overview in Section 6.1: hat ˆ and apostrophe
′ denote that they are related to proving the statement (ii) Div

(D,∆)
T (a) = true.

That is, roughly speaking, a prover provides a′ such that a = 2∆a′ as a ciphertext
ĉta′ .

Correctness. The same correctness statement as Theorem 3 holds for our
ZKPoMK, except that here we do not need a bound on u. Honest inputs pass the
predicate checks ((b) in line 2 of Verify algorithm) since our predicates satisfy
certain homomorphic properties:

Note that Deg(D)(aik) = true and Deg(D)(yil) = true by the honest sampling

and commitment phases (Fig. 12). Then, Deg(D)(zl) = true follows from the
linearly homomorphic property of Deg and the equality zl =

∑n
i=1 y

i
l + (W )l ·ai

with the entries of W being constants, i.e., degree-0 polynomials.
The case of DivCheck can be shown similarly, with a note that DivCheck

is homomorphic under multiplications of same constants on both inputs (i.e.,
DivCheck((W )l · ai, (W )l · a′i) = true given that DivCheck(aik, a

′i
k ) = true).

Zero-Knowledge. The same zero-knowledge statement as Theorem 4 holds for
our ZKPoMK, except that the statistical distance is bounded by 16Muv2E/2ZK sec.
The proof also stays essentially the same, applying Lemma 3 with appropriate
predicates.

Soundness. The same soundness statement as Theorem 5 holds for our ZKPoMK,
except that we additionally require an assumption T ≥ E +∆ (this assumption
always holds in our application, since we will set E ≤ ∆ to manage slackness
and set T = t = k+ 2∆ for tweaked interpolation packing). The proof also stays
essentially the same:

With a rewinding argument, from the two accepting transcripts regarding zi

(we omit riz for simplicity), we get

zl − z̄l = (ωl,k − ω̄l,k) · ak for some l ∈ [v]. (4)

Note that the largest possible power-of-two divisor of (ωl,k − ω̄l,k) is 2E , since

each ω is from the challenge space Chal = [−2E , 2E−1]∩Z. Hence, Deg
(D)
T (zl) =

Deg
(D)
T (z̄l) = true implies that Deg sl

(D,E)
T (ak) = true.

xxvii We can use our ΠTG2k
PoPK or the original TopGear [BCS19] depending on the cyclotomic

ring ΦM̂ (X) that ĉta′ use. Note that, since we use coefficient embedding for ĉta′ , we
can also exploit power-of-two cyclotomic ring regardless of its splitting property over
Z2k .
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Protocol ΠPoMK - Part I

Implicitly call FRand (Appendix B.2) when sampling a challenge.
Parameters:

- We use ZK sec, 2t, u, v, n same as in Fig. 4.
- D,∆, T : the parameters for the predicate Pack

(D,∆)
T : R→ {true, false}.

- E: a positive integer parameter for the challenge space Chal.
- We use an additional set of SHE parameters whose plaintext space is
Z2t−E [X]/ΦM̂ (X). The corresponding public key is denoted as p̂k. When encrypt-

ing by this set of parameters, denoted as Ênc, we use coefficient packing (instead
of our tweaked interpolation packing).

Sampling (Sampling phase)

1. Set the predicate P← Pack
(D,∆)
T .

2. For each k ∈ [u] do
(a) Sample aik ← UP(2t−1) and riak ← RC(σ2, ρ).

(b) Compute a ciphertext ctiak = Enc(aik, r
i
ak ; pk).

3. For each k ∈ [u] do

(a) Set the predicate Pk ← DivCheck
(D,∆)
T (aik, · ) with respect to Z[X]/ΦM̂ (X).

(b) Sample a′ik ← UPk (2t−E−1)xxviii

(c) Compute ciphertexts ĉt
i
a′
k

= Ênc(a′
i
k, r

i
a′
k
; p̂k).

4. Output (ctia, ĉt
i
a′ ,a

i, ria,a
′i, ria′), which are defined similarly as in Fig. 4.

5. Perform ZKPoPK on (ĉt
i
a′ ,a

′i, ria′).

Commit (Commitment phase)

0. In the following, the party Pi implicitly samples, for each y, corresponding noises
and randomnesses riy ← (r

i,(`)
y ← U(2ZK sec · ρ`))`∈[3].

1. To generate 2v masking ciphertexts, each Pi do the followings, for each l ∈ [v].
(a) Set the predicate P← Deg(D).

(b) Sample yil ← UP(2ZK sec · 2t−1) and compute ctiyl = Enc(yil , r
i
yl ; pk).

(c) Set the predicate Pl ← DivCheck
(D,∆)
T (yil , · ) with respect to Z[X]/ΦM̂ (X).

(d) Sample y′il ← UPl(2
ZK sec · 2t−E−1) and compute ĉt

i
y′
l

= Ênc(y′il , r
i
y′
l
; p̂k).

2. Party Pi keeps statei ← (yi,y′i, riy, r
i
y′) and broadcasts commi ← (ctiy, ĉt

i
y′).

(yi,y′i, riy, r
i
y′ , ct

i
y, ĉt

i
y′ are defined similarly as in Fig. 4.)

Challenge (Challenge phase)

1. Parties together uniformly sample challenge matrices W of size v×u, whose entries
are sampled from the challenge space Chal = [−2E + 1, 2E ] ∩ Z.

xxviii Uniformly sample corresponding element at each coefficient.

Fig. 12. Protocol ΠPoMK - Sampling, Commitment, and Challenge phases
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Protocol ΠPoMK - Part II

Response (Response phase)

1. Each party Pi computes,
(a) zi ← yi +W · ai and riz ← riy +W · ria.xxviii

(b) z′i ← y′i +W · a′i and riz′ ← riy′ +W · ria′ .xxviii

2. Party Pi sets respi ← (zi, riz,z
′i, riz′) and broadcasts respi.

Verify (Verification phase)

1. Each party Pi computes,

(a) ctiz ← (Enc(zil , r
i
zl ; pk))l∈[v], ĉt

i
z′ ← (Ênc(z′il , r

i
z′
l
; p̂k))l∈[v].

(b) cta, cty, ctz, ĉta′ , ĉty′ , ĉtz′ , z, z′ are defined similarly as in Fig. 4.

2. Parties accept if all of the followings hold, otherwise they reject.
(a) ctz = cty +W · cta, ĉtz′ = ĉty′ +W · ĉta′ .
(b) For l ∈ [v], Deg(D)(zl) = true, DivCheck

(D,∆)
T (zl, z

′
l) = true

Fig. 13. Protocol ΠPoMK - Response and Verification phases

Similarly, rewinding argument on the transcripts regarding z′i, we get,

z′l − z̄′l = (ωl,k − ω̄l,k) · a′k for the same l ∈ [v] as Eq. (4).

Then, DivCheck
(D,∆)
T (zl, z

′
l) = true and DivCheck

(D,∆)
T (z̄l, z̄

′
l) = true together

implies that, after CRT projection (and evaluation at j ∈ [0;D]),

ak = 2∆ · a′k + b · 2T−E for some b,

which is equivalent to Div
(D,∆)
T (ak) = true from the assumption T ≥ E +∆.
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B.6 Definition of Soundness for Theorem 5

– Let A = (A1,A2,A3) be a tuple of PPT algorithms. Consider the following
game:

1. A1 outputs I ⊂ [n], {ctia}i∈I and stateA1
.

2. Choose (ctja,a
j , rja)← Sampling(j) honestly for Pj , j /∈ I.

3. Compute (commj , statej)← Commit(ctja,a
j , rja) for j /∈ I.

4. A2 on input stateA1
, {ctja, commj}j /∈I outputs stateA2

, {commi}i∈I .
5. Choose a uniformly randomW and compute respj ← Response(statej ,W )

for j /∈ I.
6. A3 on input stateA2

,W, {respj}j /∈I outputs {respi}i∈I .
7. A wins the game if Verify({commi, respi}i∈[n],W ) = true.

Suppose A wins the game with probability ε > 2−Snd sec. Then there exists
a PPT algorithm Extract which, for any fixed output of A1, with honestly
generated {ctja,aj , rja, commj , statej}j /∈I as inputs, and black-box access to

(A2,A3), outputs {witnessi}i∈I such that RS,uPoPK (Eq. (3), with the sound-
ness slack S = 8ϕ(M) · 2ZK sec) holds in expected fu(Snd sec)/(ε− 2−Snd sec)
steps where fu(·) is a positive polynomial (depending on u).


