
Log-S-unit lattices using Explicit Stickelberger
Generators to solve Approx Ideal-SVP

Olivier Bernard1,2, Andrea Lesavourey1, Tuong-Huy Nguyen1,3,
and Adeline Roux-Langlois1

1 Univ Rennes, CNRS, IRISA
{olivier.bernard, andrea.lesavourey, tuong-huy.nguyen,

adeline.roux-langlois}@irisa.fr
2 Thales, Gennevilliers, Laboratoire CHiffre
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Abstract. In 2020, Bernard and Roux-Langlois introduced the Twisted-
PHS algorithm to solve Approx-Svp for ideal lattices on any number
field, based on the PHS algorithm by Pellet-Mary, Hanrot and Stehlé
in 2019. They performed experiments for prime conductors cyclotomic
fields of degrees at most 70, reporting approximation factors reached in
practice. The main obstacle for these experiments is the computation of
a log-S-unit lattice, which requires classical subexponential time.
In this paper, our main contribution is to extend these experiments to 192
cyclotomic fields of any conductor m and of degree up to 190. Building
upon new results from Bernard and Kučera on the Stickelberger ideal, we
construct a maximal set of independent S-units lifted from the maximal
real subfield using explicit Stickelberger generators obtained via Jacobi
sums. Hence, we obtain full-rank log-S-unit sublattices fulfilling the role
of approximating the full Tw-PHS lattice. Notably, our obtained approx-
imation factors match those from Bernard and Roux-Langlois using the
original log-S-unit lattice in small dimensions.
As a side result, we use the knowledge of these explicit Stickelberger
elements to remove almost all quantum steps in the CDW algorithm, by
Cramer, Ducas and Wesolowski in 2021, under the mild restriction that
the plus part of the class number verifies h+

m ≤ O(
√
m).

Keywords: Ideal lattices, Approx-SVP, Stickelberger, S-units, Twisted-
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1 Introduction

The ongoing NIST Post-Quantum Competition illustrates the importance of the
Learning With Errors (LWE) problem as an intermediate building block for a
wide variety of cryptographic schemes. Most of these cryptographic schemes rely
on a structured version of the LWE problem allowing for much more satisfactory
performance, compared to schemes based on the unstructured LWE problem.
The first structured variant of LWE, later known as the Ring-LWE problem, is
shown to be at least as hard as the approximate Shortest Vector Problem on



ideal lattices (Approx-id-Svp) using quantum worst-case to average-case reduc-
tion [SSTX09,LPR10]. However, there exists the possibility that this improved
efficiency comes at the cost of degrading the security of the scheme, since the
hardness hypothesis is more restricted.

In the case of arbitrary lattices, Approx-Svp is a well-studied hard problem.
Its goal is to find relatively short vectors of a given lattice, within an approxima-
tion factor of the shortest vector. The best known algorithm to solve this problem
is the BKZ algorithm [Sch87], which can be seen as an improvement of the well-
known LLL algorithm. The BKZ algorithm actually offers trade-offs between
the running time and the reachable approximation factor, known as Schnorr’s

hierarchy [Sch87]: for α ∈ (0, 1), BKZ can reach an approximation factor 2Õ(nα)

in time 2Õ(n1−α). Moving to the particular case of ideal lattices, that correspond
to ideals of the ring of integers OK of a number field K, the restriction of Approx-
Svp could potentially allow for more efficient reduction algorithms, by exploiting
the additional structure. This conjecture would not necessarily come as a sur-
prise since those number theoretical tools are precisely what makes Ring-LWE
a more efficient building block for cryptographic schemes. Nevertheless, how to
exploit those number theoretical structures is not yet fully decided: at the mo-
ment, the best known classical algorithms to solve this problem on ideal lattices
remain the same as for arbitrary lattices, and in a quantum world, polynomial
time algorithms only reach subexponential approximation factors.

Cryptanalysis of Approx-id-Svp has gradually gathered more attention, as
shown by a series of works starting with [EHKS14,CGS14,BS16,CDPR16]. Ear-
lier works on this subject aimed at the more restricted case of principal ideal
Approx-Svp. A classical strategy for this case is devised as a two parts algo-
rithm. The first part requires solving the Principal Ideal Problem (Pip), hence
finding a generator of the ideal; the second part requires solving a Closest Vec-
tor Problem (Cvp) in the so called log-unit lattice, in the hope of finding the
shortest generator of the ideal. At the end, this short generator is expected to
solve Approx-Svp for an adequate approximation factor. Building on [EHKS14],
it was claimed in [CGS14], without formal proofs, that this strategy works in
quantum polynomial time and that the Cvp in the log-unit lattice of cyclotomic
fields is easy to solve and indeed yields a short generator. For the first part,
results from [BS16] yielded a fully proven quantum polynomial-time algorithm
to compute S-units, a generalization of the units of OK , in arbitrary number
fields; the authors also showed how the computation of S-units can be used to
obtain class groups as well as to solve Pip. As for the second part, [CDPR16]
subsequently formalised these claims and proved, for cyclotomic fields of prime
power conductors, that in this case Approx-id-Svp on principal ideals is solvable
in quantum polynomial time, but only reaching an approximation factor 2Õ(

√
n).

From there, subsequent works as [CDW17,CDW21] aimed at extending the
results from [CDPR16] to arbitrary ideal lattices over any cyclotomic fields and
evaluating their performance. One of their contribution is the introduction of the
Close Principal Multiple Problem (Cpmp) that reduces the problem on any ideal
lattice to the problem on principal ideal lattices. A new key technical ingredient,
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related to cyclotomic fields, was the use of the Stickelberger ideal for which good
properties are known. First, this ideal annihilates the class group and second,
when viewed as a Z-module, a family of relatively short generating vectors are
explicitly known, allowing a good decoding of the lattice. In [DPW19], the prac-
tical consequences of this method were concretely experimented, and simulations
results suggested that this algorithm might only beat the BKZ algorithm with
block size 300 for cyclotomic fields of quite large degree (more than 20000).

On another direction, authors of [PHS19,BR20] generalized the previous re-
sults from [CDPR16,CDW17] to arbitrary number fields using S-units, a formal-
ism underlying the work [PHS19] and explicitly used and described in [BR20].
The PHS algorithm is split in a preprocessing phase and a query phase. The
preprocessing phase consists of the preparation of the decoding of a particular
lattice depending only on the number field K, via the computation of a hint
following Laarhoven’s Cvp with preprocessing algorithm [Laa16]. This lattice
allows to express any Approx-id-Svp instance in K as an Approx-Cvp instance,
and Laarhoven’s hint is used during the query phase to effectively solve this
Cvp instance. Note this lattice was introduced with the idea of combining the
two main resolution steps of [CDW17] in only one Cvp instance, with the hope
of globally optimizing the output. Following this work, [BR20] proposed Tw-
PHS, a so-called “Twisted” version of the PHS algorithm using a fundamental
modification of the underlying lattice. Namely, they explicitly described it as
a logarithmic S-unit lattice, leading to a proper normalisation of the logarith-
mic S-embedding that weights coordinates according to factor basis prime ideal
norms, thus the name “Twisted”. Conceptually, the problem of retrieving a short
element is expected to be better encoded with this modified embedding, leading
to better outputs. Even though the theoretically proven bound for the Tw-PHS
algorithm is the same as for the PHS algorithm, experimentally, very significant
improvements compared to the original PHS algorithm have been illustrated
in [BR20, Fig. 5.3.]. In particular, the experiments implemented in [BR20] allow
to test the Tw-PHS algorithm in number fields of degree up to 60, while achieving
much better approximation factors than the original [PHS19] implementation.

Our contributions. One of our major contribution is to extend the experiments
performed in [BR20] for the Twisted-PHS algorithm. Whereas their experiments
on cyclotomic fields where bound to prime conductor fields of degree at most 70,
due to the classical complexity of computing full S-unit groups, we compute
full rank sublattices of the log-S-unit lattice for 192 cyclotomic fields of any
conductor from degree 20 up to degree 190. Though, as we will explain later, our
sublattices are a lot sparser than the full log-S-unit lattice used in [BR20], our
results already give promising approximation factors, as shown in Fig. 1.1, and
match, under the Gaussian Heuristic, the exact approximation factors obtained
in [BR20, Fig. 1.1] when we have the full log-S-unit lattice, i.e. up to degree 80.

To obtain these results, our main contribution is, for cyclotomic fields Km

of any conductor m 6≡ 2 mod 4, to exhibit in §3 a full rank family of indepen-
dent S-units lifted from the maximal real subfield K+

m, using explicit Stickel-
berger generators (see §3.3) that are easy to compute using Jacobi sums. Hence,
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Fig. 1.1 – Approximation factors, estimated with Gaussian Heuristic, reached
by Tw-PHS for cyclotomic fields of degree ϕ(m) < 190 with h+m = 1
on lattices Lurs, Lsat and Lsu (when available).

we obtain a full rank sublattice of the log-S-unit lattice, at the much lower cost
of computing class group relations in the maximal real subfield of half degree.
We also provide in Th. 3.13 a closed formula for the multiplicative index of this
full-rank family inside the whole S-unit group. This index is huge, but can be
mitigated to some extent using classical saturation techniques recalled in §3.6.

Finally, as a minor contribution, we also apply these results to show in §4
how to benefit from these explicit Stickelberger generators to remove most quan-
tum steps of the CDW algorithm [CDW21], namely the last Pip resolution, and
also, under a relatively harmless restriction that the plus part of the class num-
ber verifies h+m ≤ O(

√
m) (Hyp. A.1), the random walk to the relative class

group, replaced by a single call to a quantum class group computation in di-
mension ϕ(m)/2. The latter should also yield in practice better approximation
factors, by allowing to choose the finite places of S of smallest possible norms.

Technical overview. Let S be a set of places where the finite places correspond
to a collection of full Galois orbits of split prime ideals. Our full rank family F
of independent S-units is composed of three parts:

1. circular units, defined e.g. in [Was97, §8] and for which an explicit basis can
be found in [Kuč92, Th. 6.1];

2. Stickelberger generators, as explicitly given by the proof of Stickelberger’s
theorem, see for example [Sin80, Eq. (3.4)];

3. real S+-units (apart from real units), where S+ is the set S ∩K+
m of places

of S restricted to the maximal real subfield K+
m of Km.

In the context of the cryptanalysis of id-Svp, the set of circular units has al-
ready been used in [CDPR16,CDW17] for m being a prime power, in [Hol17]
when m has two coprime factors and finally in [CDW21] in the general case.
Using free relations in the class group Clm coming from Stickelberger’s theorem
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was suggested in [CDW17,CDW21], where many short relations were identified
[CDW21, Lem. 4.4]. We use two novelties here:

– First, we use the knowledge of an explicit short Z-basis of the Stickelberger
ideal for any conductor [BK21, Th. 3.6]: apart from aesthetic reasons, this
should induce in practice slightly better approximation factors compared to
[CDW21, Cor. 2.2] where a sublattice of possibly large index is used;

– Second, using the well-known explicit factorization from the proof of Stickel-
berger’s theorem ([Sin80, §3]), we effectively compute generators correspond-
ing to the above short relations, using Jacobi sums as in [BK21, §5].

We note that using a Hermite Normal Form or a LLL reduction to derive a basis
from the short generating set W of [CDW21, §4.2] increases dramatically the
coefficients of the corresponding generators, or forces to handle huge rational
numbers, in a way that significantly hinders subsequent computations. Finally,
adding relative norm relations NKm/K+

m
(L) = L1+τ when the L’s are chosen

in the relative class group was suggested in [CDW17] to obtain the so-called
“extended Stickelberger lattice”. We extend this result by considering the lattice
of real class relations between the relative norms of ideals of any class.

The multiplicative index of this family in the full S-unit group is explicited
by our Th. 3.13. This index contains a large power of 2 that can be removed using
classical 2-saturation techniques of §3.6, leading to a family Fsat. Unfortunately,
when the number of orbits in S is strictly greater than 1, this index contains
huge factors coming from the relative class number, due to the fact that the
Stickelberger ideal misses all relations between ideals of distinct Galois orbits.

In the context of the CDW algorithm, we first propose in §4 an equivalent
rewriting of [CDW21, Alg. 7] that enlightens some hidden steps that reveal useful
for subsequent modifications. Then, we plug the explicit Stickelberger generators
and real generators described above to remove the last call to the quantum Pip
solver. Finally, by considering the module of all real class group relations, we
remove the need of a random walk mapping any ideal of Km into Cl−m, at the
small price of restricting to cyclotomic fields such that h+m ≤ O(

√
m) (Hyp. A.1),

whereas [CDW21, Ass. 2] uses h+m ≤ poly(m). Then, only two quantum steps
remain: the first is performed only once in dimension ϕ(m)

2 to compute real class
group relations and generators, the second is for solving the Cldl for each query.

Finally, we apply the Tw-PHS algorithm [BR20] on our full-rank sublattices
of the log-S-unit lattice. We stress that this is actually a degraded mode of
the Tw-PHS algorithm. Indeed, Tw-PHS uses the full log-S-unit lattice for an
optimal number d = dmax of orbits, that we estimated using the analytic class
number formula. However, in our case, the family Fsat has index roughly (h−m)d−1,
which is sufficiently large so that the optimal factor base phenomenon of [BR20,
Alg. 4.1] does not hold. More precisely, the density of the log-S-unit sublattice
associated to Fsat decreases as soon as d > 1.

We fully implemented the construction of the lattices associated to F, Fsat

and to fundamental elements of the full S-unit group Fsu when available (up
to degree 80) for the first d split prime orbits with d ∈ J1, dmaxK, including
the computation of Stickelberger generators and real generators. We evaluate
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the geometry of all these lattices with standard indicators described in §2.5,
and observed consistently the same phenomenons already observed in [BR20,
§5.1 and 5.2], that indicate close to orthogonal lattices. Moreover, as computing
Cldl solutions for random targets is not possible, we simulate the query phase via
random targets. The approximation factors obtained in this degraded mode still
seem promising, and give a crude-but-reliable upper bound on the approximation
factor that can be expected when using Tw-PHS. We stress that, up to degree 80
when the full S-unit group is computable, our results match, under the Gaussian
Heuristic, the exact approximation factors obtained by [BR20, Fig. 1.1]. The full
implementation is available at https://github.com/ob3rnard/Tw-Sti.

Remark. Similar techniques for the construction of S-units may be used in a con-
current work by Bernstein, Eisenträger, Rubin, Silverberg and van Vredendaal,
as announced in a talk by Bernstein on 20th August 2021 at SIAM Conference.

2 Preliminaries

Notations. For any i, j ∈ Z with i ≤ j, the set of all integers between i and j
is denoted by Ji, jK. For any x ∈ Q, let

{
x
}

denote its fractional part, i.e. such

that 0 ≤
{
x
}
< 1 and x−

{
x
}
∈ Z. A vector is materialized by a bold letter v,

and for any p ∈ N∗∪{∞}, its `p-norm is written ‖v‖p. The n-dimensional vector
with all 1’s is denoted by 1n. All matrices are given using row vectors.

2.1 Cyclotomic fields

We denote the cyclotomic field of conductor m, m 6≡ 2 mod 4, by Km = Q[ζm],
where ζm is a primitive m-th root of unity. It has degree n = ϕ(m) and its
discriminant, which is of order nn, is given precisely by [Was97, Pr. 2.7]:

∆Km =
(
−1
)ϕ(m)/2 mϕ(m)∏

p|m p
ϕ(m)/(p−1) . (2.1)

The maximal order of Km is OKm = Z
[
ζm
]

(see e.g. [Was97, Th. 2.6]).
In this paper, we consider any conductor m > 1 of the general prime fac-

torization m = pe11 p
e2
2 · · · p

et
t , m 6≡ 2 mod 4, and let qi = peii for all i ∈ J1, tK.

In particular, m has exactly t distinct prime divisors. Let Gm denote the Galois
group of Km, which can be explicited by [Was97, Th. 2.5]:

Gm =
{
σs : ζm 7−→ ζsm; 0 < s < m, (s,m) = 1

}
'
(
Z/mZ

)×
.

In particular, we denote by σs ∈ Gm the automorphism sending any m-th root of
unity to its s-th power. For convenience, the automorphism induced by complex
conjugation is written τ = σ−1.

The algebraic norm of α ∈ Km is defined by N (α) =
∏
σ∈Gm σ(α), hence the

absolute norm element in the integral group ring Z[Gm] is Nm =
∑
σ∈Gm σ.
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Maximal real subfield. The maximal real subfield of Km, denoted by K+
m, is the

fixed subfield of Km under complex conjugation, i.e. K+
m := K

〈τ〉
m = Q

(
ζm+ζ−1m

)
.

Its maximal order is OK+
m

= Z
[
ζm + ζ−1m

]
(see e.g. [Was97, Pr. 2.16]).

By Galois theory, since
〈
τ
〉

is a normal subgroup of Gm, the maximal real

subfield of Km is a Galois extension of Q with Galois group G+
m := Gal

(
K+
m/Q

)
isomorphic to Gm

/〈
τ
〉
. We will consistently identify G+

m with the following sys-
tem of representatives modulo τ restricted to K+

m:

G+
m =

{
σs|K+

m
; 0 < s < m

2 , (s,m) = 1
}
.

Technically, each σs|K+
m
∈ G+

m extends in Gm to either σs or τσs = σ−s. For

simplicity, we always choose to lift σs|K+
m
∈ G+

m to σs ∈ Gm and drop the restric-

tion to K+
m which should be clear from the context. This slight abuse of notation

appears to be very practical. For example, the corestriction CorKm/K+
m

(
σs|K+

m

)
,

defined as the sum of all elements of Gm that restricts to σs|K+
m

, namely σs+τσs,
is written using the much simpler expression (1 + τ) · σs.

2.2 Real and relative class groups

Fractional ideals of Km are written using gothic letters b. They form a multi-
plicative group Im containing the normal subgroup Pm :=

{
〈α〉; α ∈ Km

}
of

principal ideals. The quotient group Im
/
Pm is called the class group of Km and

denoted by Clm. It is finite and its cardinal hm is called the class number of Km.
For any ideal b ∈ Im, the class of b in Clm is written

[
b
]
.

The integral group ring Z[Gm] acts naturally on Im; more precisely, for any
element α =

∑
σ∈Gm aσσ ∈ Z[Gm], and any b ∈ Im, bα :=

∏
σ∈Gm σ

(
b
)aσ

.
The class group and class number of the maximal real subfield K+

m are denoted
respectively by Cl+m and h+m. The relative norm map NKm/K+

m
induces an homo-

morphism from Clm to Cl+m, whose kernel is the so-called relative class group,
written Cl−m and of cardinal the relative class number h−m. Hence, by construc-
tion, for any b st.

[
b
]
∈ Cl−m, b1+τ ∩K+

m is principal. One important specificity

of cyclotomic fields is that the real class group Cl+m embeds into Clm via the
natural inclusion map, which to each ideal class

[
b
]
∈ Cl+m associates the ideal

class
[
b·OKm

]
∈ Clm [Was97, Th. 4.14]. Concretely, it implies that hm = h+m ·h−m

is the product of the plus part and the relative part of the class number.

Plus part and relative part of the class number. Generally, not much is known
about the class number of a number field, and the analytic class number formula
[Neu99, Cor. 5.11(ii)] allows to obtain a rough upper bound hm ≤ Õ

(√
|∆Km |

)
.

In the case of cyclotomic fields though, the structure of the relative class
group is better understood. Using analytic means, the relative class number has
the following explicit expression [Was97, Th. 4.17]:

h−m = Qw ·
∏
χ odd

(
− 1

2B1,χ

)
, (2.2)
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m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m

225 120 1 213 140 1 205 160 2 203 168 1 460 176 1 416 192 1
231 120 1 219 144 1 352 160 1 215 168 1 552 176 1 448 192 1
244 120 1 285 144 1 400 160 1 245 168 1 209 180 1 576 192 1
248 120 4 296 144 1 440 160 5 261 168 1 217 180 1 612 192 1
308 120 1 304 144 1 492 160 1 392 168 1 279 180 1 672 192 1
372 120 1 380 144 1 528 160 1 516 168 1 297 180 1 275 200 1
396 120 1 432 144 1 600 160 1 588 168 1 235 184 1 375 200 1
384 128 1 444 144 1 660 160 1 267 176 1 564 184 1 500 200 1
201 132 1 540 144 1 243 162 1 345 176 1 291 192 1
207 132 1 237 156 1 249 164 1 368 176 1 357 192 1

Table 2.1 – Officially unpublished values of h+m for some m with ϕ(m) ≤ 200.

where w = 2m if m is odd and w = m if m is even, Q = 1 if m is a prime power
and Q = 2 otherwise, and B1,χ is defined by 1

f

∑f
a=1 a·χ(a) for any odd primitive

character χ modulo m of conductor f dividing m. Computing this value is in
practice very efficient, using adequate representations of Dirichlet characters.

The really hard part of cyclotomic class numbers computations is to obtain
the plus part h+m, and relatively few are known. We will use the values from
[Was97, Tab. §4], [Mil14, Th. 1.1 and 1.2] and [BFHP21, Tab. 1], consistently as-
suming the Generalized Riemann Hypothesis (GRH). We also provide in Tab. 2.1
58 officially unpublished values, easily obtained using SageMath v9.0 [Sag20],
each in less than 3 hours on a Intel R© CoreTM i7-8650U @3.2GHz CPU.

The fact that the plus part of the class number seems so much smaller than
the relative part is striking. On the theoretical side, Weber’s conjecture claims
that h+2e = 1 for any e > 1, and Buhler, Pomerance and Robertson [BPR04] ar-
gue, based on Cohen-Lenstra heuristics, that for all but finitely many pairs (p, e),
where p is a prime and e is a positive integer, h+pe+1 = h+pe ; hence, for prime power
conductors, this conjecture claims that the plus part is asymptotically constant.

On the practical side, these conjectures are backed up by Schoof’s extensive
calculations [Sch03] in the prime conductor case, and by the above explicit values.
In particular, under GRH, Miller proved Weber’s conjecture up to m = 512, and
we note that according to Schoof’s table, h+m ≤

√
m holds for more than 96.6%

of all prime conductors m = p < 10000.

Prime ideal classes generators. When picking a set of prime ideals in the algo-
rithms of this paper, an important feature is that they generate the class group.
In general, even assuming GRH, only a large bound on the norm of genera-
tors is known, indeed Bach proved [Bac90, Th. 4] that N (Lmax) ≤ 12 ln2|∆Km |,
where Lmax is the biggest ideal inside a generating set of Clm of minimum norm.
In practice though, this bound seems very pessimistic [BDF08, §6].

On the other hand, as prime ideals belong to Cl−m only with probability
roughly 1/h+m, searching for generators of the subgroup Cl−m mechanically in-
creases the provable upper bound on generators. More precisely, writing as L−max

the biggest ideal of a generating set of Cl−m, Wesolowski proved [Wes18, Rem. 2]

that N (L−max) ≤
(
2.71h+m · ln|∆Km |+ 4.13

)2
.
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Finally, we use the notation hm,(L1,...,Lk) to denote the cardinal of the sub-

group of Clm generated by the k classes
[
Li
]
, i.e. the determinant of the kernel of:

fL1,...,Lk :
(
e1, . . . , ek

)
∈ Zk 7−→

∏
1≤i≤k

[
Li
]ei ∈ Clm .

2.3 Logarithmic S-embeddings

The idea of using S-units instead of units for the cryptanalysis of id-Svp has been
underlying the work of [PHS19], and explicitly formalized in [BR20]. We briefly
introduce log-S-unit lattices and discuss proper normalization by the Product
Formula that was at the heart of the practical improvements of [BR20].

Places of the cyclotomic field Km are usually split in two parts: the set S∞ of
infinite places can be identified with the (complex) embeddings of Km into C, up
to conjugation; the set S0 of finite places is specified by the infinite set of prime
ideals of Km, each prime ideal p inducing an embedding of Km into its p-adic
completion Km,p. Hence, any place v ∈ S∞ ∪ S0 induces an absolute value |·|v
on Km, and Ostrowski’s theorem for number fields [Nar04, Th. 3.3] shows that all
possible absolute values on Km are obtained in this way. Concretely, for α ∈ Km:

∀σ ∈ S∞, |α|σ =
∣∣σ(α)

∣∣ and ∀p ∈ S0, |α|p = p−vp(α), (2.3)

where vp(·) is the valuation of α at p and 〈p〉 = p∩Z. A remarkable fact is that
all these absolute values are tied by the Product Formula [Nar04, Th. 3.5]:

∀α ∈ Km,
∏

v∈S∞∪S0

|α|[Km,v :Qv]v = 1. (2.4)

The infinite part of this product is
∣∣N (α)

∣∣, as for σ ∈ S∞,Km,σ = C and Qσ = R,

so that [Km,σ : Qσ ] = 2. Similarly, for p ∈ S0, we have |α|[Km,p:Qp]p = N (p)−vp(α).

S-unit group structure. Fix a finite set S of places; in this paper we shall con-
sider that S always contains S∞. The so-called S-unit group of Km, denoted
by O×Km,S , is the multiplicative subgroup of Km generated by all elements whose
valuations are non zero only at the finite places of S. Formally:

O×Km,S =
{
α ∈ Km; 〈α〉 =

∏
p∈S∩S0

pvp(α)
}

=
{
α ∈ Km;

∏
v∈S
|α|[Km,v :Qv ]v = 1

}
.

Note that when S = S∞, we get the definition of the unit group O×Km as the
multiplicative subgroup of elements of algebraic norm ±1.

Theorem 2.1 (Dirichlet-Chevalley-Hasse [Nar04, Th. III.3.12, Cor.1]).
The S-unit group is the direct product of the group of root of unity µ

(
O×Km

)
and

a free abelian group with |S| − 1 generators. There exists a fundamental system

of S-units ε1, . . . , ε|S|−1 st. any ε ∈ O×Km,S uniquely writes as ε = µ ·
∏|S|−1
i=1 εkii ,

where µ ∈
〈
±ζm

〉
is a root of unity and ki ∈ Z.
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Log-S-unit lattice. A fundamental ingredient of the proof of this theorem is to
build an embedding of O×Km,S into the real space of dimension |S|, whose kernel

is µ
(
O×Km

)
and whose image is a lattice of dimension

(
|S|−1

)
. This embedding is

called the logarithmic S-embedding, and its image is called the log-S-unit lattice.
Several equivalent definitions of this logarithmic S-embedding are accept-

able for the proof. However, for cryptanalytic purposes, experimental evidence
[BR20] suggests that it is crucial to use a properly normalized embedding for
the decodability of the log-S-unit lattice. Thus, we define [Nar04, §3, p.98]:

LogS α =
([
Km,v : Qv

]
·ln|α|v

)
v∈S

=
({

ln|σ(α)|
}
σ∈S∞

,
{
−vp(α) lnN (p)

}
p∈S0

)
From the definition of O×Km,S , it is easy to see that R⊗LogS O×Km,S is included in
the hyperplane orthogonal to 1|S|. Showing that its dimension is at least |S|− 1
is more involved.

A basis of the log-S-unit lattice is given by the images LogS εi of the funda-
mental system of S-units of Th. 2.1, as in [BR20, Eq. (2.7)]. Actually, we shall
use later that for any maximal set of independent S-units, their images under
any logarithmic S-embedding form a full rank sublattice of the corresponding
log-S-unit lattice. We have [BR20, Pr. 2.2 and Eq. (2.8)]:

Vol
(
LogS O×Km,S

)
=

√
ϕ(m)

2 ·Rmhm,(S∩S0) ·
∏

p∈S∩S0

lnN (p), (2.5)

where hm,(S∩S0) is the cardinal of the subgroup of Clm generated by the classes
of the finite places of S, and Rm is the regulator of Km, i.e. the determinant of
the square matrix obtained from the log-unit lattice LogS∞ O

×
Km

by removing

any column. Note that the
√
· part is due to the rank defect, and the other part

is actually the S-regulator of Km (see e.g. [BR20, Pr. 2.2]), which could not be
defined without the proper normalization due to the Product Formula.

As mentioned in [PHS19,BDPW20,BR20], a convenient trick in the context
of the cryptanalysis of id-Svp is to consider an expanded version of the logarith-
mic S-embedding, halving and repeating twice S∞-coordinates, namely:

LogS α =
({

ln|σ(α)|, ln|σ(α)|
}
σ∈S∞

,
{

[Km,p : Qp] · ln|α|p
}
p∈S\S∞

)
.

In particular, this reduces the volume of the log-S-unit lattice, as shown by
[BR20, Pr. 2.3]. In practice though, we did not observe any fundamental differ-
ence between the approximation factors obtained using LogS or LogS .

2.4 Hard problems in Number Theory

One of the most difficult classical step of the Approx-id-Svp algorithms proposed
in [CDW17,PHS19,BR20,CDW21] is to find a solution to the Cldl defined below.

Problem 2.2 (Class Group Discrete Logarithm (ClDL)). Given a basis
of prime ideals

{
L1, . . . ,Lk

}
, and a challenge ideal b, find α ∈ Km and inte-

gers v1, . . . , vk such that 〈α〉 = b ·
∏
i L

vi
i , if this decomposition exists.
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In this definition, we also ask for an explicit element α of the field, contrary to
the definition of, e.g., [CDW17, Pr. 2]. Nevertheless, we note that in both quan-
tum and classical worlds, the standard way to solve this problem boils down to
computing S-units, for S containing b and the Li’s, so that this explicit element
is a byproduct of the resolution. Furthermore, put in this form it encompasses
the well-known Principal Ideal Problem (Pip), using an empty set of ideals.

The Shortest Generator Problem (Sgp) asks, from a generator α of a principal
ideal, for the shortest generator α′ such that 〈α〉 = 〈α′〉. Similarly, we define:

Problem 2.3 (Shortest Class Group Discrete Logarithm (S-ClDL)).
Given a solution 〈α〉 = b ·

∏
i L

vi
i to the Cldl problem, find w1, . . . , wk ∈ Z≥0

and α′ ∈ Km such that 〈α′〉 = b ·
∏
i L

wi
i and α′ is the smallest possible one.

The condition for the wi’s to be positive is crucial. Note that all recent
algorithms for Approx-id-Svp that are not bound to principal ideals eventually
output an approximate solution of the S-Cldl [CDW21,PHS19,BR20]. Also, if
the set of prime ideals is sufficiently large wrpt. b, then S-Cldl is exactly id-Svp.

We also mention the Close Principal Multiple (Cpm) problem which, given
an ideal b, asks to find c such that bc is principal and N (c) is small. This specific
problem is used in [CDW21], and the authors prove that under GRH and using
a factor base containing all prime ideals of norm up to m4+o(1), there exists a
solution c with N (c) ≤ exp

(
Õ(m1+o(1))

)
[CDW21, §1.3.4].

Complexities. As shown in [BS16], class groups, unit groups, class group discrete
logarithms and principal ideal generator computations can be reduced to S-units
computations for appropriate sets of places S. Thus, we are mostly interested in
the running time TSu(Km) of S-unit groups computations in Km.

Under GRH, in a quantum setting, TSu(Km) = Õ(ln|∆Km |) is polynomial in
the degree ofKm, using generalizations of Shor’s algorithm from [EHKS14,BS16].

On the other hand, in a classical setting, TSu(Km) = exp Õ(ln1/2|∆Km |) is subex-
ponential in the degree of the cyclotomic field Km, by [BEF+17].

2.5 Lattices

Let L be a Euclidean lattice of full rank n. The first minimum λ1(L) of L is
defined as the `2-norm of the smallest vector v ∈ L, and the `2 distance from t
to L, for any t in the span L⊗R of L, is defined by dist2(L, t) = minv∈L‖t− v‖2.

The Approximate Shortest Vector Problem (Approx-Svp) is, given a lattice L
and an approximation factor af, to find v ∈ L such that ‖v‖2 ≤ af ·λ1(L).
Similarly, the Approximate Closest Vector Problem (Approx-Cvp) asks, given a
lattice L, an approximation factor af and a target t in the span L⊗R of L, for
a vector v ∈ L such that ‖t− v‖2 ≤ af ·dist2(L, t). A practical Approx-Cvp
oracle is given by Babai’s Nearest Plane algorithm [Bab86].

Bounding approximation factors. An ideal lattice of Km is the full-rank image
under the Minkowski embedding in Rϕ(m) of a fractional ideal b of Km. Unlike

11



generic lattices, a lower bound of the first minimum is implied by the arithmetic-
geometric mean inequality, using that for any b ∈ b, N (b) divides |N (b)|. Thus:

√
n · N (b)1/n ≤ λ1(b) ≤

√
n · N (b)1/n

√
|∆Km |

1/n
, (2.6)

where n = ϕ(m) = degKm and the right inequality is Minkowski’s inequality.
Actually, the Gaussian Heuristic applied to ideal lattices gives that on aver-
age, λ1(b) ≈

√
n

2πe ·Vol1/n(b), where Vol(b) = N (b)
√
|∆Km |.

For any x ∈ b, let af(x) = ‖x‖2/λ1(b) denote the approximation factor
reached by x wrpt the Svp in the ideal lattice b. In general, λ1(b) is not known,
but Eq. (2.6) imply the bounds af inf(x) ≤ af(x) ≈ afgh(x) ≤ afsup(x), where:

af inf(x) :=
‖x‖2√

n ·Vol1/n(b)
, afsup(x) :=

‖x‖2√
n · N (b)1/n

,

afgh(x) :=
√

2πe · af inf(x).

(2.7)

We will mostly compare to the Gaussian Heuristic, which seems to give very
realistic estimations when the exact id-Svp is solvable.

Quality of a lattice basis. Several indicators have been used in the litterature to
attempt to measure the quality of a lattice basis B = (b1, . . . ,bn) wrpt the Svp
or the Cvp. We will focus on the following three standard quantities:

1. the root-Hermite Factor δ0(B), defined by δn0 (B) = ‖b1‖2/Vol1/nB, is com-
monly used to compare lattice reduction algorithms like LLL [LLL82] or
BKZ [CN11]. On average, LLL reaches δ0 ≈ 1.022 [GN08] whereas BKZ

with blocksize b ≥ 50 heuristically yields δ0 ≈
(
b

2πe (πb)1/b
)1/(2b−2)

[Che13].

2. the (normalized) orthogonality defect δ(B), given by δn(B) =
∏
i

( ‖bi‖2
Vol1/n B

)
[MG02, Def. 7.5] involves all vectors of the basis. By Minkowski’s second
theorem, its smallest possible value is upper bounded by

√
1 + n

4 .
3. the logarithms of the norms of Gram-Schmidt Orthogonalization (GSO) vec-

tors b?i give also valuable information. For example, a rapid decrease in the
sequence ln‖b?i ‖2 at i ≥ 2 indicates that bi is rather not orthogonal to the
previously generated subspace

〈
b1, . . . ,bi−1

〉
.

3 An explicit full-rank family of S-units, or exceptional
sets of algebraic elements in cyclotomic fields

In this section, we exhibit a full rank family of independent S-units, where the
finite places S correspond to a collection of full Galois orbits of split prime ideals.
As mentioned in introduction, this family is composed of three parts. After a
technical part on useful subsets of J1,mK (§3.1), we detail these three parts:

1. Circular units are given in §3.2 using the material from [Kuč92, Th. 6.1];
2. Stickelberger generators are given in §3.3, sticking to the exposition of [BK21];
3. Real S+-units (apart from real units), where S+ = S ∩K+

m, are in §3.4.

The index of our family in the full S-unit group is proven in §3.5 and the 2-
saturation process used to mitigate this index is described in §3.6.
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3.1 Two special subsets of J1,mK

We recall here from resp. [Kuč92, p.293] and [BK21, Eq. (11)] the definition of
two subsets M+

m and M ′m of J1,mK that are useful to describe resp. a fundamental
family of circular units and a short Z-basis of the Stickelberger ideal of Km.

Recall that m has prime factorization m = q1q2 · · · qt 6≡ 2 mod 4, where
qi = peii > 2 for i ∈ J1, tK. Let Xm be the set of all positive integers a < m that
are either divisible by qi or relatively prime to qi for each i ∈ J1, tK, i.e. :

Xm =
{
a ∈ Z; 0 < a < m,

(
a, m

(a,m)

)
= 1
}
.

Let M±m ⊆ Xm be the sets of all a ∈ Xm satisfying ([Kuč92, p.293]):4

– for all i ∈ J1, tK, if qi - a then a 6≡ −(a,m) mod qi,
– if a - m, let k = max

{
i ∈ J1, tK; a 6≡ (a,m) mod qi

}
, then

{
a

(a,m)qk

}
< 1

2 ,

– if a | m then the set
{
i ∈ J1, tK; qi - a

}
has an even (resp. odd) number of

elements when defining M+
m (resp. when defining M−m).

Finally, the set M ′m is defined from the previous set M−m using [BK21, Eq. (11)]:

M ′m =
{
a ∈M−m; ∀i ∈ J1, tK, mqi - a

}
∪
( t⋃
i=1

{
mb
qi

; 1 ≤ b ≤ ϕ(qi)
2

})
. (3.1)

Note that M+
m (resp. M ′m) contains ϕ(m)

2 − 1 elements (resp. ϕ(m)
2 elements).

Both sets are obviously easy to compute, using only simple arithmetic criteria.

3.2 Circular units

Circular units are sometimes called cyclotomic units in the litterature, as in
[Was97, §8]. We prefer to use the historical terminology from algebraic number
theory, see e.g. Sinnott [Sin78, §4] and Kučera [Kuč92, §2], in order to avoid any
confusion with the whole unit group O×Km of the m-th cyclotomic field.

Definition 3.1 (Circular units [Was97, §8.1]). Let Vm be the multiplicative
subgroup of K×m generated by

{
1− ζam; 1 ≤ a ≤ m

}
. The group of circular units

is the intersection Cm := Vm ∩ O×Km .

Note that Vm contains the torsion of Km, since −ζm =
(
1− ζm

)/(
1− ζ−1m

)
.

The circular units form a subgroup of O×Km of finite index, more precisely:

Proposition 3.2 ([Sin78, Th. p.107]). The index of Cm in O×Km is finite:

[
O×Km : Cm

]
= 2b · h+m, with b =

{
0 if t = 1,

2t−2 + 1− t else.

Hence, circular units actually provide a very large subgroup of O×Km : indeed,
as noted in §2.2, the real part of the class number is expected to be small, and
the other factor grows at most linearly in m.

4 Actually, the set M+ defined in [Kuč92, p.293] is M+ = M+
m ∪ {0}.
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An explicit system of fundamental circular units for any m has been given
in [GK89] and independently in [Kuč92, Th. 6.1]. More precisely, for 0 < a < m,
define the following special circular units, where mi = m/peii [Kuč92, p.176]:

va =


1− ζam if ∀i ∈ J1, tK, mi - a,
1− ζam
1− ζmim

else, for the unique mi | a.
(3.2)

Then, a system of fundamental circular units is given by the following theorem,
where M+

m is defined in §3.1. In particular, it is very easy to compute.

Theorem 3.3 ([Kuč92, Th. 6.1]). The set
{
va; va ∈M+

m

}
is a system of fun-

damental circular units of Km: for any circular unit η ∈ Cm, there exist uniquely

determined k(a) ∈ Z and root of unity µ ∈
〈
±ζm

〉
st. η = µ ·

∏
a∈M+

m
v
k(a)
a .

A crucial point for the cryptanalysis of id-Svp in [CDW21] is that the loga-
rithmic embedding of these elements is short. Namely, expliciting the constants
that appear in the proof of [CDW21, Lem. 3.5], we have for any 0 < a < m:

‖LogS∞(1− ζam)‖2 ≤ 1.32 ·
√
m. (3.3)

3.3 Stickelberger generators

In this section, we use [BK21, Th. 3.1] to describe a short basis of the so-called
Stickelberger ideal, viewed as a Z-module. These Stickelberger short relations
correspond to principal ideals whose generators are surprisingly easy to compute
using Jacobi sums as in [BK21, §6]. Following Sinnott [Sin80], for all a ∈ Z, let:

θm(a) =
∑

s∈(Z/mZ)×

{
−as
m

}
· σ−1s ∈ Q

[
Gm
]
, (3.4)

and let Nm be the absolute norm element Nm =
∑
σ∈Gm σ. It is easy to check

that a ≡ b mod m implies θm(a) = θm(b) and that θm(a) + θm(−a) = Nm
whenever m - a.

Definition 3.4 (Stickelberger ideal [Sin80, p.189]). Let S ′m be the Z-
module of Q

[
Gm
]

generated by
{
θm(a); 0 < a < m

}
∪
{

1
2Nm

}
. The Stickelberger

ideal of Km is the intersection Sm = S ′m ∩ Z
[
Gm
]
.

As in [CDW21], we shall refer to the Stickelberger lattice when Sm is viewed as
a Z-module. Note that in some references, like in [Was97, §6.2], the Stickelberger
ideal is defined as the smaller ideal Z

[
Gm
]
∩θm(−1)Z

[
Gm
]
, which coincides with

Def. 3.4 if and only if m is a prime power [Kuč86, Pr. 4.3].

Theorem 3.5 (Stickelberger’s theorem [Sin80, Th. 3.1]). The Stickelberger
ideal Sm of Km annihilates the class group of Km. Hence, for any ideal b of Km

and any α =
∑
σ∈Gm aσσ ∈ Sm, the ideal bα =

∏
σ∈Gm σ(b)aσ is principal.
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An outstanding point is that the proof of this important result is completely
explicit, i.e. for any α ∈ Sm, and any fractional ideal b of Km, an explicit γ ∈ Km

such that 〈γ〉 = bα is constructed. It appears that when α is a short element
of Sm, this explicit generator is efficiently computable.

We shall first exhibit a family of short elements of Sm and describe a short
Z-basis of the Stickelberger lattice. These results are taken from [BK21].

A large family of short Stickelberger elements. An element of the integral
group ring Z

[
Gm
]

is called short if it is of the form
∑
σ∈Gm aσσ ∈ Z

[
Gm
]
,

where aσ ∈ {0, 1} for all σ ∈ Gm. Short elements of Sm have been identified
in [Sch08, Th. 9.3(i) and Ex. 9.3] in the prime conductor case, and the proof has
been adapted to any conductor in [CDW21, Lem. 4.4] to prove the shortness of
the following generating set:

W =
{
wa; a ∈ J2,mK

}
, with wa = θm(1) + θm(a− 1)− θm(a). (3.5)

Note that using θm(a) + θm(−a) = Nm when m - a, we obtain wa = wm−a+1

whenever 1 < a < m, and that wm = Nm using also θm(m) = 0. Hence, W is
the set

{
wa; 2 ≤ a ≤

⌈
m
2

⌉}
∪
{
Nm
}

.
In order to find a short basis of the Stickelberger lattice for any conductor,

it is necessary to extend this family to a much bigger set of elements as is done
in [BK21, §3.1]. Knowing many short lattice vectors certainly helps to solve the
Cvp, as noted in [DPW19, §4.1], so that this result is of independent interest.

Proposition 3.6 ([BK21, Pr. 3.1]). Let a, b ∈ Z satisfying m - a, m - b
and m - (a+ b). Then α = θm(a) + θm(b)− θm(a+ b) is a short element of Sm.
Moreover, (1 + τ) ·α = Nm, so exactly one half of the coefficients of α are zeros.

This family clearly encompasses W \{Nm}. Note that the second part of the
proposition specifies [CDW21, Lem. 4.4(3)]: for any w ∈W\{Nm}, it implies that
the `2-norm of w, viewed as a vector in Zϕ(m) 'Z Z[Gm], is exactly

√
ϕ(m)/2.

A short basis of the Stickelberger lattice. Only knowing a generating set
of short elements as in [CDW21] is not necessarily sufficient. Indeed, working
in some sublattice of possibly large index to solve the Cvp like in [CDW21,
Cor. 2.2] could in practice arguably yield inferior approximation factors. More-
over, in order to best approach log-S-units lattices, we need to capture the entire
Stickelberger lattice, while still being able to compute and manipulate the cor-
responding explicit generators. Using a Hermite Normal Form computation, or
a suitable LLL reduction, increases dramatically the height of the (possibly ra-
tional) generators coefficients and significantly hinder subsequent computations.

Hence, sticking to the exposition of [BK21, §3.2], we describe here how to
extract a short basis of the Stickelberger lattice from the family of short elements
of Pr. 3.6, using the set M ′m defined in §3.1.

Recall m has prime power factorization m = q1 · · · qt with qi = peii > 2. For
any positive b ∈ Z, define Jb as the set

{
i ∈ J1, tK; qi | b

}
. Hence, rb =

∏
i∈Jb qi
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is the maximal divisor of (b,m) such that
(
rb,

m
rb

)
= 1. Let J ′b = J1, tK\Jb be the

set of indices i such that qi - b. If b < m, then J ′b 6= ∅ and αm(b) is defined by:

1. If J ′b = {j}, then b = c · mqj for 0 < c < qj , and [BK21, Eq. (16) and (15)]:

αm(b) =

{
2θm

(ϕ(qj)·m
2·qj

)
− θm

(ϕ(qj)·m
qj

)
if c = 1,

θm
(
m
qj

)
+ θm

(
b− m

qj

)
− θm(b) otherwise.

2. If
∣∣J ′b∣∣ > 1, let u = qi for some i ∈ J ′b and v = m

urb
. Since (u, v) = 1, there

exist x, y ∈ Z such that ux+ vy = 1, and [BK21, Eq. (14)]:

αm(b) = θm(bux) + θm(bvy)− θm(b).

It is shown in [BK21, Lem. 3.2] that these elements satisfy the conditions of
Pr. 3.6. In particular, for any b ∈ Z such that 0 < b < m, it implies αm(b) ∈ Sm
is short and (1 + τ) · αm(b) = Nm. This leads to the following short basis.

Theorem 3.7 ([BK21, Th. 3.6]). The set
{
αm(b); b ∈M ′m

}
∪
{
Nm
}

is a Z-
basis of the Stickelberger lattice Sm of Km having only short elements.

We stress that when m is a prime, this basis coincides with the one given by
[Sch08, Th. 9.3(i)] and with the set W in Eq. (3.5).

Effective Stickelberger generators using Jacobi sums. As previously men-
tioned, the proof of Th. 3.5 is explicit, i.e. for any α ∈ Sm and any fractional
ideal b of Km, it builds an explicit γ ∈ Km such that 〈γ〉 = bα. When α is a
short element from Pr. 3.6, it turns out γ has a simple expression using Jacobi
sums. How to build such a generator can be derived from [Was97, §6.2], [Sin80,
§3.1] or for these particular α’s in [BK21, §5]. We only treat the split case here,
but everything generalizes to any (unramified) prime (see [BK21, §5] for details).

Let ` ∈ Z be a prime such that ` ≡ 1 mod m, and let L be any fixed
(split) prime ideal of Km above `, so that F = OKm

/
L is the finite field with

N (L) = ` elements. Let χL be the m-th power Legendre symbol relatively to L,
i.e. χL : F× →

〈
ζm
〉

is determined by the congruence χL(a) ≡ a(`−1)/m mod L
for any a ∈ F×, and extended as usual to F by setting χL(0) = 0.5 For any
integer b, define the following Gauss sum [Sin80, Eq. (3.2)]:

gL(b) = −
∑
a∈F

χbL(a)ζa` ∈ Km`. (3.6)

This is the key element for the proof of Stickelberger’s theorem. Since χmL is
trivial, gL(b)m ∈ Km [Was97, Lem. 6.4], and the famous Stickelberger factor-
ization writes [Sin80, Eq. (3.4)] as gL(b)m · OKm = Lmθm(b). Applying this to
elements α = θm(a) + θm(b)− θm(a+ b) of Pr. 3.6 yields:

Lm·α =
(gL(a)gL(b)

gL(a+ b)

)m
· OKm . (3.7)

5 Note that χL is the conjugate character of the character “ω−d” used in [Was97, §6.2].
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By [Was97, Cor. 6.3], the generator on the right hand side belongs to
(
K×m

)m
,

so that the exponent m can actually be removed on both sides. By [Was97,
Lem. 6.2(d)], using the hypothesis m - (a + b), the remaining quotient can be
expressed as the Jacobi sum JL(a, b), defined by [Was97, p.88]:

JL(a, b) = −
∑
u∈F

χaL(u)χbL(1− u) ∈ Km. (3.8)

This discussion is summarized in the following proposition, taken from [BK21].

Proposition 3.8 ([BK21, Pr. 5.1]). Let a, b ∈ Z be as in Pr. 3.6, i.e. such
that m - a, m - b and m - a+ b. Then for α = θm(a)+θm(b)−θm(a+ b) we have:

Lα = JL(a, b) · OKm .

When α = αm(c) for c ∈M ′m, we shall write γ−L,c for the generator of Lαm(c).

Using a discrete logarithm table for the elements (1− u) ∈ F× in the sum in
Eq. (3.8), the computation, for a fixed prime L, of all Jacobi sums corresponding
to the short basis

{
αm(b); b ∈ M ′m

}
is very fast. As noted in [BK21, §5], the

Galois group also acts on the involved Jacobi sums in a way that allows to
replace some of the Jacobi sum computations by the application of a suitable
automorphism. By contrast, computing directly the quotient of Eq. (3.7) in Km`

would be rapidly intractable, even using sparse polynomials modulo xm`−1 and
replacing the division by the relation ±` = gL(c)gL(−c) [Was97, Lem. 6.1(b)].

Finally, as a direct consequence of [Was97, Lem. 6.1], all these Jacobi sums
are `-Weil numbers, i.e. for any a, b such that m - a, m - b, m - (a + b), they

verify the Weil relation JL(a, b)JL(a, b) = `. This implies
∣∣σ(JL(a, b)

)∣∣ =
√
`

for all σ ∈ Gm, meaning that any of these elements is the shortest generator of
its corresponding Lα, where α = θm(a) + θm(b)− θm(a+ b).

On the rank of the Stickelberger lattice. A consequence of Th. 3.7 is that
the Stickelberger lattice Sm only has rank ϕ(m)/2+1 in Z

[
Gm
]
; in particular, it

is not full rank, therefore it cannot be directly used as a lattice of class relations.
However, as noted in [CDW21, §4.3], the Stickelberger lattice modulo (1+ τ)

is a lattice of class relations for the relative class group, which we recall is the
kernel of the relative norm map NKm/K+

m
: Clm → Cl+m. We shall follow a quite

different exposition here, using Sinnott’s formalism from [Sin78,Sin80].
Let Rm = Z

[
Gm
]
. For any submodule M ⊆ Rm, the kernel of the multipli-

cation by (1 + τ) in M is denoted by M−. In particular:

R−m =
{
α ∈ Rm; (1 + τ)α = 0

}
and S−m =

{
α ∈ Sm; (1 + τ)α = 0

}
.

Clearly, we have R−m = (1− τ)Rm and (1− τ)Sm ( S−m. Let π : Rm −→ R−m be
the natural projection that associates (1 − τ)α ∈ R−m to any α ∈ Rm. A basis
of R−m, as a Z-module, is given by [Kuč86, Th. 3.1]:{

βs; 0 < s < m
2 , (s,m) = 1

}
, where βs = π

(
σs
)

= σs − σ−s. (3.9)
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Hence,R−m is isomorphic, as a Z-module, to Zϕ(m)/2. Note that the map π defined
above corresponds to the projection map Rm → Rm

/〈
1 + τ

〉
of [CDW21], as

shown by the expression given in the proof of [CDW21, Lem. 4.6].

Theorem 3.9 ([Sin78, Th. p.107]). The index of S−m in R−m is finite:[
R−m : S−m

]
= 2a · h−m, where a =

{
0 if t = 1,

2t−2 − 1 if t ≥ 2.

In particular, S−m has full rank ϕ(m)
2 in R−m. The restriction to the relative

class group means that the action of (1+τ) factors through the projection in S−m,
hence S−m can be used as a lattice of class relations for Gm-orbits of Cl−m.

Remark 3.10. We note that the projected Stickelberger lattice (1 − τ)Sm used
in [CDW21] is strictly smaller than S−m = Sm ∩ R−m. In fact, a consequence of
the proof of Lem. 3.14 is that

[
S−m : (1− τ)Sm

]
= 2ϕ(m)/2−1.

3.4 Real S+-units

In previous works, obtaining a full rank lattice in Z[Gm] from Sm was done by
the adjonction of (1 + τ)Z[Gm] [CDW17, Def. 2], which annihilates the relative
class group Cl−m. The obtained Sm+(1+τ)Z[Gm], called augmented Stickelberger
lattice, has full rank in Z[Gm] as shown in [CDW17, Lem. 2].

We generalize this result by considering the module of all real class group
relations between relative norm ideals of ideals from the entire class group Clm.
We stress that, as opposed to other modules like S−m or Sm+(1+τ)Z

[
Gm
]
, these

real class group relations will actually depend on the underlying prime ideals.
On one hand, this affects negatively the shortness of the obtained relation

vectors: putting those in Hermite Normal Form, we shall see later that each
relation, viewed as a vector of integer valuations, has `2-norm at most h+m. On
the other hand, removing the constraint to belong to the relative class group
brings a significant practical and theoretical gap: first, it allows to choose prime
ideals of smallest possible norms, which as shown in [BR20, §3.3] or [CDW21,
Th. 4.8] lowers in practice the obtained approximation factor; second, whereas
prime ideals of norm at most Bach’s bound are sufficient to generate the entire
class group, prime generators for the relative class group are only proven to be
of norm bounded by the larger bound (2.71 ·h+m · ln∆Km + 4.13)2 from [Wes18].

Lifting real class group relations. Let `1, . . . , `d be distinct prime integers
satisfying `i ≡ 1 mod m, so that `i is split in Km, for all i in J1, dK. For each i,
fix a prime ideal Li | `i in Km of norm `i, and let li = NKm/K+

m

(
Li
)

= L1+τ
i ∩K+

m

be the relative norm ideal of Li. Since Li is a split prime ideal of Km dividing `i,
the ideal li is a split prime ideal of K+

m of norm `i, and by Kummer-Dedekind’s
theorem we have li · OKm = L1+τ

i . This justifies the slight abuse of notation of

writing lσi = L
(1+τ)σ
i ∩K+

m, for any σ ∈ Gm.
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We are interested in the real class group relations between all prime ideals
in the G+

m-orbits of the li, i.e. between the following prime ideals of K+
m:{

lσsi ; i ∈ J1, dK, 0 < s < m
2 , (s,m) = 1

}
. (3.10)

The important point is, any class relation in K+
m between ideals from Eq. (3.10)

translates to a class relation in Km using repeatedly lσi · OKm = L
(1+τ)σ
i . More

precisely, let
(
r1, . . . , rd

)
∈ Z

[
G+
m

]d
represent a real class relation in K+

m between

ideals
{
lσsi
}

of Eq. (3.10), i.e., there exists γ+r ∈ K+
m such that γ+r ·OK+

m
=
∏d
i=1 l

ri
i .

Then, this relation lifts naturally to a class relation
(
(1 + τ) · r1, . . . , (1 + τ) · rd

)
in Km between prime ideals in the Gm-orbits

{
Lσi ; i ∈ J1, dK, σ ∈ Gm

}
as:

γ+r · OKm =

d∏
i=1

L
(1+τ)ri
i . (3.11)

Let C+
l1,...,ld

denote the lattice of class relations between elements of all G+
m-

orbits of {li; i ∈ J1, dK}. Concretely, it is the kernel of the following map:

fl1,...,ld :
(
ri,s
)

1≤i≤d,
0<s<m/2,(s,m)=1

∈ Zd·
ϕ(m)

2 7−→
∏
i,s

[
lσsi
]ri,s ∈ Cl+m . (3.12)

Using the canonical isomorphism of Z-modules Zd·
ϕ(m)

2 'Z Z[G+
m]d, the lattice

of class relations C+
l1,...,ld

may be viewed as a Z-submodule of Z[G+
m]d. Lifting

all these relations back to Km as in Eq. (3.11), we therefore obtain the submod-
ule (1 + τ) ·C+

l1,...,ld
⊆ (1 + τ) ·Z[Gm]d, that we shall call the lattice of real class

relations between the Gm-orbits of {Li; i ∈ J1, dK}.

Remark 3.11. When h+m = 1, C+
l1,...,ld

is isomorphic to d copies of the integral

group ring Z[G+
m] and the lattice of real class relations is simply (1+τ) ·Z[Gm]d.

Euclidean norm of real class relations. We now identify a real class group

relation from C+
l1,...,ld

to a vector in Zd·
ϕ(m)

2 . In other words, we consider only

the valuations of these relations on the G+
m-orbits of the prime ideals l1, . . . , ld.

Furthermore, C+
l1,...,ld

is put in Hermite Normal Form, conveniently for the proof.
Better bounds might be easily obtained using e.g. the LLL algorithm.

Proposition 3.12. Suppose the lattice C+
l1,...,ld

of real class relations is in HNF.

Then, for all w ∈ C+
l1,...,ld

⊆ Z[G+
m]d, we have ‖w‖2 ≤ ‖w‖1 ≤ h+m.

This means that (1 + τ) ·C+
l1,...,ld

can be used in the CDW algorithm instead
of (1 + τ) · Z[Gm], as we will see in §4, while still reaching the same asymptotic
approximation factor as long as h+m ≤ O

(√
ϕ(m)

)
. This slightly more restrictive

hypothesis (see the discussion in §2.2) will be more than compensated by the
fact that it removes the need for the li’s to be principal, which has a significant
impact in practice on the algebraic norm of the chosen ideals, and thus on the
final approximation factor reached in [CDW21, Alg. 6].
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Proof. The image of the map fl1,...,ld given in Eq. (3.12) is a subgroup of Cl+m,
so the volume of its kernel C+

l1,...,ld
is at most h+m. By definition of the Hermite

Normal Form,6 C+
l1,...,ld

has diagonal elements h1, . . . , hϕ(m)/2 > 0, and the j-
th column contains integers cij such that 0 ≤ cij < hj for i < j and cij = 0
for i > j. We shall prove hi +

∑
i<j cij ≤ hi ·

∏
i<j hj for any row of fixed index

i ∈ J1, ϕ(m)
2 K, which yields the result. This is done by induction on the dimension,

using repeatedly the fact that for any integers x, y ≥ 1, x+ (y − 1) ≤ (xy).

Explicit real generators. For each relation r =
(
r1, . . . , rd

)
∈ C+

l1,...,ld
, we

compute an explicit γ+r ∈ K+
m ( Km that verifies Eq. (3.11). Together with the

unit group O×K+
m

of K+
m, they form a fundamental system of S+-units, where the

finite places of S+ are the G+
m-orbits of the relative norm ideals li.

In the next section, we shall see that adding the explicit Stickelberger gener-
ators of §3.3 to these real generators yields a maximal set of independent S-units
in the degree ϕ(m) cyclotomic field Km, at the much smaller cost of computing

a fundamental system of real S+-units in K+
m of degree only ϕ(m)

2 .
In practice, though this remains the main bottleneck of our experimental

setting, it allows us to push effectively our experiments up to degree ϕ(m) = 184,
whereas the (full) S-units computations of [BR20] were bound to ϕ(m) = 70.

3.5 A S-unit subgroup of finite index

As in §3.4, let `1, . . . , `d be prime integers satisfying `i ≡ 1 mod m; for each i,
fix a (split) prime ideal Li | `i in Km and let li = Li∩K+

m. Let S be a set of places
containing, apart the infinite places of Km, all Gm-orbits of the Li’s. Combining
the results of §3.2, §3.3 and §3.4, we get the following family of S-units:

F =
{
va; a ∈M+

m

}
∪
{
γ−Li,b; i ∈ J1, dK, b ∈M ′m

}
∪
{
γ+r; r ∈ C+

l1,...,ld

}
(3.13)

where the first set is the set of circular units given by Th. 3.3, the second is the
set of explicit Stickelberger generators given by Pr. 3.8 and the last one is the
set of real generators as in Eq. (3.11).

This family has
(
ϕ(m)/2−1

)
+d·ϕ(m) elements, which matches precisely the

multiplicative rank of the full S-unit group modulo torsion O×Km,S
/
µ
(
O×Km

)
.7

In this section, we prove that these S-units are indeed independent and explicit
the index of the subgroup of O×Km,S they generate.

Theorem 3.13. Let hm,(L1,...,Ld) (resp. h+m,(l1,...,ld)) be the cardinal of the sub-

group of Clm (resp. Cl+m) generated by the Gm-orbits of L1, . . . ,Ld (resp. the G+
m-

orbits of l1, . . . , ld). The family F given in Eq. (3.13) is a maximal set of inde-
pendent S-units. The subgroup generated by F in O×Km,S

/
µ
(
O×Km

)
has index:(

hm · h+m,(l1,...,ld)
hm,(L1,...,Ld)

)
· 2b ·

(
h−m
)d−1 · (2

ϕ(m)
2 −1 · 2a

)d
,

6 In this proof, we consider an upper-triangular HNF with row vectors.
7 Note that for our purpose, the torsion units play no role and can thus be put aside.
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where a = b = 0 if m is a prime power, and a = 2t−2 − 1, b = 2t−2 + 1 − t
whenever m has t distinct prime divisors.

Note that when the Gm-orbits of the Li’s generate Clm, the first term in this
index equals h+m. As we shall see in §3.6, the powers of 2 can be killed by standard
saturation techniques, so the real problem comes from the (h−m)d−1 part, which
has generically huge prime factors. Intuitively, this comes from the fact that the
Stickelberger relations miss all class group relations that exist between two (or
more) distinct Gm-orbits.

First, we show that the lattice obtained by adding one copy of the Stickel-
berger ideal per Gm-orbit, to the lattice (1 + τ) · C+

l1,...,ld
of real class relations,

yields a full-rank submodule of Z[Gm]d. Hence, we have obtained a full-rank
lattice of class relations for the union of all Gm-orbits above `1, . . . , `d.

We begin by restricting our attention to the case d = 1. We need the following
lemma, which extends and proves an observation already made in [DPW19,
Rem. 3] in the prime conductor case:

Lemma 3.14. The index of Sm + (1 + τ) · Z[G+
m] in Z[Gm] is finite:[

Z[Gm] : Sm + (1 + τ) · Z[G+
m]
]

= 2ϕ(m)/2−1 · 2a · h−m,
where a = 0 if t = 1 and a = 2t−2 − 1 else, where m has t prime divisors.

Proof. The proof is due to R. Kučera. First, note that (1+τ)·Z[Gm] contains Nm,
hence by Th. 3.7, Sm+(1+τ)·Z[G+

m] is generated by the following ϕ(m) elements:{
αm(b); b ∈M ′m

}
∪
{

(1 + τ)σs; 0 < s < m
2 , (s,m) = 1

}
.

Therefore, its index is given by the absolute value of the determinant of the
transition matrix from the canonical basis of Z[Gm] to the above generating set:

[
Z[Gm] : Sm + (1 + τ) · Z[G+

m]
]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det

1 1
...

. . .

1 1





{
ab,s

}
b∈M ′m

0<s<m, (s,m)=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where for any b ∈ M ′m, we write αm(b) =
∑
σs∈Gm ab,sσs. Subtracting suitable

combinations of rows of the lower half of this matrix to rows of the upper half
to cancel the upper right block, this is the absolute value of the determinant of

the square matrix of dimension ϕ(m)
2 with coefficients

{
ab,s−ab,−s

}
, for b ∈M ′m

and s prime with m such that 0 < s < m
2 . By Pr. 3.6, we have ab,s + ab,−s = 1,

which implies that ab,s − ab,−s = 2ab,s − 1. Therefore, we recognize the matrix
appearing at the very end of the proof of [BK21, Cor. 4.1] with each coefficient
being multiplied by 2. Combining this with [BK21, Eq. (26)], we obtain:[

Z[Gm] : Sm + (1 + τ) · Z[G+
m]
]

= 2
ϕ(m)

2 · 12
[
R−m : S−m

]
,

and the result follows from Th. 3.9.
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When h+m = 1, the lattice of real class relations is always (1 + τ) ·Z[G+
m], and

Lem. 3.14 gives the whole story. In the general case h+m 6= 1, we deduce:

Lemma 3.15. Let ` be a prime integer that splits in Km, let L | ` in Km and
let l = L1+τ ∩K+

m. Let h+m,(l) be the cardinal of the subgroup of Cl+m generated by
the G+

m-orbit of l in K+
m. The Z-module generated by Sm and the lattice (1+τ)·C+

l

of real class relations of the Gm-orbit of L, has finite index in Z[Gm]:[
Z[Gm] : Sm + (1 + τ) · C+

l

]
= 2ϕ(m)/2−1 · 2a · h−m · h+m,(l),

where a = 0 if t = 1 and a = 2t−2 − 1 else, where m has t prime divisors.

Proof. By definition of C+
l as the kernel of the map fl of Eq. (3.12), we have:[

Z[G+
m] : C+

l

]
= h+m,(l) =

[
(1 + τ) · Z[G+

m] : (1 + τ) · C+
l

]
.

Note also that Nm belongs to (1 + τ) · C+
l ⊆ (1 + τ) · Z[G+

m], hence, again by
means of transition matrix:[
Sm + (1 + τ) · Z[G+

m] : Sm + (1 + τ) · C+
l

]
=
[
(1 + τ) · Z[G+

m] : (1 + τ) · C+
l

]
.

Finally, putting things together with Lem. 3.14, the result comes from:[
Z[Gm] : Sm + (1 + τ) · C+

l

]
=
[
Z[Gm] : Sm + (1 + τ) · Z[G+

m]
]

·
[
Sm + (1 + τ) · Z[G+

m] : Sm + (1 + τ) · C+
l

]
=
(
2ϕ(m)/2−1 · 2a · h−m

)
·
[
Z[G+

m] : C+
l

]
.

Finally, for the case where there are d ≥ 1 orbits, a reasoning very similar to
the proofs of Lem. 3.14 and 3.15 leads to:

Proposition 3.16. Let h+m,(l1,...,ld) be the cardinal of the subgroup of Cl+m gen-

erated by all G+
m-orbits of l1, . . . , ld. Then, the Z-module generated by the lat-

tice (1+τ)·C+
l1,...,ld

⊆ (1+τ)·Z[G+
m]d of real class relations between the Gm-orbits

of the Li’s, and the diagonal block matrix of d copies of
(
Sm \NmZ

)
, verifies:[

Z[Gm]d : Sdm + (1 + τ) · C+
l1,...,ld

]
=
(
2ϕ(m)/2−1 · 2a · h−m

)d · h+m,(l1,...,ld).
Proof of Th. 3.13. The independence comes from Pr. 3.16 and the trivial fact
that circular units are independent from Stickelberger and real generators. The
index of the subgroup generated by F in O×Km,S

/
µ
(
O×Km

)
is given by:

[
O×Km : Cm

]
·
[
Z[Gm]d : Sdm + (1 + τ) · C+

l1,...,ld

]∣∣det
(
ker fS

)∣∣ ,

where ker fS is the lattice of all class group relations between finite places of S.
The first term is given by Pr. 3.2, the numerator of the second term is given by
Pr. 3.16, and by definition of O×Km,S , the denominator is precisely hm,(L1,...,Ld).
Rearranging terms adequately yields the result.

22



3.6 Saturation

First, remark that the index given by Th. 3.13 is divisible by a large power of 2.
In order to mitigate this exponential growth, we shall 2-saturate our sets.

Saturation is a standard tool of computational algebraic number theory used
in various contexts like (S-)units and class groups computations, which can be
tracked back at least to [PZ89, §5.7]. In the following, we briefly describe the 2-
saturation procedure and refer to e.g. [BFHP21, §4.3] for a formal exposition.

Recognizing squares. Let U =
〈
g1, . . . , gk

〉
be a finitely generated multiplicative

subgroup of O×Km,S . The first step of the 2-saturation process is to recognize

squares in U ∩ (O×Km,S)2. This is done by using local information provided by
quadratic characters.

Fix a prime p /∈ S such that N (p) ≡ 1 mod lcm(m, 2). Define χp as the
Legendre symbol such that χp(a) ≡ a(N (p)−1)/2 mod p for any a ∈ U . As p /∈ S
and a ∈ O×Km,S , we have χp(a) ∈ {−1, 1}. If a is a square, χp(a) = 1 as a is
still a square modulo p. The converse is not true, but by considering many char-
acters χp1

, . . . , χpN as above, it is expected that at least one of them evaluates
to −1. Hence, recognizing squares boils down to compute the kernel of:

log−1,χ : U −→ FN2
a 7−→

{
log−1 χpi(a); i ∈ J1, NK

}
.

An element of this kernel is still not guaranteed to be a square. Nevertheless,
a standard heuristic, first stated in the context of integer factorization [BLP93,
§8] and also used in multiquadratic fields [BBV+17, §4.2], [BV18, H. 4.3], is to
assume that if the pi are all distinct (split) prime ideals, then the log−1 χpi

behave as independent uniform random elements of Hom
(
U
/(
U ∩ (K×m)2

)
,F2

)
.

Concretely, this means that these should span this dual with probability at
least

(
1− 1/2N−k

)
[BLP93, Lem. 8.2]; in that case, any element of the kernel of

log−1,χ is indeed a square. In other words, if
∑

1≤i≤k vi log1,χ gi = 0, then with

high probability the product g =
∏

1≤i≤k g
vi
i indeed belongs to U ∩ (O×Km,S)2.

Square roots algorithm. Once we have identified combinations of elements of U
that are S-unit squares, it remains to compute their square roots explicitly.

First, we note that it is useful to systematically reduce those products modulo
all squared circular units C2

m to contain the coefficients size. This is done as usual
by projecting the logarithmic embedding LogS∞ g of the obtained g ∈ (O×Km,S)2

into 2·LogS∞ Cm, finding a closest vector y = LogS∞ u
2 and replacing g by g/u2.

The traditional method to compute the square root of an element g ∈ (K×m)2

is to factor the polynomial x2 − g in Km[x], using e.g. Trager’s method [Coh93,
Alg. 3.6.4] or Belabas’ p-adic method [Bel04]. As, according to Th. 3.13, we have
many square roots to compute, we choose instead to use a batch strategy in the
spirit of [LPS20, Alg. 5] using complex embeddings approximations.

Since LLL seminal paper [LLL82], it is known that one can retrieve an al-
gebraic number from approximations of one of its complex embeddings. Indeed,
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fix an embedding σ ∈ Gm and a Q-basis
(
ω1, . . . , ωn

)
of OKm , and LLL-reduce:

Bκ :=


−σ(ω1) C 0 . . . 0

−σ(ω2) 0 C
.. .

...
...

...
. . .

. . . 0
−σ(ωn) 0 . . . 0 C

 .

where C > 0 is a constant and approximations are computed at precision κ ∈ N.
Then, for any g ∈ OKm , applying e.g. Babai’s Nearest Plane algorithm on the
LLL basis of Bκ and target

(
σ(g), 0, . . . , 0

)
gives a combination (g1, . . . , gn)

such that g =
∑n
i=1 giωi. As explained in [LPS20], it is possible to mutualize the

computation of Bκ and reuse the unitary transformation to hasten computations
when increasing κ is required.

We use an improvement that benefits from the existence of the maximal real
subfield K+

m. Each g ∈ Km = K+
m[ζm] can be uniquely written as g = g0+g1 ·ζm,

with g0, g1 ∈ K+
m. For σ ∈ G+

m, the relative Minkowski embedding of σ relatively
to the extension Km/K

+
m is defined by σKm/K+

m
(gσ0 , g

σ
1 ) =

(
gσ , gσ

)
∈ C2. This

is a linear homomorphism of C2. When g = h2, its square root h0 + h1ζm can
be retrieved from approximations of hσ0 and hσ1 instead of hσ, as follows:

1. Compute σKm/K+
m

(gσ0 , g
σ
1 ) =

(
gσ , gσ

)
∈ C2;

2. Choose one complex square root z of gσ and apply σ−1
Km/K

+
m

to (z, z) to get

potential approximations
(
h̃σ0 , h̃

σ
1

)
of hσ0 and hσ1 respectively;

3. Using LLL as above in K+
m on h̃σ0 and h̃σ1 , obtain

(
h̃0, h̃1

)
in K+

m, which are
candidates for resp. h0 and h1.

4. If (h̃0 + h̃1 · ζm)2 6= g, then increase κ using the fast method of [LPS20].

Hence, this method amounts to LLL reducing a matrix of size n
2 × (n2 + 1) and

decoding using e.g. Babai’s Nearest Plane algorithm. This offers a great speed-up
compared to reducing a n×(n+1) matrix. For further details and generalizations
to higher order polynomial roots, we refer the interested reader to [Les21].

Rebuilding a basis. After the square root step, we obtain new elements h1, . . . , hr,
where r = dim

(
ker log−1,χ

)
. To extract a set of k independent elements from the

extended set
{
h1, . . . , hr, g1, . . . , gk

}
, we compute an LLL-basis of the matrix

constituted of their valuations at the places of S. Note that this matrix can be
computed entirely from the valuations of the initial set {gi} and the basis of
ker log−1,χ. Using the same trick as for matrix A in [BBV+17, Alg. 5.2], this
contains the height of the transformation matrix, sufficiently for our needs.

After a few passes of this entire process we obtain a maximal set of indepen-
dent S-units of index given by Th. 3.13 where no factor 2 remains.

Remark 3.17. Note that this whole 2-saturation can easily be adapted to track
any e-th power, using if necessary a generalized Montgomery’s e-th root algoritm
[Tho12, §3]. Though, the relative class number h−m in the index of Th. 3.13 hides
huge prime factors that at first glance renders this strategy hopeless in general.
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4 Quantum improvements of the CDW algorithm

The complete material for this section is given in §A, and the main points are
briefly summarized here. The CDW algorithm for solving Approx-Svp was intro-
duced in [CDW17] for cyclotomic fields of prime power conductors, and extended
to all conductors in [CDW21]. Its main feature is the use of short relations of
the Stickelberger ideal.

In this section, we show how to benefit from the results of §3.3 and §3.4
to remove most quantum steps of [CDW21]. More precisely, we first propose in
§A.2 an equivalent rewriting of [CDW21, Alg. 7] that enlightens some hidden
steps that reveal useful for subsequent modifications. Then, in §A.3, we plug
the explicit generators of Pr. 3.8 and Eq. (3.11), for relative class group orbits,
to remove the last call to the quantum Pip solver. Finally, by considering the
module of all real class group relations like in Pr. 3.16, we remove in §A.4 the
need of a random walk mapping any ideal of Km into Cl−m, at the (small) price
of restricting to cyclotomic fields such that h+m ≤ O(

√
m) (Hyp. A.1).

An equivalent rewriting of CDW (§A.2). Omitting details, the CDW algorithm
works as follow, for any challenge ideal a of Km [CDW21, Alg. 7, 6 and 2]:

1. Random walk to Cl−m: find b such that
[
ab
]
∈ Cl−m.

2. Solve the Cldl of ab on Gm-orbits of the prime ideals L1, . . . ,Ld of Cl−m. This
gives a vector α = (α1, . . . , αd) ∈ Z[Gm]d such that ab ·

∏
i L

αi
i is principal.

3. Solve the Cpmp by projecting each αi in π(Sm) = (1 − τ)Sm, find a close
vector vi = yi · π(Sm) and lift vi to get some βi st. π(βi) = vi, ‖α− β‖1 is

small with positive coordinates, and ab ·
∏
i L

αi−βi
i is principal.

4. Apply the Pip algorithm of [BS16] to get a generator of this principal ideal.
5. Reduce the obtained generator by circular units like in [CDPR16].

This eventually outputs h ∈ a of length ‖h‖2 ≤ exp
(
Õ(
√
m)
)
· N (a)1/ϕ(m).

We focus on the lift procedure of Step 3. In [CDW21], a vector v ∈ π(Sm)
is lifted to β by keeping positive coordinates for βσ and sending opposite of
negative coordinates to βτσ . This works because for any c ∈ Cl−m, [c]−1 = [cτ ],
but hides which exact product of relative norm ideals is involved.

We propose a totally equivalent lift procedure: from v = y · π(Sm), consider
the preimage β̃ = y ·Sm, from which we remove min

{
β̃σ , β̃τσ

}
to each β̃σ coordi-

nate to obtain β. Now, it is obvious that β is a combination y of relations in Sm,
and of relative norm relations given by the min part. Details are in Alg. A.6.

Using explicit Stickelberger generators (§A.3). Each element wa of the generat-
ing set W of Sm corresponds to a generator JL(1, a − 1) as defined in Pr. 3.8.
Similarly, each relative norm ideal writes 〈γ+s 〉 = L(1+τ)σs (see §3.4). Hence, from
an (explicit) Cldl solution 〈g〉 = ab ·Lα, and given, as rewritten above, a Cpmp
solution β = y ·W + u · (1 + τ) · Z[G+

m], we have that a generator of ab · Lα−β
is directly given by g

/(∏
a JL(1, a− 1)ya

∏
s(γ

+
s )us

)
. Knowing this allows to re-

move the quantum Pip in dimension n in step 4 (for each query). In exchange,
we need to compute (only once) all real generators for relative norm relations,
which can be done in dimension ϕ(m)/2 by [BS16, Alg. 2].
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Avoiding the random walk (§A.4). Finally, note that several quantum steps are
performed (for each query) in the random walk that maps ideals to Cl−m. Using
the results of §3.4, we replace the module (1 + τ) · Z[Gm]d by the module of all
real class group relations. Asymptotically, we prove that this does not change the
bound on the approximation factor Pr. A.7, as long as we restrict to fields Km

with h+m ≤ O(
√
m) (Hyp. A.1). This tiny restriction is largely compensated by

the fact that only two quantum steps remain: one is performed only once in
dimension ϕ(m)/2 to compute real class group relations and generators, and the
second is solving the Cldl for each query (see Tab. A.1).

5 Computing log-S-unit sublattices in higher dimension

Our main goal is to simulate the Tw-PHS algorithm for high degree cyclotomic
fields. To this end, we compute full-rank sublattices of the full log-unit lattice
using the knowledge of the maximal set F of independent S-units defined by
Eq. (3.13) and its 2-saturated counterpart Fsat from §3.6. These sets are easily
lifted from a complete set of real S+-units (see §3.4), hence at the classically
subexponential cost of working in the half degree maximal real subfield. However,
as by Th. 3.13 the index of these families grows rapidly as the number of orbits
increases, this degraded mode only gives us a crude-but-reliable upper bound on
the approximation factors that can be expected when using Tw-PHS.

The Tw-PHS algorithm is briefly recalled in §5.1, and our experimental set-
ting detailed in §5.2. Then, we analyse in §5.3 the geometric characteristics of
our log-S-unit sublattices and the obtained approximation factors in §5.4.

5.1 The Twisted-PHS algorithm

The Tw-PHS algorithm [BR20] was introduced as an improvement of the PHS
algorithm [PHS19]. Both aim at solving Approx-id-Svp in any number field and
have the same theoretically proven bounds for running time and reached ap-
proximation factors. However, the explicit S-units formalism in [BR20] lead to
a proper normalization of the used log-S-embedding, weighting coordinates ac-
cording to finite places norms. This turned out to give experimentally significant
improvements on the lattices decodability and on reached approximation factors.

Both algorithms are split in a preprocessing phase, performed only once for
a fixed number field, and a query phase, for each challenge ideal. More precisely:

1. The preprocessing phase consists in choosing a set of finite places S gen-
erating the class group, computing the corresponding log-S-unit lattice for
an appropriate log-S-embedding, and preparing the lattice for subsequent
Approx-Cvp requests using the Laarhoven’s algorithm from [Laa16];

2. For each challenge ideal b, the query phase consists in first solving the Cldl
wrpt. S to obtain 〈α〉 = b ·

∏
L∈S L

vL . Then, this element is projected into
the span of the above log-S-unit lattice, and a close vector of this lattice
gives a S-unit s st. α/s is hopefully small. Here, guaranteeing that α/s ∈ b
is achieved by applying a drift parameterized by some β on the target.
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In the Tw-PHS case, since the obtained lattice, after proper normalization, ap-
pears to have exceptionally good geometric characteristics, it was proposed to re-
place Laarhoven’s algorithm by a lazy BKZ reduction in the preprocessing phase
and Babai’s Nearest Plane algorithm in the query phase [BR20, Alg. 4.2 and 4.3].
We will consider only this practical version in our experiments.

In details, for a number field K, the log-S-unit lattice used in the Tw-
PHS algorithm is defined as ϕtw(O×K,S), where ϕtw is the log-S-embedding given
by fH ◦ LogS [BR20, Eq. (4.1)], for an isometry fH from the span H of LogS
to Rk, where k equals the multiplicative rank of O×K,S modulo torsion.

Among the consequences of the proper normalization induced by LogS , the
authors showed how to optimally choose a set of finite places that generate the
class group [BR20, Alg. 4.1]. Namely, taking ideals of increasing prime norms in
the set S, they noticed that the density of the associated (twisted) log-S-unit
lattice ϕtw(O×K,S) increases up to an optimal value before decreasing.

Finally, a tricky aspect of the resolution resides in guaranteeing that the out-
put solution is indeed an element of the challenge ideal, i.e. that vL(α/s) ≥ 0 for
all L ∈ S ∩ S0. In [BR20], this is done by applying a drift vector in the span of
the log-S-unit lattice, parameterized by some β whose optimal value is searched
using a dichotomic strategy in the query phase. Concretely [BR20, Eq. (4.7)]:

t = fH

({
ln|α|σ−

kβ + lnN (b)−
∑

L∈S lnN (L)

[K : Q]

}
σ
,
{

ln|α|[KL:Q`]
L +β− lnN (L)

}
L∈S

)
.

5.2 Experimental settings

Computing the full group of S-units in a classical way is rapidly intractable, even
in the case of cyclotomic fields; therefore, experiments on Tw-PHS performed in
[BR20] were bound to ϕ(m) ≤ 70. We apply the Tw-PHS algorithm using our
full-rank sublattices of the whole log-S-unit lattice induced by the independent
family F of Eq. (3.13), its 2-saturated counterpart Fsat (§3.6) and, when possible,
a fundamental system Fsu for the full S-unit group. These degraded modes should
however already give a glimpse on how Tw-PHS scales in higher dimensions.

Source code and hardware description. All experiments have been implemented
using SageMath v9.0 [Sag20], except for the full S-unit groups computations for
which we used Magma [BCP97], which appears much faster for this particular
task and also offers an indispensable product (“Raw”) representation. Moreover,
fplll [FpL16] was used to perform all lattice reduction algorithms. The entire
source code is provided on https://github.com/ob3rnard/Tw-Sti.

Most of the computations were performed in less than two weeks on a server
with 72 Intel R© Xeon R© E5-2695v4 @2.1GHz with 768GB of RAM, using 2TB of
storage for the precomputations. Real class group computations were performed
on a single Intel R© CoreTM i7-8650U @3.2GHz CPU using 10GB of RAM.

Targetted cyclotomic fields. We consider cyclotomic fields of any conductor m
st. 20 < ϕ(m) < 190 with known real class number h+m = 1, including those from
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m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m m ϕ(m) h+

m m ϕ(m) h+
m

136 64 2 248 120 4 284 140 † 205 160 2 332 164 †
212 104 5 272 128 2 292 144 † 328 160 † 344 168 †
145 112 2 408 128 2 504 144 4 440 160 5 356 176 †
183 120 4 268 132 † 316 156 † 163 162 4 376 184 †

Table 5.1 – List of ignored conductors (†: failure to compute Cl+m within a day).

Tab. 2.1. The restriction to h+m = 1 is only due to technical interface obstructions,
i.e. we are not aware of how to access the non-trivial real class group relations
internally computed by SageMath. Additionally, for some of the conductors,
we were not able to obtain the real class group within a day. Thus, we are left
with 192 distinct cyclotomics fields, and Tab. 5.1 lists all ignored conductors.

Finite places choice. The optimal set of places computed by [BR20, Alg. 4.1]
yields a number dmax of splitGm-orbits of smallest norms maximizing the density
of the corresponding full log-S-unit lattice. However, the index of our log-S-unit
sublattices, given by Th. 3.13, grows too quickly, roughly in (h−m)d−1, so that
their density always decrease as soon as d > 1. This remark motivates us to
compute all log-S-unit sublattices for d = 1 to dmax first split Gm-orbits.

Full rank log-S-unit sublattices. The first maximal set of independent S-units
that we consider is F from Eq. (3.13). The 2-saturation process of §3.6 mitigates
the huge index of F, yielding family Fsat. A fundamental system Fsu of the full S-
unit group O×Km,S (modulo torsion) is also used whenever it is computable in
reasonable time, i.e. up to ϕ(m) < 80. As noted in §2.3, their images under any
log-S-embedding ϕ form full-rank sublattices resp. Lurs, Lsat, Lsu, generated by
resp. ϕ(F), ϕ(Fsat), ϕ(Fsu), of the corresponding full log-S-unit lattice ϕ(O×Km,S).

We consider several choices of the log-S-embedding ϕ. Namely, we tried to
evaluate the advantage of using the expanded LogS (exp) over LogS , labelled tw
(as twisted by [C : R] = 2). We also considered versions with (iso) or without
(noiso) the isometry fH of [BR20, Eq. (4.2)]. This yields four choices for ϕ,
e.g. tag noiso/tw is ϕ = LogS and iso/exp gives the original ϕtw = fH ◦ LogS .

Compact product representation. In order to avoid the exponential growth of
algebraic integers viewed in Z[x]

/〈
Φm(x)

〉
, we use a compact product represen-

tation, so that any element α in F (resp. Fsat or Fsu) is written on a set g1, . . . , gN
of N small elements as α =

∏N
i=1 g

ei
i . Hence, besides the gi’s, each α is stored as

a vector e ∈ ZN , and for any choice of ϕ, we have ϕ(α) =
∑N
i=1 ei · ϕ(gi). This

allows to compute ϕ without the coefficient explosion encountered in [BR20, §5].

Lattice reductions. For each of the constructed log-S-unit sublattices, i.e. for each
number of orbits d ∈ J1, dmaxK, for each family of independent S-units F, Fsat and
(when available) Fsu, and for each choice of log-S-embedding, we compare several
levels of reduction: no reduction (“raw”), LLL-reduction and BKZ40-reduction.
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m d set k Vol1/k
δ0 δ

raw LLL bkz40 raw LLL bkz40

152

1
urs 107 8.691 0.999 0.997 0.997 2.016 1.588 1.577
sat 107 6.928 1.001 0.999 0.999 4.398 1.790 1.820
su 107 6.928 1.000 0.999 0.999 28.396 1.810 1.811

2
urs 179 9.683 0.999 0.998 0.998 2.157 1.630 1.612
sat 179 7.384 1.000 0.999 0.999 7.670 1.885 1.898
su 179 6.816 1.000 1.000 1.000 65.355 2.225 2.309

149

1
urs 221 12.192 0.999 0.999 0.999 2.828 2.092 2.028
sat 221 9.697 1.000 1.000 1.000 12.473 2.307 2.266

2
urs 369 13.353 0.999 0.999 0.999 3.134 2.234 2.173
sat 369 10.150 1.000 1.000 1.000 14.472 2.509 2.483

3
urs 517 13.962 0.999 0.999 0.999 3.269 2.271 2.213
sat 517 10.410 1.000 1.000 1.000 22.211 2.569 2.552

4
urs 665 14.415 1.000 1.000 1.000 3.327 2.301 2.244
sat 665 10.632 1.000 1.000 1.000 20.731 2.606 2.594

564

1
urs 275 12.264 1.000 0.999 0.999 2.551 2.035 2.085
sat 275 9.750 1.001 1.000 1.000 14.624 2.387 2.384

2
urs 459 13.384 1.000 0.999 0.999 2.831 2.193 2.248
sat 459 10.168 1.000 1.000 1.000 15.707 2.656 2.643

3
urs 643 14.393 1.000 0.999 0.999 2.984 2.236 2.291
sat 643 10.724 1.000 1.000 1.000 17.342 2.728 2.714

4
urs 827 15.032 1.000 0.999 0.999 3.029 2.253 2.313
sat 827 11.080 1.000 1.000 1.000 18.829 2.759 2.743

Table 5.2 – Geometric characteristics of Lurs, Lsat and Lsu for Q(ζ152), Q(ζ149)
and Q(ζ564) with log-S-embedding of type noiso/exp.

5.3 Geometry of the lattices

For all described choices of log-S-unit sublattices, we first evaluate several ge-
ometrical parameters (see §2.5): reduced volume V 1/k, root-Hermite factor δ0,
orthogonality defect δ. For clarity’s sake, we only give here a few examples giving
a glimpse of what happens in general, and additional data can be found in §B.1.

Table 5.2 contains data for cyclotomic fields Q(ζ152), Q(ζ149) and Q(ζ564) of
degrees 72, 148 and 184. All values correspond to the noiso/exp log-S-embedding,
i.e. ϕ = ϕtw. Indeed, as illustrated by Tab. B.2, we experimentally note that using
(no)iso/exp seems geometrically slightly better than using (no)iso/tw.

We stress that we observe the same behaviour for the data presented here as
for all other fields. As expected, the reduced volumes are smaller for Lsat than
for Lurs, and both increase significantly with the number of orbits. The root-
Hermite factor δ0 is always very close to 1, confirming observations of [BR20,
Tab. B.1]. We also retrieve the evolution of the orthogonality defect: indeed, the
raw basis corresponding to Lurs seems to be already well reduced, and all lattices
have small orthogonality defect δ after LLL reduction. Moreover, observe that
BKZ40 does not seem to improve much the orthogonality defect of the bases.

Norms of the Gram-Schmidt Orthogonalization. We then look at the logarithm
of the Gram-Schmidt norms, for every described choice of log-S-unit sublattices.
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Fig. 5.1 – Lsat lattices for Q(z149),Q(z159) and Q(z564): effect of the log-S-
embedding choices iso/noiso and exp/tw.

Figure 5.1 shows the evolution of the norms for one or two orbits of the
unreduced basis ϕ(Fsat) for all four options of the log-S-embedding ϕ. Again, we
stress that these curves are similar for all fields. As expected, the isometry fH has
absolutely no influence on the Gram-Schmidt norms. On the other hand, using
LogS or LogS seems to alter only the first norms, and in a very small way. We
note that increasing the number of orbits does not influence these behaviours.

Figure 5.2 plots the Gram-Schmidt log norms before and after BKZ reduction
of the same lattices Lsat as in Fig. 5.1, using the original iso/exp log-S-embedding.
As in [BR20, Fig. B.1–10], for each field the two curves are almost superposed,
which is consistent with the previous observations on the orthogonality defect.

5.4 Evaluation of the approximation factor

In [BR20], evaluating in practice the approximation factors reached by the Tw-
PHS algorithm is done by choosing random split ideals of prime norm, solving
the Cldl for these challenges and comparing the length of the obtained algebraic
integer with the length of the exact shortest element. As the degree of the fields
grow, solving the Cldl and exact id-Svp becomes rapidly intractable. Hence, we
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Fig. 5.2 – Lsat lattices for Q(z152),Q(z149) and Q(z564): Gram-Schmidt log
norms before and after reduction by BKZ40.

resort to simulating random outputs of the Cldl, similarly to [DPW19, Hyp. 8],
and estimate the obtained approximation factors with inequalities from Eq. (2.7).

Simulation of Cldl solutions. To simulate targets that heuristically correspond
to the output α of the Cldl, we assume that for each ideal Li ∈ S, the vector(
vLσi (α)

)
σ∈Gm of Z[Gm] is uniform modulo the lattice of class relations, and

that after projection along the 1-axis,
(
ln|σ(α)|

)
σ

is uniform modulo the log-
unit lattice. These hypotheses have already been used in [DPW19, Hyp. 8] or
[BR20, H. 4.8], and are backed up by theoretical results in [BDPW20, Th. 3.3].

Drawing random elements modulo a lattice of rank k is done by following a
Gaussian distribution of deviation 100 · k. Concretely, we first choose a random
split prime p in the range J297, 2103K. Then, for each L ∈ S ∩S0, we pick random
valuations vL(α) modulo the lattice of class relations of rank

∣∣S∩S0∣∣ and random
elements (uσ)σ∈G+

m
∈ Rϕ(m)/2 in the span of the log-unit lattice of rank ϕ(m)

2 − 1.

Finally, we simulate (ln|σ(α)|)σ by adding
ln p+

∑
L∈S vL lnN (L)

ϕ(m) to each coordi-

nate uσ , so that their sum is indeed ln |N (α)|
2 . For each field we thereby generate

100 random targets on which to test Tw-PHS on all lattice versions.
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Fig. 5.3 – Approximation factors, with Gaussian Heuristic, reached by Tw-PHS
for cyclotomic fields of degree up to 190, on lattices Lurs, Lsat and Lsu.

Fig. 5.4 – Approximation factors, with Gaussian Heuristic, reached by Tw-PHS
for cyclotomic fields of degree up to 100, on lattices Lsat and Lsu.

Reconstruction of a solution. For each simulated Cldl solution α, given as a
random vector ({ln|σ(α)|}σ∈G+

m
, {vL(α)}L∈S∩S0), it is easy to compute ϕ(α) for

any log-S-embedding ϕ and to derive a target as in [BR20, Eq. (4.7)], including a
drift parameterized by some β. Then, considering e.g. Lsat = ϕ(Fsat), given by the
BKZ40-reduced basis Ubkz ·ϕ(Fsat), we find a close vector v = (y ·Ubkz) ·ϕ(Fsat) to
this target using Babai’s Nearest Plane algorithm, and from y, Ubkz and Fsat we
easily recover, in compact representation, s ∈ O×Km,S st. v = ϕ(s) and also α/s.

The purpose of the drift parameter β is to guarantee vL(α/s) ≥ 0 on all finite
places. As mentioned in [BR20], the length of α/s is extremely sensitive to the
value of β, so that they searched for an optimal value by dichotomy. However,
this positiveness property actually does not seem to be monotonic in β, so we
instead applied a crude search strategy, first increasing β until all vL(α/s) are
positive, then sampling 80 values in

[
β
1.4 , β

]
. We output the optimal ‖α/s‖2.
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Estimator of the approximation factor. Since we do not have access to the short-
est element of a challenge ideal, we cannot compute an exact approximation fac-
tor as is done in [BR20]. Instead, we estimate the retrieved approximation factor
using the inequalities implied by Eq. (2.7). We focus on the Gaussian Heuristic,
which seems to give in small dimensions consistent results with the exact approx-
imation factors found in [BR20]. For each cyclotomic field, the plotted points are
the means, over the 100 simulated random targets, of the minimal approxima-
tion factors obtained using options iso/noiso and exp/tw. For each family F, Fsat

and Fsu, we maximize the density of resp. Lurs, Lsat and Lsu, using only d = 1
Gm-orbit for F, Fsat, and d = dmax for Fsu. Figure 5.3 shows the approximation
factor afgh obtained for all lattices Lurs, Lsat and Lsu (when applicable) after
BKZ40 reduction. Figure 5.4 focuses on Lsat and Lsu on small dimensions.

First, we remark that using family F from Eq. (3.13) does not seem to be
satisfactory, the retrieved approximation factors increasing rapidly. Using the 2-
saturated family Fsat yields much better results, and looking closely at Fig. 5.4
shows that using a basis Fsu of the full S-unit group, when available, even im-
proves the picture if dmax > 1. For Lsat, note that, even for fields of large degree,
we obtain small approximation factors similar to the ones observed in [BR20].

However, for four fields of large degree, the values of afgh observed in Fig. 5.3
are significantly larger. This variance may be explained by the extreme sensitivity
of the drift procedure used in the Cvp step. Indeed, even microscopic differences
in the target definition can yield dramatically different outcomes. Improving this
step would certainly result in better and narrower approximation factors.
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tement homomorphe. Ph.D. thesis, Paris 7, 2013.

CN11. Y. Chen, P. Q. Nguyen: BKZ 2.0: Better lattice security estimates. In
ASIACRYPT, vol. 7073 of LNCS, pp. 1–20, Springer, 2011.

Coh93. H. Cohen: A course in computational algebraic number theory, vol. 138 of
Graduate texts in mathematics. Springer, 1993.
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EHKS14. K. Eisenträger, S. Hallgren, A. Y. Kitaev, F. Song: A quantum algo-
rithm for computing the unit group of an arbitrary degree number field. In
STOC, pp. 293–302, ACM, 2014.

34

http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf


FpL16. FpLLL development team: fplll, a lattice reduction library, 2016, avail-
able at https://github.com/fplll/fplll.

GK89. R. Gold, J. Kim: Bases for cyclotomic units. Compos. Math., 71(1), pp.
13–27, 1989.

GN08. N. Gama, P. Q. Nguyen: Predicting lattice reduction. In EUROCRYPT,
vol. 4965 of LNCS, pp. 31–51, Springer, 2008.

Hol17. P. Holzer: Recovering short generators of principal fractional ideals in
cyclotomic fields of conductor pαqβ , 2017, master Thesis, available at http:
//tuprints.ulb.tu-darmstadt.de/6155/.
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Supplementary materials

A Quantum improvements of the CDW algorithm

In §3.3 a short basis for the Stickelberger lattice has been introduced in Th. 3.7,
as well as associated generators defined in Pr. 3.8. We make use of these new
elements and see how they can be applied to the approx-Svp algorithm from
[CDW17,CDW21]. First, we recall the original algorithms with only aesthetic
rearrangement that will reveal useful later on. Then, using explicit Stickelberger
elements corresponding to the class group relations of the relatively short gener-
ating family W of [CDW21], as well as principal relative norm ideals generators,
we replace the last Pip call in the query phase by a class group computation in
the preprocessing phase in the maximal real subfield, hence in dimension half of
the initial field. Finally, we remove the need of using the random walk mapping
challenge ideals into the minus part of the class group, by using the module of
all real class group relations C+

l1,...,ld
introduced in §3.4, under the restriction

that h+m ≤ O(
√
m) (Hyp. A.1).

A.1 Hypothesis on the plus part of the class number

The CDW algorithm from [CDW21] assumes that h+m ≤ poly(m) for any conduc-
tor m [CDW21, Ass. 2]. This is needed for their random walk procedure mapping
any ideal to Cl−m to have a running time in poly(m). To remove this reduction
to Cl−m constraint, we use a slightly more restrictive hypothesis.

Hypothesis A.1. We restrict to cyclotomic fields Km verifying h+m ≤ O(
√
m).

This assumption is certainly not true in general. Nevertheless, by the discus-
sion in Section 2.2, it should be valid when m is a power of 2 and asymptotically
when m is a prime power. Finally, according to Schoof’s table, we note that
h+m ≤

√
m holds for more than 96.6% of all prime conductors m = p < 10000.

We stress that this restriction only impacts the results of §A.4.

A.2 An equivalent rewriting of the CDW algorithm

The following general proposition will be useful for fully understanding algo-
rithms from [CDW21] as well as the improvements we provide.

As stated in §2.1, given a cyclotomic field Km, recall we identify Gm/〈τ〉 with
G+
m, and we consider the natural lift of those elements to Gm. For any σ ∈ G+

m,
and any α ∈ Z[Gm], we write ∆σ(α) := ασ − αστ .

Proposition A.2. Let α ∈ Z[Gm]. Then for all β ∈ Z[Gm], we have:

β ≡ α mod (1 + τ) ⇐⇒ ∀σ ∈ G+
m, ∆σ(β) = ∆σ(α).

Moreover, let β ≡ α mod (1 + τ), then:

1. For any σ ∈ G+
m:
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– βστ = 0 if, and only, if βσ = ∆σ(α),
– βσ = 0 if, and only, if βστ = −∆σ(α).

2. There is a unique β ≡ α mod (1 + τ) with nonnegative integer coordinates
and minimal `1-norm, it is defined by:

∀σ ∈ G+
m, (βσ, βστ ) =

{
(∆σ(α), 0) if ∆σ(α) > 0

(0,−∆σ(α)) if ∆σ(α) < 0.
(A.1)

Proof. The first assertion is easy since β ≡ α mod (1 + τ) if, and only if, for all
σ ∈ G+

m, (βσ, βστ ) ∈ (ασ, αστ ) + (1, 1) ·Z. Thus, locally in the coordinates σ, στ
(with a fixed σ), there is in the class of α modulo (1 + τ) a unique β such that
βστ = 0 and a unique β such that βσ = 0. These are exactly (ασ − αστ , 0) and
(0, αστ − ασ). A coordinate pair (βσ, βστ ) ∈ Z2 (of β ∈ Z[Gm]) is parametrized
as ∆σ(α)(1− λ,−λ) for some λ ∈ R. The segment delimited by (∆σ(α), 0) and
(0, ∆σ(α)) are the points such that λ ∈ [0, 1]. For any λ > 1 we have:

‖∆σ(α)(1− λ,−λ)‖1 = |∆σ(α)|(2λ− 1) > |∆σ(α)|,

and for λ < 0 one has:

‖∆σ(α)(1− λ,−λ)‖1 = |∆σ(α)|(2|λ|+ 1) > |∆σ(α)|.

Last, if λ ∈ [0, 1] the norm is |∆σ(α)|. Finally, in order to find a minimal element
in a given class of Z[Gm] modulo (1 + τ) with nonnegative coefficients only, it is
sufficient to find a minimal pair (βσ, βστ ) with nonnegative coefficients for each
σ ∈ G+

m. Fix σ ∈ G+
m and assume without loss of generality that ∆σ(α) > 0.

Then following the characterisation above, any equivalent pair with minimal
norm can be written ∆σ(α)(1− λ,−λ) with λ ∈ [0, 1]. Among them, (∆σ(α), 0)
is clearly the only pair such that both coefficients are nonnegative.

We can now recall the main algorithms from [CDW21]. Algorithm A.1 is
WalkToCl− [CDW21, Alg. 5]. This algorithm gives reduces the general case
to the case where the input ideal is in the relative class groups, for which the
Stickelberger ideal is a natural lattice of class relations.

Algorithm A.1 WalkToCl−(a): random walk to Cl−m
Input: an ideal a ⊂ OKm .
Output: an ideal b ⊂ OKm s.t. [ab] ∈ Cl−m and N (b) ≤ exp(Õ(m)).
1: ` = Õ(m), B = poly(m)
2: repeat
3: for i = 1, . . . , ` do
4: Choose Li uniformly at random among prime ideals of norm less than B
5: b←

∏d
i=1 Li

6: until N
Km/K

+
m

(ab) is principal, using the (quantum) Pip algorithm from [BS16]
7: return b
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Once this technical requirement is satisfied, the main steps described in
[CDW21] are given by the Reduce algorithm in Alg. A.2 which corresponds
to [CDW21, Alg. 3]. This algorithm is subsequently used in algorithm Cpm− de-
scribed in Alg. A.3 and which corresponds to [CDW21, Alg. 4]8. Note also that
compared to [CDW21, Alg. 4], the end of Cpm− algorithm is slightly modified
to satisfy the convention we use for the Cldl algorithm.

Algorithm A.2 Reduce(W, ξ): finds a reduction of ξ

Input: α ∈ Z[Gm] and W ⊂ Z[Gm] a generating set of the Stickelberger lattice.
Output: β ∈ Z[Gm] s.t. ‖β‖1 ≤ 1

4
· ϕ(m)3/2, and Cα = Cβ for any C ∈ Cl−m.

1: v ← Cvp(π(W ), π(α))
2: γ ← π(α)− v · π(W )
3: Define (aσ)

σ∈G+
m

as the integral coordinates of γ in the basis (π(σ))
σ∈G+

m
of

Z[Gm]/(1 + τ)
4: β ←

∑
σ∈G+

m
aσσ ∈ Z[Gm]

5: return β

Algorithm A.3 Cpm−(W,L, α): solves the CPM problem for ideal Lα

Input: A generating set W [CDW21, Lem. 4.4] of the Stickelberger lattice, an ideal
L such that [L] ∈ Cl−Km and an element α ∈ Z[Gm].

Output: an integral ideal b = Lγ s.t. Lαb is principal and and N (b) =

N (L)O(ϕ(m)3/2).
1: β ← Reduce(W,α)
2: Write β as β =

∑
σ∈G+

m
aσσ

3: for σ ∈ G+
m do

4: (a+σ , a
−
σ )←

{
(aσ, 0) aσ ≥ 0,

(0,−aσ) otherwise

5: γ ←
∑
σ∈G+

m
(a+σ + a−σ τ)σ

6: return Lγ .

Finally, all the previously introduced algorithms are used to define the algo-
rithm CDW [CDW21, Alg. 7] solving Approx-Svp for ideal lattice algorithm9.
For this last algorithm, it will be useful for us to use an equivalent rewriting of it
in a preprocessing phase (Alg. A.4) and a query phase (Alg. A.5). We also recall
there exists an algorithm ShortGenerator [CDW21, Alg. 1] whose property
is described in Th. A.3.

In order to be coherent with future algorithms that will be described with
a preprocessing phase and a query phase, we argue that the (randomized) Cldl
step of [CDW21, lines 4-8 Alg. 6] can be rewritten as follows. Essentially, instead
of testing whether the Cldl algorithm succeeds within the algorithm, we fix a

8 This algorithm was originally called ClosePrincipalMultiple− in [CDW21].
9 This algorithm was originally called IdealSVP in [CDW21].
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number of orbits d during the preprocessing phase (Alg. A.4) before moving to
the query phase (Alg. A.5). If the Cldl step of the query phase fails then we
go back to the preprocessing phase with a higher d. Also, for any of such d, we
choose the bound B = poly(m) so that M = {L | N (L) ≤ B, [L] ∈ Cl−m} has at
least d elements allowing us to pick the d ideals of smallest norm within M, as in
step 3 of Alg. A.4. After a small number of query we expect to find a sufficiently
big d such that the ideals L1, . . . ,Ld generates Cl−m.

Algorithm A.4 CDWpre-proc: find a generating family of Cl−m
Input: a cyclotomic field Km of conductor m and an integer d
Output: a family B of prime ideals (expected to generate Cl−m)
1: B = poly(m)
2: M← {L | N (L) ≤ B, [L] ∈ Cl−m}
3: Choose L1, . . . ,Ld with smallest norm in M
4: B← {Lσi | σ ∈ Gm, i = 1, . . . , d}
5: return B

Algorithm A.5 CDWquery(a): finding mildly short vectors in the ideal a

Input: an ideal a ∈ OKm , a family B← {Lσi | σ ∈ Gm, i = 1, . . . , d}
Output: an element h ∈ a of norm ‖h‖2 ≤ exp(Õ(

√
m)) · N (a)1/ϕ(m)

1: b′ ←WalkToCl−(a)
2: (yi,σ)σ∈Gm,i=1,...,d ← CldlB(ab′) . ab′

∏
i,σ(Lσi )yi,σ ∼ 1

3: for i = 1, . . . , d do
4: ξi ←

∑
σ∈Gm yi,σσ ∈ Z[Gm]

5: b′i ← Cpm−(W,Li, ξi)

6: b← b′
∏d
i=1 b

′
i

7: g ← Pip(ab)
8: h← ShortGenerator(g)
9: return h

Theorem A.3 ([CDW21, Th. 3.6]). There is a randomized algorithm
ShortGenerator that for any g ∈ OKm (in compact representation), finds
an element h ∈ OKm (in compact representation) such that g · OKm = h · OKm
and ‖h‖2 = exp

(
O(
√
m logm)

)
·N (g)1/ϕ(m), and runs in polynomial time in the

size of the input.

Now that we have introduced algorithms used in [CDW21], we first look
into steps 2–5 of Alg. A.3. Essentially, these steps guarantee that the exponent
γ ∈ Z[Gm] has only nonnegative coordinates in the basis ((σ)σ∈G+

m
, (στ)σ∈G+

m
),

using the property L−1 ∼ Lτ that was ensured by the restriction to the relative
class group. However, it is also important that the resulting γ has small norm
‖γ‖1. In Pr. A.4, we show that steps 2–5 of Alg. A.3 guarantee that the returned
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Algorithm A.6 PositiveOptim(α): returns an element in the class of α mod-
ulo (1 + τ)Z[G+

m] whose coordinates in basis ((σ)σ∈G+
m
, (στ)σ∈G+

m
) are nonnega-

tive integers and which is minimal for `1-norm inside the equivalence class.

Input: an element α ∈ Z[Gm]
Output: an element α̃ ≡ α of minimal `1-norm and whose coordinates in basis

((σ)
σ∈G+

m
, (στ)

σ∈G+
m

) are nonnegative integers.

1: Write α as ((aσ)
σ∈G+

m
, (aστ )

σ∈G+
m

) on the basis
(

(σ)
σ∈G+

m
, (στ)

σ∈G+
m

)
of Z[Gm]

2: α̃← α
3: for σ ∈ G+

m do . Dealing with negative coordinates
4: if aσ ≤ aστ then
5: α̃← α̃− aσ(1 + τ)σ
6: else if aστ ≤ aσ then
7: α̃← α̃− aστ (1 + τ)σ

8: return α̃.

exponent γ is actually minimal in a certain sense. Before that, we introduce the
subroutine PositiveOptim in Alg. A.6 that generalizes steps 2–5 of Alg. A.3.
This algorithm also applies to elements whose “right part” of coordinates are
not all zero and explicitely shows that the modification are done using elements
of (1 + τ) · Z[G+

m].

Proposition A.4. In Alg. A.3, it is possible de replace steps 2–5 by subroutine
PositiveOptim. Moreover, this shows the resulting γ has minimal `1-norm
given β ← Reduce(W,α) as in step 1 of Alg. A.3.

Proof. We identify α ∈ Z[Gm] with its coordinates ((aσ)σ∈G+
m
, (aστ )σ∈G+

m
) in

the basis
(

(σ)σ∈G+
m
, (στ)σ∈G+

m

)
. Then, PositiveOptim, act the following way.

For any σ ∈ G+
m, α := (. . . , aσ, . . . , aστ , . . .) is mapped to (. . . , ∆σ(a), . . . , 0, . . .)

if ∆σ(a) ≥ 0, and if ∆σ(a) < 0, it is mapped to (. . . , 0, . . . ,−∆σ(a), . . .). This
is precisely what steps 2–5 returns in the particular case where for all σ ∈ G+

m,
aστ = 0. Note that by Pr. A.2, those images are precisely of minimal norm
(inside a fixed equivalence class). All in all, we conclude that the transformation
β 7→ γ of Alg. A.3 remains inside the equivalence class of β and that it returns
the element of minimal `1-norm inside this class.

In Pr. A.4, we proved that given a particular class modulo (1 + τ), algorithm
PositiveOptim returns an element (with nonnegative coordinates) of the class
whose `1-norm is minimal among all elements of the class. Nevertheless, among
all the coset α+Sm how can we find the class whose associated minimal value is
the smallest value among all the possible lower bounds? In previous works such
as [CDW17,DPW19,CDW21] the question is raised when discussing whether to
use a Cvp solver on π(Sm) and then lifting it back, or directly on the extended
Stickelberger lattice Sm+(1+τ)Z[Gm]10. The following proposition proves that,
given an exact Cvp solver, the construction using π(Sm) is optimal.

10 Both modules being used as a replacement for Sm not being full-rank.
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Proposition A.5. Let α ∈ Z[Gm], Wbk the short basis of the Stickelberger ideal
Sm as introduced in Th. 3.7 and note Cvp an exact close vector problem solver
on π(Wbk), for `1 norm. Define γ(v) := PositiveOptim(α − v · Wbk), as a
function of v ∈ Zϕ(m)/2, then: argminv∈Zϕ(m)/2‖γ(v)‖1 = Cvp(π(Wbk), π(α)).

Proof. We note {w1, . . . , wϕ(m)/2} the elements of Wbk and we write v as the

vector (v1, . . . , vϕ(m)/2) ∈ Zϕ(m)/2. Then:

‖γ(v)‖1 =
∑
σ∈G+

m

|∆σ(PositiveOptim(α− v ·Wbk))|

=
∑
σ∈G+

m

|∆σ(α−
ϕ(m)/2∑
i=1

viwi)|

by applying Pr. A.2, since subroutine PositiveOptim does not alter the equiv-
alence class. Now, by definition of the projection π,

∑
σ∈G+

m

|∆σ(α−
ϕ(m)/2∑
i=1

viwi)| =
∑
σ∈G+

m

|π(α)σ −
∑
i

viπ(wi)σ|

= ‖π(α)− v · π(Wbk)‖1.

Hence, minimizing ‖γ(v)‖1 is equivalent to minimizing ‖π(α)− v · π(Wbk)‖1,
which is achieved by taking v = Cvp(π(Wbk), π(α)).

A.3 Using explicit Stickelberger generators

Many quantum steps are required in the query phase of the CDW algorithm
(Alg. A.5). First, the random walk to reach Cl−m requires a polynomial number
(in h+Km) of steps and each of these steps requires a Pip test in the maximal
real subfield. Second, a Cldl step is performed in the cyclotomic field to obtain
inputs used in the Cpm− subroutine. Finally, a final Pip is performed in the
cyclotomic field in order to recover a short generator.

Our goal in this subsection is to use Th. 3.7, Pr. 3.8 and the subroutine
PositiveOptim, to reduce the cost of the last Pip call (inside Alg. A.5). In or-
der to do so, one key ingredient is to replace the generating set W by the short
basis Wbk of the Stickelberger lattice, introduced in Th. 3.7. This last switch is
beneficial for several reasons:

1. In order to solve Cvp, using [CDW21, Cor. 2.2], one does not need any-
more to compute a maximal set of linearly independent vectors inside W
(in a greedy manner). We also note that this full-rank set of vectors only
ensures that the Cvp algorithm is done inside a (full rank) sublattice of the
Stickelberger lattice. Whereas, using the complete Stickelberger lattice basis
ensures the best result for the Cvp algorithm, regarding the approximation
factor.
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2. The second advantage is that, using Pr. 3.8, we can use the explicit Stickel-
berger generators (associated to the principal ideals resulting from the action
of Wbk). Exhibiting such Stickelberger generators is (in general) not possible
for elements of the generating set W . This point will be of importance for
replacing the last Pip call in dimension n (which is done for any challenge) in
the CDW algorithm, by the computation of the real class group. Note that
this last part also required the introduction of PositiveOptim (Alg. A.6).

Concretely, we define (Cpm−)′ as Alg. A.7 and CDWexplicit as the successive
combinaison of algorithms Alg. A.8 and A.9, defining a preprocessing phase and
a query phase.

Algorithm A.7
(
Cpm−

)′
(Wbk,L, α): solves the CPM problem for ideal Lα

Input: Wbk the basis of the Stickelberger lattice defined in §3.3, an ideal L such
that [L] ∈ Cl−Km and an element α ∈ Z[Gm].

Output: an integral ideal b = Lγ s.t. Lαb is principal and and N (b) =

N (L)O(ϕ(m)3/2).
1: v ← Cvp(π(Wbk), π(α))
2: β ← α− v ·Wbk

3: γ ← PositiveOptim(β)
4: return Lγ .

Algorithm A.8 CDWexplicit
pre-proc: finding a generating family for the relative class

group and generators for certain principal ideals

Input: a cyclotomic field Km of conductor m and an integer d
Output: a family B ← {Lσi | σ ∈ Gm, i = 1, . . . , d} generating Cl−m and generators

of the principal ideals {Lαm(b)
i }i,b (αm(b) ∈Wbk) and {L1+τ

i }i
1: d = polylog(m), B = poly(m)
2: M← {L | N (L) ≤ B, [L] ∈ Cl−m}
3: Choose L1, . . . ,Ld with smallest norm in M
4: B← {Lσi | σ ∈ Gm, i = 1, . . . , d}
5: Compute generators {γ−Li,b}b st. L

αm(b)
i = 〈γ−Li,b〉 for αm(b) ∈Wbk and i = 1, . . . , d

. See Pr. 3.8
6: Compute generators {γ+

r}r st. 〈γ+
r〉 =

∏d
i=1 L

(1+τ)ri
i for r ∈ Z[G+

m]d . See
Eq. (3.13) and Rem. 3.11

7: return B, {γ−Li,b}i=1,...,d
b∈M′m

, {γ+
Lr
}
r∈Z[G+

m]

We first prove correctness of the new algorithms we introduced. Notably, we
prove that prove that Cpm− returns the same result as (Cpm−)′. Subsequently
we deduce the correctness of algorithm CDWexplicit which is splitted in a pre-
processing phase (Alg. A.8) and then a query phase (Alg. A.9).
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Algorithm A.9 CDWexplicit
query (a): finding mildly short vectors in the ideal a

Input: an ideal a ∈ OKm , a family B ← {Lσi | σ ∈ Gm, i = 1, . . . , d} generating
Cl−m and generators {γ−Li,b}i=1,...,d

b∈M′m

, {γ+
Lr
}
r∈Z[G+

m]

Output: an element h ∈ a of norm ‖h‖2 ≤ exp(Õ(
√
m)) · N (a)1/ϕ(m)

1: b′ ←WalkToCl−(a)
2: ξ, (yi,σ)σ∈Gm,i=1,...,d ← CldlB(ab′) . 〈ξ〉 ∼ ab′

∏
i,σ(Lσi )yi,σ

3: for i = 1, . . . , d do
4: ξi ←

∑
σ∈Gm yi,σσ ∈ Z[Gm]

5: Lγii ← (Cpm−)′(Wbk,Li, ξi)
where γi = ξi −

∑
b vi,bαm(b)− (1 + τ)ri

for integers (vi,b)b∈M′m and ri ∈ Z[G+
m]

6: g ← α/

(
γ+
r ·
∏
i=1,...,d
b∈M′m

(γ−Li,b)
vi,b

)
where r = (r1, . . . , rd) ∈ Z[G+

m]

7: h← ShortGenerator(g)
8: return h

Corollary A.6. Algorithm (Cpm−)′ and CDWexplicit are correct. Notably, let L
be a an ideal st. [L] ∈ Cl−m and α ∈ Z[Gm], then, algorithms Cpm− and (Cpm−)′

output the same result on input (Wbk,L, α).

Proof. Correctness of algorithm (Cpm−)′ is a straightforward corollary of Pr. A.4,
since this proposition essentially shows that using steps 2–5 of Alg. A.2 or sub-
routine PositiveOptim (Alg. A.6) returns the same element (and note that we
use the same Cvp solver in both Cpm− and (Cpm−)′). This result is not depen-
dant on Wbk and would have been true for the original generating family W from
[CDW21]. For the correctness of CDWexplicit, we first use the fact that Cpm−

and (Cpm−)′ output the same result on input (Wbk,L, α). Secondly, using re-
sults specific to Wbk, we note that §3.3 provides us with Stickelberger generators
associated to the lattice basis Wbk. In other words, for any ideal Li of the basis,

there exists elements {γ−Li,b}b st. L
αm(b)
i = 〈γ−Li,b〉 for b ∈ M ′m, using Pr. 3.8.

Moreover, the Cldl algorithm from Biasse and Song (used in Alg. A.5) not only
recovers the family (yi,σ)σ∈Gm,i=1,...,d but also the element ξ ∈ OKm such that:

ab′ = 〈ξ〉
∏

i=1,...,d

σ∈Gm

(Lσi )−yi,σ = 〈ξ〉
∏
i

L−ξii

with the notation ξi :=
∑
σ∈Gm yi,σσ for i = 1, . . . , d. Now, for a fixed ideal Li

(i = 1, . . . , d), on input (Li, ξi), algorithm (Cpm−)′ returns an element Lγii with
γi = ξi−

∑
b∈M ′m

vi,bαm(b)−(1+τ)ri where (vi,b)b∈M ′m is the vector with integral

coordinates obtain by the Cvp subroutine inside (Cpm−)′, and ri ∈ Z[G+
m]. It

follows:

ab′

 ∏
i=1,...,d

Lγii

 = 〈ξ〉
∏

i=1,...,d

b∈M ′m

L
−

∑
b vi,bαm(b)

i L
−(1+τ)ri
i .
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To conclude, recall from Eq. (3.11) and Rem. 3.11 that for r = (r1, . . . , rd) ∈
Z[Gm]d, we have 〈γ+r〉 =

∏
i=1,...,d L

(1+τ)ri
i .

In terms of calls to quantum algorithms, we replaced the last Pip in dimension
n (for each query) by the computation of some generators during the preprocess-
ing phase (step 6, Alg. A.8). Now, these generators can be all obtained by the
computation of the real class group. Indeed, following [BS16, Th 1.1 and Alg.
1], we note that the computation of the class group reduces to the calculation of
S-units for a particular set S. In particular, this implies that the calculation of
the class group also yields, at the same time, the generators associated to those
class relations. Finally, from [BS16, Alg. 2], we deduce that the cost of computing
S-units is similar to the cost of the Pip algorithm. Concretely, this means that
computing the relations during the preprocessing has a quantum cost equivalent
to the cost of a single query to the Pip algorithm in dimension n/2.

A.4 Avoiding the random walk

In the previous algorithms presented, in the original, as well as the first mod-
ification, working on the minus part of the class group is still required. Hence
doing the random walk from Alg. A.1 is still required during the query phase.
We note this random walk calls for polynomially (in h+Km) many calls to the Pip

algorithm (in dimension n/2), in order to test membership to Cl−m of candidate
ideals by testing principality in O+

Km
(of the images by the relative norm map

NKm/K+
m

). A possible theoretical solution to bypass those Pip calls is to use re-
lations induced from relations on ClK+

m
. These relations were introduced in §3.4

as C+
l1,...,ld

for ideals l1, . . . , ld associated to ideals L1, . . . ,Ld generating ClKm
and required the computation of the real class group. Using the same argument
made at the end of the previous paragraph means that steps 3–4 of Alg. A.10 can
be done using a single call to a S-units computation, whose cost is equivalent to
the a single call to Pip in dimension n/2.

One technical issue is that using relations coming from real classes does
not let us use algorithm PositiveOptim anymore, yet we still need to recover
an element γ ∈ Z[Gm] with nonnegative integer coordinates. We proceed “à la
PHS” (or Tw-PHS) by computing a “drifted” Cvp, the added drift being chosen
greater than the infinity decoding radius of the Cvp solver used. Like previous
CDW and CDWexplicit algorithms, the CDWno-walk algorithm is splitted in a
preprocessing phase (Alg. A.10) followed by a query phase (Alg. A.11).

Proposition A.7. Algorithm CDWno-walk is correct.

Proof. The drifted Cvp algorithm described in step 3 ensures that g (given in
step 4) is in a. Indeed, fix i ∈ {1, . . . , d}. Note z = [(vi,b)i,b, (v

′
r)r] · B, by defi-

nition of the decoding radius D of the Cvp algorithm, ‖y + (β, . . . , β)− z‖∞ ≤
D ≤ β. Taking coordinates, it follows that for any i = 1, . . . , d and σ ∈ Gm,
|yi,σ + β − zi,σ| ≤ β and then 0 ≤ yi,σ − zi,σ ≤ 2β. Since by definition,
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Algorithm A.10 CDWno-walk
pre-proc: finding a generating family for the relative class

group and generators for certain principal ideals

Input: a cyclotomic field Km of conductor m
Output: a family B← {Lσi | σ ∈ Gm, i = 1, . . . , d} generating ClKm , the generators

of the principal ideals {Lαm(b)
i }i,b (αm(b) ∈ Wbk), the real class relations C+

l1,...,ld

for li = N
Km/K

+
m

(
Li
)

(i = 1, . . . , d) as well as the associated generators

1: Compute ClKm = 〈L1, . . . ,Ld〉 with d ≤ log(hKm)

2: Compute generators {γ−i,b}i,b st. L
αm(b)
i = 〈γ−i,b〉 for αm(b) ∈Wbk and i = 1, . . . , d.

Using Pr. 3.8
3: Compute the real class relations C+

l1,...,ld
associated to ideals li = N

Km/K
+
m

(
Li
)

(i = 1, . . . , d) . See §3.4

4: Compute generators {γ+
r}r st. 〈γr〉 =

∏d
i=1 L

(1+τ)ri
i for r = (r1, . . . , rd) ∈ C+

l1,...,ld

5: return B, {γ−i,b}i=1,...,d
b∈M′m

, {γ+
r}r∈C+

l1,...,ld

Algorithm A.11 CDWno-walk
query (a): finding mildly short vectors in the ideal a

Input: an ideal a in OKm , a family B ← {Lσi | σ ∈ Gm, i = 1, . . . , d} generat-
ing ClKm , generators {γ−i,b}i=1,...,d

b∈M′m

, {γ+
r}r∈C+

l1,...,ld

and a drift β greater than the

decoding radius of the Cvp algorithm

Output: h ∈ a of norm ‖h‖2 ≤ exp
(
O
(

max(
√
ϕ(m), h+

Km
)
√

logm
))
· N (a)1/ϕ(m)

1: α, y ← CldlB(a) where y := (yi,σ)σ∈Gm,i=1,...,d . 〈ξ〉 ∼ a
∏
i,σ(Lσi )yi,σ

2: Let B = Sdm + (1 + τ)C+
l1,...,ld

3: v ← Cvp
(
B, y + (β, . . . , β)

)
, where v :=

[
(vi,b)1≤i≤d,b∈M′m , (vr)r∈C+

l1,...,ld

]
4: g ← α

/(∏
r∈C+

l1,...,ld

(γ+
r)
vr
∏

1≤i≤d,b∈M′m
(γ−Li,c)

vi,b

)
5: h← ShortGenerator(g)
6: return h

〈g〉 = a
∏
i,σ(Lσi )yi,σ−zi,σ , the algorithm returns g ∈ a. We now use Th. A.3

with a minor adaptation of the proof from [CDW21, Th. 3.6]. In our situation,

max
w∈[Wbk|C+

l1,...,ld
]
‖w‖2 = max(

√
ϕ(m)/2, h+Km)

using Pr. 3.12 and that short elements of the basis Wbk have `2-norm equal to√
ϕ(m)/2 (see Th. 3.7). It follows that if h = ShortGenerator(g), then:

‖h‖2 ≤ N (g)1/ϕ(m) · exp
(
O(max(

√
ϕ(m), h+Km)

√
logm

)
.

The quantum steps used in algorithms CDW, CDWexplicit and CDWno-walk

are summarized in Tab. A.1. We emphasize that the computation of the class
group has a cost equivalent to the Pip algorithm (in the same dimension), since
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they both reduce to a single call to the computation of S-units, for suitable sets
S of prime ideals.

Preproccessing phase Query phase
Class group

computation (dim. n/2)
Pip (dim. n) Pip (dim. n/2) Cldl

CDW 0 1 O(poly(h+
Km

)) 1

CDWexplicit 1 0 O(poly(h+
Km

)) 1

CDWno-walk 1 0 0 1

Table A.1 – Number of quantum steps used for algorithms CDW, CDWexplicit

and CDWno-walk.
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B Additional experimental results

B.1 Geometry of log-S-unit sublattices

In the following, we provide data regarding the geometry of the log-S-unit sub-
lattices Lurs and Lsat for additional cyclotomic fields.

m d set k Vol1/k
δ0 δ

raw LLL bkz40 raw LLL bkz40

159

1
urs 155 11.291 0.998 0.998 0.998 2.177 1.706 1.672

sat 155 8.989 1.000 1.000 1.000 6.143 1.894 1.905

2
urs 259 12.576 0.999 0.999 0.999 2.350 1.786 1.732

sat 259 9.572 1.000 1.000 1.000 6.902 2.024 2.024

3
urs 363 13.364 0.999 0.999 0.999 2.419 1.809 1.754

sat 363 9.978 1.000 1.000 1.000 7.602 2.064 2.064

149

1
urs 221 12.192 0.999 0.999 0.999 2.828 2.092 2.028

sat 221 9.697 1.000 1.000 1.000 12.473 2.307 2.266

2
urs 369 13.353 0.999 0.999 0.999 3.134 2.234 2.173

sat 369 10.150 1.000 1.000 1.000 14.472 2.509 2.483

3
urs 517 13.962 0.999 0.999 0.999 3.269 2.271 2.213

sat 517 10.410 1.000 1.000 1.000 22.211 2.569 2.552

4
urs 665 14.415 1.000 1.000 1.000 3.327 2.301 2.244

sat 665 10.632 1.000 1.000 1.000 20.731 2.606 2.594

516

1
urs 251 11.815 1.000 0.999 0.999 2.535 2.029 2.008

sat 251 9.395 1.001 1.000 1.000 6.508 2.342 2.354

2
urs 419 12.921 1.000 0.999 0.999 2.833 2.155 2.128

sat 419 9.818 1.000 1.000 1.000 8.208 2.549 2.557

3
urs 587 13.850 1.000 0.999 0.999 2.945 2.202 2.166

sat 587 10.321 1.000 1.000 1.000 10.348 2.617 2.615

4
urs 755 14.445 1.000 0.999 0.999 2.998 2.221 2.194

sat 755 10.650 1.000 1.000 1.000 12.682 2.649 2.650

181

1
urs 269 12.855 1.000 1.000 1.000 2.747 2.308 2.146

sat 269 10.220 1.001 1.001 1.001 7.486 2.535 2.497

2
urs 449 14.033 1.000 1.000 1.000 2.958 2.455 2.268

sat 449 10.661 1.000 1.000 1.000 9.849 2.734 2.705

3
urs 629 14.823 1.000 1.000 1.000 3.064 2.507 2.312

sat 629 11.045 1.000 1.000 1.000 12.340 2.799 2.778

4
urs 809 15.330 1.000 1.000 1.000 3.096 2.529 2.330

sat 809 11.300 1.000 1.000 1.000 12.307 2.828 2.814

209

1
urs 269 10.796 1.000 0.999 0.999 2.678 2.237 2.226

sat 269 8.583 1.001 1.000 1.000 8.273 2.601 2.600

2
urs 449 12.651 1.000 0.999 0.999 2.921 2.317 2.317

sat 449 9.612 1.000 1.000 1.000 14.860 2.731 2.723
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m d set k Vol1/k
δ0 δ

raw LLL bkz40 raw LLL bkz40

217

1
urs 269 12.110 1.000 0.998 0.998 2.608 2.133 2.131

sat 269 9.629 1.001 0.999 0.999 6.814 2.423 2.425

2
urs 449 13.741 1.000 0.999 0.999 2.857 2.265 2.264

sat 449 10.440 1.000 0.999 0.999 10.474 2.632 2.633

3
urs 629 14.646 1.000 0.999 0.999 2.941 2.315 2.326

sat 629 10.913 1.000 0.999 0.999 11.667 2.699 2.704

279

1
urs 269 12.059 1.000 1.000 0.999 2.573 2.077 2.071

sat 269 9.588 1.001 1.001 1.000 11.575 2.392 2.397

2
urs 449 13.528 1.000 1.000 0.999 2.836 2.213 2.197

sat 449 10.278 1.000 1.000 1.000 12.899 2.606 2.605

3
urs 629 14.378 1.000 1.000 0.999 2.965 2.267 2.247

sat 629 10.713 1.000 1.000 1.000 16.966 2.680 2.683

4
urs 809 14.971 1.000 1.000 1.000 3.010 2.285 2.260

sat 809 11.036 1.000 1.000 1.000 17.733 2.712 2.709

5
urs 989 15.396 1.000 1.000 1.000 3.053 2.299 2.278

sat 989 11.271 1.000 1.000 1.000 18.878 2.731 2.730

297

1
urs 269 12.331 1.000 0.999 0.999 3.169 2.068 2.029

sat 269 9.804 1.001 1.000 1.000 21.668 2.309 2.323

2
urs 449 13.513 1.000 0.999 0.999 3.676 2.236 2.150

sat 449 10.266 1.000 1.000 1.000 36.211 2.542 2.549

3
urs 629 14.165 1.000 0.999 0.999 3.895 2.310 2.205

sat 629 10.555 1.000 1.000 1.000 37.241 2.648 2.645

4
urs 809 14.674 1.000 0.999 0.999 4.007 2.339 2.229

sat 809 10.816 1.000 1.000 1.000 40.952 2.690 2.684

235

1
urs 275 11.873 1.000 0.998 0.998 2.631 2.187 2.141

sat 275 9.439 1.001 0.999 0.999 7.618 2.476 2.475

2
urs 459 13.287 1.000 0.998 0.998 2.936 2.348 2.285

sat 459 10.094 1.000 0.999 0.999 12.645 2.705 2.701

3
urs 643 14.178 1.000 0.999 0.999 3.061 2.404 2.319

sat 643 10.563 1.000 0.999 0.999 13.258 2.779 2.769

4
urs 827 14.743 1.000 0.999 0.999 3.099 2.427 2.342

sat 827 10.867 1.000 0.999 0.999 13.861 2.811 2.803

564

1
urs 275 12.264 1.000 0.999 0.999 2.551 2.035 2.085

sat 275 9.750 1.001 1.000 1.000 14.624 2.387 2.384

2
urs 459 13.384 1.000 0.999 0.999 2.831 2.193 2.248

sat 459 10.168 1.000 1.000 1.000 15.707 2.656 2.643

3
urs 643 14.393 1.000 0.999 0.999 2.984 2.236 2.291

sat 643 10.724 1.000 1.000 1.000 17.342 2.728 2.714

4
urs 827 15.032 1.000 0.999 0.999 3.029 2.253 2.313

sat 827 11.080 1.000 1.000 1.000 18.829 2.759 2.743

Table B.1 – Geometric characteristics of Lurs and Lsat for some cyclotomic
fields with log-S-embedding of type noiso/exp.
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m d ϕtw-type k Vol1/k
δ0 δ

raw LLL bkz40 raw LLL bkz40

159

1

iso/exp 155 8.989 1.000 1.000 1.000 6.143 1.898 1.921
iso/tw 155 10.088 1.001 1.001 1.001 7.533 2.117 2.143

noiso/exp 155 8.989 1.000 1.000 1.000 6.143 1.894 1.905
noiso/tw 155 10.088 1.001 1.001 1.001 7.533 2.119 2.139

2

iso/exp 259 9.572 1.000 1.000 1.000 6.902 2.028 2.036
iso/tw 259 10.258 1.001 1.001 1.001 8.805 2.313 2.337

noiso/exp 259 9.572 1.000 1.000 1.000 6.902 2.024 2.024
noiso/tw 259 10.258 1.001 1.001 1.001 8.805 2.317 2.334

3

iso/exp 363 9.978 1.000 1.000 1.000 7.602 2.066 2.066
iso/tw 363 10.484 1.000 1.000 1.000 9.857 2.373 2.397

noiso/exp 363 9.978 1.000 1.000 1.000 7.602 2.064 2.064
noiso/tw 363 10.484 1.000 1.000 1.000 9.857 2.376 2.392

149

1

iso/exp 221 9.697 1.000 1.000 1.000 12.473 2.305 2.244
iso/tw 221 10.883 1.001 1.001 1.001 15.626 2.672 2.602

noiso/exp 221 9.697 1.000 1.000 1.000 12.473 2.307 2.266
noiso/tw 221 10.883 1.001 1.001 1.001 15.626 2.668 2.612

2

iso/exp 369 10.150 1.000 1.000 1.000 14.472 2.507 2.467
iso/tw 369 10.878 1.001 1.001 1.001 18.958 2.982 2.936

noiso/exp 369 10.150 1.000 1.000 1.000 14.472 2.509 2.483
noiso/tw 369 10.878 1.001 1.001 1.001 18.958 2.982 2.949

3

iso/exp 517 10.410 1.000 1.000 1.000 22.211 2.569 2.531
iso/tw 517 10.938 1.001 1.001 1.001 29.658 3.084 3.050

noiso/exp 517 10.410 1.000 1.000 1.000 22.211 2.569 2.552
noiso/tw 517 10.938 1.001 1.001 1.001 29.658 3.085 3.058

4

iso/exp 665 10.632 1.000 1.000 1.000 20.731 2.606 2.576
iso/tw 665 11.050 1.000 1.000 1.000 27.968 3.149 3.117

noiso/exp 665 10.632 1.000 1.000 1.000 20.731 2.606 2.594
noiso/tw 665 11.050 1.000 1.000 1.000 27.968 3.149 3.128

516

1

iso/exp 251 9.395 1.001 1.000 1.000 6.508 2.341 2.359
iso/tw 251 10.544 1.002 1.001 1.001 8.112 2.739 2.733

noiso/exp 251 9.395 1.001 1.000 1.000 6.508 2.342 2.354
noiso/tw 251 10.544 1.002 1.001 1.001 8.112 2.730 2.739

2

iso/exp 419 9.818 1.000 1.000 1.000 8.208 2.550 2.565
iso/tw 419 10.522 1.001 1.000 1.000 10.682 3.059 3.062

noiso/exp 419 9.818 1.000 1.000 1.000 8.208 2.549 2.557
noiso/tw 419 10.522 1.001 1.000 1.000 10.682 3.055 3.064

3

iso/exp 587 10.321 1.000 1.000 1.000 10.348 2.620 2.623
iso/tw 587 10.845 1.001 1.000 1.000 13.713 3.168 3.167

noiso/exp 587 10.321 1.000 1.000 1.000 10.348 2.617 2.615
noiso/tw 587 10.845 1.001 1.000 1.000 13.713 3.169 3.167

4

iso/exp 755 10.650 1.000 1.000 1.000 12.682 2.652 2.652
iso/tw 755 11.068 1.000 1.000 1.000 16.973 3.221 3.219

noiso/exp 755 10.650 1.000 1.000 1.000 12.682 2.649 2.650
noiso/tw 755 11.068 1.000 1.000 1.000 16.973 3.221 3.220

Table B.2 – Geometric characteristics of Lsat for some cyclotomic fields. Com-
parison between choices iso/noiso and exp/tw.
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B.2 Gram-Schmidt norms

Here, we provide figures showing the Gram-Schmidt log norms for other cyclo-
tomic fields and number of orbits, comparing values before and after reduction.
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Fig. B.1 – Lsat lattices for Q(z209) and Q(z181): Gram-Schmidt log norms before
and after reduction by BKZ40, for d = 1 and d = 2 Gm-orbits.
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Fig. B.2 – Lsat lattices for Q(z187) and Q(z249): Gram-Schmidt log norms before
and after reduction by BKZ40, for d = 1 and d = 2 Gm-orbits.
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Fig. B.3 – Lsat lattices for Q(z235) and Q(z297): Gram-Schmidt log norms before
and after reduction by BKZ40, for d = 2 and d = 4 Gm-orbits.
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