
A preliminary version of this paper appears in the proceedings of the 20th International Conference on Cryptology
and Network Security (CANS 2021), c© Springer 2021. This is the full version.

BlindOR: An Efficient Lattice-Based Blind Signature
Scheme from OR-Proofs

Nabil Alkeilani Alkadri Patrick Harasser Christian Janson

Technische Universität Darmstadt, Germany
{nabil.alkadri, patrick.harasser, christian.janson}@tu-darmstadt.de

October 13, 2021

Abstract. An OR-proof is a protocol that enables a user to prove the possession of a witness for one
of two (or more) statements, without revealing which one. Abe and Okamoto (CRYPTO 2000) used
this technique to build a partially blind signature scheme whose security is based on the hardness of the
discrete logarithm problem. Inspired by their approach, we present BlindOR, an efficient blind signature
scheme from OR-proofs based on lattices over modules. Using OR-proofs allows us to reduce the security
of our scheme from the MLWE and MSIS problems, yielding a much more efficient solution compared to
previous works.

Keywords. Blind signatures · OR-proof · Lattice-based cryptography

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Related Work . 5
1.3 Outline . 6

2 Preliminaries 6
2.1 Notation . 6
2.2 Relations, Sigma Protocols, and OR-Proofs . 6
2.3 Blind Signatures . 10
2.4 Lattices and Gaussians . 12
2.5 Partitioning and Permutation . 13
2.6 Trees of Commitments . 14
2.7 Forking Lemma . 15

3 BlindOR: A New Blind Signature Scheme 17
3.1 Sigma Protocol . 17
3.2 Description of BlindOR . 21
3.3 Security Analysis . 26
3.4 Concrete Parameters . 29

4 Conclusion 30

References 31

2

1 Introduction

Blind signature schemes are a fundamental cryptographic primitive. First introduced by Chaum [Cha82]
in the context of an anonymous e-cash system, they have since become an essential building block
in many applications such as anonymous credentials [CG08, BL13], e-voting [KKS17], and blockchain
protocols [HBG16]. They have been standardized as ISO/IEC 18370, and were deployed in real-life
applications such as Microsoft’s U-Prove technology and smart card devices produced by Gemalto.

In a blind signature scheme, a user holding a message m interacts with a signer to generate a blind
signature on m under the signer’s secret key. The scheme is required to satisfy two security properties
called blindness and one-more unforgeability [JLO97,PS00]. Informally, the first condition means that
the signer gets no information about m during the signing process, while the latter ensures that the user
cannot generate signatures without interacting with the signer.

In an effort to develop practical blind signature schemes from a diverse range of assumptions (in
particular, those conjectured to be secure against quantum attacks), various schemes based on lattice
problems have been proposed. The first such scheme by Rückert [Rüc10] can be seen as an important step
in carrying the core design of classical constructions based on the discrete logarithm problem [PS00] over
to the lattice setting. The same design principle was then adopted in subsequent works, e.g., by Alkeilani
Alkadri et al. [AEB20a,AEB20b], where the scheme BLAZE and its successor BLAZE+ have been proposed
and shown to be practical.

Recently, Hauck et al. [HKLN20] pointed out that the proof of the one-more unforgeability property,
originally by Pointcheval and Stern for a discrete logarithm based construction [PS00] and later reproposed
by Rückert for his lattice-based scheme [Rüc10], has not been adapted correctly to this new setting. Indeed,
the main idea of the reduction in [PS00] is to select a secret key sk and then run the forger with the related
public key pk , which represents an instance of a computationally hard problem that admits more than one
solution. In other words, pk is related to more than one sk , and the forger cannot distinguish which sk
is used by the reduction. Note that it is crucial for the reduction to know a secret key because, unlike
standard signature schemes, the signer cannot be simulated without one (otherwise the scheme would be
universally forgeable [PS00]). After running the forger and obtaining an element z, the reduction rewinds
the forger with the same random tape and partially different random oracle replies to obtain z′. The proof
in [PS00] then uses a subtle argument to ensure that z 6= z′ with noticeable probability, which yields a
solution to the underlying hard problem.

In lattice-based schemes, the hardness assumption underpinning security is usually the Short Integer
Solution (SIS) problem or its ring variant RSIS. In this context, after obtaining z and z′, the reduction
simply returns z − z′ as a non-zero solution to (R)SIS. The problem, as discussed in [HKLN20], is that
Rückert’s argument is not sufficient to ensure that z 6= z′ with high probability, and further assumptions
are required to guarantee that a transcript of the scheme with a given key sk can be preserved with high
probability when switching to a different valid secret key. Based on this observation, Hauck et al. [HKLN20]
extended the modular framework for blind signatures from linear functions given in [HKL19] to the lattice
setting, and provided a proof that covers the missing argument.

Unfortunately, as stated by the authors themselves, their work is mostly of theoretical interest. Indeed,
the solution presented in [HKLN20] entails increasing the parameter sizes, so that their framework applies
and yields a correct proof. In particular, the RSIS-based instantiation given in [HKLN20] has public and
secret keys of size 443.75 KB and 4275 KB, respectively, and generates signatures of size 7915.52 KB. This
leaves us in the regrettable position where all known (three-move) lattice-based blind signature schemes are
either not backed by a correct security proof, or need impractically large parameters to achieve security.

3

1.1 Our Contributions

In this paper we make progress towards constructing efficient and at the same time provably secure
lattice-based blind signature schemes. We present BlindOR, a new blind signature scheme based on lattices
over modules. Our scheme uses the OR-technique of Cramer et al. [CDS94], a feature which allows us to
sidestep the missing security argument pointed out in [HKLN20]. At a high level, an OR-proof is a Sigma
protocol that proves the knowledge of a witness for one of two statements, without revealing which one.
Therefore, the public key of our scheme consists of two statements (two instances of a hard lattice problem),
and the secret key includes a witness for one of them. Consequently and for the first time, the hardness
assumption underlying the public key does not have to “natively” admit multiple solutions, because the
OR-technique already forces there to be more than one (and thus simulation of signatures is still possible).

In particular, the public key of BlindOR consists of two instances of the Module Learning with Er-
rors (MLWE) problem, which results in a much more efficient scheme. Signing is carried out by proving
the possession of the witness included in the secret key. A user interacting with the signer blinds the two
transcripts generated by the signer without being able to distinguish for which instance the signer holds a
witness. We capture these blinding steps in a set of algorithms and show that BlindOR is statistically blind.
The one-more unforgeability of our scheme is proven in the random oracle model (ROM) [BR93], assuming
the hardness of both MLWE and MSIS (the module version of SIS). The reduction creates one instance
of the hard problem with a witness in order to simulate the signing oracle, and tries to solve the other
instance, which is given to the reduction as input. That is, the reduction does not know a witness for its
input. This is analogous to the security proof of standard lattice-based signature schemes, and hence no
further conditions are required to ensure the correctness and success of the reduction with high probability.
This is in contrast to previous lattice-based constructions of blind signatures, as observed in [HKLN20].

BlindOR uses techniques from prior works in order to reduce or even remove the number of restarts
inherent in lattice-based schemes. More precisely, it uses the partitioning and permutation technique
introduced in [AEB20a]. Given a hash function taking values in the challenge space of the underlying
Sigma protocol, it allows to blind the hash values without having to carry out any security check or
potential restart. Another advantage of this technique is that it can be used to construct OR-proofs based
on lattice assumptions, because it allows to use a specified challenge space that has an abelian group
structure, a crucial requirement for OR-proofs. This is in contrast to the typical challenge space used in
current lattice-based schemes, which consists of polynomials from the ring Z[X]/〈Xn + 1〉 with coefficients
in {−1, 0, 1} and a given Hamming weight. We also use the trees of commitments technique from [AEB20b]
to remove the restarts induced by the user when blinding the signature generated by the signer. We extend
this technique in BlindOR to reduce the potential restarts induced by the signer when computing signatures,
which must be distributed independently from the secret key.

To demonstrate the efficiency of our scheme, we propose concrete parameters for BlindOR targeting 128
bits of security. The related key and signature sizes, the communication cost, and a comparison with the
corresponding metrics for the scheme proposed by Hauck et al. [HKLN20] are given in Table 1. In summary,
although our scheme requires twice as many public key and signature parts, which is inherent to using
OR-proofs, it yields smaller sizes compared to the provably secure construction from [HKLN20], resulting
in a more efficient scheme overall.

We remark that the security of our scheme can easily be extended to the stronger security notions
of selective failure blindness [CNs07] and honest-user unforgeability [SU17]. This is established by signing
a commitment to the message instead of the message itself [FS09,SU17]. The commitment is generated
by using a commitment scheme that is statistically hiding and computationally binding. However, and
similarly to [HKLN20], it is still unclear how to prove the blindness property under a maliciously generated
key pair [Fis06].

4

Table 1: A comparison between BlindOR and the scheme introduced in [HKLN20] in terms of key and signature sizes and
communication cost. Numbers are given in kilobytes (KB). The related parameters are given in Table 3 and [HKLN20, Figure 9].

Scheme Public key Secret key Signature Communication

BlindOR 10.3 1.7 17.2 375.6
[HKLN20] 443.75 4275 7915.52 34037.25

1.2 Related Work

Our construction is inspired by the work of Abe and Okamoto [AO00], who used OR-proofs to build
partially blind signatures with security based on the hardness of the discrete logarithm problem. Informally,
a partially blind signature scheme allows to include common information info (e.g., the date of issue) in the
blind signature under some agreement between the signer and user. Unlike our construction, the public key
of their scheme consists of only one instance of the hard problem. The second instance is created within
the signing protocol as the image of info under a cryptographic hash function, which is modeled as random
oracle and transforms info into a random public key whose secret key in unknown to anybody. Therefore,
the second problem instance depends on info, and hence the user knows for which instance the signer holds
a witness. Observe that we cannot simply convert their scheme to the lattice setting, as this would force
us to use MSIS (instead of MLWE) and result in an inefficient scheme. The change to MLWE is possible
because there is no common information to consider in our case.

Hauck et al. [HKLN20] showed that all lattice-based constructions of blind signatures from Sigma
protocols (or canonical identification schemes) prior to their framework (e.g., [Rüc10,PHBS19,AEB20a,
AEB20b,LDS+20]) do not have a valid security argument. Furthermore, Alkeilani Alkadri et al. [AEB20a]
showed that all two-round lattice-based blind signature schemes based on preimage sampleable trapdoor
functions (e.g., [CCT+11,GHWX16]) are insecure.

Fischlin and Schröder [FS10] showed that it is infeasible to find a black-box reduction from some
non-interactive cryptographic assumption to the one-more unforgeability in the standard model for blind
signature schemes that satisfy some specific properties. These impossibility results do not apply to our
construction, since it is proven secure in the ROM.

Recently, Agrawal et al. [ASY21] made a step towards practical two-round lattice-based blind signatures.
They improved the two-round construction of Garg et al. [GRS+11] which is based on general complexity
assumptions, and degraded it to rely on the ROM. This allows them to avoid complexity leveraging, the
main source of inefficiency in [GRS+11]. The construction requires a homomorphic encryption scheme with
specific properties in order to evaluate the signing algorithm of a standard signature scheme. To obtain a
relatively simple circuit that can be evaluated homomorphically, they provided a variant of Lyubashevsky’s
scheme [Lyu12] that does not use rejection sampling. This is attained by employing the so-called noise
flooding technique [Gen09,GKPV10]. However, as pointed out by the authors, there are some challenges
left before this approach becomes practical. For instance, the scheme requires the homomorphic evaluation
of a specific signing algorithm that relies on the random oracle. In practice, this must be instantiated with
a cryptographic hash function that can be evaluated homomorphically. Finding such a function is still an
open problem. Another challenge that has to be tackled is how to handle the compatibility issue induced by
the various formats of the quantities involved in the homomorphic signing. We refer to [ASY21, Section 6.3]
for more details and discussions on the limitations of their construction.

In the context of blind signatures, Schnorr [Sch01] defined a computational problem called Random
inhomogenities in an Overdetermined, Solvable system of linear equations (ROS), and showed that solving
the ROS problem implies the forgeability of number-theoretic blind signature schemes such as [CP93,Oka93,
PS00,AO00]. This attack was greatly improved, e.g., by Wagner [Wag02], and most recently by Benhamouda

5

et al. [BLL+21]. However, Hauck et al. [HKLN20] showed that the ROS attack cannot be applied to
lattice-based blind signature schemes due to their algebraic structure. They defined a lattice variant of this
problem called the Generalized ROS problem, and leave solving this variant in sub-exponential time as an
open problem.

1.3 Outline

The remainder of the paper is structured as follows. We recall all required preliminaries in Section 2.
Afterwards, we present our lattice-based blind signature scheme BlindOR in Section 3. We conclude the
paper in Section 4.

2 Preliminaries

In this section we collect the necessary background and notation we require throughout the paper.

2.1 Notation

We denote by N, Z, and R the sets of natural numbers, integers, and real numbers, respectively. If k ∈ N,
we let [k] := {1, . . . , k}. For q ∈ N, we write Zq to denote the ring of integers modulo q with representatives
in
[
− q

2 ,
q
2

)
∩Z. If n is a fixed power of 2, we define the ring R := Z[X]/〈Xn + 1〉 and its quotient Rq := R/qR.

Elements in R and Rq are denoted by regular font letters. Column vectors with coefficients in R or Rq
are denoted by bold lower-case letters, while bold upper-case letters are matrices. We let Ik denote the
identity matrix of dimension k, and Tnκ the subset of Rq containing all polynomials with coefficients
in {−1, 0, 1} and Hamming weight κ. The `2 and `∞ norms of an element a =

∑n−1
i=0 aiX

i ∈ R are defined
by ‖a‖ :=

(∑n−1
i=0 |ai|

2)1/2 and ‖a‖∞ := maxi|ai|, respectively. Similarly, for b = (b1, . . . , bk)
t ∈ Rk, we

let ‖b‖ :=
(∑k

i=1‖bi‖
2)1/2 and ‖b‖∞ := maxi‖bi‖∞. All logarithms are to base 2.

If D is a distribution, we write x←$ D to denote that x is sampled according to D. For a finite set S,
we also write x←$ S if x is chosen from the uniform distribution over S. The statistical distance between
two distributions X and Y over a countable set S is defined by ∆(X,Y) := 1

2

∑
s∈S |Pr[X = s]− Pr[Y = s]|.

For ε > 0 we say that X and Y are ε-statistically close if ∆(X,Y) ≤ ε.
We denote the security parameter by λ ∈ N, and abbreviate probabilistic polynomial-time by PPT and

deterministic polynomial-time by DPT. For a probabilistic algorithm A, we write y ←$ AO(x) to denote
that A returns y when run on input x with access to oracle O, and y ∈ AO(x) if y is a possible output
of AO(x). To make the randomness r ∈ RSA on which A is run explicit, we use the notation y ← AO(x; r).
If A and B are interactive algorithms, we write (x, y) ←$ 〈A(a),B(b)〉 to denote the joint execution of A
and B in an interactive protocol with private inputs a for A and b for B, as well as private outputs x for A

and y for B. Accordingly, we write A〈·,B(b)〉k(a) if A can invoke up to k executions of the protocol with B.
The random oracle model (ROM) [BR93] is a model of computation where all occurrences of a hash

function are replaced by a random oracle H, i.e., a function chosen at random from the space of all
functions {0, 1}∗ → {0, 1}`H for some `H ∈ N, to which all involved parties have oracle access. This means
that, for every new oracle query, H returns a truly random response from {0, 1}`H , and every repeated query
consistently yields the same output.

2.2 Relations, Sigma Protocols, and OR-Proofs

Definition 2.1. A relation is a tuple R = (R.PGen,R.RSet,R.Gen), where:

R.PGen is the parameter generation algorithm which, on input the security parameter λ ∈ N, returns public
parameters pp.

6

ROR.Gen(pp, b):

11: if b = 0 then

12: d, d′ ←$ {0, 1}
13: xd ←$ R.Gen(pp, 0)

14: x1−d ←$ R.Gen
(
pp, d′

)
15: return (x0, x1)

16: else

17: d←$ {0, 1}
18: (x0, w0)←$ R.Gen(pp, 1)

19: (x1, w1)←$ R.Gen(pp, 1)

20: w ← wd
21: return ((x0, x1), (d,w))

Figure 1: Definition of the instance generator ROR.Gen of the OR-relation on R. Note that in line 14 we slightly abuse notation:
If d′ = 1 (i.e., the instance generator creates a yes-instance), we only consider the first component of the output, and ignore
the witness in the second coordinate.

R.RSet is the relation set, a collection of sets indexed by pp ∈ R.PGen(1λ).

R.Gen is the instance generator algorithm which, on input pp ∈ R.PGen(1λ) and b ∈ {0, 1}, returns
a pair (x,w) ∈ R.RSet(pp) if b = 1 (where x is called a yes-instance for R w.r.t. pp and w a
corresponding witness), and an element x if b = 0 (called a no-instance for R w.r.t. pp).

We now define the OR-relation ROR on a relation R. Informally, for λ ∈ N and public parame-
ters pp ∈ R.PGen(1λ), a yes-instance for ROR w.r.t. pp is a pair of values (x0, x1), where each value is a
yes-instance for R w.r.t. pp. A witness for such an instance is a witness for one of the two coordinates,
i.e., a pair (d,w) with d ∈ {0, 1} and w a witness for xd. In contrast, a no-instance for ROR consists of a
pair (x0, x1), where at least one coordinate is a no-instance for R w.r.t. pp.

Definition 2.2. Let R be a relation. The OR-relation onR is the relation ROR whose parameter generation
algorithm is ROR.PGen := R.PGen, whose relation set is given by

ROR.RSet(pp) := {((x0, x1), (d,w)) | (xd, w), (x1−d, ·) ∈ R.Gen(pp, 1)} ,

and whose instance generator ROR.Gen is given in Figure 1.

We now recall the notion of a Sigma protocol for a relation R, first introduced by Cramer [Cra97].

Definition 2.3. Let R be a relation. A Sigma protocol for R is a tuple of algorithms Σ = (Σ.P,Σ.V,
Σ.Sim,Σ.Ext,Σ.ComRec), where:

Σ.P is an interactive algorithm, called prover, that consists of two algorithms Σ.P = (Σ.P1,Σ.P2), where:
• Σ.P1 is a PPT algorithm which, on input a set of public parameters pp and an instance-witness
pair (x,w), returns a message cm, called the commitment, and a state stΣ.P.
• Σ.P2 is a DPT algorithm which, on input a set of public parameters pp, an instance-witness pair (x,w),
the state information stΣ.P, and a verifier message ch, outputs a message rp, called the response.

Σ.V is an interactive algorithm, called verifier, that consists of two algorithms Σ.V = (Σ.V1,Σ.V2), where:
• Σ.V1 is a PPT algorithm which, on input a set of public parameters pp, an instance x, and a prover
message cm, returns a message ch (called the challenge) sampled uniformly at random from a finite

7

abelian group C(pp) (called the challenge space), as well as a state stΣ.V = (cm, ch) consisting only
of the received message and the sampled challenge.
• Σ.V2 is a DPT algorithm which, on input a set of public parameters pp, an instance x, the state
information stΣ.V = (cm, ch), and a prover message rp, outputs a pair (b, int) with b ∈ {0, 1}
and int ∈ Z. We say that the verifier accepts the transcript if b = 1, and that it rejects if b = 0.

Σ.Sim is a PPT algorithm, called simulator. On input a set of public parameters pp, an instance x, and a
challenge ch, it outputs a pair of messages (cm, rp).

Σ.Ext is a DPT algorithm, called extractor. On input a set of public parameters pp, an instance x, and two
transcripts (cm, ch, rp) and

(
cm, ch ′, rp′

)
such that ch 6= ch ′ and Σ.V2 returns the same output (1, int)

in both cases, Σ.Ext outputs a string w such that (x,w) ∈ R.RSet(pp).

Σ.ComRec is a DPT algorithm, called commitment recovering algorithm. On input a set of public parame-
ters pp, an instance x, a challenge ch, and a response rp, it returns a message cm.

If R is a relation, the Sigma protocols for R we consider must satisfy a few properties which we
briefly describe in the following. The first one is correctness, saying that an honest protocol execution is
likely to be accepted by the verifier. Next, there is a variant of the zero-knowledge property, where we
require that on input an instance x and a randomly chosen challenge ch, the simulator be able to provide
an authentic-looking transcript. Finally, we have soundness, saying that if the commitment recovering
algorithm succeeds in finding a commitment, this commitment verifies for the given challenge and response.

We now consider the OR-combination of two Sigma protocols (OR-proof). It enables a prover P to
show that it knows the witness of one of several statements, or that one out of many statements is true.
Here, we restrict ourselves to the case where a prover holds two statements (x0, x1) and one witness w
for xd, with d ∈ {0, 1}. The prover’s goal is to convince the verifier that it holds a witness for one of the
two statements, without revealing which one. This problem was first solved by Cramer et al. [CDS94], and
we now recall their construction.

Let R be a relation and Σ0, Σ1 be two Sigma protocols for R. The construction of [CDS94] (depicted
in Figure 2) allows to combine Σ0 and Σ1 into a new Sigma protocol ΣOR = OR[Σ0,Σ1] for the relation ROR.
The key idea of the construction is that the prover ΣOR.P splits the challenge ch received by ΣOR.V into
two random parts ch = ch0 + ch1, and is able to provide accepting transcripts for both statements x0

and x1 for the respective challenge share. In more detail, for a given security parameter λ ∈ N, public
parameters pp ∈ R.PGen(1λ), and instance-witness pair ((x0, x1), (d,w)) ∈ ROR.Gen(pp, 1), the execution
of ΣOR proceeds as follows:

(a) The prover ΣOR.P1 starts with computing (cmd, stΣd.P) ←$ Σd.P1(pp, xd, w) and samples a chal-
lenge ch1−d ←$ C(pp). Next, it runs

(
cm1−d, rp1−d

)
←$ Σ1−d.Sim(pp, x1−d, ch1−d) to complete the

transcript of x1−d. In case the simulation fails (i.e.,
(
cm1−d, rp1−d

)
= (⊥,⊥)), the prover re-runs

the simulator. Finally, it sets stΣOR.P ←
(
stΣd.P, ch1−d, rp1−d

)
and sends (cm0, cm1) to the veri-

fier ΣOR.V1.

(b) Upon receiving the commitments (cm0, cm1), ΣOR.V1 samples a random challenge from the challenge
space, i.e., ch ←$ C(pp), and sends it to ΣOR.P2. Finally, it sets its state to stΣOR.V ← (cm0, cm1, ch).

(c) After receiving the challenge ch, ΣOR.P2 sets chd ← ch − ch1−d and computes a response for xd
as rpd ← Σd.P2(pp, xd, w, stΣd.P, chd). In case this computation fails (i.e., rpd = ⊥), it also
sets rp1−d ← ⊥. Otherwise, the prover sends the split challenges and responses to the verifier.

(d) After receiving (ch0, ch1, rp0, rp1) from the prover, ΣOR.V2 accepts if and only if the shares sat-
isfy ch = ch0 + ch1 and both transcripts verify correctly.

8

ΣOR.P1(pp, (x0, x1), (d,w)):

11: (cmd, stΣd.P)←$ Σd.P1(pp, xd, w)

12: ch1−d ←$ C(pp)

13:
(
cm1−d, rp1−d

)
←$

←$ Σ1−d.Sim(pp, x1−d, ch1−d)

14: if
(
cm1−d, rp1−d

)
= (⊥,⊥) then

15: restart Σ1−d.Sim

16: stΣOR.P ←
(
stΣd.P, ch1−d, rp1−d

)
17: return ((cm0, cm1), stΣOR.P)

ΣOR.V1(pp, (x0, x1), cm0, cm1):

21: ch ←$ C(pp)

22: stΣOR.V ← (cm0, cm1, ch)

23: return (ch, stΣOR.V)

ΣOR.P2(pp, (x0, x1), (d,w), stΣOR.P, ch):

31: parse stΣOR.P =
(
stΣd.P, ch1−d, rp1−d

)
32: chd ← ch − ch1−d
33: rpd ← Σd.P2(pp, xd, w, stΣd.P, chd)

34: if rpd = ⊥ then

35: (ch0, ch1, rp0, rp1)← (⊥,⊥,⊥,⊥)

36: return (ch0, ch1, rp0, rp1)

ΣOR.Sim(pp, (x0, x1), ch):

61: ch0 ←$ C(pp)

62: ch1 ← ch − ch0

63: (cm0, rp0)←$ Σ0.Sim(pp, x0, ch0)

64: (cm1, rp1)←$ Σ1.Sim(pp, x1, ch1)

65: if ((cm0, rp0) = (⊥,⊥)) ∨
((cm1, rp1) = (⊥,⊥)) then

66: (cm0, cm1)← (⊥,⊥)

67: (ch0, ch1, rp0, rp1)← (⊥,⊥,⊥,⊥)

68: return ((cm0, cm1), (ch0, ch1, rp0, rp1))

ΣOR.V2(pp, (x0, x1), stΣOR.V, (ch0, ch1, rp0, rp1)):

41: parse stΣOR.V = (cm0, cm1, ch)

42: if ch 6= ch0 + ch1 then

43: return (0, (−1,−1))

44: stΣ0.V ← (cm0, ch0)

45: stΣ1.V ← (cm1, ch1)

46: (b0, int0)← Σ0.V2(pp, x0, stΣ0.V, rp0)

47: (b1, int1)← Σ1.V2(pp, x1, stΣ1.V, rp1)

48: if (b0 = 0) ∨ (b1 = 0) then

49: return (0, (−1,−1))

50: return (1, (int0, int1))

ΣOR.Ext(pp, (x0, x1),Tran,Tran ′):

71: parse Tran = ((cm0, cm1), ch, (ch0, ch1, rp0, rp1))

72: parse Tran ′ =
(
(cm0, cm1), ch ′,

(
ch ′0, ch

′
1, rp

′
0, rp

′
1

))
73: if ch0 6= ch ′0 then

74: w ← Σ0.Ext(pp, x0, (cm0, ch0, rp0),(
cm0, ch

′
0, rp

′
0

))
75: return (0, w)

76: else

77: w ← Σ1.Ext(pp, x1, (cm1, ch1, rp1),(
cm1, ch

′
1, rp

′
1

))
78: return (1, w)

ΣOR.ComRec(pp, (x0, x1), ch, (ch0, ch1, rp0, rp1)):

81: if ch 6= ch0 + ch1 then

82: return (⊥,⊥)

83: cm0 ← Σ0.ComRec(pp, x0, ch0, rp0)

84: cm1 ← Σ1.ComRec(pp, x1, ch1, rp1)

85: if (cm0 = ⊥) ∨ (cm1 = ⊥) then

86: (cm0, cm1)← (⊥,⊥)

87: return (cm0, cm1)

Figure 2: A description of the protocol ΣOR = OR[Σ0,Σ1] introduced in [CDS94].

For the remainder of the paper, we are interested in the situation where a Sigma protocol is combined
with itself, i.e., we obtain a new Sigma protocol ΣOR = OR[Σ,Σ] for the relation ROR. One can show that
this protocol inherits many properties of Σ, such as correctness and special honest-verifier zero-knowledge.
An important property of ΣOR is that it is witness indistinguishable, meaning that the verifier does not
learn which particular witness was used to generate the proof.

9

2.3 Blind Signatures

In the following we define the syntax of a blind signature scheme. We follow the exposition of Hauck et
al. [HKLN20], where the interaction between signer and user consists of three moves, since this is sufficient
for our setting. Note that one can easily extend the formalism to more than three moves and hence also
cover schemes that require more interaction, such as [Rüc10,AEB20a].

Definition 2.4. A blind signature scheme is a tuple of polynomial-time algorithms BS = (BS.PGen,
BS.KGen,BS.S,BS.U,BS.Verify) where:

BS.PGen is a PPT parameter generation algorithm that, on input the security parameter λ ∈ N, returns a
set of public parameters pp, which implicitly contains the security parameter in unary 1λ. We assume
that pp identifies the message spaceM(pp) of the scheme.

BS.KGen is a PPT key generation algorithm that, on input a set of public parameters pp ∈ BS.PGen(1λ),
returns a public/secret key pair (pk , sk).

BS.S is an interactive algorithm, called signer, that consists of two algorithms BS.S = (BS.S1,BS.S2),
where:
• The PPT algorithm BS.S1 takes as input a set of public parameters pp and a key pair (pk , sk), and
returns the signer message s1 and a state stS.
• The DPT algorithm BS.S2 takes as input a set of public parameters pp, a key pair (pk , sk), the state
information stS, and the user message u1, and returns the next signer message s2.

BS.U is an interactive algorithm, called user, that consists of two algorithms BS.U = (BS.U1,BS.U2), where:
• The PPT algorithm BS.U1 takes as input a set of public parameters pp, a public key pk , a mes-
sage m ∈M(pp), and a signer message s1, and returns a user message u1 and a state stU.
• The DPT algorithm BS.U2 takes as input a set of public parameters pp, a public key pk , a message m,
a user state stU, and a signer message s2, and outputs a signature sig. We let sig = ⊥ denote failure.

BS.Verify is a DPT verification algorithm that, upon receiving a set of public parameters pp, a public
key pk , a message m, and a signature sig as input, outputs 1 if the signature is valid and 0 otherwise.

We require blind signature schemes to satisfy the correctness property. More formally, we say that BS
is corrBS-correct w.r.t. pp ∈ BS.PGen(1λ) if, for every key pair (sk , pk) ∈ BS.KGen(pp) and every mes-
sage m ∈M(pp), we have

Pr

[
(view , sig)←$ 〈BS.S(pp, pk , sk),BS.U(pp, pk ,m)〉,

BS.Verify(pp, pk ,m, sig) = 1

]
≥ 1− corrBS .

The security of blind signatures is captured by the notions blindness and one-more unforgeability [JLO97,
PS00]. We start with blindness, which prevents a malicious signer to learn information about signed
messages.

Definition 2.5. Let BS be a blind signature scheme, λ ∈ N and pp ∈ BS.PGen(1λ). We say that BS
is (t, ε)-blind w.r.t. pp if, for every adversarial signer S∗ running in time at most t and working in
modes find, issue, and guess, we have

AdvBlind
BS,S∗(pp) := 2 ·

∣∣∣∣Pr
[
ExpBlind

BS,S∗(pp) = 1
]
− 1

2

∣∣∣∣ ≤ ε ,
where the game ExpBlind

BS,S∗ is depicted in Figure 3. The scheme BS is called ε-statistically blind if it
is (t, ε)-blind for every t.

10

ExpBlind
BS,S∗(pp):

11: b←$ {0, 1}
12: (pk , sk)←$ BS.KGen(pp)

13: (m0,m1, stfind)←$ S∗(find, pp, pk , sk)

14: st issue ←$ S∗〈·,BS.U(pp,pk ,mb)〉1,〈·,BS.U(pp,pk ,m1−b)〉1(issue, stfind)

15: sigb ← BS.U(pp, pk ,mb)

16: sig1−b ← BS.U(pp, pk ,m1−b)

17: if (sig0 = ⊥) ∨ (sig1 = ⊥) then

18: (sig0, sig1)← (⊥,⊥)

19: b∗ ←$ S∗(guess, sig0, sig1, st issue)

20: if b = b∗ then

21: return 1

22: return 0

ExpOMUF
BS,U∗ (pp):

31: (pk , sk)←$ BS.KGen(pp)

32:
(
(m1, sig1), . . . , (ml, sig l)

)
←$ U∗〈BS.S(pp,pk ,sk),·〉∞(pp, pk , ·)

33: k ← number of successful signing invocations
34: if

(
(∀1 ≤ i < j ≤ l)(mi 6= mj)

)
∧
(
(∀i ∈ [l])(BS.Verify(pp, pk ,mi, sig i) = 1)

)
∧ (k + 1 = l) then

35: return 1

36: return 0

Figure 3: Definition of the experiments ExpBlind
BS,S∗ and ExpOMUF

BS,U∗ . Here, lines 15 and 16 mean that sigb and sig1−b are assigned
the signatures obtained by BS.U when S∗ interacts with its first (i.e., where BS.U wants to sign mb) and second (i.e., where BS.U
wants to sign m1−b) oracle, respectively.

In the game ExpBlind
BS,S∗ , S∗ chooses two messages m0 and m1 in mode find, and interacts with the honest

user BS.U in mode issue. Depending on the random bit b, BS.U computes signatures sigb and sig1−b in its
first and second interaction with S∗, respectively. In mode guess, S∗ obtains sig0 and sig1 in the original
order, and has to decide which of the two messages has been signed first. If BS.U outputs ⊥ in one of the
two executions, then S∗ is informed about the failure and does not get any signature.

Next, we define one-more unforgeability, which ensures that each successful execution of the signing
protocol yields at most one valid signature.

Definition 2.6. Let BS be a blind signature scheme, λ ∈ N and pp ∈ BS.PGen(1λ). We say that BS
is (t, qSign, ε)-one-more unforgeable w.r.t. pp if, for every adversarial user U∗ running in time at most t
and making at most qSign signing queries, we have

AdvOMUF
BS,U∗ (pp) := Pr

[
ExpOMUF

BS,U∗ (pp) = 1
]
≤ ε ,

where the game ExpOMUF
BS,U∗ is depicted in Figure 3.

In the game ExpOMUF
BS,U∗ , U∗ interacts with the honest signer BS.S, and has to output k + 1 valid

pairs (m1, sig1), . . . ,
(
mk+1, sigk+1

)
after at most k successful interactions with BS.S.

11

2.4 Lattices and Gaussians

Definition 2.7. Let k,m ∈ Z>0 with k ≤ m, and let B ∈ Rm×k be a matrix of rank k. The m-dimensional
lattice L of rank k generated by B is given by L(B) :=

{
Bx

∣∣ x ∈ Zk
}
⊆ Rm. In the following we will leave

the matrix B implied and omit it from the notation, since it plays no further role.

Definition 2.8. Let L ⊆ Rm be a lattice, σ ∈ R>0, and c ∈ Rm. The discrete Gaussian distribution over L
with standard deviation σ and center c is the probability distribution DL,σ,c which assigns to every x ∈ L
the probability of occurrence given by DL,σ,c(x) := ρσ,c(x)/ρσ,c(L), where ρσ,c(x) := exp

(
−‖x−c‖

2

2σ2

)
and ρσ,c(L) :=

∑
x∈L ρσ,c(x). We will omit the subscript c when c = 0.

The next lemma, due to Lyubashevsky [Lyu12, Lemma 4.4], gives a tail bound on Gaussian distributed
random variables.

Lemma 2.9. Let t, η ∈ R>0 and m ∈ Z>0. Then we have:

(a) Prx←$DZ,σ [|x| > tσ] ≤ 2 exp
(
−t2/2

)
. This implies that Prx←$DZm,σ [‖x‖∞ > tσ] ≤ 2m exp

(
−t2/2

)
.

(b) Prx←$DZm,σ [‖x‖ > ησ
√
m] ≤ ηm exp

(
m
2

(
1− η2

))
.

Next we recall a special version of the rejection sampling lemma related to the discrete Gaussian
distribution [Lyu12, Theorem 4.6].

Lemma 2.10. Let T ∈ R>0, and define V := {v ∈ Zm | ‖v‖ ≤ T}. Let σ := αT for some α ∈ R>0,
and let h : V → R be a probability distribution. Then there exists a constant M ∈ R>0 such that
exp
(

12
α + 1

2α2

)
≤ M , and such that the following two algorithms are within statistical distance of at

most 2−100/M :

(a) v←$ h, z←$ DZm,σ,v, output (z,v) with probability DZm,σ(z)

M ·DZm,σ,v(z) , and ⊥ otherwise.

(b) v←$ h, z←$ DZm,σ, output (z,v) with probability 1/M , and ⊥ otherwise.

Moreover, the probability that the first algorithm returns a value different from ⊥ is at least 1−2−100

M .

We let Rej denote an algorithm that carries out rejection sampling on z, where z←$ DZm,σ,v, with v ∈ Zm
such that ‖v‖ ≤ T , and σ = αT . It outputs 1 if z is accepted and 0 if rejected. By Lemma 2.10, the output 1
indicates that the distribution of z is within statistical distance of at most 2−100/M from the Gaussian
distribution DZm,σ, where exp

(
12
α + 1

2α2

)
≤M . The algorithm Rej returns 1 with probability ≈ 1/M , and

hence the expected number of restarts necessary to return 1 is M .
We will use the following result due to Lyubashevsky and Seiler [LS18, Corollary 1.2], which shows that

for a suitable choice of the modulus q, all polynomials with small norms are invertible in Rq.

Lemma 2.11. Let n ≥ p > 1 be powers of 2 and q = 2p+ 1 (mod 4p) be a prime. Then Xn + 1 factors as

Xn + 1 ≡
p∏
j=1

(
Xn/p − rj

)
(mod q)

for distinct rj ∈ Z∗q, where the polynomials Xn/p − rj are irreducible in Zq[X]. Furthermore, any y ∈ Rq
that satisfies either 0 < ‖y‖∞ < q1/p/

√
p or 0 < ‖y‖ < q1/p has an inverse in Rq.

12

ExpMSIS
A∗ (pp):

11: parse pp = (n, q, k1, k2, β)

12: A←$ Rk1×k2q

13: x←$ A∗(pp,A)

14: if (x ∈ Rk1+k2) ∧ (0 = [Ik1 |A] · x (mod q)) ∧
∧ (x 6= 0) ∧ (‖x‖ ≤ β) then

15: return 1

16: return 0

ExpD-MLWE
D∗ (pp):

21: parse pp = (n, q, k1, k2, σ,A)

22: b←$ {0, 1}
23: b←$ Rk1q
24: if b = 1 then

25: s←$ Dk1+k2
Zn,σ

26: b← [Ik1 |A] · s (mod q)

27: b∗ ←$ D∗(pp,b)

28: if b = b∗ then

29: return 1

30: return 0

Figure 4: Definition of the experiments ExpMSIS
A∗ and ExpD-MLWE

D∗ .

Finally, we recall the definitions of the two lattice problems relevant to our work, the Module Short
Integer Solution (MSIS) and the decisional Module Learning With Errors (D-MLWE) problems. In both
cases, we assume that there is an algorithm that, on input 1λ, generates a set of public parameters pp.
Note that D-MLWE can be defined w.r.t. an arbitrary distribution; here we only focus on the case where
the witness is sampled from the Gaussian distribution.

Definition 2.12. Let pp = (n, q, k1, k2, β), where n, q, k1, k2 ∈ Z>0, and β ∈ R>0. We say that the
Hermite normal form of the module short integer solution problem (MSIS) is (t, ε)-hard w.r.t. pp if, for
every algorithm A∗ running in time at most t, we have

AdvMSIS
A∗ (pp) := Pr

[
ExpMSIS

A∗ (pp) = 1
]
≤ ε ,

where the game ExpMSIS
A∗ is depicted in Figure 4.

Definition 2.13. Let pp = (n, q, k1, k2, σ,A), where n, q, k1, k2 ∈ Z>0, σ ∈ R>0, and A ∈ Rk1×k2q . We
say that the decisional module learning with errors problem (D-MLWE) is (t, ε)-hard w.r.t. pp if, for every
algorithm A∗ running in time at most t, we have AdvD-MLWE

A∗ (pp) := 2 ·
∣∣Pr
[
ExpD-MLWE

A∗ (pp) = 1
]
− 1

2

∣∣ ≤ ε,
where the game ExpD-MLWE

A∗ is depicted in Figure 4.

The MLWE problem, defined by Langlois and Stehlé [LS15], generalizes the problems LWE [Reg05] and
RLWE [LPR10]. More precisely, by setting k1 = 1 in the definition above we obtain the ring version RLWE,
while setting k1 > 1 and Rq = Zq yields a definition of the LWE problem. The same applies for MSIS [LS15]
and its special versions SIS [Ajt96] and RSIS [Mic02]. In [LS15], it was shown that both MSIS and MLWE
are as hard as the Shortest Independent Vectors problem (SIVP) in the worst-case, defined on module
lattices. Given a lattice L of dimension m, the SIVP problem asks to find m linearly independent lattice
vectors (x1, . . . ,xm) such that max{‖x1‖, . . . , ‖xm‖} is within a factor γ of its optimal value, where γ > 0
is called the approximation factor. For any γ ∈ O(1), SIVP is NP-hard [BS99], and it is conjectured that
there is no polynomial-time (quantum) algorithm that achieves an approximation factor γ bounded by any
polynomial in m (see, e.g., [LS15]).

2.5 Partitioning and Permutation

Partitioning and permutation is a technique introduced by Alkeilani Alkadri et al. [AEB20a] in the context
of lattice-based blind signatures. It allows the user to mask the challenge returned by some cryptographic

13

hash function, so that blindness is satisfied at the first user stage, without having to apply rejection
sampling or restart the algorithm BS.U1. As a result, smaller parameters can be chosen for the scheme,
which reduces the signature size and speeds up the signing process. It also allows to use cryptographic
hash functions that output challenges from Tnκ instead of polynomials with unspecified Hamming weight.

Definition 2.14. We define by T :=
{

(−1)b ·Xi
∣∣ b ∈ {0, 1}, i ∈ Z

}
the set of signed permutation polyno-

mials which represent a rotation multiplied by a sign.

We will need the following simple result due to [AEB20a, Lemma 3]:

Lemma 2.15. The set T defines a group with respect to multiplication in the ring R. The inverse of
any p = (−1)b ·Xi ∈ T is given by p−1 = (−1)1−b ·Xn−i ∈ T.

The partitioning and permutation technique works as follows. If c ∈ Tnκ is a challenge, the user splits c
into shares c1, . . . , cκ ∈ T such that c =

∑κ
j=1 cj and each cj is the jth non-zero entry of c at exactly the

same position. Then, for each j ∈ [κ], cj is masked by computing c∗j = p−1
j · cj , where the pj are chosen

uniformly at random from T. The masked challenge sent to the signer is then c∗ = (c∗1, . . . , c
∗
κ) ∈ Tκ.

The following lemma, due to [AEB20a, Lemma 4], shows that the partitions c∗j are independently
distributed from cj , for all j ∈ [κ].

Lemma 2.16. Let c ∈ Tnκ and c1, . . . , cκ be a partition of c such that c =
∑κ

j=1 cj and each cj con-
tains the jth non-zero entry of c at the jth position. Furthermore, let c∗j = p−1

j cj for random signed
rotations p1, . . . , pκ ∈ T. Then, c∗j , cj ∈ T, and we have:

Pr
pj←$T

[
(c∗1, . . . , c

∗
κ) =

(
p−1

1 c1, . . . , p
−1
κ cκ

) ∣∣ c] = Pr
pj←$T
c←$Tnκ

[
(c∗1, . . . , c

∗
κ) =

(
p−1

1 c1, . . . , p
−1
κ cκ

)]
= (2n)−κ .

In order to construct lattice-based OR-proofs, we will directly use the abelian group Tκ as the challenge
space rather than the set Tnκ, since it does not define a group structure.

2.6 Trees of Commitments

Trees of commitments is a technique introduced by Alkeilani Alkadri et al. [AEB20b] in order to reduce or
even remove the number of restarts inherent in lattice-based (interactive) protocols when masking secrets
using rejection sampling. When masking a secret (or secret-related) term x in lattice-based cryptographic
protocols, rejection sampling is usually applied on the sum z = y + x in order to make sure that z is
independently distributed from x, where y is a masking term that has been generated and committed
to in an earlier phase of the protocol. If rejection sampling accepts, i.e., if Rej(z) = 1, then x and z are
independently distributed and z already hides x. Otherwise, z may leak information about x, and hence
the protocol is restarted with a fresh y in order to retain the security of the protocol. This affects the
efficiency of interactive protocols with multiple rejection sampling procedures in a negative way. More
precisely, assume that a protocol involves N rejection sampling procedures and each one is repeated Mi

times on average, where i = 1, . . . , N . Then, the average total number of restarts is
∏N
i=1Mi, which is

multiplicative in N . This number can be reduced or even removed by using trees of commitments.
A tree of commitments is an (unbalanced) binary hash tree, whose leaves are the hash values of

commitments to ` masking terms yj , 0 ≤ j ≤ `− 1, that are generated at once in a protocol run. These
commitments are then aggregated to one, the root of the tree. In a subsequent phase of the protocol only
the sum z = yk + x together with auth are revealed, where yk is the first masking term for which rejection
sampling accepts and auth is the authentication path of the index k, 0 ≤ k < `.

14

Let F : {0, 1}∗ → {0, 1}`F be a cryptographic hash function, where `F ≥ 2λ for F to be collision resistant.
We consider the following algorithms:

HashTree: An algorithm that computes an (unbalanced) binary hash tree of height h ≥ 1. Its input
consists of ` ≤ 2h commitments v0, . . . , v`−1 whose hash values are the leaves of the tree, i.e.,
(root , tree)← HashTree(v0, . . . , v`−1), where root is the root of the tree and tree is a sequence of all
other nodes.

BuildAuth: An algorithm that on input an index k, a sequence of nodes tree, and a height h outputs the
corresponding authentication path auth including the index k, i.e., auth ← BuildAuth(k, tree, h).

RootCalc: An algorithm that computes the root of a hash tree given a commitment F(v) and its authentication
path auth, i.e., root ← RootCalc(v, auth).

2.7 Forking Lemma

In this section we recall the forking lemma, which constitutes a crucial tool for proving the security of
cryptographic schemes in the random oracle model.

The lemma considers the situation where an algorithm A runs on input an instance ist and random
values h1, . . . , hq belonging to a finite set C, and returns a pair (idx , out), where 0 ≤ idx ≤ q and the
output out is related to hidx . Here, we convene that idx = 0 means that A has failed to compute an
output related to any of the values h1, . . . , hq. At a high level, the forking lemma gives a lower bound
on the probability that A, if run twice on the same instance ist and randomness, but partially different
values h1, . . . , hq, will return answers related to values hidx and h′idx with the same index idx , where hidx
and h′idx were sampled in the first and second run, respectively.

The forking lemma was first introduced by Pointcheval and Stern [PS00], who used a specific version of
this result in their security proofs of certain digital signature and blind signature schemes. The lemma
was later generalized by Bellare and Neven [BN06] and reformulated as a purely probabilistic statement.
We remark that, in recent work, Hauck et al. [HKL19] proved an even more general version of the forking
lemma, which gives a lower bound on the forking probability even if the outputs of A are required to satisfy
some additional (probabilistic) constraints.

In this paper, we will need a minor modified version of the general forking lemma [BN06], where the
algorithm A being forked returns a second index as part of the side output. In this version of the lemma,
forking succeeds only if both the index identifying the random oracle query that the output is related to
and the index in the side output coincide across both runs. The proof of this version of the lemma is
virtually identical to the standard proof by Bellare and Neven [BN06]. We provide this proof for the sake
of completeness.

Lemma 2.17. Let q, ` ∈ Z≥1, let IG be a probabilistic algorithm and C be a finite set of size |C| ≥ 2. Suppose
that A is a probabilistic algorithm that, on input ist ∈ IG and h1, . . . , hq ∈ C, outputs a tuple (idx 1, idx 2, out),
with 0 ≤ idx 1 ≤ q and 0 ≤ idx 2 < `. Define the accepting probability and the forking probability of A
as acc = Pr

[
ExpAcc

IG,C,A = 1
]
and frk = Pr

[
ExpFrk

IG,C,A = 1
]
, respectively, where ExpAcc

IG,C,A and ExpFrk
IG,C,A are

given in Figure 5. Then

frk ≥ acc ·
(
acc

q`
− 1

|C|

)
.

Proof. For any output ist returned by IG with non-zero probability, define

acc(ist) := Pr
[
ExpAcc

IG,C,A = 1
∣∣ IG = ist

]
, frk(ist) := Pr

[
ExpFrk

IG,C,A = 1
∣∣∣ IG = ist

]
.

15

ExpAcc
IG,C,A:

11: ist ←$ IG

12: h1, . . . , hq ←$ C
13: (idx 1, idx 2, out)←$ A(ist , h1, . . . , hq)

14: if 1 ≤ idx 1 ≤ q then

15: return 1

16: return 0

ExpFrk
IG,C,A:

21: ist ←$ IG

22:
(
b, out , out ′

)
←$ FrkC,A(ist)

23: return b

FrkC,A(ist):

31: r ←$ RSA

32: h1, . . . , hq ←$ C
33: (idx 1, idx 2, out)← A(ist , h1, . . . , hq; r)

34: if idx 1 = 0 then

35: return (0,⊥,⊥)

36: h′idx1
, . . . , h′q ←$ C

37:
(
idx ′1, idx

′
2, out

′)← A
(
ist , h1, . . . , hidx1−1, h

′
idx1

, . . . , h′q; r
)

38: if
(
idx 1 = idx ′1

)
∧
(
idx 2 = idx ′2

)
∧
(
hidx1 6= h′idx1

)
then

39: return
(
1, out , out ′

)
40: return (0,⊥,⊥)

Figure 5: Definition of the experiments ExpAcc
IG,C,A and ExpFrk

IG,C,A, as well as the forking algorithm FrkC,A.

We show that the inequality holds for every such ist . The statement then follows by averaging over all
possible ist . Observe that

frk(ist) = Pr
[
(idx 1 ≥ 1) ∧

(
idx 1 = idx ′1

)
∧
(
idx 2 = idx ′2

)
∧
(
hidx1 6= h′idx1

)]
≥ Pr

[
(idx 1 ≥ 1) ∧

(
idx 1 = idx ′1

)
∧
(
idx 2 = idx ′2

)]
− Pr

[
(idx 1 ≥ 1) ∧

(
hidx1 = h′idx1

)]
= Pr

[
(idx 1 ≥ 1) ∧

(
idx 1 = idx ′1

)
∧
(
idx 2 = idx ′2

)]
− Pr[idx 1 ≥ 1]

|C|

=

q∑
i=1

`−1∑
j=0

Pr
[
(idx 1 = i) ∧

(
idx ′1 = i

)
∧ (idx 2 = j) ∧

(
idx ′2 = j

)]
− acc(ist)

|C|

=

q∑
i=1

`−1∑
j=0

∑
(r̄,h̄1,...,h̄i−1)

Pr

[
(idx 1 = i) ∧

(
idx ′1 = i

)
∧

∧ (idx 2 = j) ∧
(
idx ′2 = j

) ∣∣∣∣ (r = r̄) ∧
(
h1 = h̄1

)
∧

∧ · · · ∧
(
hi−1 = h̄i−1

)]

· Pr
[
(r = r̄) ∧

(
h1 = h̄1

)
∧ · · · ∧

(
hi−1 = h̄i−1

)]
− acc(ist)

|C|

=

q∑
i=1

`−1∑
j=0

∑
(r̄,h̄1,...,h̄i−1)

Pr

[
(idx 1 = i) ∧ (idx 2 = j)

∣∣∣∣ (r = r̄) ∧
(
h1 = h̄1

)
∧

∧ · · · ∧
(
hi−1 = h̄i−1

)]2

· Pr
[
(r = r̄) ∧

(
h1 = h̄1

)
∧ · · · ∧

(
hi−1 = h̄i−1

)]
− acc(ist)

|C|

=

q∑
i=1

`−1∑
j=0

E
(r,h1,...,hi−1)

[
Pr[(idx 1 = i) ∧ (idx 2 = j) | r ∧ h1 ∧ · · · ∧ hi−1]2

]
− acc(ist)

|C|

≥
q∑
i=1

`−1∑
j=0

E
(r,h1,...,hi−1)

[Pr[(idx 1 = i) ∧ (idx 2 = j) | r ∧ h1 ∧ · · · ∧ hi−1]]2 − acc(ist)

|C|

=

q∑
i=1

`−1∑
j=0

Pr[(idx 1 = i) ∧ (idx 2 = j)]2 − acc(ist)

|C|

16

≥ 1

q`

 q∑
i=1

`−1∑
j=0

Pr[(idx 1 = i) ∧ (idx 2 = j)]

2

− acc(ist)

|C|

≥ acc(ist)2

q`
− acc(ist)

|C|
.

The critical (in)equalities given above follow from the conditional independence given r, h1, . . . , hi−1 and by
applying Jensen’s inequality twice.

3 BlindOR: A New Blind Signature Scheme

In this section we present BlindOR: our new lattice-based construction of blind signatures from OR-proofs.
In Section 3.1, we present the Sigma protocol underlying BlindOR. Then, in Section 3.2 we present our
scheme BlindOR, and analyze its security properties of blindness and one-more unforgeability in Section 3.3.
Finally, in Section 3.4 we propose concrete parameters of the scheme targeting 128 bits of security.

3.1 Sigma Protocol

In this section we present the lattice-based Sigma protocol that is used as a building block in BlindOR.
In lattice-based cryptography, it is common to prove in zero-knowledge the possession of a witness s with

small entries such that b = As, given a matrix A and a vector b over some ring (typically Zq or Rq). One
approach to do so is the so-called Fiat-Shamir with Aborts technique [Lyu09]. However, rather than proving
knowledge of s itself, this method allows to prove knowledge of a pair (s̄, c̄) satisfying bc̄ = As̄, where the
entries of s̄ are still small but slightly larger than those of s, and c̄ is small as well. More precisely, the Fiat-
Shamir with Aborts technique allows to prove possession of a witness of the form (s̄, c̄) ∈ B1×B2, where B1

and B2 are some predefined sets, even though the prover actually holds a witness of the form (s, 1) ∈ B′1×B2,
where B′1 ⊆ B1. It was shown that this relaxation is sufficient for many cryptographic applications such as
digital signatures [Lyu12], commitment schemes [BCK+14], and verifiable encryption [LN17]. This paper
extends this line of applications to blind signatures, i.e., we show how this kind of proofs can be used to
build blind signatures.

BlindOR is built on a variant of the Sigma protocol introduced in [Lyu09], so we briefly recall this construc-
tion before presenting our modified protocol. Given a public matrix A ∈ Rk1×k2q and an instance b ∈ Rk1q ,
the prover holds a witness (s, 1) ∈ B′1×B2 ⊆ Rk1+k2 ×Rq such that b = [Ik1 |A] · s (mod q). An execution
of the protocol allows him to prove knowledge of a witness (s̄, c̄) ∈ B1 ×B2, with B′1 ⊆ B1 ⊆ Rk1+k2 , such
that bc̄ = [Ik1 |A] · s̄ (mod q). The commitment message is given by v = [Ik1 |A] · y (mod q), where y
is a masking vector with small entries. Upon receiving a challenge c ∈ Tnκ, the response is computed
as z = y + sc, and is sent to the verifier only if it follows a specified distribution, typically the Gaussian
distribution Dk1+k2

Zn,σ for some σ > 0 or the uniform distribution over a small subset of Rk1+k2 . This
ensures that y masks the secret-related term sc and that z is independently distributed from s. If z does
not follow the target distribution, the prover restarts the protocol with a fresh y. The verifier accepts
if v = [Ik1 |A] · z− bc (mod q) and if ‖z‖p is bounded by some predefined value. Note that p ∈ {2,∞},
depending on the distribution of z.

We now turn our attention to our modified Sigma protocol, built on top of the protocol recalled above,
and start by introducing the relation R it is associated to. The algorithm R.PGen generates a set of public
parameters of the form

pp = (1λ, n, k1, k2, q, ω, κ, σ
′, σ∗, S,Bs, Bz∗ , Bz, δ

∗,A)←$ R.PGen(1λ) ,

17

subject to the constraints given in Table 2, where the matrix A ∈ Rk1×k2q follows the uniform distribution1.
In Table 3 we propose a concrete tuple of such parameters targeting 128 bits of security. The relation set is
then given by

R.RSet(pp) :=

{(
b, (s̄, c̄)

)
∈ Rk1q × (Rk1+k2 ×Rκq)

∣∣∣∣ (bc̄ = [Ik1 |A] · s̄ (mod q)) ∧

∧
(
c̄ = (c̄1, . . . , c̄κ) ∈ C

)
∧
(
c̄ =

κ∑
j=1

c̄j

)
∧ (‖s̄‖ ≤ 2Bz)

}
,

(1)

where
C =

{
c− c′ = (c1 − c′1, . . . , cκ − c′κ)

∣∣ c, c′ ∈ Tκ, c 6= c′
}
,

and the instance generator is given in Figure 6. The actual witness the prover possesses is of the form (s, 1),
where ‖s‖ ≤ Bs < Bz and b = [Ik1 |A] · s (mod q). The challenge space of the protocol is Tκ, and its other
algorithms are given in Figures 6 and 7.

At a high level, the protocol can be seen as a generalized version of the one given in [Lyu09] and
briefly recalled above. In particular, it is optimized to work for BlindOR. Rather than computing only one
commitment to a masking vector in Σ.P1, the prover computes commitments to ω ≥ 1 such vectors and
sends them to the verifier all at once. Choosing ω > 1 allows to reduce the number of restarts, since the
chance of masking the secret-related term without restarting the protocol is increased. More concretely,
increasing ω allows to compute a response such that there is no need to trigger a protocol restart with some
fixed probability. The masking vectors are chosen according to the Gaussian distribution Dk1+k2

Zn,σ∗ . Upon
receiving the challenge c ∈ Tκ, the prover sends the first response z for which rejection sampling accepts,
i.e., for the masking vector y(i) such that Rej(pp, z) = 1 and i is chosen from the uniform distribution
over the set T ⊆ {0, . . . , ω − 1}. The random choice of the index i ensures that the simulator Σ.Sim
returns (v, z) 6= (⊥,⊥) with the same probability as the prover. Note that each of the ω commitments
consists of κ components, where κ defines the challenge space Tκ. This allows to use the partitioning
and permutation technique in BlindOR. To verify a transcript (v, c, z), the verifier first finds out which of
the ω commitments is related to the response. The index i of the corresponding commitment is part of
the verifier’s output. We remark that while ‖z‖ is actually bounded by Bz∗ , we use the larger bound Bz
(cf. Table 2), which is necessary for the one-more unforgeability property of BlindOR. In practice however,
the bound Bz∗ is sufficient.

Theorem 3.1. Given the parameters in Table 2, the protocol depicted in Figures 6 and 7 is a Sigma
protocol for relation R given in Equation (1).

Proof. Note that the prover generates ω commitments in one protocol run and sends them to the verifier
at once. By Lemma 2.10, the prover responds with probability (1− 2−100)/S after an average number of S
restarts, where S = exp

(
12
α∗ + 1

2α∗2

)
and ω = 1. Therefore, when ω ≥ 1, the prover sends a response z 6= ⊥

with probability 1 −
(

1− 1−2−100

S

)ω
after at most M = 1/(1− δ∗) restarts, where ω is chosen such

that
(

1− 1−2−100

S

)ω
≤ δ∗. This means that the prover returns a response z = ⊥ with probability at

most δ∗, and after M = 1/(1− δ∗) restarts, the prover returns a response z 6= ⊥.
Given an honestly created transcript (v, c, z), its response z = (z1, . . . , zκ) is distributed as D(k1+k2)κ

Zn,σ∗ .
By Lemma 2.9, ‖z‖ > Bz∗ with probability at most

ε∗ = η∗(k1+k2)κn exp

(
(k1 + k2)κn

2
(1− η∗2)

)
,

1In practice, the matrix A is deterministically generated from a uniformly random seed using an extendable output function
such as SHAKE.

18

R.Gen(pp, b):

11: if b = 0 then

12: b←$ Rk1q
13: return b

14: if b = 1 then

15: repeat s←$ Dk1+k2
Zn,σ′ until ‖s‖ ≤ Bs

16: b← [Ik1 |A] · s (mod q)

17: return (b, s)

Σ.P1(pp,b, s):

21: for i = 0 to ω − 1 do

22: for j = 1 to κ do

23: yj ←$ Dk1+k2
Zn,σ∗

24: vj ← [Ik1 |A] · yj (mod q)

25: v(i) ← (v1, . . . ,vκ)

26: y(i) ← (y1, . . . ,yκ)

27: v← (v(0), . . . ,v(ω−1))

28: stΣ.P ← (y(0), . . . ,y(ω−1))

29: return (v, stΣ.P)

Σ.V1(pp,b,v):

31: c = (c1, . . . , cκ)←$ Tκ

32: stΣ.V ← (v, c)

33: return (c, stΣ.V)

Σ.Ext(pp,b, (v, c, z), (v, c′, z′)):

81: parse z = (z1, . . . , zκ)

82: parse z′ = (z′1, . . . , z
′
κ)

83: s̄←
κ∑
j=1

(zj − z′j)

84: c̄← c− c′

85: return (s̄, c̄)

Σ.P2(pp,b, s, stΣ.P, c):

41: parse stΣ.P = (y(0), . . . ,y(ω−1))

42: parse c = (c1, . . . , cκ)

43: T := {0, . . . , ω − 1}
44: while T 6= ∅ do
45: i←$ T

46: T ← T \ {i}
47: parse y(i) = (y1, . . . ,yκ)

48: for j = 1 to κ do

49: zj ← yj + scj
50: z← (z1, . . . , zκ)

51: if Rej(pp, z) = 1 then

52: return z

53: return ⊥

Σ.V2(pp,b, stΣ.V, z):

61: if ‖z‖ > Bz then

62: return (0,−1)

63: parse stΣ.V = (v, c)

64: parse v = (v(0), . . . ,v(ω−1))

65: parse c = (c1, . . . , cκ)

66: parse z = (z1, . . . , zκ)

67: for j = 1 to κ do

68: wj ← [Ik1 |A] · zj − bcj (mod q)

69: for i = 0 to ω − 1 do

70: int ← 0

71: parse v(i) = (v1, . . . ,vκ)

72: for j = 1 to κ do

73: if wj = vj then

74: int = int + 1

75: if int = κ then

76: return (1, i)

77: return (0,−1)

Figure 6: The lattice-based Sigma protocol underlying BlindOR. The commitment recovering algorithm and simulator are
given in Figure 7. Note that the prover restarts the protocol if Σ.P2 returns ⊥.

19

Σ.Sim(pp,b, c):

11: return (⊥,⊥) with probability δ∗

12: parse c = (c1, . . . , cκ)

13: i←$ {0, . . . , ω − 1}
14: for j = 1 to κ do

15: zj ←$ Dk1+k2
Zn,σ∗

16: vj ← [Ik1 |A] · zj − bcj (mod q)

17: z← (z1, . . . , zκ)

18: v(i) ← (v1, . . . ,vκ)

19: for k = 0 to ω − 1 do

20: if k = i then

21: continue

22: for j = 1 to κ do

23: yj ←$ Dk1+k2
Zn,σ∗

24: vj ← [Ik1 |A] · yj (mod q)

25: v(k) ← (v1, . . . ,vκ)

26: v← (v(0), . . . ,v(ω−1))

27: return (v, z)

Σ.ComRec(pp,b, c, z):

31: if ‖z‖ > Bz then

32: return ⊥
33: parse c = (c1, . . . , cκ)

34: parse z = (z1, . . . , zκ)

35: for j = 1 to κ do

36: vj ← [Ik1 |A] · zj − bcj (mod q)

37: v(0) ← (v1, . . . ,vκ)

38: for i = 1 to ω − 1 do

39: v(i) ← (0, . . . ,0) ∈ (Rk1q)κ

40: v← (v(0), . . . ,v(ω−1))

41: return v

Figure 7: The commitment recovering algorithm and simulator of the lattice-based Sigma protocol given in Figure 6.

where η∗ > 0 can be chosen such that ‖z‖ ≤ Bz∗ < Bz with probability almost 1, e.g., 1 − 2−80, where
ε∗ = 2−80. Moreover, given the correct index i ∈ {0, . . . , ω − 1} we have, for all j ∈ [κ],

wj = [Ik1 |A] · zj − bcj = [Ik1 |A] · (yj + scj)− bcj = vj (mod q) .

Thus, the algorithm Σ.V2 returns (0,−1) with probability ε∗, and hence the protocol is corrΣ-correct,
where corrΣ = δ∗ + ε∗. The same argument shows that Σ.ComRec is also corrΣ-correct.

Next, we show that Σ.Ext returns a witness in R. Assume we have two correctly verified tran-
scripts (v, c, z) and (v, c′, z′), where c 6= c′ and Σ.V2 returns the same output (1, i) when given both
transcripts as input, where i ∈ {0, . . . , ω − 1}. This means that, for all j ∈ [κ], we have

(‖z‖ ≤ Bz∗) ∧
(∥∥z′∥∥ ≤ Bz∗) ∧ ([Ik1 |A] · zj − bcj = [Ik1 |A] · z′j − bc′j (mod q)

)
.

This implies
∑κ

j=1([Ik1 |A] · zj − bcj) =
∑κ

j=1

(
[Ik1 |A] · z′j − bc′j

)
(mod q), and we obtain

(
b ·

κ∑
j=1

(
cj − c′j

)
= [Ik1 |A] ·

(κ∑
j=1

(zj − z′j)

)
(mod q)

)
∧
(∥∥∥∥ κ∑

j=1

(zj − z′j)

∥∥∥∥ < 2Bz

)
.

We set s̄ =
∑κ

j=1(zj − z′j), c̄ =
∑κ

j=1(cj − c′j) to obtain bc̄ = [Ik1 |A] · s̄ (mod q). Furthermore, we
set c̄ = (c1 − c′1, . . . , cκ − c′κ) so that c̄ ∈ C, and hence cj − c′j 6= 0 for at least one index j. Moreover, the
coefficients of each cj − c′j lie in the set {−2,−1, 0, 1, 2}. Therefore, when summing cj − c′j , the coefficients
of c̄ lie in the set {−2κ, . . . , 2κ}. By induction on κ, it can be shown that c̄ = 0 with probability very close
to zero. Furthermore, the set {−2κ, . . . , 2κ} is much smaller than Zq. Thus, we obtain c̄ 6= 0 (mod q), and

20

by Lemma 2.11, c̄ is invertible in Rq if q and κ satisfy ‖c̄‖ = 2κ < q1/p, where q = 2p+ 1 (mod 4p) and p
is a power of 2 such that n ≥ p > 1. This implies that bc̄ 6= 0 (mod q), and we can extract a witness (s̄, c̄)
in R as described in Figure 6.

We observe that the protocol is also special honest-verifier zero-knowledge. By Lemma 2.10, the
distribution of z does not depend on the witness. Furthermore, real and simulated transcripts are
statistically indistinguishable and within statistical distance of at most 2−100/M . Finally, the witness
indistinguishability property directly follows from the base Sigma protocol due to [Lyu09].

We remark that when constructing the Sigma protocol ΣOR = OR[Σ,Σ] as depicted in Figure 2, where Σ
is the protocol introduced above, we must consider the group operation defined on the challenge space Tκ.
More precisely, ΣOR.P1 samples c1−d = (c1,1−d, . . . , cκ,1−d)←$ Tκ and then runs Σ1−d.Sim on c1−d. Upon
receiving a challenge c = (c1, . . . , cκ) from ΣOR.V1, ΣOR.P2 computes cd = (c1c

−1
1,1−d, . . . , cκc

−1
κ,1−d) and

runs Σd.P2 on cd. Therefore, we have c = cd · c1−d = (c1,dc1,1−d, . . . , cκ,dcκ,1−d).

3.2 Description of BlindOR

In this section we introduce our blind signature scheme BlindOR.
Let BS be a blind signature scheme as defined in Section 2.3. Recall how signing and verification of

such a scheme works. The signer computes and sends a commitment cm∗ to the user. The user blinds cm∗

to obtain a blind commitment cm and computes a challenge ch, which is generated by evaluating a hash
function H on input (cm,m), i.e., ch = H(cm,m) with m being a message. After that, the user unblinds ch
to obtain a challenge ch∗ and sends it to the signer. The signer computes a response rp∗ and sends it
back to the user. Finally, the user blinds rp∗ to obtain a blind response rp and outputs sig = (ch, rp).
Note that we call ch a blind challenge, since it is a part of the blind signature. Verifying the validity
of sig is established by computing a commitment cm corresponding to ch and rp, and then checking if ch
matches H(cm,m). Observe that while the steps carried out by the signer are actually what a prover in
a Sigma protocol does when proving the possession of a witness for a statement, the steps performed by
the user consist of blinding the transcript (cm∗, ch∗, rp∗) during interaction. In BlindOR, we capture these
blinding steps by algorithms Com,Cha, and Rsp, which we describe next.

For the remainder of this section we let Σ be the Sigma protocol depicted in Figures 6 and 7. Furthermore,
let h = dlog(ω`)e and define the following bijective mapping:

IntIdx : {0, . . . , ω − 1} × {0, . . . , `− 1} → {0, . . . , ω`− 1} , (i, k) 7→ k + i` .

The mapping IntIdx converts the pair (i, k) into a unique positive integer. This is used in BlindOR to
build authentication paths via the algorithm BuildAuth. Let pp be a set of public parameters for BlindOR
and x = b ∈ Rk1q be an instance for R. We define the following algorithms, which are formally described
in Figure 8:

Com is a PPT algorithm that, on input pp, the statement x, and a commitment cm∗ = v∗ generated
by Σ.P1, returns a blind commitment cm = root and a state (p, tree, e).

Cha is a DPT algorithm that, on input pp, a randomness p ∈ Tκ, a challenge ch∗ = c∗ ∈ Tκ, and an
auxiliary bit b ∈ {0, 1}, returns a challenge ch = c ∈ Tκ. Observe that b determines if c∗ will be
blinded using p or its inverse with respect to the group operation defined on Tκ.

Rsp is a DPT algorithm that, on input pp, a state (p, tree, e), a response rp∗ = z∗ generated by Σ.P2, and
an integer i ∈ {0, . . . , ω − 1}, returns a blind response rp = (z, auth), where rp = (⊥,⊥) is possible.

Rec is a DPT algorithm that, on input pp, the statement x, a challenge ch, and a response rp, returns a
commitment cm, where cm = ⊥ is possible.

21

Com(pp,b,v∗):

11: parse v∗ = (v∗(0), . . . ,v∗(ω−1))

12: p = (p1, . . . , pκ)←$ Tκ

13: for i = 0 to ω − 1 do

14: parse v∗(i) = (v∗1, . . . ,v
∗
κ)

15: v′
(i) ←

κ∑
j=1

v∗jpj (mod q)

16: for k = 0 to `− 1 do

17: e(k) ←$ Dk1+k2
Zn,σ

18: v(i,k) ← [Ik1 |A] · e(k) + v′
(i)

(mod q)

19: (root , tree)← HashTree(v(0,0), . . . ,v(ω−1,`−1))

20: e← (e(0), . . . , e(`−1))

21: return (root , (p, tree, e))

Cha(pp,p, c∗, b):

31: parse p = (p1, . . . , pκ)

32: parse c∗ = (c∗1, . . . , c
∗
κ)

33: if b = 0 then

34: c← (c∗1p
−1
1 , . . . , c∗κp

−1
κ)

35: else

36: c← (c∗1p1, . . . , c
∗
κpκ)

37: return c

Rsp(pp, (p, tree, e), z∗, i):

41: parse p = (p1, . . . , pκ)

42: parse z∗ = (z∗1, . . . , z
∗
κ)

43: z′ ←
κ∑
j=1

z∗jpj

44: (z, k)← IterateRej
(
pp, e, z′

)
45: if (z, k) = (⊥,⊥) then

46: return (⊥,⊥)

47: auth ← BuildAuth(IntIdx(i, k), tree, h)

48: return (z, auth)

IterateRej(pp, e, z′):

51: parse e = (e(0), . . . , e(`−1))

52: for k = 0 to `− 1 do

53: z← e(k) + z′

54: if Rej(pp, z) = 1 then

55: return (z, k)

56: return (⊥,⊥)

Rec(pp,b, c, z, auth):

61: if ‖z‖ > Bz then

62: return ⊥
63: parse c = (c1, . . . , cκ)

64: c←
κ∑
j=1

cj

65: w← [Ik1 |A] · z− bc (mod q)

66: root ← RootCalc(w, auth)

67: return root

Figure 8: A formal description of algorithms Com,Cha,Rsp, and Rec.

Note that the blinding algorithms depicted in Figure 8 can be seen as a generalized version of the blinding
steps implicitly presented in the lattice-based blind signature scheme BLAZE+ [AEB20b]. Unlike BLAZE+,
the algorithms shown in Figure 8 are defined for lattices over modules rather than over rings. This
complies with the module structure of Σ and allows for more flexibility when choosing concrete parameters.
Furthermore, these blinding algorithms employ the partitioning and permutation technique, which allows to
use the abelian group Tκ as a challenge space rather than the set Tnκ, which does not have a group structure.
Moreover, the algorithm Com blinds ω commitments v∗(0), . . . ,v∗(ω−1) rather than only one commitment
generated by Σ.P1. More precisely, the trees of commitments technique employed in BLAZE+ is extended
to further include ω commitments created by the prover. These ω commitments are then combined with `
commitments generated within Com to compute the root related to a tree of ω` commitments. We require `
to be chosen large enough so that Rsp returns a blind response (z, auth) = (⊥,⊥) with probability close

22

to zero, e.g., 2−80. This is crucial for BlindOR since otherwise, we would need an extra move between
the signer and user, which would allow the user to request a restart of the signing protocol in case the
algorithm IterateRej returns (⊥,⊥). This extra move would increase the communication complexity and
force the signer to carry out almost all computations performed by the user before triggering a protocol
restart. Moreover, this extra move would not allow the use of Gaussian distributed masking vectors e since
a blind signature could be correctly verified even if rejection sampling does not accept. This would enable
the user to request a protocol restart and obtain two different signatures. The advantage of using the
Gaussian distribution for masking is that it allows to generate blind signatures with a size smaller than
signatures generated using masking vectors that are uniformly distributed over a small subset of R.

Next, we give a detailed description of our scheme BlindOR. The respective algorithms are formalized
in Figure 9. Let ΣOR = OR[Σ,Σ] and F : {0, 1}∗ → {0, 1}`F , H : {0, 1}∗ → Tκ be cryptographic hash
functions, where `F ≥ 2λ and Tκ is the challenge space of Σ. The first function is used to build tress of
commitments while the second one hashes the blind commitments together with the message being signed
to obtain a blind challenge.

Parameter generation. On input λ, the algorithm BS.PGen generates and returns a set of public param-
eters pp of the following form:

pp = (1λ, n, k1, k2, q, ω, `, h, κ, σ
′, σ∗, σ, S,M,Bs, Bz∗ , Bz, `F,A) .

The description of the parameters is summarized in Table 2. The matrix A is chosen from the
uniform distribution over Rk1×k2q . We remark that pp includes the public parameters of the relation R
for which Σ is defined, i.e., BS.PGen may first run R.PGen(1λ) and then generates the remaining
parameters of the scheme. For simplicity, the input of the algorithms of Σ includes pp.

Key generation. Given a set of public parameters pp, the algorithm BS.KGen runs ROR.Gen on in-
put (pp, 1) to obtain a pair of instances (b0,b1) for the relation R and a witness s for one of them,
i.e., (d, s), where d ∈ {0, 1}. The algorithm returns the public key pk = (b0,b1) and the secret
key sk = (d, s).

Signing. Let m be the message being signed. The signing protocol is initiated by the signer, which plays
the role of the prover of ΣOR = OR[Σ,Σ]. The user in turn blinds the transcripts created by the
signer via the blinding algorithms Com,Cha, and Rsp. The interaction works as follows:

On input (pp, pk , sk), BS.S1 runs ΣOR.P1 to obtain two commitments v∗0,v
∗
1, which are sent to the

user.

Given (pp, pk ,m,v∗0,v
∗
1), BS.U1 computes two blind commitments root0 and root1 using Com. Af-

terwards, the hash function H is evaluated on input (root0, root1,m) to obtain the blind challenge c.
This c is then “unblinded” to c∗ via Cha, which uses the randomness p0 · p1 = (p1,0p1,1, . . . , pκ,0pκ,1).
The unblinded challenge c∗ is then sent to the signer.

Upon receiving c∗, BS.S2 runs ΣOR.P2 to obtain (c∗0, c
∗
1, z
∗
0, z
∗
1). The signing protocol is restarted

if (z∗0, z
∗
1) = (⊥,⊥). Otherwise, the output of ΣOR.P2 is sent to the user.

Given (c∗0, c
∗
1, z
∗
0, z
∗
1), BS.U2 verifies the validity of the transcripts (v∗0, c

∗
0, z
∗
0), (v∗1, c

∗
1, z
∗
1) by run-

ning ΣOR.V2. Then, it blinds c∗0, c
∗
1 using Cha to obtain c0, c1. Finally, two blind responses (z0, auth0),

(z1, auth1) are computed using Rsp. The blind signature is given by sig = (c0, c1, z0, z1, auth0, auth1).

Verification. On input (pp, pk = (b0,b1),m, sig = (c0, c1, z0, z1, auth0, auth1)), BS.Verify first computes
two commitments root0 and root1 via Rec on input (pp,b0, c0, z0, auth0) and (pp,b1, c1, z1, auth1),
respectively. The signature is rejected if at least one of the commitments is equal to ⊥. Otherwise,
sig is accepted if ch0 · ch1 = H(root0, root1,m).

23

BS.KGen(pp):

11: ((b0,b1), (d, s))←$ ROR.Gen(pp, 1)

12: pk ← (b0,b1)

13: sk ← (d, s)

14: return (pk , sk)

BS.S1(pp, pk , sk):

21: parse pk = (b0,b1)

22: parse sk = (d, s)

23: (v∗0,v
∗
1, stS)←$ ΣOR.P1(pp, (b0,b1), (d, s))

24: return (v∗0,v
∗
1, stS)

BS.U1(pp, pk ,m,v∗0,v
∗
1):

31: parse pk = (b0,b1)

32: (root0, (p0, tree0, e0))←$ Com(pp,b0,v
∗
0)

33: (root1, (p1, tree1, e1))←$ Com(pp,b1,v
∗
1)

34: c← H(root0, root1,m)

35: c∗ ← Cha(pp,p0 · p1, c, 0)

36: stΣOR.V ← (v∗0,v
∗
1, c
∗)

37: stU ← (p0,p1, tree0, tree1, e0, e1, stΣOR.V)

38: return (c∗, stU)

BS.S2(pp, pk , sk , stS, c
∗):

41: parse pk = (b0,b1)

42: parse sk = (d, s)

43: (c∗0, c
∗
1, z
∗
0, z
∗
1)←

← ΣOR.P2(pp, (b0,b1), (d, s), stS, c
∗)

44: if (z∗0, z
∗
1) = (⊥,⊥) then

45: return ⊥
46: return (c∗0, c

∗
1, z
∗
0, z
∗
1)

BS.U2(pp, pk ,m, stU, c
∗
0, c
∗
1, z
∗
0, z
∗
1):

51: parse pk = (b0,b1)

52: parse stU = (p0,p1, tree0, tree1, e0, e1, stΣOR.V)

53: (b, (i0, i1))← ΣOR.V2(pp, (b0,b1),

stΣOR.V, c
∗
0, c
∗
1, z
∗
0, z
∗
1)

54: if b = 0 then

55: return ⊥
56: c0 ← Cha(pp,p0, c

∗
0, 1)

57: c1 ← Cha(pp,p1, c
∗
1, 1)

58: (z0, auth0)← Rsp(pp, (p0, tree0, e0), z∗0, i0)

59: (z1, auth1)← Rsp(pp, (p1, tree1, e1), z∗1, i1)

60: if (z0 = ⊥) ∨ (z1 = ⊥) then

61: return ⊥
62: sig ← (c0, c1, z0, z1, auth0, auth1)

63: return (m, sig)

BS.Verify(pp, pk ,m, sig):

71: parse pk = (b0,b1)

72: parse sig = (c0, c1, z0, z1, auth0, auth1)

73: root0 ← Rec(pp,b0, c0, z0, auth0)

74: root1 ← Rec(pp,b1, c1, z1, auth1)

75: if (root0 = ⊥) ∨ (root1 = ⊥) then

76: return 0

77: c← H(root0, root1,m)

78: if c 6= c0 · c1 then

79: return 0

80: return 1

Figure 9: A formal description of the lattice-based blind signature scheme BlindOR. The description of BS.PGen is given in the
text. Note that if (z∗0, z

∗
1) = (⊥,⊥), then the signer restarts the protocol.

Next, we state and prove the correctness of BlindOR.

Theorem 3.2. Given the parameters in Table 2, BlindOR is corrBS-correct w.r.t. pp ∈ BS.PGen(1λ),
where corrBS = δ∗+ 2ε∗+ 2δ+ 2ε, δ∗ is the probability that algorithm ΣOR.P2 returns ⊥, ε∗ is the probability
that algorithm Σ.V2 returns (0, i), δ is the probability that algorithm Rsp returns ⊥, and ε is the probability
that Rec returns ⊥.

Proof. By the correctness of the underlying Sigma protocol, the signer returns ⊥ with probability at most δ∗,
and the algorithm ΣOR.V2 returns (0, (i0, i1)) with probability at most 2ε∗ (see the proof of Theorem 3.1).
Furthermore, the user returns sig = ⊥ if at least one execution of Rsp in BS.U2 returns (⊥,⊥). This event

24

Table 2: A review of the parameters and sizes of keys and signatures of BlindOR. The signature size is computed without
compression. In practice however, an integer z ∈ DZ,σ is optimally compressed via Huffman encoding, which requires ≈ τ + 2.25
bits on average, where σ ≈ 2τ [DLL+17].

Parameter Description Bounds

n, k1, k2 Dimension n = 2n
′ , n′, k1, k2 ∈ Z≥1

q Modulus
prime, q = 2p+ 1 (mod 4p), n ≥ p > 1,
p = 2p

′ , p′ ∈ Z≥1, q1/p > 2κ

ω, ` No. masking vectors ω, ` ∈ Z≥1

h Tree height h = dlog(ω`)e
κ Specifies the set Tκ |Tκ| = (2n)κ ≥ 2λ

σ′ Standard deviation of in sk σ′ > 0

σ∗ Standard deviation in Σ
σ∗ = α∗

√
κBs, S = exp

(
12
α∗ + 1

2α∗2

)
,(

1− 1−2−100

S

)ω
≤ δ∗, δ∗ > 0

σ Standard deviation in BS.U
σ = αηBz∗η∗ , U = exp

(
12
α + 1

2α2

)
,(

1− 1−2−100

U

)`
≤ δ, δ > 0

M No. restarts of BS.S M = 1/(1− δ∗)
Bs Bound of ‖s‖ in sk Bs = η′σ′

√
(k1 + k2)n, η′ > 0

Bz∗ Bound of ‖z‖ in Σ Bz∗ = η∗σ∗
√

(k1 + k2)κn, η∗ > 0

Bz Bound of ‖z‖ in BS.U Bz = ησ
√

(k1 + k2)n, η > 0

`F Output length of F `F ≥ 2λ

Public key size (bit) 2k1ndlog qe
Secret key size (bit) (k1 + k2)ndlog(tσ′ + 1)e+ 1, t > 0

Signature size (bit) 2κ(1 + dlog ne) + 2(k1 + k2)ndlog(tσ + 1)e+ 2h(`F + 1)

occurs with probability at most 2δ. This is because for each b ∈ {0, 1}, Com generates ` masking vectors
from Dk1+k2

Zn,σ , and by Lemma 2.10, Rej(pp, zb) = 1 with probability (1−2−100)/U , where U = exp
(

12
α + 1

2α2

)
and ` = 1. Therefore, when ` ≥ 1, IterateRej returns (zb, kb) = (⊥,⊥) with probability

(
1− 1−2−100

U

)`
,

where ` is chosen such that
(

1− 1−2−100

U

)`
≤ δ.

Let sig = (c0, c1, z0, z1, auth0, auth1) be a blind signature generated by BlindOR on some message.
Then, z0, z1 are distributed according to Dk1+k2

Zn,σ and by Lemma 2.9, both ‖z0‖, ‖z1‖ are greater than Bz
with probability at most

ε = η(k1+k2)n exp

(
(k1 + k2)n

2
(1− η2)

)
.

By a suitable choice of η > 0 we obtain ‖z0‖ ≤ Bz and ‖z1‖ ≤ Bz each with probability at least 1 − ε.
Moreover, for each b ∈ {0, 1} we have rootb = RootCalc(wb, authb), where

wb = [Ik1 |A] · zb − bbcb = [Ik1 |A] · (e(kb)
b + z′b)− bbcb = [Ik1 |A] · e(k)

b + v′b
(ib) = v

(ib,kb)
b (mod q) .

25

Therefore, BS.Verify returns 0 if at least one execution of Rec within BS.Verify returns ⊥, i.e., if root0 = ⊥
or root1 = ⊥. This occurs with probability 2ε, and hence the correctness error of BlindOR is at
most corrBS = δ∗ + 2ε∗ + 2δ + 2ε.

3.3 Security Analysis

In this section we prove that BlindOR satisfies the statistical blindness and computational one-more
unforgeability in the ROM. We start with the blindness property.

Theorem 3.3. Let F : {0, 1}∗ → {0, 1}`F and H : {0, 1}∗ → Tκ be two hash functions modeled as random
oracles. Given the parameters in Table 2, BlindOR is ε-statistically blind w.r.t. pp ∈ BS.PGen(1λ) in the
ROM, where ε = max{(2n)−κ, 2−100/U}.

Proof. Let S∗ be an adversarial signer in the blindness experiment ExpBlind
BS,S∗ defined in Figure 3. Then, S∗

selects two messages m0,m1 and interacts with the honest user twice. The goal is to show that after both
interactions, the messages output by the user, i.e., two blind challenges of the form c∗ ∈ Tκ together with
two blind signatures of the form sig = (c0, c1, z0, z1, auth0, auth1), are independently distributed and do
not leak any information about the signed messages and the respective interaction.

The authentication paths auth0, auth1 include hash values that are uniformly distributed over {0, 1}`F .
The challenge c∗ as well as the signature part (c0, c1) are uniformly distributed over Tκ, and hence
they do not leak any information. Moreover, Lemma 2.16 ensures that c∗ is independently distributed
from c = c0 · c1, and S∗ can link c to the correct c∗ only with probability (2n)−κ over guessing. The blind
vectors z0, z1 have the form z = e +

∑κ
j=1 z

∗
jpj (see Figure 8). By Lemma 2.10, both vectors completely

mask
∑κ

j=1 z
∗
jpj and are independently distributed within statistical distance of 2−100/U from Dk1+k2

Zn,σ .
Finally, if a protocol restart is triggered by S∗, then BS.U generates fresh random elements. Therefore,

the protocol restarts are independent of each other, and hence S∗ does not get any information about the
message being signed.

Next, we move to the one-more unforgeability property.

Theorem 3.4. Let F : {0, 1}∗ → {0, 1}`F and H : {0, 1}∗ → Tκ be two hash functions modeled as ran-
dom oracles. Given the parameters in Table 2, BlindOR is (t, qSign, qF, qH, ε)-one-more unforgeable w.r.t.
pp ∈ BS.PGen(1λ) in the ROM if D-MLWE is (t′, ε′)-hard w.r.t. ppMLWE = (n, q, k1, k2, σ

′,A) and MSIS
is (t′′, ε′′)-hard w.r.t. ppMSIS = (n, q, k1, k2 + 1, 2

√
B2
z + κ2). More precisely, if there exists a forger A∗

against BlindOR w.r.t. pp that returns qSign + 1 blind signatures in time t and with probability ε, and after
making qF and qH queries to F and H, respectively, then A∗ can be used to solve D-MLWE w.r.t. ppMLWE

in time t′ ≈ t and advantage ε′ ≈ ε, or A∗ can be used to solve MSIS w.r.t. ppMSIS in time t′′ ≈ 2t and
probability

ε′′ ≈
(

1

2
− ε′

)
·
(

1

qSign + 1

)
· acc ·

(
acc

(qSign + 1)ω`
− 1

|Tκ|

)
,

where acc =
(
ε− q2F+qF

2`F
− qSign+1

|Tκ|

)/
q
qSign+1
H .

Proof. First we observe that the hardness of D-MLWE is required to protect against key recovery attacks,
i.e., being able to determine the yes-instance of MLWE included in the public key pk = (b0,b1) allows to
compute the secret key, and hence forgeries. Therefore, in what follows we assume the hardness of D-MLWE
w.r.t. ppMLWE, and construct a reduction algorithm R that solves MSIS w.r.t. ppMSIS as given in the theorem
statement.

Given ppMSIS and a uniformly random matrix A′ ∈ Rk1×(k2+1)
q , reduction R chooses a bit d←$ {0, 1},

and writes A′ = [A | b1−d] ∈ Rk1×k2q × Rk1q . Then, it generates the remaining public parameters pp

26

F(x):

11: if (x,F(x)) ∈ LF then

12: return F(x)

13: F(x)←$ {0, 1}`F

14: if ∃
(
x′,F

(
x′
))
∈ LF :

(
x 6= x′

)
∧
(
F(x) = F

(
x′
))

then

15: return ⊥
16: if ∃(y,F(y)) ∈ LF : y = F(x) then

17: return ⊥
18: LF ← LF ∪ {(x,F(x))}
19: return F(x)

H(root0, root1,m):

21: if ∃((root0, root1,m),H(root0, root1,m)) ∈ LH then

22: return H(root0, root1,m)

23: H(root0, root1,m)←↩ C // picks the first unused answer from C

24: LH ← LH ∪ {((root0, root1,m),H(root0, root1,m))}
25: return H(root0, root1,m)

Figure 10: A description of the random oracles F and H.

of BlindOR, and sets C = {c1, . . . , cqH
}, where c1, . . . , cqH

←$ Tκ. Afterwards, R runs R.Gen(pp, 1) to
obtain (bd, s). Then, R sets pk = (b0,b1), sk = (d, s), and runs A∗ on input (pp, pk). The random oracle
and signing queries that A∗ make are answered by R as follows:

Random oracle query. R maintains a list LH initialized as the empty set. It stores pairs of queries to H
and their answers. If H was previously queried on some input, then R looks up its entry in LH and
returns its answer c. Otherwise, it picks the first unused c ∈ C and updates the list. Furthermore,
R initializes an empty list LF to store pairs of queries to F and their answers. The queries to F are
answered in a way that excludes collisions and chains. Excluding collisions rules out queries x 6= x′

such that F(x) = F(x′), and excluding chains guarantees that the query F(F(x)) will not be made
before the query F(x). This ensures that each node output by HashTree has a unique preimage, and
prevents spanning hash trees with cycles. Simulating F this way is within statistical distance of at
most q2F+qF

2`F
from an oracle that allows collisions and chains. The description of the oracles F and H is

given in Figure 10.

Signature query. Upon receiving a signature query from A∗, R runs the signing protocol of BlindOR.
Furthermore, R updates both lists LH and LF accordingly. Note that the environment of A∗ is
perfectly simulated and signatures are generated with the same probability as in the real execution of
the signing protocol.

After qSign successful invocations, A∗ returns qSign + 1 pairs of distinct messages and their signatures,
where one of these pairs is not generated during the interaction. If H was not programmed or queried during
invocation of A∗, then A∗ produces a c ∈ Tκ that validates correctly with probability 1/|Tκ|. Therefore,
the probability that A∗ succeeds in a forgery such that all qSign + 1 signatures correspond to random oracle
queries made by A∗ is at least ε− qSign+1

|Tκ| .

27

Suppose that the output of A∗ includes two pairs (m, sig) and (m ′, sig ′) with the same c ∈ Tκ. This
means we have H(root0, root1,m) = H(root ′0, root

′
1,m

′). If (m 6= m ′) ∨ (root0 6= root ′0) ∨ (root1 6= root ′1),
then a second preimage of c has been found by A∗. This occurs with probability at most 1/|Tκ|. On the
other hand, the qSign + 1 messages are not pairwise distinct if (m = m ′) ∧ (root0 = root ′0) ∧ (root1 = root ′1).
Hence, we may assume for the remainder of the proof that all qSign + 1 blind signatures output by A∗

include distinct random oracle answers of the form c ∈ Tκ.
Afterwards, R guesses an index i∗ ∈ [qSign + 1] such that ci∗ = cj∗ for some j∗ ∈ [qH]. Then, R records

the pair (mi∗ , sig i∗ = (c0, c1, z0, z1, auth0, auth1)) and invokes A∗ again with the same random tape and the
random oracle queries C ′ = {c1, . . . , cj∗−1, c

′
j∗ , . . . , c

′
qH
}, where c′j∗ , . . . , c′qH

∈ Tκ are freshly generated by R.
After rewinding, A∗ returns qSign + 1 pairs of distinct messages and their valid signatures. The potential
two valid forgeries (before and after rewinding) output by A∗ at index i∗ have the form

(m, (c0, c1, z0, z1, auth0, auth1)) and (m ′, (c′0, c
′
1, z
′
0, z
′
1, auth

′
0, auth

′
1)) ,

where ci = (c1,i, . . . , cκ,i) and c′i = (c′1,i, . . . , c
′
κ,i), i ∈ {0, 1}. By the verification algorithm we obtain

w1−d = [Ik1 |A] · z1−d − b1−dc1−d (mod q) ,

root1−d = RootCalc(w1−d, auth1−d) ,

c0 · c1 = c = H(root0, root1,m) ,

w′1−d = [Ik1 |A] · z′1−d − b1−dc
′
1−d (mod q) ,

root ′1−d = RootCalc
(
w′1−d, auth

′
1−d
)
,

c′0 · c′1 = c′ = H
(
root ′0, root

′
1,m

′) .
By the forking lemma (see Lemma 2.17) we have

root0 = root ′0 , root1 = root ′1 , m = m ′ , c 6= c′ , k1−d = k′1−d ,

where k1−d, k
′
1−d ∈ {0, . . . , ω`− 1} are the indices included in auth1−d and auth ′1−d, respectively. Observe

that simulating the hash queries to F as shown in Figure 10 ensures that both auth1−d and auth ′1−d include
the same sequence of hash values, and hence auth1−d = auth ′1−d and w1−d = w′1−d. If c1−d 6= c′1−d, then
we have

[Ik1 |A] · z1−d − b1−dc1−d = [Ik1 |A] · z′1−d − b1−dc
′
1−d (mod q) ,

where c1−d =
∑κ

j=1 cj,1−d and c′1−d =
∑κ

j=1 c
′
j,1−d. In this case, R runs the extractor algorithm Σ.Ext on

input (pp,b1−d, (v, c, z), (v, c′, z′)), where

v = (v(0), . . . ,v(ω−1)) , v(0) = (w1−d,0, . . . ,0) ∈
(
Rk1q

)κ
, v(i) = (0, . . . ,0) ∈

(
Rk1q

)κ for all i ∈ [ω − 1] ,

z = (z1−d,0, . . . ,0) ∈
(
Rk1q

)κ
, z′ =

(
z′1−d,0, . . . ,0

)
∈
(
Rk1q

)κ
, ‖z1−d‖ ≤ Bz,

∥∥z′1−d∥∥ ≤ Bz .
The output of the extractor algorithm Σ.Ext is the pair (z1−d−z′1−d, c1−d−c′1−d), which gives the non-trivial
solution

[
z1−d − z′1−d

∣∣ c′1−d − c1−d
]> to MSIS w.r.t. ppMSIS and the matrix [Ik1 |A | b1−d] = [Ik1 |A′].

Next, we analyze the success probability of R. The probability that R answers the correct sequence of
qSign + 1 random oracle queries to H that are used by A∗ in the forgery is at least 1/q

qSign+1
H . Since one of the

qSign + 1 pairs output by A∗ is by assumption not generated during the interaction with R, the probability of
correctly guessing the index i∗ corresponding to this pair is 1/(qSign + 1). Forking succeeds with probability

frk ≥ acc ·
(

acc

(qSign + 1)ω`
− 1

|Tκ|

)
, where acc =

(
ε−

q2
F + qF

2`F
−
qSign + 1

|Tκ|

)/
q
qSign+1
H .

By Lemma 3.5, the probability that c1−d 6= c′1−d is given by 1
2 − ε

′. This results in the probability ε′′ that
is given in the theorem statement.

28

Table 3: Concrete parameters of BlindOR for 128 bits of security. The related sizes of keys/signatures and communication cost
are given in Table 1.

n k1 k2 q ω ` h κ σ′ α∗ σ∗ α σ M `F

256 5 4 ≈ 233 1 8 3 15 4 11 8344 41 71230016 3 384

Lemma 3.5. Assume that after rewinding the forger A∗ as done by the reduction R given in Theorem 3.4,
the two forgeries output by A∗ satisfy c1−d = c′1−d with probability 1/2 + ε′, where d corresponds to the
yes-instance of MLWE included in the public key and ε′ is noticeably greater than 0. Then, there exists a
distinguisher D∗ that uses A∗ to win the experiment ExpD-MLWE

D∗ with the advantage ε′.

Proof. The input of D∗ is ppMLWE = (n, k1, k2, q, σ
′,A) and a vector b′ ∈ Rk1q . As indicated in the

experiment ExpD-MLWE
D∗ , the goal of D∗ is to decide if the instance b′ is either uniformly random (no-

instance), or it has the form b′ = [Ik1 |A] · s′ (mod q), i.e., if b′ is a yes-instance with witness s′. Similar to
the reduction R, D∗ sets b1−d = b′ and creates the yes-instance bd with the corresponding witness s. Then,
D∗ runs the forger on input (pp, pk = (b0,b1)). The signing and random oracle queries are answered by D∗

as done by R. After rewinding, we have c 6= c′ due to the forking lemma, where c = c0 · c1 and c′ = c′0 · c′1.
If the input b1−d of D∗ is a no-instance, then by assumption we have c1−d = c′1−d with probability 1/2 + ε′.
In this case, D∗ returns b∗ = 0 indicating that its input is a no-instance. However, if the input of D∗ is
a yes-instance, then the forger has obtained a public key consisting of two yes-instances. Therefore, D∗

returns a randomly chosen bit b∗ in case c1−d 6= c′1−d.

3.4 Concrete Parameters

In this section we propose concrete parameters for BlindOR targeting 128 bits of security. The parameters
are given in Table 3. In the following we highlight some key points that we considered during the
parameter selection. Then, we explain the hardness estimation of the instances of D-MLWE and MSIS
underlying BlindOR.

The concrete value of the modulus is given by the 33-bit prime number q = 6704968009. By Lemma 2.11,
the polynomial Xn + 1 underlying the ring Rq has p = 4 irreducible factors, and each polynomial c̄ ∈ Rq
having the form described in the relation R defined in Equation (1) is invertible in Rq. This guarantees
that in the proof of one-more unforgeability the reduction computes a non-zero solution x to MSIS. We
set κ = 15 so that |Tκ| > 2128, which is large enough for 128 bits of security. The parameters ω, α∗, and σ∗

ensure that the rejection sampling procedure carried out by the signer accepts with probability 1/3, i.e.,
the signer triggers a protocol restart at most twice. However, the choice of the parameters `, α, and σ
makes sure that the user computes a blind signature with probability at least 1− 2−15. Since the security
reduction to the one-more unforgeability of BlindOR allows for poly-logarithmic number of signatures per
public key, the latter probability is sufficiently large, and we believe that it is not worthwhile to increase
the parameter ` in order to obtain a probability of, e.g., at least 1 − 2−40. This is because increasing `
significantly affects the performance of the scheme. For the parameter σ′ = 4, the instance of D-MLWE
underlying the public key is hard enough for the target security level. The parameter η′ included in
the bound Bs (cf. Table 2) is given by η′ = 1.02, which guarantees that the Gaussian vector s in sk is
bounded by Bs with probability at least 0.75 (cf. Lemma 2.9), i.e., the algorithm BS.KGen is restarted
with probability at most 0.25. Furthermore, the parameters η∗ and η included in Bz∗ and Bz, respectively,
are set to η∗ = 1.04 and η = 1.16, which ensures that the response sent by the signer as well as the blind
signature are both verified with probability at least 1− 2−80. The cryptographic hash function F used for
building trees of commitments is considered to output hash values of length `F = 3λ = 384.

29

Estimating the hardness of D-MLWE w.r.t. ppMLWE = (n, q, k1, k2, σ
′,A), was carried out using the well

known LWE estimator [APS15]. The hardness of solving MSIS, w.r.t. ppMSIS = (n, q, k1, k2 + 1, β), where
β = 2

√
B2
z + κ2, is equivalent to finding a non-trivial vector bounded by β in the lattice{

x ∈ Z(k1+k2+1)n
∣∣∣ 0 = [Ik1 |A | b] · x (mod q)

}
.

The best known algorithm for finding short non-trivial vectors is the Block–Korkine–Zolotarev algo-
rithm (BKZ) [SE94], which was improved in practice in [CN11]. As a subroutine, BKZ uses an algorithm
for the shortest vector problem (SVP) in lattices of dimension b, where b is called the block size. The
best known algorithm for SVP with no memory restrictions is due to [BDGL16], and takes time approxi-
mately 20.292b. The time required by BKZ to run with block size b on an m-dimensional lattice L is given
by (see, e.g., [BDGL16])

8m · 20.292b+16.4 . (2)

The output of BKZ is a vector of length δm det(L)1/m, where δ is called the Hermite delta and it is given
by (see, e.g., [CN11,Che13])

δ =
(
b(πb)

1
b
/

(2πe)
) 1

2(b−1)
. (3)

Therefore, in order to compute the time required by BKZ to solve MSIS w.r.t. ppMSIS, we first determine δ
by setting β = δm det(L)1/m, where β = 2

√
B2
z + κ2 and m = (k1 + k2 + 1)n. After that, we compute

the minimum block size b required to achieve δ by using Equation (3). Then, we put the resulted b
in Equation (2) to obtain the time required by BKZ to solve MSIS w.r.t. ppMSIS.

Table 1 gives a simple comparison between BlindOR and the lattice-based construction of blind signatures
presented by Hauck et al. [HKLN20] in terms of the sizes of keys and signatures. We remark that the
Hermite delta related to our parameters is given by δ = 1.004, while δ = 1.005 for the parameters proposed
in [HKLN20].

4 Conclusion

In this paper we have presented BlindOR, a lattice-based construction of blind signatures from OR-proofs.
Although this construction doubles the number of public key and signature parts, it offers small sizes
compared to the literature. This comes from the fact that we can reduce the one-more unforgeability
property of our construction from both the MLWE and the MSIS problems.

Similar to previous works, our construction allows a poly-logarithmic number of signatures per public
key. This restriction is inherited from the proof technique due to Pointcheval and Stern [PS00] as well
as Abe and Okamoto [AO00]. Therefore, it would be interesting to investigate extending the work of
Pointcheval [Poi98] to the lattice setting in order to increase the number of signatures to a polynomial
amount per public key at the cost of increasing the communication complexity and generating signatures in
a sequential manner. A further interesting direction for future work is to prove the security of our scheme
in the quantum random oracle model due to Boneh et al. [BDF+11] as well as investigating constructions
based on sequential OR-proofs [AOS02,FHJ20].

Acknowledgments

We thank Marc Fischlin for helpful discussions. This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – SFB 1119 – 236615297.

30

References

[AEB20a] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann. BLAZE: Practical
lattice-based blind signatures for privacy-preserving applications. In Joseph Bonneau and
Nadia Heninger, editors, FC 2020, volume 12059 of LNCS, pages 484–502. Springer, Heidelberg,
February 2020. (Cited on pages 3, 4, 5, 10, 13, and 14.)

[AEB20b] Nabil Alkeilani Alkadri, Rachid El Bansarkhani, and Johannes Buchmann. On lattice-based
interactive protocols: An approach with less or no aborts. In Joseph K. Liu and Hui Cui, editors,
ACISP 20, volume 12248 of LNCS, pages 41–61. Springer, Heidelberg, November / December
2020. (Cited on pages 3, 4, 5, 14, and 22.)

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM
STOC, pages 99–108. ACM Press, May 1996. (Cited on page 13.)

[AO00] Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, Heidelberg,
August 2000. (Cited on pages 5 and 30.)

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety
of keys. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 415–432.
Springer, Heidelberg, December 2002. (Cited on page 30.)

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. J. Math. Cryptol., 9(3):169–203, 2015. (Cited on page 30.)

[ASY21] Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Towards practical and round-optimal
lattice-based threshold and blind signatures. Cryptology ePrint Archive, Report 2021/381,
2021. https://eprint.iacr.org/2021/381. (Cited on page 5.)

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and Gregory
Neven. Better zero-knowledge proofs for lattice encryption and their application to group
signatures. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873
of LNCS, pages 551–572. Springer, Heidelberg, December 2014. (Cited on page 17.)

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.
(Cited on page 30.)

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Robert Krauthgamer, editor, 27th
SODA, pages 10–24. ACM-SIAM, January 2016. (Cited on page 30.)

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 1087–1098. ACM
Press, November 2013. (Cited on page 3.)

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova.
On the (in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 33–53. Springer, Heidelberg,
October 2021. (Cited on page 6.)

31

https://eprint.iacr.org/2021/381

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 2006, pages 390–399. ACM Press, October / November 2006. (Cited on page 15.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,
and Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993. (Cited
on pages 4 and 6.)

[BS99] Johannes Blömer and Jean-Pierre Seifert. On the complexity of computing short linearly
independent vectors and short bases in a lattice. In 31st ACM STOC, pages 711–720. ACM
Press, May 1999. (Cited on page 13.)

[CCT+11] Liang Chen, Yongquan Cui, Xueming Tang, Dongping Hu, and Xin Wan. Hierarchical ID-based
blind signature from lattices. In Yuping Wang, Yiu-ming Cheung, Ping Guo, and Yingbin Wei,
editors, CIS 2011, pages 803–807. IEEE Computer Society, December 2011. (Cited on page 5.)

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume
839 of LNCS, pages 174–187. Springer, Heidelberg, August 1994. (Cited on pages 4, 8, and 9.)

[CG08] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In Peng
Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 345–356. ACM Press,
October 2008. (Cited on page 3.)

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA,
1982. (Cited on page 3.)

[Che13] Yuanmi Chen. Réduction de réseau et sécurité concrete du chiffrement completement homo-
morphe. PhD thesis, ENS-Lyon, France, 2013. (Cited on page 30.)

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon
Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 1–20.
Springer, Heidelberg, December 2011. (Cited on page 30.)

[CNs07] Jan Camenisch, Gregory Neven, and abhi shelat. Simulatable adaptive oblivious transfer.
In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 573–590. Springer,
Heidelberg, May 2007. (Cited on page 4.)

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993.
(Cited on page 5.)

[Cra97] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis,
Universiteit van Amsterdam, The Netherlands, 1997. (Cited on page 7.)

[DLL+17] Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien
Stehle. CRYSTALS – Dilithium: Digital signatures from module lattices. Cryptology ePrint
Archive, Report 2017/633, 2017. https://eprint.iacr.org/2017/633. (Cited on page 25.)

32

https://eprint.iacr.org/2017/633

[FHJ20] Marc Fischlin, Patrick Harasser, and Christian Janson. Signatures from sequential-OR proofs.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, volume 12107 of LNCS, pages
212–244. Springer, Heidelberg, May 2020. (Cited on page 30.)

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string
model. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer,
Heidelberg, August 2006. (Cited on page 4.)

[FS09] Marc Fischlin and Dominique Schröder. Security of blind signatures under aborts. In Stanislaw
Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 297–316. Springer,
Heidelberg, March 2009. (Cited on page 4.)

[FS10] Marc Fischlin and Dominique Schröder. On the impossibility of three-move blind signature
schemes. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 197–215.
Springer, Heidelberg, May / June 2010. (Cited on page 5.)

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, USA,
2009. (Cited on page 5.)

[GHWX16] Wen Gao, Yupu Hu, Baocang Wang, and Jia Xie. Identity-based blind signature from lattices
in standard model. In Kefei Chen, Dongdai Lin, and Moti Yung, editors, Inscrypt 2016, volume
10143 of LNCS, pages 205–218. Springer, Heidelberg, November 2016. (Cited on page 5.)

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness
of the learning with errors assumption. In Andrew Chi-Chih Yao, editor, ICS 2010, pages
230–240. Tsinghua University Press, January 2010. (Cited on page 5.)

[GRS+11] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh. Round
optimal blind signatures. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 630–648. Springer, Heidelberg, August 2011. (Cited on page 5.)

[HBG16] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. Blindly signed contracts: Anonymous
on-blockchain and off-blockchain bitcoin transactions. In Jeremy Clark, Sarah Meiklejohn,
Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and Kurt Rohloff, editors, FC 2016
Workshops, volume 9604 of LNCS, pages 43–60. Springer, Heidelberg, February 2016. (Cited on
page 3.)

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from
identification schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, volume
11478 of LNCS, pages 345–375. Springer, Heidelberg, May 2019. (Cited on pages 3 and 15.)

[HKLN20] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind signatures,
revisited. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, volume 12171
of LNCS, pages 500–529. Springer, Heidelberg, August 2020. (Cited on pages 3, 4, 5, 6, 10, and 30.)

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended
abstract). In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 150–164.
Springer, Heidelberg, August 1997. (Cited on pages 3 and 10.)

[KKS17] Mahender Kumar, Chittaranjan Padmanabha Katti, and Prem Chandra Saxena. A secure
anonymous e-voting system using identity-based blind signature scheme. In Rudrapatna K.
Shyamasundar, Virendra Singh, and Jaideep Vaidya, editors, ICISS 2017, volume 10717 of
LNCS, pages 29–49. Springer, Heidelberg, December 2017. (Cited on page 3.)

33

[LDS+20] Huy Quoc Le, Dung Hoang Duong, Willy Susilo, Ha Thanh Nguyen Tran, Viet Cuong Trinh,
Josef Pieprzyk, and Thomas Plantard. Lattice blind signatures with forward security. In
Joseph K. Liu and Hui Cui, editors, ACISP 20, volume 12248 of LNCS, pages 3–22. Springer,
Heidelberg, November / December 2020. (Cited on page 5.)

[LN17] Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption from lattices. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume
10210 of LNCS, pages 293–323. Springer, Heidelberg, April / May 2017. (Cited on page 17.)

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
1–23. Springer, Heidelberg, May / June 2010. (Cited on page 13.)

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr., 75(3):565–599, 2015. (Cited on page 13.)

[LS18] Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in partially splitting
cyclotomic rings and applications to lattice-based zero-knowledge proofs. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, volume 10820 of LNCS, pages
204–224. Springer, Heidelberg, April / May 2018. (Cited on page 12.)

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
598–616. Springer, Heidelberg, December 2009. (Cited on pages 17, 18, and 21.)

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer,
Heidelberg, April 2012. (Cited on pages 5, 12, and 17.)

[Mic02] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way
functions from worst-case complexity assumptions. In 43rd FOCS, pages 356–365. IEEE
Computer Society Press, November 2002. (Cited on page 13.)

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages
31–53. Springer, Heidelberg, August 1993. (Cited on page 5.)

[PHBS19] D. Papachristoudis, D. Hristu-Varsakelis, F. Baldimtsi, and G. Stephanides. Leakage-resilient
lattice-based partially blind signatures. Cryptology ePrint Archive, Report 2019/1452, 2019.
https://eprint.iacr.org/2019/1452. (Cited on page 5.)

[Poi98] David Pointcheval. Strengthened security for blind signatures. In Kaisa Nyberg, editor,
EUROCRYPT’98, volume 1403 of LNCS, pages 391–405. Springer, Heidelberg, May / June
1998. (Cited on page 30.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. J. Cryptology, 13(3):361–396, June 2000. (Cited on pages 3, 5, 10, 15, and 30.)

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May
2005. (Cited on page 13.)

34

https://eprint.iacr.org/2019/1452

[Rüc10] Markus Rückert. Lattice-based blind signatures. In Masayuki Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 413–430. Springer, Heidelberg, December 2010. (Cited on pages 3, 5,
and 10.)

[Sch01] Claus-Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In
Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01, volume 2229 of LNCS,
pages 1–12. Springer, Heidelberg, November 2001. (Cited on page 5.)

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program., 66:181–199, 1994. (Cited on page 30.)

[SU17] Dominique Schröder and Dominique Unruh. Security of blind signatures revisited. J. Cryptology,
30(2):470–494, April 2017. (Cited on page 4.)

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 288–303. Springer, Heidelberg, August 2002. (Cited on page 5.)

35

	Introduction
	Our Contributions
	Related Work
	Outline

	Preliminaries
	Notation
	Relations, Sigma Protocols, and OR-Proofs
	Blind Signatures
	Lattices and Gaussians
	Partitioning and Permutation
	Trees of Commitments
	Forking Lemma

	BlindOR: A New Blind Signature Scheme
	Sigma Protocol
	Description of BlindOR
	Security Analysis
	Concrete Parameters

	Conclusion
	References

