
Efficient Threshold-Optimal ECDSA ?

Michaella Pettit

nChain AG, Zug, Switzerland
m.pettit@nchain.com

Abstract. This paper proposes a threshold-optimal ECDSA scheme
based on the first threshold signature scheme by Gennaro et al. with
efficient non-interactive signing for any t + 1 signers in the group, pro-
vided the total group size is more than twice the threshold t. The scheme
does not require any homomorphic encryption or zero-knowledge proofs
and is proven to be robust and unforgeable with identifiable aborts tol-
erating at most t corrupted participants. The security of the scheme is
proven in a simulation-based definition, assuming DDH and that ECDSA
is existentially unforgeable under chosen message attack. To evaluate the
performance of the protocol, it has been implemented in C++ and the
results demonstrate the non-interactive signing phase takes 0.12ms on
average meaning over 8000 signatures can be created per second. With
pre-signing phase, it takes 3.35ms in total, which is over 144 times faster
than the current state of the art.
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1 Introduction

A (t,N) threshold signature scheme is a method for a group of N participants
to generate a signature on a message, without any individual participant having
knowledge of the private key. A valid signature cannot be created by less than
t + 1 participants. A benefit of using a threshold signature scheme is that the
private key never exists at any point in time. There is no single point of failure,
which mitigates against attack or loss of a private key.

One of the first threshold ECDSA schemes was proposed by Gennaro, Jarecki,
Krawczyk, and Rabin [1]. A private key with threshold t is split between partici-
pants such that a subset of 2t+1 participants are required to create a signature.
This protocol is fast during signing, in which a participant can compute their
share of the signature upon request without knowledge of other signers. This
absence of back-and-forth communication is known as non-interactive signing.

The drawback of [1] is that the threshold of participants required to create
a signature is 2t, which is twice the threshold of computing of the private key.
The multiplication of two shared secrets, each with threshold t, requires 2t + 1
participants. In the context of [1] the two shared secrets are the private key and
ephemeral key.
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Further work focused on achieving threshold-optimality in which the private
key and signing threshold are the same, initially for two signers [2–5]. In 2016,
a scheme by Gennaro et al. [6] was the first to achieve threshold-optimality for
any threshold t and group size N in theory. It required a distributed generation
of an RSA modulus, which cannot efficiently involve more than two parties. As
a consequence, [6] cannot achieve more than (1, N) in practice.

The first practical (t,N) threshold-optimal scheme for any threshold t and
group size N was published in 2018 by Gennaro and Goldfeder [7]. This scheme
was based on [6] and achieves optimality by turning multiplication of two se-
crets into an addition of secrets using homomorphic encryption, along with zero-
knowledge proofs to ensure security of the scheme. This leads to multiple rounds
of communication and an increase in computation, particularly during signing.
The signing protocol requires one-to-one communication with every other sign-
ing participant, limiting the scaling capability of the scheme. If a participant
drops offline during signing, the signing protocol must be restarted.

Recently, there have been many (t,N) threshold-optimal schemes proposed
[8–12]. Their use of homomorphic encryption and zero-knowledge proofs means
that they still require expensive computation and interactive signing.

In 2020, Canetti et al. [13] and Gennaro and Goldfeder [14] each proposed a
non-interactive threshold-optimal scheme, with the latter including identifiable
abort. However, both schemes still rely on homomorphic encryption and zero-
knowledge proofs. Another property of these schemes is that the participants who
must collaborate during the non-interactive signing process is predetermined.

In spite of recent advances in threshold ECDSA, to the best of the author’s
knowledge none of the current schemes have achieved threshold-optimality with-
out expensive computation such as homomorphic encryption and zero-knowledge
proofs. Additionally, the signing must either be interactive or involve a set of
participants that is decided before the message has been received, and either
case results in a large number of rounds of communication and a high demand
on overall computation.

Contributions. This paper proposes an efficient threshold-optimal ECDSA
scheme.

– Low computational complexity: this is the first scheme to achieve threshold
optimality without expensive computation like homomorphic encryption or
zero-knowledge proofs on discrete logarithms, ranges of discrete logarithms,
or others. Results show that it is over 144 times faster than [14] and almost
240 times faster than [13].

– Low number of communication rounds: the scheme requires four rounds in the
signing protocol with identifiable abort where only the first requires secure
one-to-one communication, equivalent to [1]. This is the same number of
rounds as [13] and three rounds fewer than the protocol with identifiable
abort in [14]. There are two rounds of communication in key generation
which one round fewer than [14] and [13].
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– Non-interactive threshold-optimal signing: the scheme is split into a pre-
signing phase and a non-interactive signing phase once the message is known,
similar to [14] and [13]. The signers are not predetermined in the signing step,
unlike [14] and [13]. Therefore, any failures by less than N − t participants
does not affect the ability to complete the final round.

– Identifiable corrupted participants: participants that deviate from the proto-
col can be identified, in line with the recent proposal in [14].

– Provably secure: a simulation-based security proof is provided to show that
the scheme is robust and unforgeable.

2 Preliminaries

2.1 Decisional Diffie-Hellman Assumption

Decisional Diffie-Hellman. Let G be a cyclic group of prime order n generated
by G. The following are computationally indistinguishable: (aG, bG, abG) with
a, b ∈R Zn and (aG, bG, cG) with a, b, c ∈R Zn.

2.2 ECDSA

The Digital Signature Algorithm is a digital signature scheme proposed by
Kravitz [15] in 1991.1 The public parameters PP in the scheme are an ellip-
tic curve group G with points over the finite field Fp, generator G, and with
order n.

– DSKeyGen: On input of a security parameter 1l, this outputs a random pri-

vate key a
$← Z∗n and the corresponding public key P = aG where aG is

notation for point multiplication on an elliptic curve.

– DSSign: In order to calculate the signature on a message m using the private
key a, the following steps are taken.

1. Calculate the hash of the message e← hash(m).

2. Randomly generate an ephemeral key k
$← Z∗n.

3. Calculate (x, y)← kG then r ← x mod n. If r = 0 return to Step 2.

4. Calculate s← k−1(e+ ar) mod n. If s = 0 return to Step 2, otherwise
output the signature as (r, s).

– DSVerify: In order to verify a signature (r, s) on a message m with a given
public key P , the following steps are taken.

1. Calculate the hash of the message e← hash(m).

2. Calculate (x′, y′)← s−1(eG+ rP ).

3. Check if r
?
= x′ mod n.

1 The method can be applied to elliptic curve groups as given here, but it is understood
that it may be applied to generic cyclic groups used in the standard DSA.
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2.3 Threshold Signature Scheme

A threshold signature scheme is a tuple of protocols.

– TSKeyGen: The key generation algorithm takes public parameters PP as in-
put. The output is composed of private outputs ai known only to participant
i for i = 1, . . . , N , forming a (t,N) shared secret scheme corresponding to
shared private key a, and a public output known to all participants which is
the public key P corresponding to the shared private key.

– TSSign: The signing algorithm takes private key shares ai and a message m
in the message space M and outputs a signature sig.

– TSVerify: The verification algorithm has the public key P , signature sig, and
message m as input, and outputs 1 if the signature is valid, or 0 otherwise.

2.4 Communication Model

In a scheme with N participants, it is assumed that they are connected by one-
to-one secure communication channels and a broadcast channel. If participant i
broadcasts a message, it is identifiable as being from that participant.

2.5 Adversary Model

It is assumed that an adversary can corrupt at most t participants in a threshold
signature scheme, where t+ 1 shares are required to reconstruct the private key.
It is also assumed that the adversary has computational power that can be
modelled by a probabilistic polynomial time (PPT) machine. There are three
subtypes of adversaries:

– Eavesdropping adversary: this is a passive adversary that learns all informa-
tion stored at corrupted nodes and all broadcasted messages.

– Halting adversary: this is an active adversary that is eavesdropping and may
also stop corrupted participants from sending messages at each round of the
protocol.

– Malicious adversary: this is an active adversary that may cause any cor-
rupted participant to deviate from the protocol.

A halting or malicious adversary may also be a rushing adversary, which is one
that ensures corrupted participants speak last in any rounds of communication
and may reorder any messages that are sent.

Definition 1. As defined in [1], the view of the adversary is the knowledge of
the adversary in a protocol. That is, the computational history of all corrupted
participants and public communications, including the output of the protocol.

The definitions of unforgeability and robustness are now given. These will enable
a secure threshold signature scheme to be defined.
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Definition 2. A (t,N) threshold signature scheme is unforgeable if no mali-
cious PPT adversary can produce a valid signature on a previously unsigned
message m with non-negligible probability, where the adversary has knowledge of
the following: the output of the key generation protocol a1, . . . , at and P , and the
output of the signature generation protocol sig1, . . . , sigν on messages m1, ...,mν ,
which the adversary chose.

Definition 3. A threshold signature scheme is robust if TSKeyGen and TSSign
produce the expected outputs even in the presence of a halting or malicious ad-
versary. An expected output of TSKeyGen is one in which ai for i = 1, . . . , N
are shares of a (t,N) shared secret that corresponds to the public output P . For
TSSign, an expected output is one that is accepted by verification using TSVerify.

For robustness, it does not matter if more than t participants are corrupted by
an eavesdropping adversary, the protocol will still produce an expected output.

Definition 4. A (t,N) threshold signature scheme is secure if it is robust and
unforgeable in the presence of an adversary who corrupts at most t participants.

In order to prove the unforgeability of the threshold scheme, it is necessary to
be able to simulate the scheme. This is the definition from [1].

Definition 5. A threshold signature scheme is simulatable if:

1. The key generation protocol TSKeyGen is simulatable. That is, there exists
a simulator that can simulate the view of an adversary in an execution of
TSKeyGen given the input of the public key and the public output generated
by an execution of TSKeyGen.

2. The signing protocol TSSign is simulatable. That is, there exists a simula-
tor that can simulate the view of the adversary on an execution of TSSign
that takes the public key, message, t shares of a shared private key, and the
signature on the message as input, and generates sig as an output.

The security is proven by comparing the view of the adversary in the protocols
TSKeyGen and TSSign to an ideal setting. This ideal setting is a simulation that
is secure by definition. Therefore, showing that the view is indistinguishable to
the attacker proves that the protocols TSKeyGen and TSSign are secure.

2.6 Verifiable Random Secret Sharing [16]

The TSKeyGen and TSSign protocols require a (t,N) secret sharing protocol,
which has been chosen to be the scheme in [16] and has two rounds of commu-
nication.

– VRSS: This is the shared secret generation algorithm that takes the index i
of each participant and the threshold t as input and outputs a share ai of a
shared secret for each participant i.
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1. Each participant i randomly generates integers ail, bil
$← Zn for l =

0, . . . , t, where ail, bil are the coefficients for the degree-l term in the
polynomials fi(x) and f ′i(x), respectively. Each participant i computes
and broadcasts Cil = ailG + bilH for each l, where H is a generator of
the group and it is assumed an adversary cannot compute logGH. Each
participant i sends fi(j), f

′
i(j) via a one-to-one communication channel

to participant j for each j 6= i.

2. Each participant j verifies if fi(j)G+f ′i(j)H
?
=

∑t
l=0(j)lCil , for all i 6= j.

If any i fails, participant j broadcasts a complaint against participant i.

3. Each participant i who was the subject of a complaint in the previous
step broadcasts the values fi(j), f

′
i(j) satisfying the equation in Step 2.

4. The set of non-disqualified parties Q are those that received t or fewer
complaints in Step 2, or answered the complaints with correct values.

5. Each participant i ∈ Q calculates their secret share ai ←
∑
j∈Q fj(i).

6. Each participant i ∈ Q calculates and broadcasts their obfuscated coef-
ficients ailG for each l.

7. Each participant j verifies if fi(j)G
?
=

∑t
l=0(j)l(ailG), for all i 6= j. If

any i that passed the check in Step 2 fails this verification, participant
j broadcasts a complaint against that participant by sharing the values
fi(j), f

′
i(j) they received.

8. For each participant i reconstructs the values aj0 and aj0G for each par-
ticipant j who receives a valid complaint, that is, those values that satisfy
the equation in Step 2 and not in Step 7. Each participant constructs
P ←

∑
i∈Q ai0G.

Shares ai allow operations on the shared secret values to be computed whilst
keeping the value of the shared secrets hidden, even to the participants of the
scheme. That is, the shared secret values never exist and cannot be computed
by any participant unless the threshold is passed. Note that Feldman’s verifiable
secret sharing scheme [17] can allow an adversary to change the distribution of
the public key and so can be used for shared secrets in which the corresponding
public key is fixed or not used in the scheme, or if the corrupted participants are
eavesdropping only.

2.7 Verifiable Zero Secret Sharing [1]

It will be necessary to create shares of the value zero using (t,N) verifiable zero
secret sharing VZSS. This uses Feldman’s verifiable secret sharing scheme [17]
as the corresponding public key is fixed, meaning an adversary cannot change
the distribution.

– VZSS: This is the shared secret generation algorithm that takes the index i
of each participant and the threshold t as input and outputs a share ai of a
zero-valued shared secret for each participant i.

6



1. Each participant i randomly generates integers ail
$← Zn for l = 1, . . . , t

and sets ai0 ← 0, where ail is the coefficient for the term of degree l
in the polynomial fi(x). Each participant i sends fi(j) via a one-to-one
communication channel to participant j for each j 6= i.

2. Each participant i calculates their secret share ai ←
∑N
j=1 fj(i) .

3. Each participant i calculates and broadcasts their obfuscated coefficients
ailG for each l = 1, . . . , t.

4. Each participant j calculates fi(j)G using the value received in Step 2

and verifies if fi(j)G
?
=

∑t
l=1(j)l(ailG) , for all i 6= j. Participant j

broadcasts a complaint for any participant i which values do not satisfy
this equation.

By adding zero-shares to computations with shared secrets, a randomization of
the shares is achieved without changing the result of the computation.

2.8 Operations on Shared Secrets

Given multiple shared secrets where the shares are points on a polynomial, it is
possible to directly compute operations such as addition of secrets, multiplication
of secrets, multiplication by a constant, or a combination of these simultaneously,
provided enough shares of each shared secret are available. The shares k−1i that
correspond to the inverse of a (t,N) shared secret with shares ki are computed
using the following protocol as given in [1].

– SSInverse: This takes shares ki for i = 1, . . . , N as input and outputs the
corresponding inverse shares k−1i for each i.

1. All participants execute a (t,N) shared secret scheme, where the share
of participant i is denoted by αi.

2. Each participant i computes µi ← αiki and broadcasts the result.
3. All participants calculate µ← interpolate(µ1, . . . , µ2t+1), where the no-

tation interpolate(. . .) is Lagrange interpolation evaluated at x = 0 over
shares µ1, . . . , µ2t+1.

4. Each participant i calculates their inverse share k−1i ← µ−1αi.

3 Efficient Threshold-Optimal Scheme

Threshold ECDSA signature generation involves the multiplication of two shared
secrets, each with a threshold of t. The present scheme illustrates that it is possi-
ble to precalculate all multiplications prior to receiving a message without the use
of expensive computation. The signature generation on the message is threshold-
optimal and non-interactive, with no restriction on the t + 1 participants that
sign. While the number of participants required to calculate the multiplication
in precalculation is 2t + 1, the signature threshold during the non-interactive
signing phase is now the same as the threshold t of the private key.
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Observe that a signature in ECDSA has the form (r, s), where

s = k−1e+ k−1ar .

Here, e is the hash of the message, a is the private key, and r is derived from the
public key corresponding to the ephemeral key k. The second term is independent
of the message, meaning that it can be calculated prior to receiving a message
in a pre-signing phase. However, if the value k−1a itself is known, as soon as the
signature is calculated it is trivial to calculate the private key a. To secure the
result k−1a, another (t,N) shared secret β is added into this computation.

Explicitly, the signature is

s = k−1e+ r(σ − β)

where σ = k−1a+β is precalculated. The signature is now an addition of k−1 and
β which are both (t,N) shared secrets, therefore only t+ 1 shares are required.

While at least 2t+1 participants are required to execute the complete scheme,
during the final step once the message is known the number of participants re-
quired t + 1 is the same as the number required to calculate the private key
and this may be any subset of the group. Therefore, threshold-optimality is
achieved in the non-interactive signing phase without requiring expensive com-
putations like homomorphic encryption or zero-knowledge proofs. Because of
the absence of these expensive computations, it is feasible for multiple k, σ, and
corresponding r values to be precalculated in parallel and stored until required.
Benchmarking shows an average time of this pre-computation in a scheme with
three particiapants, 2 of which are required to compute a signature, is 3.22ms
before any parallelisation, meaning that over 310 values could be calculated per
second. One of these precalculated values is used with each new signature and
then discarded.

If optimised, the rounds of communication may be as low as three prior
to receiving the message and there will be only one round during signature
generation. Similarly, after the initial round during VRSS, which has one-to-
one communication, the remaining rounds are broadcasts, including signature
generation. The implication of this is that the scheme is easily scalable.

3.1 Distributed Key Generation

The following protocol is a known result. TSKeyGen takes the public parameters
PP as input and outputs a secret share ai only known to participant i that
corresponds to a share of a (t,N) shared private key a and a public output
that is the public key P . The protocol has two rounds of communication since it
uses VRSS. Assume all participants have agreed on each other’s unique, non-zero
integer i, usually chosen to be i = 1, . . . , N .

TSKeyGen
Input: public parameters PP , index i for i = 1, . . . , N , threshold t
Output: shares ai for i = 1, . . . , N , public key P
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1. All participants execute a (t,N) shared key generation VRSS where partici-
pant i obtains the secret output ai and public output P .

At the end of this protocol, each participant i stores a share ai and the public
key P where the public key P = aG is the same for all participants.

3.2 Signature Generation

The signature generation protocol TSSign allows for precalculation which has
3 rounds of communication. The participants compute all the possible values
that are independent of the message and store until it is required to calculate a
signature on a message m in the final round.

TSSign
Input: private key shares ai for i = 1, . . . , N , message m
Output: signature (r, s)

1. All participants calculate the ephemeral key shares and corresponding public
key using a (t,N) execution of VRSS, where participant i’s share is ki and the

public key is (x, y)←
∑N
i=1 ki0G. All participants calculate r ← x mod n.

2. All participants create two (t,N) shared secrets using two instances of VRSS
with resulting shares denoted by αi and βi corresponding to participant i.
Each participant i also calculates the commitment of αj and βj

αjG←
N∑
l=1

t∑
m=0

jm(αlmG) ,

βjG←
N∑
l=1

t∑
m=0

jm(βlmG) ,

for each participant j 6= i, where αlmG and βlmG are received during Step
6 of VRSS, and stores αjG and βjG.

3. All participants create a zero-valued (2t,N) shared secret with shares de-
noted by κi for participant i using VZSS.

4. Each participant i calculates µi ← αiki+κi and λi ← αiai+βi, and αi(kG),
(αiP + βiG) and broadcasts these.

5. Each participant i verifies

interpolate(µi, . . . , µi′)G
?
= interpolate(αi(kG), . . . , αj′(kG)) ,

interpolate(λi, . . . , λi′)G
?
= interpolate((αiP + βiG), . . . , (αj′P + βj′G)) ,

where i′ = (i + 2t + 1) and j′ = (i + t + 1). If the index i′ is larger than
N , the values wrap around to index 1 again. If any of these are found to be
different, the adversaries are identified by interpolating over all possible sets
of shares and all sets which result in the same values contain only honest
participants. Corrupted participants are identified as those not contained in
these sets.
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6. If the equalities hold for all participants, each participant i sets

µ← interpolate(µ1, . . . , µ2t+1) (= αk) ,

λ← interpolate(λ1, . . . , λ2t+1) (= αa+ β) .

7. Each participant i calculates their inverse shares k−1i ← µ−1αi of the shared
ephemeral key and their precalculated shares σi ← rµ−1(λ− βi).

8. Each participant i stores (r, k−1i , σi) for use in the signature computation
and (αjG, βjG) for all participants j for verification of the signature.

The pre-signing phase can be executed prior to receiving any message. The
non-interactive signing phase takes the message m and precalculated values
(r, k−1i , σi) as input and output the signature (r, s).

9. At least t + 1 participants compute the hash the message e = hash(m),
calculate their signature share si ← k−1i e+ σi, and broadcast.

10. Participants set s← interpolate(s1, . . . , st+1) and the signature is (r, s).

A signature has been computed using only t+1 shares after precalculation. Note
that TSVerify is the same as DSVerify described in Section 2.2 and is not repeated
here. If the signature is found to be incorrect using TSVerify, the corrupted
participants are identified using CorruptID.

3.3 Identifiable Abort

If the signature generated with TSSign is found to be incorrect, the following
protocol is executed. Assume the participants that have signed are those with
indices i = 1, . . . , t+ 1, without loss of generality.

CorruptID
Input: obfuscated shares αiG, βiG for i = 1, . . . , t+ 1
Output: identity of corrupted participants j

1. Each participant i calculates k−1j G ← (kα)−1αjG and σjG ← rµ−1(λG −
βjG) for each participant j who executed Step 9 to 10 in TSSign.

2. Each participant then checks sjG
?
= e(k−1j G) + (σjG) for each j. If this does

not hold for a given j, that share is incorrect.

3.4 Discussion

In TSSign, a signature has been created with the same threshold as that of the
shared private key, after the precalculation steps have been completed. The s
value of the signature can be written as

s = µ−1αe+ rµ−1(λ− β) ,

where α and β are (t,N) shared secrets, and µ = αk and λ = αa + β are
precalculated. By replacing µ and λ, this becomes s = k−1(e+ ar), as required.
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The computation of λ may be considered a method to calculate the multi-
plication of two shared secrets whilst hiding the result. With each shared secret
having a threshold t, the computation of λ requires 2t+ 1 shares. Interpolation
over t+ 1 shares of σi will result in k−1a as the β terms will cancel. This share
σi may be seen as a share of k−1a with a threshold of t. Therefore, after Step 6
the threshold of the multiplication of the two shared secrets is reduced to t.

While 2t+ 1 participants are required until Step 8 of TSSign, after this only
t + 1 of the N participants are required. There may be multiple simultaneous
computations running up to Step 8, at which point these σi, k

−1
i , r values may

be stored until required for use. Once a value is used for signing, these are not
used again. No expensive computation such as homomorphic encryption or zero-
knowledge proofs are required as all previous threshold-optimal constructions
[6–14, 18]. Instead of homomorphic encryption and zero-knowledge proofs, this
protocol has three additional executions of VRSS compared to other threshold-
optimal protocols, however it will be shown to be 144 times faster than [14]
which also proposes precomputation.

Calculation and verification of αi(kG) and (αiP+βiG) in Steps 4 and 5 ensure
robustness. Without these, it would be possible for an unidentifiable corrupted
participant j to send incorrect values for µj or λj , which would prevent a valid
signature being created. If a corrupted participant attempts to send an incorrect
value for the multiplication of their shares, there is no value that will pass the
verifications aside from the correct value. This is because every participant is
interpolating over a different set of shares and knows that all participants receive
the same broadcasted values. The same logic can be applied to the verification
of λi and αiP .

Note that in the non-interactive signing phase of the scheme, the signature
is calculated assuming the participants are honest, but the result is verified
for correctness. If the signature is found to be invalid, the shares are checked
individually to identify the incorrect share. This does not require any further
rounds of communication, since all participants already have enough knowledge
to verify shares. While this could be executed prior to calculating the signature,
it would slow down those rounds which are executed correctly and is therefore
more efficient to perform these verification steps only if necessary.

4 Security Proof

In this section, the following theorem is proven, assuming it is infeasible to forge
a signature in ECDSA [19].

Theorem 1 The threshold signature scheme in Section 3 is secure in the pres-
ence of d participants corrupted by an eavesdropping adversary and h participants
corrupted by a halting or malicious adversary, if the total number of participants
is N > 2t+ h and number of corrupted participants is d+ h ≤ t.

The proof is split into proving robustness and then unforgeability.
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Lemma 2 The threshold signature scheme in Section 3 is robust, if the number
of participants in the scheme is N > 2t+h where h is the number of participants
corrupted by a halting (or malicious) adversary.

Proof. The scheme will be shown to be robust in the presence of 2t + 1 par-
ticipants who do not deviate from the protocol, such that the signature that is
generated will always be accepted by an execution of TSVerify. Note that these
participants may include d eavesdropping participants. Shares that belong to
participants who do not deviate from the protocol will be referred to as correct
shares. Specifically, the requirement of 2t + 1 correct shares is due to the mul-
tiplications of (t,N) shared secrets in Step 4 of TSSign. After this point, only
t+ 1 correct shares are required to be robust.

There are three rounds of communication in which there is scope for partic-
ipants to send values that deviate from the protocol. Each of these rounds are
followed by verifications and it is these steps that identify correct shares.

– Step 2 and Step 7 of VRSS executed in TSKeyGen and TSSign: if shares of
any fi(j) are not received or invalid before Step 4, all shares of that private
polynomial are removed from the calculation. The values that do not validate
correctly in Step 7 are recovered by the honest participants using the values
received in Step 1 to compute the public key corresponding to the shares.
There will be at most h private polynomials removed, with at least 2t + 1
remaining. Therefore, there will still be at least 2t+ 1 shares ai output from
VRSS due to the requirement of N > 2t+ h.

– Step 5 of TSSign: there must be 2t + 1 shares of µ or λ, since they are a
multiplication of (t,N) shared secrets. This is the case as there are at least
2t+ 1 participants who do not deviate from the protocol. These shares can
be detected as those which are contained in sets that find the equalities in
this step hold. Therefore, enough correct shares exist and can be identified.
The calculations of µ and λ use these correct shares.

– Steps 1 and 2 in CorruptID: the shares si which agree with the obfuscated
shares calculated from the execution of VRSS are used in the computation of
the signature. Since there are at least 2t+ 1 participants that do not deviate
from the protocol, and there are t + 1 required for this calculation, there
will always enough shares to calculate the signature. These shares can be
detected using CorruptID.

It has been illustrated that incorrect shares can always be detected and there
will always be enough correct shares remaining for each computation. Hence,
TSKeyGen and TSSign will produce expected outputs given N > 2t+ h and the
scheme described in Section 3 is robust. ut

The proof of unforgeability is given by proving each protocol can be simulated
in a way which the adversary cannot distinguish the simulation from the real
protocol. In order to prove that TSSign is indistinguishable from its simulation,
it is necessary to understand how to generate an elliptic curve point (x, y) from
the r value in a signature such that the point appears uniformly random among
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the set of all candidates of (x, y). Recall that the r value of a signature (r, s) is
an x value of an elliptic curve point modulo n and the order of the field that the
elliptic curve is defined over is p.

ECPointDerivation
Input: r
Output: k̂G

1. To calculate the x value
– If n ≥ p, set x← r.
– If n < p and
• r ≥ (p− n), set x← r.
• r < (p− n), calculate (r + n) mod p. Check which of r and (r + n)

correspond to x values on the elliptic curve.
* If only one is an x value on the elliptic curve, set that to x.
* If both correspond to an x value, randomly select one and set it

to x.
2. Calculate a y′ value corresponding to x according to the elliptic curve equa-

tion. If there is only one unique y′ value, set y ← y′, otherwise calculate −y′
and randomly select y ← y′ or y ← −y′.

3. Set the point to be k̂G← (x, y).

This derivation ensures that the distribution of points kG remains uniform
when derived from r. The point that r was derived from does not need to be the
same as the point that is found with this method.

Each protocol in the scheme described in Section 3 is now shown to be sim-
ulatable and indistinguishable from that simulation. In each step of the simu-
lations, the action in the brackets describe the steps the adversary takes. It is
assumed that the adversary generates the values corresponding to the corrupted
participants. This is stronger than assuming that the adversary only learns the
shares of the corrupted participants and so subsumes this case. Note the steps
described as ‘twiddle thumbs’ are paying homage to [1] and are used where the
protocol requires the simulator to do nothing during that step.

VRSS is proven to be secure in [16], which is used in both the key generation
simulation and in the signature generation simulation, denoted VRSS-sim. The
input to the simulation is the public key P , indices i, and threshold t.

Lemma 3 The TSKeyGen protocol described in Section 3.1 is simulatable and
is indistinguishable from its simulation from the point of view of the adversary.

Proof. Assume that the indices i of participants have been generated already
and, without loss of generality, that the adversary has corrupted participants
i = 1, . . . , t. The steps in the following simulation coincide with the steps in the
protocol in Section 3.1.

TSKeyGen-sim
Input: public key P , index i for i = 1, . . . , N , threshold t
Output: shares âi for i = 1, . . . , N , public key P
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1. The simulator invokes VRSS-sim outputting ai for i = t + 1, . . . , N and P .
(The adversary executes VRSS to calculate ai for i = 1, . . . , t and P .)

It has been shown in [16] that VRSS is indistinguishable from VRSS-sim. The
signature that is to be generated can be verified against this public key and the
verification will be accepted. These steps are therefore indistinguishable to the
adversary from TSKeyGen. ut

In order to simulate TSKeyGen, VZSS is first shown to be unforgeable.

Lemma 4 The VZSS protocol described in Section 2.7 is simulatable and is
indistinguishable from its simulation from the point of view of the adversary.

Proof. The simulation of VZSS is given below.

VZSS-sim
Input: index i, threshold t
Output: shares âi for i = 1, . . . , N

1. The simulator generates uniformly random values ηji ∈ Z∗n for j = t +

1, . . . , N and i = 1, . . . , t and shares f̂j(i) ← ηji with the adversary and

receives f̂i(j) for j = t + 1, . . . , N . (The adversary generates coefficients âil
of f̂i(x) for i, l = 1, . . . , t, shares f̂i(j) and receives f̂j(i) from the simulator
for j = t+ 1, . . . , N .)

2. Twiddle thumbs. (The adversary calculates âi for i = 1, . . . , t.)
3. The simulator calculates

f̂j(x)←
t∑
l=1

f̂j(l)
∏

1≤j≤t+1,
j 6=i

(x− j)(l − j)−1 mod n ,

that satisfy the above values. The simulator uses these values to calculate
âj , âjlG for j = t + 1, . . . , N and stores âj . The simulator shares âjlG and
receives âilG from the adversary. (The adversary shares âilG and receives
âjlG from the simulator.)

4. Twiddles thumbs. (The adversary verifies fi(j).)

In Step 1 above, the adversary receives shares f̂i(j) from the simulator which
are randomly generated and therefore uniformly distributed. Compare this to
VZSS, where the adversary receives shares fi(j) which are calculated from the
addition of values which are uniformly distributed. To an adversary, these sets
of values are indistinguishable.

Similarly, in Step 3 of VZSS-sim, the adversary receives coefficients âjlG
which are calculated from the addition of randomly generated values ηji, hence
are uniformly distributed across the set. This ensures they are indistinguishable
from the values ajlG that are received in VZSS.

Finally, the verifications in Step 4 will be accepted by the adversary due to
the way that the coefficients are generated in Step 3 of the simulation. ut
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Lemma 5 The TSSign protocol described in Section 3.2 is simulatable and is
indistinguishable from its simulation from the point of view of the adversary.

Proof. The steps in the following simulation coincide with those in the protocol
in Section 3.2.

TSSign-sim
Input: shares â1, . . . , ât, public key P , message m, signature (r, s)
Output: ⊥

1. The simulator executes ECPointDerivation that outputs k̂G ← (x, y) with r

as input. The simulator invokes VRSS-sim using input k̂G, outputting k̂i for
i = 1, . . . , t. (The adversary executes VRSS to obtain k̂i, k̂G and computes
r.)

2. The simulator randomly generates α̂, β̂, µ̂ and calculates λ̂← r−1(µ̂s− α̂e+

β̂r) mod n, where e = hash(m). The simulator executes two instances of

VRSS-sim to calculate α̂i and β̂i for j = 1, . . . , N , using α̂ and β̂ as input.
(Adversary calculates α̂i and β̂i for i = 1, . . . , t using two instances of VRSS,

α̂jG, β̂jG and stores.)
3. The simulator executes VZSS-sim outputting κ̂i for i = 1, . . . , t. (The adver-

sary calculates κ̂i using VZSS for i = 1, . . . , t.)
4. The simulator takes the following steps.

– Calculate µ̂i ← α̂ik̂i+ κ̂i for i = 1, . . . , t. Calculate µ̂i for i = t+1, . . . , 2t
such that µ̂i for i = 1, . . . , 2t defines a polynomial f̂(x) such that f̂(0) =

µ̂. Calculate µ̂i ← f̂(i) for i = 2t+ 1, . . . , N .

– Calculate λ̂i ← α̂iâi + β̂i for i = 1, . . . , t. Calculate share λ̂i for i =
t + 1, . . . 2t such that λ̂i for i = 1, . . . , 2t define a polynomial ĝ(x) such

that ĝ(0) = λ̂. Calculate λ̂i ← ĝ(i) for i = 2t+ 1, . . . , N .

– Calculate α̂i(k̂G), and (α̂iP + β̂iG) for i = 1, . . . , t, and calculate µ̂G

and λ̂G. Compute

α̂j(k̂G)← interpolate(µ̂G, α̂1(k̂G), . . . , α̂t(k̂G)) ,

(α̂jP + β̂G)← interpolate(λ̂G, (α̂1P + β̂1G), . . . , (α̂tP + β̂tG)) ,

for j = t+ 1, . . . , N and where µ̂G and λ̂G are the points at x = 0.
– The simulator broadcasts µ̂i, λ̂i, α̂i(k̂G), and (α̂iP + β̂iG) for each i =
t+1, . . . , N and receives values for i = 1, . . . , t. (The adversary calculates

µ̂i, λ̂i, α̂i(k̂G), and (α̂iP + β̂iG) and broadcasts.)

5. Twiddle thumbs. (The adversary verifies µ̂i, λ̂i and α̂i(k̂G), (α̂iP + β̂iG)
interpolate to the same result.)

6. Twiddle thumbs. (The adversary sets values µ̂, λ̂.)

7. Calculate k̂−1i ← µ̂−1α̂i and σ̂i ← rµ̂−1(λ̂ − β̂i) for all i = t + 1, . . . , N

given α̂i, β̂i calculated in Step 2. (The adversary calculates k̂−1i and σ̂i for
i = 1, . . . , t.)

8. Twiddle thumbs. (The adversary stores values.)

15



9. The simulator calculates ŝi ← k̂−1i e+ σ̂i for t+1 randomly selected values of
i within the range i = t+ 1, . . . , N and shares these values. (The adversary
calculates ŝi for i = 1, . . . , t.)

10. Twiddle thumbs. (The adversary calculates (r, s).)

While the signature (r, s) will be accepted if verified with the public key, the
adversary can still ensure the shares generated by the simulator are also correct.

CorruptID-sim
Input: shares ŝ1, . . . , ŝt+1, message m
Output: ⊥

1. Twiddle thumbs. (The adversary calculates k̂−1j G and σ̂jG for each partici-
pant j that took part in the signature.)

2. Twiddle thumbs. (The adversary verifies that these obfuscated values were
used to generate the signature shares ŝi by comparing to ŝiG.)

In Step 1 to 3, the simulation of VRSS is used multiple times. It has been
already shown that the simulation is indistinguishable from VRSS itself in [16].

Moreover, the public key k̂G that is calculated by the adversary in Step 1 is
uniformly distributed across the set of elliptic curve points as it uses ECPoint-
Derivation. Therefore, the first three steps are indistinguishable to the adversary
from the first three steps in TSSign.

The values µ̂, α̂, β̂ are randomly generated from a uniformly distributed set of
values. All values in Step 4 of the simulation are derived from these, including µ̂i,
λ̂i, α̂i(k̂G), and (α̂iP + β̂iG), which the adversary receives. Therefore, the values
that the adversary receives also appear uniformly distributed. On the other hand,
in TSSign, the corresponding values µi, λi, αi(kG), and (αiP + βiG) that an
adversary receives are similarly uniformly distributed, by the same reasoning.
Therefore, an adversary will not be able to distinguish between the two sets.

Note that the values µ̂ and λ̂−β̂ are not equivalent to α̂k̂ and α̂a. If they were,
a and k̂ could be revealed, since the values α̂, β̂ must be known to ensure that
ŝi are accepted in CorruptID-sim. This contradicts the assumption that ECDSA
is unforgeable. As a result of this, the DDH assumption is required as described
in Section 2.1, similar to [1]. However, due to the construction of the values, the
verifications by the adversary are still accepted in the simulation.

In Step 5 to 9, the adversary is executing their own calculations. In Step 10
the simulator shares the values ŝi. Since ŝi are calculated from values that are
uniformly distributed themselves, the result is that the set of signature shares
are also uniformly distributed. Again, this is the same as the protocol TSSign
and so the adversary will have the same view within the two protocols. The
calculations executed by the simulator in Step 4 ensure that the shares will
result in the correct signature. Step 4 also ensures that the signature shares will
individually pass the checks in CorruptID-sim, as stated previously.

As a result, the calculations executed by the adversary will be accepted and
have the same probability distribution. Therefore, the adversary will not be able
to identify that it is in the simulation. ut
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Lemma 6 The view of an adversary in the protocol described in Section 3 is
indistinguishable from the view of the adversary in a simulation from the point
of view of the adversary.

Proof. It has been shown that both TSKeyGen and TSSign are simulatable and
indistinguishable from their simulation in Lemma 3 and Lemma 5. Therefore, the
view of the adversary in the scheme described in Section 3 is indistinguishable
from the simulation from the point of view of the adversary. ut

Lemma 7 The threshold signature scheme described in Section 3 is unforgeable
if the total number of participants is N > 2t + h and the number of corrupted
participants is d + h ≤ t, where d and h are the number of participants cor-
rupted by an eavesdropping adversary and by a halting (or malicious) adversary,
respectively.

Proof. If the total number of corrupted participants is more than t, that the
(t,N) shared secret can be calculated and therefore also a signature. On the
other hand, by assuming that d + h ≤ t, the shared private key, and therefore
signature, cannot be calculated. This has been shown in that the view of the
adversary in TSKeyGen and TSSign is indistinguishable from their simulations.
Since the simulations are unforgeable by definition, this means that TSKeyGen
and TSSign are also unforgeable. ut

5 Benchmarking

TSKeyGen and TSSign have been implemented assuming there are only eaves-
dropping adversaries in TSSign. That is, it uses Feldman secret sharing as in [17]
and excludes Step 5 of TSSign and CorruptID. The implementation is compared
data given for schemes [14] and [13] which are also non-interactive. The imple-
mentation was written in C++ and was run on a 2018 MacBook Pro with a 2.6
GHz Intel Core i7 processor and 32GB RAM. Participants were run as separate
processes on a single machine using a single core. In practice, calculation by
different participants is parallelizable and so the timings will be reduced further.
The data for [14] is chosen to be the scheme without identifiable abort to com-
pare fairly with the implementation of the scheme in Section 3. Also, the data
for [13] was only available for precalculation of the signature and up to t = 8.

The scheme was run 20 times for each threshold and group size up to t = 9
and N = 20 in line with [14] and [13]. TSSign was split to measure the av-
erage time for the precalculation in Step 1 to 8, and the average time for the
non-interactive signing in Step 9 to 10. Even if there are failures by at most t
participants, this does not impact the progression of the protocol. The raw data
is given in Appendix A.

While the main benefit of this scheme is lost if precalculation is executed
after the message has been received, in the effort of fair comparison, the whole
TSSign protocol is compared to other schemes. It was found that the majority
of time is taken with precalculation, as expected, and so the time to run TSSign
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from Section 3 was roughly constant even as the threshold increased for the same
group size. This is expected because all participants are required in precalcula-
tion for any threshold. Choosing the group sizes to be N = 2t+ 1 for Section 3,
the comparison with [14] and [13] are shown in Figure 1.

Fig. 1. Comparison of signing timings (including precalculation) of Section 3
with [14] and [13] for t up to 9. [13] includes only precalculation and t up to 8.

All data excludes network latency time for equal comparison with [14] and
[13]. Table 1 compares rounds of communication in the three schemes. Since
Section 3 has fewer communication rounds, it will be even faster than [14] and
[13], when including network latency.

Communication rounds Section 3 [14] [13]

Key Generation 2 3 3

Signing protocol 4 6 4

Table 1. Table showing the number of rounds of communication in key gener-
ation and signing comparing Section 3 in the presence of eavesdropping adver-
saries, [14], and [13].

Figure 2 shows the speed of signing after precalculation for the scheme pre-
sented in Section 3. That is, Step 9 to 10 in TSSign, taking N = 2t + 1 for
each t. Given a non-interactive signing time of 0.12ms for t = 1, the number of
signatures that can be generated per second with this scheme is over 8000.

Finally, the size of communications is compared. The data is given in kB
and compared to precalculation in [13] (the data is not available in [14]). The

18



Fig. 2. Time taken to create a signature after precalculation given in milliseconds
(ms) for Section 3.

size of communications given for Section 3 includes both precalculation and the
non-interactive signing step.

Fig. 3. Size of communication transmitted in kilobytes (kB). The data in [13]
is the precalculated data only, and the data for Section 3 includes data for the
whole signing protocol.

The communication size in [13] increases linearly in the group size, whilst the
data for Section 3 increases quadratically with the group size. This is because all
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participants are required during precalculation steps in signing for the scheme
in Section 3. This impacts the precalculation stage but has the benefit that any
participant can execute the non-interactive phase. In the non-interactive phase,
the communication in Section 3 increases linearly with the number of signers.

The scheme in [13] also gives timing and communication size data for part of
the key generation algorithm, which has a significant overhead. The data given is
for generating Pallier keys (required in both [14] and [13]), which are not required
for the scheme in Section 3, and therefore is not comparable. This is additional
time and computational complexity in [14] and [13] that is not required in the
scheme presented Section 3.
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A Raw Data for Benchmarking

The raw data for the graphs shown in Section 5 is given below. The timing for
Section 3 is averaged over 20 iterations and the data for [14] and [13] is taken
directly from their papers.

t + 1 TSSign in Section 3 TSSign in [14] TSSign in [13]

2 3.35 484 801

3 6.12 991 1183

4 9.48 1418 1566

5 13.78 1879 1949

6 21.90 2355 2332

7 28.18 2822 2715

8 33.31 3306 3098

9 40.35 3758 3864

10 48.52 4289 -

Table 2. Timings of the signing protocols in milliseconds, plotted in Figure
1. Section 3 and [14] include both precalculation and the non-interactive steps,
whilst [13] is precalculation only.
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t + 1
Time in ms of non-interactive step

of TSSign in Section 3

2 0.12

3 0.25

4 0.44

5 0.68

6 0.96

7 1.29

8 1.70

9 2.13

10 2.90

Table 3. Time in milliseconds to execute the non-interactive phase of signing
given in Section 3, plotted in Figure 2.

t + 1 TSSign in Section 3 TSSign in [13]

2 2.01 30

3 5.45 45

4 10.57 59

5 17.38 73

6 25.87 88

7 36.04 102

8 47.90 116

9 61.44 131

Table 4. Communication in kB, plotted in Figure 3. Section 3 includes both
precalculation and the non-interactive steps, whilst [13] is precalculation only.
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