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Abstract

We define the class of triplicate functions as a generalization of 3-to-1 functions over the finite field Fo» for even values of n.
We investigate the properties and behavior of triplicate functions, and of 3-to-1 among triplicate functions, with particular attention
to the conditions under which such functions can be APN. We compute the exact number of distinct differential sets of power APN
functions, quadratic 3-to-1 functions, and quadratic APN permutations; we show that, in this sense, quadratic 3-to-1 functions are
a generalization of quadratic power APN functions for even dimensions, while quadratic APN permutations are generalizations of
quadratic power APN functions for odd dimensions. We survey all known infinite families of APN functions with respect to the
presence of 3-to-1 functions among them, and conclude that for even n almost all of the known infinite families contain functions
that are quadratic 3-to-1 or EA-equivalent to quadratic 3-to-1 functions. Using the developed framework, we give the first proof
that the infinite APN families of Budaghyan, Helleseth and Kaleyski; of Gologlu; and of Zheng, Kan, Li, Peng, and Tang have a
Gold-like Walsh spectrum. We also give a simpler univariate representation of the Gogloglu family for dimensions n = 2m with
m odd than the ones currently available in the literature. We conduct a computational search for quadratic 3-to-1 functions in
even dimensions n < 12. We find one new APN instance for n = 8, six new APN instances for n = 10, and the first sporadic
APN instance for n = 12 since 2006. We provide a list of all known 3-to-1 APN functions for n < 12.

I. INTRODUCTION

An (n, m)-function, or vectorial Boolean function when the dimensions n and m are clear from the context, is any function
from the vector space F% over the finite field [y to the vector space F5*. Intuitively, an (n, m)-function maps an input of n bits
(zeros and ones) to an output of m bits; since any data can be encoded in binary, practically any operation on any kind of data
can be modeled as a vectorial Boolean function. For this reason, (n,m)-functions naturally occur in many different areas of
mathematics, computer science, and engineering. In particular, they play an important role in symmetric cryptography: virtually
all modern block ciphers incorporate cryptographically strong (n, m)-functions as essential parts of their design; typically, the
non-linear part of the cipher is modeled as a vectorial Boolean function, and so the cryptographic security of the encryption
directly depends on the properties of this vectorial Boolean function. A prime example is the well-known and near ubiquitously
used cipher Rijndael [32], [33]], which was selected as the Advanced Encryption Standard (AES) by the US National Institute
of Standards and Technology (NIST), and is considered to be one of the most reliable block ciphers to date. A crucial part of
its design is an (8,8)-function carefully selected for its cryptographic properties.

One of the most efficient known cryptanalytic attacks that can be used against block ciphers is differential cryptanalysis
[4]. The differential uniformity §z of a vectorial Boolean function F' measures how well it resists differential attacks; more
precisely, the lower the value of §r, the more resilient it is to this type of cryptanalysis. In the case when n = m (so that the
number of input bits is the same as the number of output bits, which is one of the most important cases in practice), we have
dp > 2 for any (n,n)-function F. The functions that attain this lower bound with equality are called almost perfect nonlinear
(APN), and therefore provide the best possible resistance to differential cryptanalysis. The interest in studying these functions,
however, is not restricted to the practical needs of cryptography: APN functions have a natural combinatorial definition, and they
correspond to optimal objects in many other areas of research, including algebra, sequence design, coding theory, combinatorial
design theory, projective geometry, and others. Constructing new instances of such functions, and studying their properties
therefore has a far-reaching significance that has the potential to advance many other disciplines.

Unfortunately, APN functions tend to be very difficult to construct and analyze. This is partly due to the fact that they are
cryptographically optimal objects, and as such do not have much structure or clear patterns. On the other hand, the number
(2™)%" of (n,n)-functions becomes prohibitively large even for relatively small values of 7, and means that finding APN
functions by exhaustive search is completely out of the question; computational searches can only be performed on very
specific subclasses of functions (where the number of functions is small enough to be processed on a computer within a
reasonable amount of time), and even then, mathematical constructions and non-trivial techniques frequently have to be used
in order to make the entire procedure feasible.

The vector space F% can be identified with the finite field Fa»; and APN (n, n)-functions are typically represented as univariate
polynomials over Fon. To date, six infinite families of APN monomials, and 15 infinite families of APN polynomials have
been constructed. Upon inspecting their polynomial representations in the case of even n, we can see that most of them are of
a very special form: namely, all of their exponents are divisible by 3, which has the consequence that they are 3-to-1 functions
(meaning that every element y = 0 in the image set Im(F') of one of these functions F' has precisely three preimages). Upon



closer inspection, we can see that even many of the known APN functions whose exponents are not all divisible by 3 are still
3-to-1 functions. This suggests that there is some connection between a function being 3-to-1 and being APN.

Functions that are 3-to-1 with all exponents divisible by 3 (which in this paper we call “canonical”) have previously been
studied in [27]); that paper contains some interesting results on the behavior and properties of such functions. In particular, it
helps to explain why some of the known families of APN functions have a Gold-like Walsh spectrum. Recently, 3-to-1 APN
functions have been studied in more detail in [48], where some of the results from [27] are extended to the general case of
3-to-1 functions (in other words, 3-to-1 functions whose exponents are not necessarily divisible by 3). This interest in the
behavior and properties of 3-to-1 APN functions is, in our opinion, well deserved, and warrants further investigation.

In this paper, we take several different approaches to investigate the properties of these functions and to facilitate their study.
To begin with, we define a more general class of functions called triplicate functions that have the property that the sizes of
all of their preimages are divisible by 3; in this way, a triplicate function will always map triples of inputs {x1, z2, 23} to
the same output (so that F'(x1) = F(x2) = F(z3)) but, unlike a 3-to-1 function, distinct triples may still map to the same
output; in this way, every 3-to-1 function is a triplicate function, but not every triplicate function is 3-to-1. We characterize
triplicate functions by the values of their Walsh transform, and show that quadratic 3-to-1 functions can be considered as
extremal objects (from several different points of view) among triplicate functions in a way very similar to how quadratic APN
functions can be considered as extremal objects among all plateaued functions.

One of the aspects in which we see that 3-to-1 functions are extremal objects is with respect to their number of distinct
differential sets (the differential sets of a function being the image sets of its derivatives). Besides deriving some results on
the number of distinct differential sets of canonical quadratic triplicate functions, we compute the exact number of distinct
differential sets of any power APN function (regardless of whether it is a triplicate or not). We show that if F' is a power
function on Fon and a,b € Fan, then F(a) = F(b) if and only if H,F' = H,F (with H,F being the differential set of F' in
direction a). In this way, 3-to-1 functions behave in the same way as power APN functions in the case of even n. We also
show that all the differential sets of any quadratic APN permutation (over a finite field of odd extension degree) are distinct,
and so, in this way, quadratic APN permutations are the analogue of power APN functions in the odd case.

The paper is organized as follows. In Section |lI, we recall most of the preliminaries and background knowledge needed
for the rest of the text. In Section we define the classes of triplicate functions and canonical triplicate functions (as well
as the zero-sum property and triple summation property, which all known 3-to-1 APN functions have), and mathematically
investigate their structural properties and behavior. In particular, we characterize triplicate functions and 3-to-1 among triplicate
functions by their Walsh transform, and show that 3-to-1 among triplicate functions are extremal objects in some sense. We
also characterize, in the case of power APN functions and of quadratic canonical 3-to-1 functions, when two differential sets
coincide, and compute the exact number of distinct differential sets of these two classes of functions. In Section we survey
the known infinite APN families, and conclude that the majority of them contain functions that are canonical 3-to-1 functions.
Finally, in Section [X[, we summarize our results, and indicate some directions for future work.

II. PRELIMINARIES

Throughout the paper, we denote the cardinality of a set S by #S, while |s| denotes the absolute value of s € Z. The sumset
of a set S is the set 25 = {s1 + 52 : 81,82 € 5,81 # s2}. A multiset is an unordered collection of elements, much like a set;
unlike a set (which either contains or does not contain a certain element), a multiset can contain an element more than once.
The number of times that an element occurs in a multiset is called the multiplicity of that elemen We write multisets using
square brackets to distinguish them from ordinary sets; for instance, [a, b, a,a, c] is a multiset that contains the elements a, b,
and ¢, with multiplicities 3, 1, and 1, respectively. As shorthand, we will also write the number of occurrences of an element
appearing more than once in the multiset as a superscript; for instance, we would write [a, b, a,a,c] as [a®,b, c], indicating
that the element a occurs three times, while b and ¢ occur only once. On rare occasions, we will indicate the multiplicities in
under-braces and write them underneath the respective elements instead.

A. Vectorial Boolean functions and their representations

Let n be a natural number. We denote by Fy the finite field of two elements, by F5 the vector space of dimension n over
Fa, and by Fon the extension field of degree n over Fo. The multiplicative group of Fon is denoted by [F5.. We note that
the elements of 5 can be identified with those of Fo», and we will use both representations interchangeably throughout the
paper. For any two natural numbers m, n such that m | n, we denote by Tr), : Fon — Fom the trace function from Fa» onto
[Fom defined as

n/m—1

Try () = Z 22"
=0

'Formally, a multiset would be defined as a pair (S, m), where S is some set of elements, and m : S — N is a mapping specifying the multiplicity of
each element in the multiset. We consider that the idea behind multisets is intuitively clear by itself, and omit this formal definition in the text.



When m = 1, Tr} is called the absolute trace; in this case, we will denote it more succinctly by Tr,,, or simply by Tr if the
value of n is clear from the context.

Let n and m be natural numbers. Any mapping f from F5 to Fs is called an n-dimensional Boolean function. Any mapping
from F% to FJ* is called an (n,m)-function; in particular, Boolean functions are (n,1)-functions. When the dimensions are
not important, or are understood from the context, we refer to (n,m)-functions as vectorial Boolean functions. The intuition
behind the name is that any (n,m)-function F' can be represented as a vector F' = (f1, fa,..., fim) of m Boolean functions
fisfoyoooy fm + 3 — Fo of dimension n. The value f;(z) for some x € F} gives the i-th coordinate y; of the output
y=F(x) = (y1, Y2, - -, Ym). For this reason, the Boolean functions f1, fo, ..., f, are called the coordinate functions of F'.
The non-zero linear combinations of the coordinate functions are called the component functions of F’; thus, every coordinate
function of F' is also a component function of F', but not vice-versa. Some important properties of (n, m)-functions, including
cryptographically significant parameters such as the nonlinearity, can be defined and analyzed in terms of their component
functions.

The image set of an (n,m)-function F' is the set Im(F) = {F(z) : © € Fy}. For y € Im(F), we will call the set
F~1(y) = {x € F§ : F(z) = y} the preimage set of y under F. If F(0) = 0 and #F~1(y) = 3 for every 0 # y € Im(F),
we will say that F' is a 3-to-1 function. If n = m and #Im(F) = 2", we will say that F' is a permutation of F7.

Vectorial Boolean functions can be represented in many different ways. The simplest representation involves writing down
(or storing in memory, in the case of a computer implementation) the values F'(z) of the (n,m)-function F' for all possible
inputs x € F5. This representation is referred to as the truth table (TT) or the look-up table (LUT) of Fﬂ This representation
can be quite efficient and convenient for computer implementations, since finding the value F(x) of the function F' at some
input « € F% reduces to simply indexing an array stored in memory; this makes the implementation of (n,m)-functions as
truth tables both very simple and very fast in practice. The disadvantage is, of course, that the memory needed to store the
truth table increases rapidly with the dimensions n and m. Another drawback of the TT representation is that it is very hard
to observe any structure or properties of the function from it; as we shall see, the algebraic degree (among various other
properties) of a function can be extracted almost immediately from any of its polynomial representations, while in the case of
the TT, this is not straightforward to do.

Any (n, m)-function can be represented as a polynomial in n variables over F5*. More precisely, we can write

F(zy,x9,...,x,) = Z a]]:[zi,

ICP({1,2,...,n}) i€l

where P({1,2,...,n}) is the power set of {1,2,...,n}, and ay € FJ* for all I C P({1,2,...,n}). This representation is
called the algebraic normal form (ANF) of F’; it always exists, and is uniquely defined. When the number of terms with non-
zero coefficients in the ANF is small, the ANF can provide a much more compact representation than the TT. A disadvantage
is that finding the value F(z) of F for some x € F} is no longer instantaneous, and involves performing some arithmetic
operations; however, the smaller size of the representation typically far outweighs this loss in performance. Another benefit of
the ANF over the TT is that it allows i.a. the algebraic degree of F' to be easily extracted. For some F' : F§ — F5* given in ANF,
its algebraic degree is simply the degree of the ANF (as a multivariate polynomial), and is denoted by deg(F'). The algebraic
degree has some cryptographic significance, as a higher algebraic degree indicates good resistance to higher-order differential
attacks [34], [47]. The algebraic degree also allows us to define some important classes of vectorial Boolean functions: for
instance, we call an (n, m)-function F affine if deg(F') < 1; then, much as the name would suggest, we have

Fx)+ Fly)+ F(z) = Flx+y+ 2)

for any x,y,z € F3. If F is affine and F'(0) = 0, so that F(z) + F(y) = F(z + y) for any z,y € FJ, we say that F' is
linear. If deg(F') = 2 or deg(F') = 3, we say that I' is quadratic or cubic, respectively. The class of quadratic functions, in
particular, plays a central role in our investigations.

Perhaps the most frequently used representation of vectorial Boolean functions in the study of i.a. APN and AB functions is
the univariate representation, in which a function is represented by a univariate polynomial. For this purpose, the domain 3
and co-domain F3* of an (n, m)-function are identified with the finite fields Fon and Fam; we further assume that m divides
n, so that Fom is contained as a subfield in Fon. Then F' can be seen as a function over Fa» which can be represented by a
polynomial

2m—1
F(x) = Z et
i=0

where ¢; € Fon for i =1,2,...,2" — 1. Such a polynomial always exists (and can be obtained by e.g. Lagrange interpolation
from the TT representation of F'). In general, such a representation is not unique, and some additional restrictions need to be

2Some authors reserve the term “truth table” for Boolean functions, whose output values 0 and 1 can be interpreted as “false” and “true”, respectively, and
call the more general manifestation of the same principle for (n, m)-functions with m > 1 (where the output can be any element of F3*) a look-up table.
We will refer to this representation as a truth table in both cases.



introduced in order to ensure uniqueness. However, when n = m (so that the domain of F' is the same as its co-domain),
this representation is always unique. Since our study mostly concerns (n,n)-functions (as opposed to (n,m)-functions with
n # m), we do not go into further details.

The univariate representation is quite important to our work, and to the study of APN and AB functions in general. Almost
all of the known infinite constructions of APN functions are given in univariate form; and the class of canonical triplicate
functions that we investigate in Section [lII) is defined in terms of the univariate representation. Since the algebraic degree also
plays a prominent role in our investigation, we note that it can be recovered quite easily from the univariate representation of
an (n,n)-function as well: indeed, the algebraic degree of F' is the largest binary weight of any exponent 7 with ¢; # 0 in
the univariate representation (the binary weight, or 2-weight, of an integer ¢ is the weight or, equivalently, number of non-zero
bits, in its binary expansion).

Other representations of vectorial Boolean functions exist, and some of them can be quite useful. For instance, if F' is a
(2n, m)-function, it can be represented as a bivariate polynomial F'(x,y) with z,y € F5. Some infinite constructions of APN
functions are given in this bivariate representation (in fact, the univariate and bivariate representations are the only ones that
have allowed for such infinite constructions at the time of writing). Representations of functions using tables, matrices, and
algebraic structures have been considered in the literature, and some of them have been utilized computationally to find many
new instances of APN and AB functions, e.g. [56], [59], [60], [53].

B. Derivatives of vectorial Boolean functions

The derivative of an (n,m)-function F' in direction a € Fan is the function D,F(z) = F(a + x) — F(a). Intuitively,
D, F(x) expresses the difference between a pair of values of the function F' when the difference between their corresponding
inputs is equal to a. Since addition and subtraction represent the same operation over fields of even characteristic, we typically
write D, F(z) = F(a+ x) + F(z). An associated function is A, F(z) = F(z) + F(a+ z) + F(a) + F(0); in the case when
F' is quadratic, this is sometimes referred to as a symplectic form. The functions D, F' and A, F typically behave similarly
with respect to the study of i.a. cryptographic properties of functions; the advantage of A, F' is that it may sometimes be more
convenient to work with due to it being symmetric in ¢ and z, and since it has no constant term, i.e. A,F(0) = 0.

As remarked above, the value of D, F'(z) intuitively represents the difference between two outputs of F' for which their
corresponding inputs are at distance a. From a cryptographic point of view, it is desirable that there should be no strong
correlation between the input difference and the output difference. In other words, the possible output differences for some
fixed 0 # a € F§ should be distributed as closely to uniform as possible (throughout all choices of = € F%). In particular, the
number of inputs « € F} for which D, F'(x) = b should be as low as possible for all choices of b € F5". In order to quantify
this, we denote the number of solutions z € F} to the equation D, F(x) = b for some a € F§,b € FZ* by dp(a,b); that is,

Op(a,b) = #{x € Fy : D, F(x) = b}.

Since we would like this number of solutions to be as low as possible throughout all choices of a, b, we define the differential
uniformity of F' as
0p = max{dp(a,b): 0 # a € Fy,b € FJ'}.

The multiset [0p(a,b) : a,b € Fau] of all values of dz(a,b) is called the differential spectrum of F.

An (n,m)-function F is vulnerable to differential cryptanalysis [4] if §r is large. We can easily see that the numbers
dr(a,b) are always even, since if « is a solution to D, F(x) = b for some choice of a and b, then so is a + x. Consequently,
the optimal value of the differential uniformity is precisely 2. We say that an (n,n)-function F' is almost perfect nonlinear
(APN) if §p = 2. Thus, the class of APN functions provides the best possible resistance to differential cryptanalysis.

While the notion of the derivative D,F' as described above is fundamental to the definition and study of APN functions,
we can introduce some related auxiliary notions for the sake of convenience. The differential set H,F' of an (n, m)-function
F in direction a € F3 is simply the image set of the derivative D, F’, that is

H,F =Im(D,F) = {D,F(z) : « € F2}.

Since F': Fy — F3 is APN if and only if all of its derivatives D, F for 0 # a are 2-to-1 functions, we can see that F' is APN
if and only if all of its differential sets H,F for 0 # a have cardinality 2" 1.
An (n, m)-function closely related to the derivative D, F' is

D;(F)=F(z)+F(a+2z)+ Fla+s) = D, F(z)+ F(a + s),

where s € F3. In [13], the function D:F is called a shifted derivative with shift s. If s = 0, and F(0) = 0, this coincides
with the notion of the symplectic form A,F(x) = F(z) + F(a + z) + F(a) + F(0). Clearly, D, F is 2-to-1 if and only if
D;F is 2-to-1 for any 0 # a € F3, s € F3; and so APN-ness (and, more generally, differential uniformity) can be equivalently
characterized in terms of D3 F.



Analogically to the differential sets H,F', we can define
HF =Im(D,F)={D,F(z) :z € F}}

for any (n, m)-function F' and any a, s € F}. We will refer to these sets as differential sets as well (in fact, we will see that
for any (n, n)-triplicate function 7', we have H,T = HT for any a € Fy., and so this should never cause any confusion).

The study of APN functions is an important area in the mathematical foundations of cryptography, and has been a topic
of intense research at least since the 90’s when the notion of an APN function was first introduced [51]]. Since then, a huge
number of APN instances have been found, and several infinite constructions of APN functions have been deduced; a survey
of these results is given in Section below. As we shall see there, the vast majority of the known APN functions are
quadratic (or CCZ-equivalent to quadratic functions). In fact, there is only a single known example of an APN function that
is CCZ-equivalent to neither a monomial nor a quadratic function [8], [40]], and finding more such instances is considered an
important open problem.

One intuitive explanation for this abundance of quadratic functions among the known APN constructions and instances, is
that checking and characterizing the APN-ness of quadratic functions is significantly easier than in the general case. The reason
for this, in turn, is that the derivatives of any quadratic function are affine functions; and since the differential uniformity of a
function (and the notion of being APN) is defined in terms of its derivatives, this means that in the quadratic case, characterizing
APN functions involves studying the behavior of a set of affine functions. While by no means trivial, this is significantly more
tractable than in the general case, where the derivatives may be of higher algebraic degree.

When the derivatives of F' are affine, the differential sets H,F' and H;F' are affine subspaces of F5*. As observed above,
we always have DYF(0) = 0, and so DYF is, in fact, a linear function for any a € F3, when F is quadratic. Consequently,
the image set HOF is a linear subspace for any a € F3,.

Recall that a linear hyperplane of FJ is any (n — 1)-dimensional linear subspace of F%; and that an affine hyperplane is
any affine (n — 1)-dimensional subspace of F} (in other words, a linear hyperplane plus a constant). Any linear hyperplane of

45 is a set of the form
H(a) = {x € Fy : Tr(ax) = 0}

for 0 # a € 5.

By the above discussion, we can see that if F' is a quadratic (n, n)-function, then it is APN if and only if all the differential
sets H, F are affine hyperplanes (or, equivalently, if all the sets H F are linear hyperplanes) for a € F,.. More generally, we
say that an (n,n)-function F is generalized crooked if all of its differential sets H,F for a € Fj,. are affine hyperplanes;
in the particular case when all the differential sets H,F' are linear hyperplanes, we say that F' is crooked. Clearly, any
generalized crooked function is APN, and any quadratic APN function is generalized crooked; the existence of generalized
crooked functions that are not quadratic is an open problem at the time of writing.

For any set S C Fan and any (n,n)-function F, we will denote by [S] = {a € Fan : H,F' = S} the set of all derivative
directions a for which the differential set H,F is equal to S. In particular, we have a € [H,F] for all a € Fan.

The ortho-derivative 7 [21] is an (n,n)-function that can be associated with any generalized crooked (n,n)-function F'.
For any a € F}., the differential set HOF is a linear hyperplane, and so can be written as HOF = H(c,) for some ¢, € Fj..
We define the ortho-derivative 7y by setting wp(a) = ¢, for every a € F3., and 7p(0) = (ﬂ The ortho-derivatives of
two EA-equivalent quadratic APN functions are EA-equivalent themselves [21]] which allows EA-inequivalent functions to be
distinguished with very high accuracy by comparing the values of EA-invariants (such as the differential spectrum) of their
ortho-derivatives (equivalence relations between (n,n)-functions are discussed in more detail in Section .

C. The Walsh transform
The Walsh transform of an (n, m)-function F is the function W : F§ x FJ* — Z defined by

WF(aa b) = Z (—1>b'F($)+a':C7
c€Fy

TR

where is a scalar product on F5* and [F3, respectively (the dimension being understood from the context). A scalar product
on F3 is a symmetric bivariate function on % such that z — a - = is a non-zero linear form for any 0 # a € F5. Using the
identification of the vector space F} with the finite field Fon, this is typically defined as = - y = Tr(xy), with the product
zy being computed in the finite field Fon, and then mapped to Fs via the absolute trace function. When n = m, the Walsh
transform Wr : F3, — Z of an (n,n)-function F' can equivalently be written as

Wg(a,b) = Z X(bF (z) + ax),

xE€Fon

3More generally, the ortho-derivative of F' can be defined as any (n,n)-function 75 for which 7 (a) lies in the orthogonal complement of HY F', which
is possible even when F' is not generalized crooked (as long as its differential sets HO F are linear hyperplanes). If F is not generalized crooked, however,
the ortho-derivative is not uniquely defined, and so we restrict to the case when F' is generalized crooked.



where X : Fon — Zs is the canonical additive character of Fa. defined by x(x) = (—1)™(). For convenience, for a € Fan, we
will also denote by x, the character x,(z) = x(ax). The values of the Walsh transform W are called the Walsh coefficients
of F'. The multiset of all Walsh coefficients is called the Walsh spectrum of F'; and the multiset of their absolute values is
called the extended Walsh spectrum of F' and denoted by Wpr; symbolically:

Wr = [[Wr(a,b)| : a € F2,b € FT.

The Walsh transform can be a useful theoretical tool for analyzing properties of vectorial Boolean functions, and it can be
used to speed up some computations in practice.

There is a number of well-known characterizations of various properties of vectorial Boolean functions in terms of the Walsh
transform. For instance, we know that any (n,n)-function F' satisfies

Z Wé‘(ch b) >3- 24" _ 23n-|—17
a,b€Fan

with equality if and only if F' is APN [29]. Similarly, we know that any APN (n,n)-function F' with F'(0) = O satisfies

> Wiab) =327 — 22
a,bEFayn

although, in general, this is only a necessary and not a sufficient condition for a function to be APN.

The Walsh transform allows for the definition of another important class of vectorial Boolean functions, viz. the plateaued
functions, that have a close connection to APN functions, and appear in the context of our investigations of triplicate functions
as well. We say that an (n, m)-function F' is plateaued if there exist integers \, € Z for b € FJ* such that

Wr(a,b) € {0,£X}

for all a € F3; we then call )\, the amplitude of the component function F}. If the amplitudes of all components are equal,
i.e. for all b,b’ € F3* we have A\, = Ay, we say that F' is plateaued with single amplitude.

As in the case of the generalized crooked functions, the interest in the study of plateaued functions arises from the behavior
of quadratic APN functions. More precisely, we know that any quadratic APN function is plateaued [62], [22], although there
exist APN functions that are not plateaued, and plateaued functions that are not APN.

D. Equivalence relations

The number of (n, n)-functions is very large even for small values of n, and for this reason, they are typically only classified
up to some notion of equivalence that preserves the properties of interest. In the case of APN functions, the most general
known equivalence relation that preserves the differential uniformity (and hence, the property of being APN) is the so-called
CCZ-equivalence (or Carlet-Charpin-Zinoviev equivalence) introduced in [26]].

The graph T'r of an (n, m)-function F is the set T'r = {(z, F(z)) : € F3} C F5 x FJ*. Note that Fy x F5* can be
naturally identified with F5 "™, and so the set of pairs ' can be seen as a set of elements from F; ™™ If ' and G are two
(n, m)-functions, we say that they are CCZ-equivalent if there exists an affine permutation A of F5 ™ mapping 'z to T'g,
i.e. such that A(Tr) =Tg.

Another widely used equivalence relation is the so-called extended affine equivalence, or EA-equivalence for short. We say
that F,G : Fy — F3' are EA-equivalent if there exist affine permutations 4; and A, of F5* and F%, respectively, and an
affine (n, m)-function A, such that

AjoFoAy+ A=G. (D

We know that EA-equivalence is a special case of CCZ-equivalence; that is, if two functions are EA-equivalent, then they are also
CCZ-equivalent. However, CCZ-equivalence is strictly more general than EA-equivalence and taking inverses of permutations
[L7]. Nonetheless, CCZ-equivalence coincides with EA-equivalence in the case of quadratic APN functions; more precisely, if
F and G are quadratic APN (n,n)-functions, then F' and G are EA-equivalent if and only if they are CCZ-equivalent [57]].
Since almost all of the known APN functions are quadratic, this means that in practice almost all tests for CCZ-equivalence
can be reduced to tests for EA-equivalence.

Some special cases of EA-equivalence can be obtained by applying additional constraints to the functions A;, Ag, and A
from (I). If A = 0, we say that F' and G are affine equivalent; and if, in addition, A;(0) = A2(0) = 0 so that A; and As
are linear, we say that F' and G are linear equivalent.

In general, deciding whether two given (n,n)-functions are equivalent under one of the above equivalence relations is a
difficult computational problem. Both CCZ- and EA-equivalence can be tested by deciding the isomorphism of linear codes
associated with them [9]], [38]]. Recently, algorithms for deciding EA-equivalence in certain cases without going through coding
theory have been developed in [44] and [21]].

Classifying functions up to an equivalence relation can be greatly facilitated by means of invariants, i.e. properties and
statistics that are constant within each equivalence class. For instance, the differential uniformity is a CCZ-invariant, since



if I and G are CCZ-equivalent functions, then both of them have the same differential uniformity. Clearly, the differential
uniformity is not useful in classifying APN functions (which have a differential uniformity equal to 2 by definition) but there
exist many other invariants under CCZ- and EA-equivalence that can simplify the classification process quite significantly.
We refer the reader to the survey [45] for a detailed overview of various invariants and how they can be used to simplify
the classification of APN function. In this paper, we mostly consider the differential spectrum of the ortho-derivative, which
was already described in Section above. The values that the ortho-derivative’s differential set can take are extremely
discriminating, and have virtually the same distinguishing power as an actual EA-equivalence test in practice.

E. Known APN functions

Some of the earliest, and most fascinating in a number of ways, examples of APN functions are given by monomials in their
univariate polynomial representation. These functions are referred to as power functions, or monomial functions. At present, we
know of six infinite families of monomial APN functions. These are summarized in Table [I| below. A conjecture of Dobbertin
states that any APN monomial is CCZ-equivalent to an instance from one of the families in Table

TABLE I
KNOWN INFINITE FAMILIES OF APN POWER FUNCTIONS OVER Fan
[ Family | Exponent [ Conditions | Algebraic degree | Source |

Gold 2+ 1 ged(i,m) =1 2 411, [51]
Kasami 22 _ 2t 4] ged(i,n) = 1 i+1 [43], [46]

Welch 2t +3 n=2+1 3 [136]

. 2t 4 2t/2 _ 1, ¢ even - (t+2)/2

Niho ot 4 9Gt4)/2 1 ¢ odd n=2t+1 1 [35]
Tnverse 27t 1 n=2t+1 n—1 131, 1511

Dobbertin | 2% + 237 4227 1 27 1 n = bi i+3 1371

In addition to the six infinite monomial families, a number of infinite polynomial constructions have been discovered; these
are summarized in Table [IlI} As we can observe from the table, the univariate polynomial form of these families can be quite
varied; and yet, despite this, all of the functions listed in Table [lI| are quadratic. Constructing an infinite family of APN
functions CCZ-inequivalent to both monomials and quadratic functions would be a groundbreaking result. Furthermore, it is
almost certain that the infinite families from Tables [I] and [[] constitute only a minuscule portion of the possible constructions;
finding new infinite families of APN functions is an important ongoing problem.

We note that, in addition to the infinite families presented in Table [[I} there exists a construction of APN functions through
so-called isotopic shifts [[11] which is sometimes considered to be an infinite APN family; for the purposes of this paper, we
do not do so. Our reasoning is that the conditions that characterize when the functions obtained from this construction are
APN, are quite complex, and constructing APN functions in practice requires non-trivial computational searches (unlike the
infinite families listed in Tables [I| and [lI| for which the conditions are very simple, and can typically be verified “on paper”
regardless of how large the dimension n might be). In fact, it is not even clear whether the conditions on the method from
[L1] can be satisfied for infinitely many dimensions n. The fact that the conditions are so complex means that, for one thing,
enumerating all such functions for a given dimension n becomes a challenging computational problem by itself; and, for
another, characterizing when these functions are 3-to-1 does not appear to be easily tractable. For all of these reasons, we
do not consider the functions from this construction in our computational searches and classifications. In particular, we skip
the label “C11” in Table |l so that the indexing of the families in the table matches the one in say [1] or [20], where this
construction is listed as one of the infinite APN families.

We note that the families C14-1 and C14-2 have not been published yet, but univariate and bivariate representations can be
found e.g. in the survey [20].

III. TRIPLICATE FUNCTIONS

In this section, we introduce the class of triplicate functions as a generalization of 3-to-1 functions, and conduct a theoretical
study of their basic structural properties and their relation to APN functions. We derive several different characterizations of
such functions, and show that 3-to-1 functions among triplicate functions are extremal objects in a number of ways. We also
recall, adapt, and generalize some known results on 3-to-1 functions.

The section is organized as follows. In Subsection [[II-A] we introduce the classes of triplicate functions and canonical
triplicate functions, and some other basic notions that we will use throughout the paper. We recall the most important known
results on 3-to-1 functions from [27] and [48]], and make some simple but fundamental structural observations on the behavior
of triplicate and canonical triplicate functions.

4F. Gologlu, private communication



TABLE II
KNOWN INFINITE FAMILIES OF QUADRATIC APN POLYNOMIALS OVER [Fan

[ 1D | Functions [ Conditions [ Source |
C1-C2 | 22"+ 4 w2 1272 n = pk,ged(k,3) = ged(s,3k) = 1,p € (14
{3,4},i = skmodp,m = p — i,n >
12, w primitive in F5,
C3 spdtl 4 g2 H1 4 e D) 4 g = 2mp = 2m, ged(i,m) = 1, ¢ € 121
cx aTL 4 g2 Ha Fon,s € Fon \ Fg, X2'H1 4 cX2' 4 41X +
1 has no solution z s.t. x4+t =1
C4 x5 + a1 Try, (a29) a#0 [13]
C5 23 + a1Tr3 (a32? + aB218) 3ln, a #0 [16]
C6 23 + a~TTr] (a%218 4 a1223%) 3In,a # 0 [16]
C7-C9 | ua?tl 4+ uzkkw2_k+2k_:s + | n = 3k,ged(k,3) = ged(s,3k) = Lo,w € | [6]
RS NP LR P AES L For,vw # 1,3|(k + s),u primitive in F,
C10 (z + :1327'L22k+1_ + v (uz + | n=2m,m > 2 even, gcd(k,m) = 1 and ¢ > 2 [631
2™ xZ"”)(2 +12° u(z + | even, u primitive in F%,.,u’ € Fam not a cube
2™ (uz + u?" 22"
C12 wwiz + zlu)(z? + x) + | ¢=2",n=2m,ged(i,m) =1, 22t faz+b [55]
(wiz + wqu)2z’+23" + a(udz + | has no roots in Fam
27u)™ (@7 + 2)?' + b(a? +
)2 +1
Cl13 23 + a@® )2 + 032" & | n = 2m = 10, (a,b,c) = (8,1,0,0). i = 3, | [I8]
c(l,2”'m+2m)2’C k = 2, 8 primitive in Fy2
n = 2m, m odd, 3 { m, (a,b,c) = (3,8%,1), 8
primitive in Fy2,i € {m—2,m,2m—1, (m—2)"!
mod n}
Cl4-1 | (22142 492"+ 2274 | n=2m, ged(3i,m) =1 H
24 24
22%y 27 i
C14-2 | (@' 4y +92° L 227y + | n=2m,ged(3i,m) = 1, m odd 4
531
zy® )
C15 aTr?, (b2?) + a9Tr%, (b329) n =2m, m odd, ¢ = 2™, a ¢ Fy, b not a cube [61]

In Section [[II-B| we show how triplicate functions can be characterized using the Walsh transform. We then characterize
3-to-1 among the triplicate functions, show that they are extremal objects in some sense, and prove that some exponential sums
involving the second power moment of the Walsh transform are constant in the case of 3-to-1 functions.

In Section we show that the image set of any quadratic 3-to-1 function is a partial difference set with prescribed
parameters, generalizing a result from [27]]. As a consequence of this fact, we compute the exact value of the multiset Il
from [13] (which is a CCZ-invariant for APN functions) for any quadratic 3-to-1 function, and use it compute a lower bound
on the Hamming distance between any two quadratic 3-to-1 functions, and to give an upper bound on the total number of such
functions over Fon for any even n.

A. Basic notions

A number of the known APN functions have a univariate polynomial form in which all exponents are multiples of 3. The
simplest example is the Gold function 23, which is known to be APN over Fy. for any extension degree n; we also know that
any APN power function % over Fy.» must have ged(d,n) = 3 for n even (see e.g. [25]); and so any power APN function
over a finite field of even extension degree must be of this form. Furthermore, one can observe many such instances among
the APN functions from the known infinite polynomial families; for example, all the exponents of the binomials from family
C1-C2 over Fon are divisible by 3 when n is even (we present a formal proof in Proposition [0). In Section we survey
the known infinite polynomial families of APN functions with respect to this property. Most of the known families contain
functions of this form, and some of them, in fact, consist entirely of such functions.

When n is even, the finite field Fy2 is a subfield of Fan; let 5 be a primitive element of Fo2. Suppose that F is a function
with no constant term (so that '(0) = 0) and that all of its exponents are divisible by 3. Since 3% = 1, we have

F(z) = F(Bz) = F(8°x) )

for any « € Fan. Thus, multiplying the input of the function F' by a non-zero element from Fs2 does not change its output. In
particular, the non-zero inputs = € 3, to F can be partitioned into triples {z, 3z, 3%z} such that F(z) = F(Bx) = F(5%z).
Note that, depending on the concrete function F', distinct triples may also map to the same image; if all the triples map to
distinct images (in which case F is a 3-to-1 function), the image set of F will consist of precisely 1 + (2™ — 1)/3 elements,
including 0. Another way to look at this is to consider the pre-images F'~'(y) = {z € Fan : F(z) = y} of the non-zero



elements y € F3.; then the cardinality of each pre-image F~1(y) for y € F3, is a multiple of 3; if all the triples map to
distinct values, then the size of each pre-image is exactly 3. We will call functions whose non-zero inputs can be partitioning
into triples {x, y, z} mapping to the same value triplicate functions. Note that triplicate functions can only exist for even values
of n, since 3 is a divisor of 2 — 1 if and only if n is even.

The number of distinct triples of non-zero elements, viz. (2" — 1)/3, will appear quite frequently throughout the following
discussion; for the sake of simplicity, we will typically denote it by K = (2" — 1)/3 when the dimension n is clear from the
context. We also introduce the following notion to facilitate the discussion.

Definition 1. Let n be an even natural number and K = (2" —1)/3. We say that a sequence 7 = {T;} | = {{a;,b;, c;} } £,
of unordered triples of elements from F3, is a triple partition of Fyn if:

) UE, T = Fs.;

2) TiﬂszmeFi#j.
If F is a function over Fon with F/(0) = 0, we say that 7 corresponds to F' if, for any {z,y,z} € T, we have F(x) =
F(y) = F(2).

In the following definition, we consider the slightly more general case of (n, m)-functions (allowing the dimensions m and
n to be distinct). While we concentrate primarily on (n,n)-functions throughout the paper, the proof of Proposition {4{ for
(n, m)-functions proceeds by induction on m (with the proof for (n,n)-functions that we are actually interested in following
from this general case by setting m = n), and so we need this more general context.

Definition 2. Let m,n be natural numbers with n even, and let F' be an (n,m)-function with F'(0) = 0. If F}. can be
partitioned into disjoint triples T; = {a;, b;,¢;}; fori = 1,2,..., K = (2™ — 1)/3 such that F(a;) = F(b;) = F(¢;) for
1=1,2,...,(2" — 1)/3 (equivalently, if there is a triple partition 7 that corresponds to F'), then we say that F' is a triplicate
function. If 7; = {a;,b;,c¢;} € T corresponding to F', we will sometimes write F'(T;) as shorthand for T'(a;) (or, equivalently,
F(b;) or F(c;)).

While any (n,n)-function for even n with exponents divisible by 3 partitions the non-zero inputs of Fa» into triples, the
converse implication is not true; that is, one can easily find triplicate functions whose exponents are not all multiples of 3.
Indeed, we can see that when the exponents of F' are all divisible by 3, the triples T} are necessarily of the form {x, 3z, 3%x}
for z € [F3.. Partitioning F3, into triples and assigning output values to those triples in an arbitrary way so that e.g. 1 and
B lie in triples mapping to distinct output values is then enough to define a triplicate function whose exponents are not all
divisible by 3. To differentiate between these two notions, we introduce the following definition. Note that we only define this
notion for (n,n)-functions (instead of (n,m)-functions as in Definition [2) since the definition is in terms of the univariate
representation.

Definition 3. Let n be an even natural number, and let F' be an (n,n)-function with F(0) = 0. If every exponent ¢ with a
non-zero coefficient a; in the univariate polynomial form of F' is divisible by 3, then we say that I’ is a canonical triplicate
function.

Thus, any canonical triplicate function is a triplicate function, but not vice-versa. We note that 3-to-1 functions (as a special
subclass of triplicate functions and canonical triplicate functions) and their relation to APN functions have been previously
studied in [27]]; canonical triplicate functions are also studied in [48] where they are called 3-divisible functions. In particular,
in [27] the authors show that any quadratic canonical triplicate function is APN if and only if it is 3-to-1 (in other words, if
all triples map to distinct values); and in [48]], it is shown that any plateaued (and, in particular, quadratic) 3-to-1 function
is APN. Similarly, an important result of [27] is that any quadratic canonical triplicate APN function has a Gold-like Walsh
spectrum; and Theorem 11 of [48] extends this to the more general case of any plateaued triplicate function. We thus have the
following noteworthy results.

Theorem 1. [27]], [48]] Let F' be an (n,n)-triplicate function for some even natural number n. Then:
1) if F' is APN, then F' is 3-to-1;
2) if I is plateaued and 3-to-1, then F' is APN.

We note that any quadratic function is, in particular, plateaued [62]], [22]. Consequently, the notions of 3-to-1-ness and
APN-ness coincide in the case of quadratic triplicate functions.

Theorem 2. [27], [48] Let F' be a plateaued 3-to-1 APN function over Fy» with n even. Then
Wr(0,b) € {(—1)F2%, (—1)F+12"+1} 3)

for any b € F5., where n = 2k, and so
Wr(a,b) € {0,428, £2F+11

for any a € Fa» and any b € F3,., i.e. F' has a Gold-like Walsh spectrum.



Theorem [2] allows us to give an easy proof that the extended Walsh spectra of functions belonging to a number of the known
infinite APN families are Gold-like. Particularly in the case of canonical triplicates, it can be quite easy to show that all the
exponents in the univariate representation of some families are divisible by 3; the exact form of the extended Walsh spectrum
then follows immediately from Theorem [2] We will see examples of such computations in Section where we study which
of the known infinite families of APN polynomials contain, or consist of, triplicate functions.

In particular, the Walsh spectrum of the recently constructed family C13 has not been previously computed; in Proposition
[ we show that all functions belonging to this family are canonical triplicates, and thereby prove that they have a Gold-like
Walsh spectrum.

Due to Theorem I} we will mostly be interested in the properties and behavior of 3-to-1 triplicate functions, whether canonical
or not. We can observe that canonical 3-to-1 functions have some useful properties that can be utilized in constructions and
proofs; in particular, virtually all proofs related to canonical 3-to-1 functions rely on one of these properties rather than the
functions being canonical triplicates per se. At the time of writing, all known 3-to-1 APN functions have these properties.
Whether this is true for any 3-to-1 APN function and, indeed, whether any 3-to-1 APN function is linear-equivalent to a
canonical one, we do not know at the moment. In order to make the subsequent proofs and arguments as general as possible,
we formulate these properties independently of the notion of canonical triplicates.

Recall that the sumset of a set S is the set 25 = {s1 + s2 : 81,52 € S, 51 # s2}. As observed in [31]], a necessary condition
for an (n,n)-function F to be APN is that for any a,b € Im(F) with a # b, the sumsets of F~1(a) and F~1(b) should
be disjoint. Indeed, if z1,22 € F~1(a) and y1,y2 € F~1(b) with 1 + 22 = y1 + ya, then D, F(z1) = D, F(y1) = 0 for
w = x1 + w2, which implies that F' is not APN. For this reason, we will frequently consider only triple partitions 7 for which
the sumsets of any two distinct triples T; and T} are disjoint. We formalize this as follows.

Definition 4. Let 7 = {T;}X, be a triple partition of Fa. for some even natural number n. We say that 7 has disjoint
sumsets if 27; N 27; = () for any 4,5 € {1,2,..., K} with i # j. If T corresponds to an (n,n)-function F', then we will say
that F' has disjoint sumsets.

We can immediately see that any canonical 3-to-1 function has disjoint sumsets. In fact, this is implied by the stronger
condition that the elements in any triple {x, B2, 3%z} corresponding to a canonical 3-to-1 function sum to 0.

Definition 5. Let 7 = {T;}X | = {{ai, bi.c;} }[£ | be a triple partition of Fa. for some natural number n. We say that 7 has
the zero-sum property if a; +b; +¢; =0 for i =1,2,..., K. If F corresponds to 7, then we say that F' has the zero-sum
property, or that F' is a zero-sum triplicate.

We can easily see that any canonical 3-to-1 function has the zero-sum property since its preimage sets are of the form
{x, Bz, B?x} for x € F4,. It is also not difficult to see that the zero-sum property is preserved under linear equivalence.
Indeed, suppose that we have Ly o Fy o Ly = Fy for some (n,n)-functions Fy, F», Ly, Ly with L1, Lo linear permutations.
Suppose, furthermore, that F; has the zero-sum property. Since L; maps 0 to 0, it cannot possibly affect the zero-sum property,
and so we can assume that L, is the identity and we have simply Fj o Ly = F5. Now, consider some distinct x,y, z € Fan
such that Fy(z) = Fa(y) = Fa(z). Then Fy(Li(x)) = F1(L1(y)) = F1(L1(2)), and so Li(x) + L1 (y) + L1(z) = 0 since F;
has the zero-sum property. By the linearity of Lq, we get Li(x + y + z) = 0 and hence = + y + z = 0. Thus, F has the
zero-sum property as well.

According to our computational results, all known 3-to-1 APN functions over Fy» for n < 14 have the zero-sum property.
We conjecture that this is true in general. Note that we only formulate the conjecture for the quadratic case. In fact, we suspect
that it might hold for 3-to-1 APN functions of higher algebraic degree as well; but since at the time of writing we know very
few non-quadratic APN functions, we consider that we have sufficient empirical data to state such a conjecture only for the
quadratic case.

Conjecture 1. Any quadratic 3-to-1 function (which is then necessarily APN) has the zero-sum property.

We can observe that the canonical 3-to-1 functions have another interesting property: if we consider two distinct preimage
sets {x, Bz, %z} and {y, By, 3%y} for some z,y € Fan, we can see that {z +y, Bz + By, 82x + By} is also a preimage set;
and so is e.g. {z + By, Bx + B%y, B2z +y}. In this sense, the “sum” of two triples 7; and 7} from 7T is also a triple T} from
T. We note that two triples can be “summed” like this in 3! = 6 distinct ways, and precisely 3 of them give triples from T
for instance, if we add x to y but Bz to 3%y, then {z +y, Bx + By, B%x + By} is not a triple T}, for any k. We will refer to
this as the triple summation property.

Definition 6. Let 7 = {T;}X | be a triple partition of Fan for some even natural number n. We say that 7 has the triple
summation property if, for any two distinct triples of elements T' = {a, b, c} and T’ = {z,y, z} from T, the following three
conditions are satisfied:

e {a+z,b+y,c+z}eT,or{a+2z,b+2zc+y}eT;and

e {a+ybt+zctaz}eT,or{a+yb+xzc+z2}€T;and

e {a+z,bt+y,ctaz}eT,or{a+zb+z,c+y}teT.



Note that if e.g. {a + z,b+ y,c+ z} € T in the first condition above, then {a + y,b+ z,c+ z} ¢ T and so necessarily
{a+y,b+ z,c+ 2} € T from the second condition since ¢ + z cannot belong to two distinct triples from 7. Following the
same logic, we can equivalently say that 7 has the triple summation property if

e {a+z,b+y,c+z},{a+yb+z,c+a},{a+z,b+z,c+y}eT;or

e {a+x,b+z,c+y},{at+y,b+a,c+z}{a+z2,b+y,c+a}eT.
If an (n,n)-function F' corresponds to 7, then we also say that F' has the triple summation property.

Just like the zero-sum property, the triple summation property is preserved under linear equivalence. Indeed, we can observe
that if Ly o F} o Lo = F5 as before, then L; does not affect this property since it only changes the image set of the function
(and not the way in which the elements of 5, combine into triples); we can thus assume that L, is the identity, so that we
have Fj o Lo = F5. But since Lo is additive and maps triples from the triple partition corresponding to F} to triples from the
triple partition corresponding to F5, we can see that I} has the triple summation property if and only if F5 does.

We can observe that any function having the triple summation property and having disjoint sumsets also has the zero-sum
property as follows.

Proposition 1. Let F be a 3-to-1 (n,n)-function with the triple summation property and distinct sumsets. Then F has the
Zero-sum property.

Proof. Let T = {T;}[ | be a triple partition corresponding to F, and let {a,b,c} and {z,y,2} be two distinct triples in 7.
Since F has the triple summation property, then either {a + x,b+ y,c+ 2z} or {a + z,b+ z,c+ y} must also be a triple in
T. We will treat the case when {a+ z,b+y,c+ z} € T the other case is handled analogically. Again, since F has the triple
summation property, one of {a+y,b+z,c+z} or {a+y,b+z,c+ 2} must be a triple in 7. But if both {a+z,b+y,c+2} and
{a+y,b+x,c+z} are in T, then they have the element ¢+ z in common, and so {a+x,b+y,c+z} = {a+y, b+, c+ 2z} since
all distinct triples in 7 must be disjoint. If a +x = a +y, we get = y which contradicts {z,y,z} € T; and if a+ 2z = b+,
we get a = b, which contradicts {a,b,c} € T. So we must have that {a + z,b+y,c+ 2z} and {a +y,b+ 2,c+ x} are triples
in 7. If these two triples are not distinct, then we must have one of a4+ = a+y, ora+xz = b+ z, or a+x = c+ . The first
and third case imply x = y and a = ¢, respectively, and give an immediate contradiction; so we must have a +b+x + 2 = 0.
In this case, however, the sumsets of {a,b,c} and {x,y,z} are not distinct, which contradicts the hypothesis. The triples
{a+z,b+y,c+ 2z} and {a+y,b+ z, ¢+ =} must therefore be distinct. Applying the triple summation property, we see that
one of {x +y,y+ 2,2+ 2} and {z +y,b+ ¢,b+ c+ x + y} must be in 7. In the first case, we see that the sumsets of
{z+vy,y+ 2,2+ 2} and {x,y, z} coincide, and so we must have {z,y, 2} = {z+vy,y+ 2, + 2z} which implies x +y+2z = 0.
In the second case, the sumset of {x +y,b+ ¢,b+ c+ x + y} intersects those of {x,y, z} and {a, b, ¢}, which cannot happen
since we assume that {x,y, z} and {a,b, c} are distinct. We have thus shown that for any two distinct triples {x,y, z} and
{a,b,c} in T, we must have x + y + z = 0. Since this is true for any two distinct triples, we can conclude that F' has the
zero-sum property as claimed (the only case not handled by the above argument is when 7 contains a single triple, which
is the case for n = 2; but then 7 contains all non-zero elements of Fa2, and so it has the zero-sum property in this case as
well). O]

We thus know that any canonical 3-to-1 function has the triple summation property, the zero-sum property, and disjoint
sumsets; any 3-to-1 function with the triplicate summation property and disjoint sumsets has the zero-sum property; and any
3-to-1 APN function has disjoint sumsets. We leave open the question of whether these inclusions are strict. Since according
to our computational data, all known quadratic 3-to-1 (and hence APN) functions do have the triple summation property, we
can formulate the following stronger conjecture. Since any quadratic 3-to-1 function is APN by Theorem [T} we can see by
Proposition [I] that Conjecture [2] implies Conjecture [T}

Conjecture 2. Any quadratic 3-to-1 APN function has the triple summation property.

We remark that Theorems [T] and [2] apply to any plateaued (and, in particular, quadratic) 3-to-1 function, regardless of whether
it has any of the above properties or not.

As pointed out above, a triplicate function can be constructed by arbitrarily partitioning the non-zero elements of F3. into
triples, and assigning each triple an arbitrary output value; the polynomial form of such a function can then be recovered by
e.g. Lagrange interpolation. Since we are mostly interested in constructing APN functions, a natural question would be whether
APN-ness might impose some additional restrictions on the way that F3,. is partitioned into triples. As already discussed, the
triple partition 7 corresponding to an APN 3-to-1 function must have disjoint sumsets; and since the sumsets of 7 form a
triple partition themselves, this means that any element of F3,. has a unique expression as the sum of two elements belonging
to the same triple of 7. Since this is an important structural property of 3-to-1 APN functions, we state it as an observation.

Observation 1. Let F' : Fon — Fan with F(0) = 0 be a 3-to-1 APN function for some even natural number n, and let
T = {T;}E | be a triple partition of Fa. corresponding to F. Then the sumsets 27} for i = 1,2, ..., K partition F3, as well.
Furthermore, the sum of each sumset 27; is equal to 0 (in fact, this is true for any sumset), and so {27;} X, is a triple partition
with the zero-sum property; furthermore, {0} U 27; is a linear flat for i = 1,2,..., K.



Equivalently, any element v € F3,. can be uniquely expressed as a sum of two elements from the same triple 7;; that is, for
every v € F5,, there exists a unique index i € {1,2,..., K} such that a; + b; = v, or a; + ¢; = v, or b; + ¢;; and precisely
one of these possibilities occurs.

We note that partitioning Fy» into disjoint two-dimensional linear subspaces is not a trivial problenﬂ A natural idea for
constructing such partitions would be to start with all non-zero elements of Fj,. and keep removing triples {a,b,a + b} of
elements from them, until no further elements remain. That is, we would keep track of a set S of elements that remain to
be partitioned (initially, we would have S = [, ); and in each step, we would take a pair of distinct elements a,b € S with
a+b € S at random, and remove {a,b,a + b} from S. Using this approach is likely to lead to a “dead end”, in the sense
that we reach a point where a + b ¢ S for any a,b € S. A potentially interesting problem for future work would be to obtain
necessary or sufficient conditions allowing us to construct such partitions of o efficiently; this would then facilitate the search
for 3-to-1 APN functions.

Remark 1. We note that Observation |1| allows for a simple direct proof of Theorem [1|in the case of quadratic functions (the
proofs in [27] and [48] being consequences of more complex, general statements). For the sake of making the present paper as
self-contained as possible, and since the proof in terms of Observation [I] serves as a good illustration of some of the structural
properties of triplicate functions, we describe it below.

Let 7 = {T;}X, be a triple partition corresponding to F, with T; = {a;, b;,¢;} for i = 1,2,..., K. First, we show that
any APN triplicate function F' over Fa» is 3-to-1. Suppose that F' is not 3-to-1. Then we must have some 1 < i < 5 < K
such that F'(a;) = F(a;). Let w = a; + a; and find two elements x,y € F5,. such that z,y € T}, for some k and z +y = w
(which exist and are uniquely defined by Observation . Then D,,F(x) = D, F(a;). In order for F' to be APN, we must
have {z,y} = {a;,a;}. Butif x = q;, then w = a; + a; = v+ a; = v+ y so y = a;, which cannot be because = and y
should belong to the same triple. A similar contradiction follows if y = a;.

We now show the converse implication in the case of quadratic functions. Suppose F' is a quadratic 3-to-1 function (and,
in particular, a triplicate function). Note that every differential set H,F' contains 0 since for any a € 5. we can find a triple
T; such that a € 2T; by Observation |1l If F' is not APN, then the equation D, F'(x) = 0 must have at least four solutions
for some a € 5, since F' is quadratic and hence D, F is affine. Thus, we have four distinct elements x1,z2, 23,24 € Fan
with F'(z1) = F(x2), F(z3) = F(z4), and 21 + 2 = x3 + x4. Now, if 1 and z2 belong to the same triple, then x5 and x4
must belong to different triples since a = 1 + x2 = z3 + x4 and by Observation (1} any non-zero element a € F5, can be
expressed uniquely as a sum of two elements from the same triple. Thus, we necessarily have at least two elements belonging
to different triples for which F' maps to the same value, and hence F' is not 3-to-1. [

An even simpler proof in the more general case of plateaued functions is possible using Theorem 2 of [24]. This proof
relies on counting the number of pairs (a,b) for which F'(a) = F(b), and so we defer it until after Proposition 5| where we
characterize 3-to-1 among triplicate functions as those having the minimum possible number of such pairs. We still consider
the direct proof from Remark |I| to be of interest, as it demonstrates how the structure of the triples 7; can be used to prove
some important properties of 3-to-1 and triplicate functions. While the proof using Proposition [5]is seemingly shorter, both its
complexity and structure are “hidden” in Theorem 2 of [24].

B. Characterization by the Walsh transform

In this section, we show that an (n,m)-function F is triplicate if and only if all of its Walsh coefficients of the form
Wg(0,b) for b € Fan are congruent to 1 modulo 3. One of the implications is quite simple; namely, it is easy to see that if
F' is a triplicate function, then its Walsh coefficients W (0, b) are constant modulo 3 as shown in the following proposition.

Proposition 2. Suppose F is a triplicate (n, m)-function for some natural numbers m, n with n even. Then, for any b € Fom,
we have
3| Wg(0,b) — 1. 4)

Proof. The Walsh coefficient Wr(0,b) is
Wg(0,b) = Z (_1)b.F($) — (_1)b-F(0) + Z (_1)1,.1:(30)'

z€Fan 0F#z€lFan

Since the non-zero elements of Fon form triples {a;, b;,¢;} for i =1,2,..., K = (2" — 1)/3 that map to the same value, the
above becomes

K
Wg(0,b) = (—1)b'F(0) + 32(*1)1)'17(’“)7
1=1

and since F'(0) = 0 by the definition of a triplicate function, the claim follows immediately. O

SWhen we refer to two linear subspace S7 and S2 as “disjoint”, we mean that S1 NSz = {0}, i.e. that they have a trivial intersection.



We thus have the following immediate corollary.
Corollary 1. All components of a triplicate function are unbalanced.

We note that the property of all components being unbalanced can be rather useful when studying certain properties of
functions; in particular, plateaued functions with all components unbalanced have rather nice characterizations that do not hold
for the general case of plateaued functions [24].

We now prove the converse statement to Proposition [2| for (n, m)-functions. The proof proceeds by induction on m; we first
prove the base case, i.e. we show that any Boolean triplicate (n, 1)-function f has Walsh coefficients that satisfy the divisibility

property (@).

Proposition 3. Let f : Fon — Fo be a Boolean function with f(0) = 0 for some even natural number n. Suppose that
3| Wy(0) —1.

Then f is a triplicate function.

Proof. Let Zy = {x € Fon : & # 0, f(x) = 0} and Oy = {x € Fan : f(z) = 1} be the pre-images of 0 and 1, respectively,
under f. Then f is triplicate if and only if #Z; and #O; are both multiples of 3. Since n must be even, we have 3 | 2" — 1,
and since #Z5 + #0; = 2" — 1, it is enough to show that 3 | #Z¢. By definition, the Walsh coefficient W(0) is

W) = 3 (D0 = (-0 3 (1) =14 2, - 40y,

xEFan 0#z€Fan
Since #0f = 2" — 1 — #Z;, the above becomes

Wi(0) = 2#Z; — (2" — 1) + L.

By assumption, 3 | W;(0) —1, and so 3 | 2#Z¢ — (2" —1). Since 2" — 1 itself is a multiple of three, this implies that 3 | #Z,
and thus f is a triplicate function. O

The following proposition then described the induction step, and allows us to show, in particular, that any (n,n)-triplicate
function has the divisibility property (@).

Proposition 4. Let F' be an (n, m)-function with F(0) = 0 for some natural numbers n,m such that n is even and
3| We(0,b) -1
for all b € Fon. Then F' is a triplicate function.

Proof. From the previous proposition, we know that all component functions of F' are triplicate functions. We prove the
statement by induction on m. If m = 1, there is nothing to prove. If m = 2, let A, resp. B, resp. C, resp. D denote the number
of pre-images among 5, of 00, resp. 01, resp. 10, resp. 11 (note that here we make use of the vector space representation,
and consider the elements of F* = F2 as pairs of binary values). Since 00 and 01 exhaust all possible outputs where the first
coordinate is zero, and since the first coordinate function is a triplicate function, we must have 3 | A + B. Similarly, we have
3| A+ C, and hence 3 | B — C. On the other hand, 01 and 10 exhaust all possibilities where the sum of the two coordinate
functions is equal to 1, and since all component functions are triplicates, we also have 3 | B+ C. From this and 3 | B—C we
get 3| B and 3 | C. But since 3 | A+ C, this implies 3 | A; it is then easy to obtain also 3 | D, so that we have 3 | A, B,C, D.

Now suppose that the statement holds for all dimensions of the co-domain up to m; we will show that it also holds for
m + 2. Let A, resp. B, resp. C, resp. D denote the number of pre-images among F3,. of all elements of the form 00z, resp.
01z, resp. 10z, resp. 11z, for some fixed m-bit vector z € F5*. Let G be the (n, m+ 1)-function obtained from F' by restricting
its output to the last m + 1 coordinates; that is, if ' = (f1, f2,..., fm+2), then let G = (f2, f3,..., fm+2). By the induction
hypothesis, G is a triplicate function. Since A + C' is the number of all elements of F3,. whose last m + 1 coordinates are
of the form 0z, this implies that 3 | A + C; in the same way, 3 | B + D. By restricting F’ to all coordinates except fa, we
also obtain 3 | A+ B and 3 | C'+ D in the same way. From 3 | A+ B and 3 | A+ C, we have 3 | B — C. Consider now
the function G’ obtained from F' by summing its first two coordinates, i.e. G' = (f1 + fa, f3, fa,- - -, fm+2)- By the induction
hypothesis, G’ is a triplicate function, and so the number of pre-images of 1% under G’ is a multiple of 3. But this number
of pre-images is precisely B + C, and so 3 | B + C. Combining this with 3 | B — C, we have 3 | 2B and hence 3 | B. It is
then easy to get 3 | 4, 3| C, and 3 | D as well. If the same argument is repeated for all possible & € Fom, we see that the
number of pre-images of any element in Fom+2 is a multiple of three, and thus F' is a triplicate function. O

We thus obtain the following characterization of triplicate functions.

Theorem 3. Let F' be an (n,m)-function with F(0) = 0 for some natural numbers n and m with n even. Then F is a
triplicate function if and only if
Wr(0,) =1 (mod 3)

for every b € Fan.



C. Characterization of 3-to-1 among triplicate functions

Since a triplicate function F' always maps all elements from a triple 7; = {a;,b;,¢;} € T to the same value, for every i,
we have six pairs (a;, b;), (ai, ¢;), (bi,a;), (bi,ci), (¢i,a;), and (¢;,b;) that map to the same value under F. Since we have
K = (2™ —1)/3 triples T}, there are at least 6K + 2" ordered pairs (z,y) € F3. that map to the same value (the term 2"
coming from pairs of the form (z,x) for x € Fan). As shown in the following proposition, 3-to-1 triplicate functions are
precisely those triplicate functions that attain this lower bound with equality; we justify this by observing that if we take some
triplicate function F' with triples T; and 7T); with F(T;) # F(T};) and modify it by “merging” the output values on 7; and 7}
(so that we obtain a function G with G(T;) = G(Tj) and G(T}) = F(T},) for k # 1, j), the number of pairs (x,y) for which
F(z) = F(y) can only increase.

Proposition 5. Let F be a triplicate (n, n)-function for some even natural number n, and let Dp = {(z,y) : z,y € Fan, F(x) =
F(y)} be the set of pairs of (not necessarily distinct) elements of Fon that map to the same value under F. Then

#DF > 2n+1 + on _ 9.
Furthermore, equality occurs if and only if F' is a 3-to-1 function.

Proof. Let K = (2" — 1)/3 be the number of distinct triples as before. Since F'(0) = 0 for any triplicate function F, in the
following we will consider only the values of F' on 3, when discussing its image set. We know that a triplicate (n, n)-function
can have at most K distinct elements in its image set (which may also include 0 if F'(a) = 0 for some a € F3.). Let us
consider all triplicate functions whose image set is a subset of some set of elements {y1,¥y2,...,yx }. We are interested in
how many triples T; map to each y; for j = 1,2,..., K. In order to express this formally, we introduce the notion of a
configuration of triples. More precisely, we call any ordered K-tuple (k1, ks, ..., kx) of natural numbers with k; > 0 such
that Zf{:l k; = K a configuration of triples. The intuition is that k; counts the number of triples that map to y;. If F' is 3-to-1,
we have k; = 1 for all 1 <4 < K. Observe that any configuration of triples can be obtained from (1,1,...,1) by an iterative
sequence of steps in which we “transfer” some elements from £; to k;; more formally, such a step consists of taking some
natural number A < k;, and defining a new configuration (k;); of triples in which k; = k; — A, k; =kj+A and k) =k
for all [ # 4, j. Furthermore, we can observe that any configuration of triples can be obtained from (1,1,...,1) by always
“transferring” elements from k; to k; such that k; < k;. It is thus sufficient to show that such an operation never decreases
the number of pairs in Dp. Furthermore, we can assume A = 1, since for larger values of A the transfer can be decomposed
into several steps with A = 1 for each step.

Suppose (k;); is some configuration of triples in which k; = A and k; = B. If we have a new configuration of triples
(k;): as above with kj = A — 1, k; = B+ 1, and k; = k; for all [ # 4, j, the number of unordered pairs {x,y} for which

7

F(z) = F(y) with respect to (k.); increases by

(3A2— 3) ., (33; 3) B (3;1) B (3;9)
(34— 3)(34—4) + (3B + 3)(3B +2) — 3A(3A — 1) - 3B(3B — 1)

2
=9(B—-A+1)
as compared to the number of such pairs with respect to (k;);. When A < B, this always leads to a positive increase in the
number of pairs since B — A+ 1 > 0, and thus the uniform configuration of triples (1,1,...,1) corresponds to the minimum
number of such pairs. O

Remark 2. The above result immediately suggests a comparison with a known characterization of APN functions among
plateaued functions. We know from Theorem 6 in [24] that any plateaued (n, n)-function having all of its component functions
unbalanced satisfies

#{(a,b) € F3, : F(a) = F(b)} > 2" 42" — 2,

with equality if and only if F' is APN. Recall from Corollary [I] that the component functions of any triplicate functions are
necessarily unbalanced. Note that this is almost the same characterization as the one that we have in Proposition [3} in fact, the
two characterizations coincide in the case of plateaued (and, in particular, quadratic) functions. Despite this apparent similarity,
the two characterizations concern different cases: Theorem 6 in [24] applies to any plateaued function (regardless of whether
it is triplicate or not), while Proposition [5] addresses the case of any triplicate function (regardless of whether it is plateaued
or not). Furthermore, we know examples of triplicate APN functions that are not plateaued (for instance, the Dobbertin power
function over [Fo» for even n), and so the two characterizations do not coincide even in the APN case. In this sense, it is
remarkable that 3-to-1 and triplicate functions behave in the same way as APN and plateaued ones with respect to the size of
Dp.



Remark 3. As mentioned immediately after Remark [I| we can now combine Corollary || (stating that all components of
a triplicate function are unbalanced) with Proposition [5 and Theorem 2 of [24] to obtain a very short proof of Theorem
Theorem 2 from [24] states that any (n, m)-function F' is plateaued with component functions all unbalanced if and only if

#{(a,b) € F3, : D,DyF(z) = v} = #{(a,b) € F3. : F(a) + F(b) = v} 5)

for any v € Fom (for our purposes, of course, we assume that n = m). Taking v = 0, we can see that F' is APN if and only if
D,DyF(x) =0 only when a =0, b =0, or a = b. In total, this amounts to 3 - 2™ — 2 pairs (a,b). From Proposition [5| we see
that the quantity on the right-hand side of (3 is equal to 3-2™ — 2 if and only if F is 3-to-1. The claim follows immediately.

Since the number of elements that map to the same image can be expressed using the second powers of Walsh coefficients
of the form Wx(0,b), the characterization from Proposition [5| can be equivalently expressed in terms of the Walsh transform
as follows.

Corollary 2. Let F be a triplicate (n,n)-function for some even natural number n. We have
Z WI%(O, b) > 92n+1 + 92n _ 2n+17
bEFan
with equality if and only if F' is 3-to-1.
Proof. We have
YoWROb) = Y xe(F)+ Fy) = 2"#{(z.y) € Fy. : Flx) = F(y)}.
beFon b,x,y€lFaon
As observed in Proposition [S| the number of ordered pairs (x,y) with F(z) = F(y) is always at least 2! + 2" — 2, and
equality occurs if and only if F'is 3-to-1. It then suffices to substitute this number in the above expression. O

In fact, in the case when F' is 3-to-1, we can explicitly evaluate the power moment » ;. WZ2(a,b) for any a € F, as
well; it can only take two possible values, one of which is attained for a = 0, and the other is attained for any a € F5.. This
is another remarkable property of triplicate functions, as the values of these power moments can greatly vary in general (even
in the case of quadratic APN functions).

Proposition 6. Let F be a 3-to-1 (and hence triplicate) (n,n)-function for some even positive natural number n. Then:

{22n+1 + 922n _on+l 4 —

2n(2n — 2) a 0. ©)

> Wi(a,b) =

bEF2™
Proof. The case for a = 0 is contained in the statement of Corollary 2| For any fixed 0 # a € Fan, we have

SN Whab)= Y xe(F(@)+ Fy)xa(z+y)

bEFn b,z,y€Fan
= Y Xal@+y) Y, xe(F(x)+ F(y)
z,y€Ffon beFon

=2" > Y xal@+y)

x€Fon  y€Fan
F(z)=F(y)

i+ Y Y ety

0#x€Fon ye F—1(x)

=21+ Y Xa(@+2) + Xa(@ + Y2) + Xa(® + 22)]
0#xE€Fan

=211+ D Xa(0) + Xa(® + ¥2) + Xa(@ + 22))],
0#zEFan

where y, and z, are the two elements forming a triple T; = {z, Yz, 2, } for some 1 < ¢ < K and z € Fan. Note that as z
runs through all non-zero values = € F3,, then so do = + ¥y, and x + z,; and so the above becomes

> Wh(a,b) =2"[1+2" =142 > xa(@)]
bEFon 0#zEFyn
— 277. [27’7, _ 2] — 227}, _ 27L+1

as claimed. O

Recall from [27] that an (n, n)-function F is called zero-difference d-balanced if the equation D, F'(z) = 0 has precisely
0 solutions for every a € F3... Proposition 5 in [27]] (when specialized to the case of 6 = 2 and characteristic 2) states that a



function F satisfies (6) if and only if F is zero-difference 2-balanced. It has already been observed in [27] that what we call
canonical triplicates are zero-difference 2-balanced when they are 3-to-1. Proposition [6] allows us to generalize this to the case
of triplicate functions that are not necessarily canonical. We thus have the following corollary.

Corollary 3. Any 3-to-1 function is zero-difference 2-balanced.

38£C12+Oé25$18 25,.36

Remark 4. For comparison, the quadratic APN (6, 6)-function a*>2° + 2% + « + 25230 can take 9 distinct

values of the power moment ., W2 (a,b) depending on the value of a.

D. The image of a quadratic 3-to-1 function as a partial difference set

An important result of [27] is that the image set of any quadratic canonical 3-to-1 function is a partial difference set with
prescribed parameters. This is a fascinating structural result having fundamental implications about the properties and behavior
of such functions. In this section, we generalize this result to the case of any quadratic 3-to-1 function, and investigate some
of its consequences.

We recall that a partial difference set of an additive group G with parameters (v, k, A, 1) is a set D C G with #D =k
such that every non-identity element in D can be represented as ¢ — h for g,h € D,g # h in exactly A ways; and each
non-identity element in G\ D can be represented as g — h for g,h € D, g # h in exactly u different ways.

In order to prove Theorem 4 we will need the following lemma from [49], which was also used in [27] in the proof of
Theorem 2 (whose specialization to the case of 3-to-1 functions over fields of even characteristic is essentially the special case
of the following Theorem [ for canonical triplicate 3-to-1 functions).

Lemma 1. [49] Let G be a group and D be a set of elements in G with |D| = k. Then, if D = —D, then D is a (v, k, A, 1)
partial difference set if and only if, for any nonprincipal character x of G we have

X(D):Zx(d):(A—u)i\/(u;A)Q—ﬁl(u—k). o

deD

Since we know that any quadratic 3-to-1 function has a Gold-like Walsh spectrum by Theorem [2] and also that any such
function has all components unbalanced by Theorem [3| and that every differential set is a linear (as opposed to merely affine)
hyperplane, we can now obtain the following.

Theorem 4. Let F' be a 3-to-1 crooked (n,n)-function for some natural number n = 2k. Then the set of non-zero elements
D =TIm(F) \ {0} in its image set is a (2", (2™ — 1)/3, A, u) partial difference set, where

(A1) = (25 +4)(2" = 2)/9, (2° + 1)(2° - 2)/9)

if k is odd, and
(A ) = (2" = 4)(2" +2)/9, (2" - 1) (2" +2)/9)

if k is even.

Proof. By Lemma |1} it is enough to show that x,(D) takes the value on the right-hand side of (7) for any a € F3... Observe

that
xa(D)= Y xuD) =3 3 xalF(@) = 5 (Wr(0,0) ~ 1) ®

deD z€F%,

since we know that F' is 3-to-1. Thus, verifying that the hypothesis of Lemma |l| holds amounts to computing the values of
Wr(0,a) for all a € F,. Since F is crooked and hence plateaued, we know that Wr(0,a) € {0,£\,}, where A, is the
amplitude of Fj,. On the other hand, we know that Wr (0, a) is not zero by Theorem [3} From Theorem 2, we know that F’
has a Gold-like Walsh spectrum, and so \, € {2"/2,2"/2+1} for any a € F},. In order to finish the proof, it only remains to
compute the value on the right-hand side of and to compare it with the two amplitudes. We treat the cases of k odd and
k even separately. When £ is odd, we have

2k +4)(2k —2) — 2k + 1)(2k —2) 2k 2

Amn= 9 EE
k= " +pEF-2) 2% -1 2P+ 1pEF-2)-3@F+DEF-1)
B 9 3 9 N

(2F+1)(2F —2-3-2F+3) (2" 4+ 1)(1—2~1)

9 9 ’




kE_o\2 _ 4(9k _ ok+1
(u—/\)2—4(u—k)=(2 2)2 —4(2" + 1)(1 - 281)

9
22k o 2k+2 +4— 4(2k o 221<:+1 41— 2k+1) 7 22k _ 2k+2 +4— 4(1 _ 2k o 22k+1)
9 N 9 B
22k _ 2k+2 +4 _ 4+ 2k+2 + 22k+3 _ 9 . 22k _ 221@'
9 9

Finally, the right-hand side of becomes

(28 —2)/3+2F 2k _—243.2F  [(2"2—-2)/6
B ) (2R —2)/6.

2 6

When £ is even, we have
(2F —4)2F+2) - (2 —1)(2F +2) (28 +2)(-3) —2F-2

)\_ = = — .
s 9 9 3 ’
Lo @ -DEAr2) 21 @ -DEE+2) o328 1@ )
p—k= 5 — = - _
(2k_1)(2k+2_3,2k_3) B (2k_1)(_1_2k+1).
9 a 9 )
(= N2 — 4 — k) = (2F +2)? N 4(2F — 1)(21 + 1) _ 92k | ok+2 4 4 | g(92k+1 4 ok _ ok+1 _ 1) _
9 9 9
22k 4 ok+2 4 422K+l _ ok _ 1) B 92k | ok+2 | 4 4 92k+3 _ 9k+2 _ 4 9. 92k e
9 - 9 =5 =25

in this case, (7) becomes

(—2—2)/3+2F 2k _243.9F {(—2k+2 ~2)/6

2 - 6 (@ —2)/6.

By (8), the values that we obtain above should be multiplied by 3 and incremented by 1; they should then match the value of
Wr(0,a). The values become 2¥*! and —2* for k odd, and —2%*! and 2* for k even. Comparing these with the ones from
from Theorem 2| we can see that the values coincide. Consequently, D = Im(F) \ {0} is a partial difference set with the
prescribed parameters as claimed. O

From this, we can immediately get the following corollary, which counts the multiplicities of the elements in the multiset
Mp=[F(z)+ F(z+y)+ F(y) : ,y € Fan] for some given (n,n)-function F.

Note that the quantities given in Theorem ] are given in terms of the number of non-zero elements of the image set of F'
that add up to a given value. The multiplicities in Mz will be larger, since F' is a 3-to-1 function, and thus every non-zero
value from its image set can be obtained in 3 different ways. This means that the quantities given in the theorem have to be
multiplied by 9 (since, if i1 + i3 = v for some v € Fon and 41,42 € Im(F'), then 4; and i can both be obtained in 3 different
ways). Furthermore, the quantities in Theorem [4| only account for combinations involving non-zero elements of Im(F’). If
i1 +12 = v with e.g. ¢; = 0, then v must be in the image set of F’ itself; and there are three ways to do this. The same happens
if 79 = 0, and so when computing the multiplicities of elements in Mg belonging to the image of F', we have to add 6.

Corollary 4. Let F' be a quadratic 3-to-1 function over Fon for some natural number n = 2k. Then all non-zero elements of
Mp =[F(z)+ F(y) + F(x + y) : ,y € Fax] have multiplicity in Mp either

(28 +4)(2" —2) + 6 or (2" +1)(2" - 2)

when k is odd, or
(28 —4)(2" +2) + 6 or (2" — 1)(2" + 2)

when & is even. In both the odd and the even case, the number of elements having these two multiplicities is precisely (2" —1)/3
and 2(2™ — 1)/3, respectively; and the (2" — 1) elements having the first multiplicity are precisely the non-zero elements in
the image set of F.

As a byproduct, Theorem {4 allows us to compute the multiset I1% for any crooked (and, in particular, quadratic) 3-to-1
function F'; in the case of quadratic F', we can also compute the exact form of the multiset II. These multisets are defined
in [13], where it is shown that Il is invariant under CCZ-equivalence for APN functions; that is, if F' and G are APN
and CCZ-equivalent, then 11 = Il5. According to Corollary 2 of [13], the minimum value of 1Ix gives a lower bound on
the Hamming distance dy (F, G) between a given APN function F' and any other APN function GG; more precisely, we have



dy(F,G) > [mp/3] + 1, where mp = minIIp. Furthermore, in the case when F is quadratic, it is shown that it is enough
to compute the multiset
Y = [#{a € Fon : b€ HYF} : b € Fau],

which can then be used to immediately recover IIx. If F' is APN, it is easy to see that the number of derivative directions
a € Fyn for which b € HOF for some b € F3, is equal to half the number of pairs (a,z) € F3. x Fan such that F(z)+ F(a+
z) 4+ F(a) = b. Clearly, this is the multiplicity of b in M. As we already have these multiplicities computed in Corollary
it is straightforward to combine this with Corollary 2 of [13]] in order to obtain the following.

Corollary 5. Let F' be a quadratic 3-to-1 function over Fan for some natural number n = 2k. Then

(2% +1)(2F - 2)
2

_,—/ n

o, — I (27 —1)/3 x2(2n—1)/3 ]

J(2F 4 4) (2% —2)/2,2" | k odd

(28 — 4)(2% + 2)

2
—_—
L x(2n-1)/3 x2(2r-1)/3 i

J(2F —1)(2F +2)/2,27 |  k even,

where the multiplicities of the elements in the multiset are given in under-braces; consequently, for any APN function G over
Fon distinct from F', we have
DR gk odd
(F,G) (2’“—4)6(2’“+2) ©)
%~ +1 keven
The same value was obtained in Proposition 6 of [13] for the particular case of the Gold function x3. We have thus
generalized this to any quadratic 3-to-1 triplicate function. As observed in [13], all instances from the known APN polynomial
(as opposed to monomial) families take the same, Gold-like value of IIr (although Il can take thousands of distinct values
across the known sporadic APN instances). The preceding discussion explains this phenomenon for the case of those families
that contain 3-to-1 functions (or functions equivalent to 3-to-1 functions) among their instances; we refer to Section [VI| where
we survey the functions from the known infinite APN families with respect to the property of their instances being triplicates.
Corollary [5] gives a lower bound on the distance between any quadratic 3-to-1 function 7', and any other APN function. In
particular, it gives a lower bound on the distance between any two quadratic 3-to-1 functions. We can apply the same approach
as in [30] to obtain an upper bound on the number of quadratic 3-to-1 functions over Fy» for any even natural number n.
We can then see that the proportion of quadratic 3-to-1 functions over Fa» goes to 0 as n approaches infinity; the same was
shown for planar and AB functions in [30].

Corollary 6. Let n be an even natural number. Then the number of quadratic 3-to-1 functions over Fon is at most
()"

d—1 (2n ;

Zj:O (2j )(2n _ 1)]

where d is the value of the lower bound in (9) from Corollary [5] Consequently, the proportion of quadratic 3-to-1 functions
over Fon to all (n, n)-functions converges to 0 as n approaches infinity.

b

Since the number of pairs (z,y) or triples (z,y,z + y) satisfying F(x) + F(y) = v or F(z) + F(y) + F(z +y) = v,
respectively, can be expressed using the Walsh transform, we can obtain the following equivalent form of Theorem []

Corollary 7. Let F' be a quadratic 3-to-1 (n,n)-function for some even natural number n = 2k. Then

ontl pon v =0
. ) (2k +4)(2* ) v e Im(F)\ {0}, k odd
52 > x(0)Wi(a,b) = on D x(WE0,b) = { (28— 4)(28 +2) +6 v € Im(F) \ {0}, even
a,b€Fzn bEFzn (2F 4+ 1) (2% - 2) v ¢ Im(F), k odd
(2F —1)(2F 4 2) v ¢ Im(F), k even.

Expressions of this form can be quite difficult to compute, in general, and we expect that the above expressions might lead
to even more insights about the structure of quadratic 3-to-1 functions in the future. We note that we formulate the above
results strictly for quadratic 3-to-1 functions, and not for crooked functions as in some other cases; this is because we know
that IIx can be derived from the smaller multiset H% only in the case of quadratic APN functions (Proposition 5 of [[13])).
The proof of this proposition uses the fact that the derivatives of a quadratic function are affine, and so it is not immediately
clear whether this result can be generalized to crooked functions.



IV. NUMBER OF DISTINCT DIFFERENTIAL SETS

As we have seen above, 3-to-1 functions among the triplicate functions (and, in particular, APN functions among the quadratic
triplicate functions) can be interpreted as extremal objects in the sense that they minimize the number of pairs (z,y) € F3.
such that F'(xz) = F(y). We note that a tight upper bound on the number of such pairs for APN functions is given in Lemma 2
of [48]. As we know from [28] and [48], 3-to-1 APN functions also attain the smallest possible size of the image set among all
APN functions over finite fields of even extension degree. In this section, we show that 3-to-1 functions are extremal objects
in yet another sense. More precisely, we study the number of differential sets of canonical triplicate functions, and observe
that 3-to-1 functions among the quadratic canonical triplicate functions can also be characterized in terms of having the largest
possible number of distinct differential sets. In the course of comparing this with the behavior of APN functions in general,
we compute the exact number of distinct differential sets of any APN power function (even over Fon for odd n); moreover,
we show that for a power APN function F' over Faon, we have H,F' = H,F' if and only if F'(a) = F'(b) for any a,b € Fan.

In Subsection[IV-A] we show that for any APN power function F(z) = z%, we have H,F' = H,F if and only if F/(a) = F(b),
and use this to compute the exact number of distinct differential sets of F'. In Subsection we do the same for the case
of quadratic canonical triplicate functions, and observe that they act as a generalization of power APN functions over fields
of even extension degree in this sense. Finally, in Subsection [[V-C| we do the same for quadratic APN permutations for odd
n, and show that they act as a generalization of APN power functions for the case of odd n in this sense as well.

A. Differential sets of APN power functions

Recall that 3-to-1 APN functions behave like the power APN functions in a number of ways, e.g. with respect to having
an image set of size precisely (2" — 1)/3 + 1 elements in the case of even n. It is thus natural to begin our investigation by
studying the behaviour of the differential sets of power functions. It is not difficult to see that if F'(x) = F'(y) for some power
function F, then the differential sets H,F' and HyF' coincide.

Proposition 7. Let F(z) = x! be a power function over Fon. Let a,b € F, If F(a) = F(b), then H,F = H,F.

Proof. The derivative of F is simply D,F(x) = 2! 4 (z + a)!, and for some given v = D, F(z), multiplying both sides by

(b/a)t =1 yields y' + (y + b)! = v with y = (2b/a). O
What is more surprising is that the converse implication also holds; that is, if H,F' = H,F' for some a,b € F5,., then

F(a) = F(b) for a power function F'. Before proceeding to the proof, we need to make the following auxiliary observation.

Lemma 2. Let F(x) = 2! be a power function over Fon. Then, if H,F = H,F for some a,b € F,, the maps = +— (b/a)'z
and = + (a/b)'z are permutations of Fy. that fix H,F.

Proof. That e.g. z + (b/a)'z is a permutation of Fan is clear; furthermore, for any value v € H,F, i.e. for any
v==a'4 (a+x)

we have
(b/a)'v=y" + (b+y)

for y = (bx/a) so that the image of v lies in H,F = H,F. Thus, x — (b/a)'z does indeed fix H,F = H,F. O

Then, to show that H,F = H,F necessarily implies F(a) = F(b), it suffices to prove that any element ¢ defining a
permutation = — cx of Fan that fixes a given differential set must, in fact, be the neutral element of F3... To this end, we first
characterize the cardinality of any set S that is left invariant under a map of the type x — cz.

Lemma 3. Let ¢ € F5, and define ¢ : Fan — Fan by ¢(2) = cx. Furthermore, let S C F3. be a non-empty subset of Fan
such that p(S) = S, i.e. {¢(s):s € S} =S. Then the cardinality of S can be written in the form

k
#9 = Zai " Gi
i=1

for some positive natural number %, where the numbers g; are the cardinalities of subgroups of F3, (i.e. divisors of 2" — 1)
and a; are natural numbers (that may be zero). Furthermore, the order of ¢ must be a common divisor of the numbers g; with
i=1,2,...,k such that a; # 0.

Proof. Pick some arbitrary element s; € S; denote s; = ¢(s1), s3 = @(s2), etc. After a finite number of such steps we
must reach some element s;, with ¢(s;) = s1. From the definition of ¢ this can be written simply as c¢*s; = s;; since by
assumption s; # 0, this implies ¢* = 1 so that the order of ¢ must be a multiple of k.

Denote R = {s1,82,...,8;}. If R =5, then we are done; otherwise, take S’ = .S\ R and repeat the same procedure for
S’, observing that S’ satisfies the hypothesis of the proposition as well since ¢(S) = S and ¢(R) = R immediately implies

P(S\ R) = (S\R).
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To summarize, #S can indeed be be written as a sum of group orders, and c raised to the power of each such order must
evaluate to 1; hence, the order of ¢ must be a common divisor of all these numbers. O

We thus obtain the following corollary.

Corollary 8. Let F' be an APN function over Fa» and let ¢ € 5, be such that the permutation ¢(z) = cz fixes S = H,F
for some a € F5,.; then ¢ = 1.

Proof. Suppose that F is APN and S = H,F for some a € F}, so that #S5 = 2"~ 1. If ¢(S) = S for some p(x) = cx with
#S =g1+9go+ -+ g and, denoting k = GCD(g1,92,...,9x), we have k | 2"~ L or k | (2"~! — 1) depending on whether
0 € H,F (the first case corresponds to 0 ¢ H,F', while the second one corresponds to 0 € H, F).

However, both cases are impossible for k& # 1. Indeed, in the case #S = 2"~! only powers of two may divide #S5, while
2™ —1 is an odd number and thus not divisible by two; in the case #S = on—1_1, assuming ak = o=l _1and bk =2"—1
for some a,b € Z leads to (b— a)k = 2"~ so that we once again get a contradiction if we assume k # 1 due to 2"~ being
divisible only by powers of two and the other two numbers involved being odd. Consequently, the order of any c such that
p(xz) = cx fixes H, F must be 1, i.e. ¢ must be the neutral element. O

From this and from Lemma [2] we obtain the desired result.
Theorem 5. Let F' be an APN power function over [Fon. Then, for any a,b € F5, we have
H,F = HyF < F(a) = F(b).

Proof. By Lemma [2| we have that if H,F = H,F, then = + z(b/a)' is a permutation that fixes H, = Hj. By Corollary
we see that (b/a)! = 1, and so b' = d', i.e. F(a) = F(b). The converse implication was already observed in Proposition
O

This then immediately allows us to compute the number of distinct differential sets of the power APN functions.

Corollary 9. Let F' be a power APN function over Fa». Then the number of distinct differential sets of F' is equal to the
cardinality of its image over Fon, i.e.

#{HaF a e ]FQH} = #{F(.T) T € ]FQH}.

In particular, a power APN function has 2" distinct differential sets when n is odd, and (2" —1)/3 + 1 distinct differential
sets when n is even.

Note that Theorem [5] applies to any power APN function, which must then necessarily be a canonical triplicate for an even
dimension n; in particular, we do not assume anything about e.g. the algebraic degree. The condition that the power function is
APN is, however, necessary: taking e.g. F'(z) = 2° over Fys, we can see that F' has an image set consisting of 52 elements, but
only 18 distinct differential sets. In the general case of polynomials (as opposed to monomials), neither of the two implications
H,F = HyF < F(a) = F(b) holds (even for quadratic APN functions), and it is easy to find counterexamples among the
known polynomial APN instances; for instance, the so-called Kim function 2% + 2% + ax?* over Fys (where « is a primitive
element of [Fy6) serves as a simple counterexample to both implications.

B. Differential sets of canonical triplicate functions

We now proceed to the case of triplicate functions. In the case of a canonical triplicate (n,n)-function F, it is easy to
observe that H, F' = Hg,F' = Hpg>, I for any a € [F5,; in this way, all elements belonging to a triple 7; not only map to the
same output, but induce the same differential set as well. This is simply because for any a,z € Fan» we have

Do F(fz) = F(Bx) + F(B(z+a)) = F(z)+ Fla+z) = D, F(x).

In the particular case when F' is a quadratic APN function so that its ortho-derivative mr is well-defined, this observation
means that 7 is itself a canonical triplicate function.

Observation 2. If F' is a canonical triplicate (n, n)-function for some even natural number n, then H,F' = Hg, F' = H g2q
for any a € F3,.. In particular, the ortho-derivative of a crooked canonical triplicate function is a canonical triplicate function.

We thus know that a canonical triplicate function can have at most (2" — 1)/3 distinct non-trivial differential sets (by
“non-trivial”, we mean that we exclude the differential set HyF = {0}). Since 3-to-1 triplicate functions are precisely those
triplicate functions that maximize the size of the image set, one would intuitively expect that their differential sets might exhibit
a similar behavior; that is, that 3-to-1 functions have precisely (2" —1)/3 distinct non-trivial differential sets. In the following,
we prove that this is indeed so for the case of quadratic canonical triplicates.
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Recall that [HpF] is the set of all a € Fan for which H,F = H,F. Recall also the symplectic form A,F(z) = F(z) +
F(a+z)+ F(a)+ F(0), which in our case becomes simply A, F(x) = F(z) + F(a+x) + F(a) since any triplicate function
F satisfies F(0) = 0 by definition.

Lemma 4. For any generalized crooked (and, in particular, quadratic APN) function F' with F'(0) = 0, we have
Wi(0,8) = 2" (1 + #[H(B)]).
Proof. We have

Wi0.8) = > xp(F(a) + Fle+a)= Y xp(F(x)+F(z+a)+F(a)+ F(a)

z,a€Fon z,a€Fon

= > X(BAF(z)+BF(a) = > Xx(ALF(B)x+ BF(a))
z,a€Fon z,a€Fon

= 3 X(BF@) Y xa(ALF(8)
a€lFyn T

2" > X(BF(a)),

a€Fon A% F(B)=0

where A’ F is the adjoint operato of A,F. We thus need to find all roots of A*F(f3). Since Ker(L*) = Im(L)* for any
linear (n,n)-function L, we have that A F(3) = 0 if and only if H,F = H($). The statement follows immediately, bearing
in mind that O is a trivial root of A’ F. O

We can now show that a canonical quadratic 3-to-1 function has precisely (2" — 1)/3 distinct non-trivial differential sets.
In fact, we prove a slightly more general statement, where we assume that F' is crooked instead of quadratic (note that any
generalized crooked triplicate function is crooked, since all differential sets contain 0). We know that any generalized crooked
function is also plateaued (see e.g. [25], p.278) which is a property that we need in the proof.

Theorem 6. Let F' be a crooked canonical triplicate (n,n)-function. Then F has at most (2" — 1)/3 distinct non-trivial
differential sets, with equality if and only if F' is 3-to-1. In the latter case, the ortho-derivative 7z is a canonical triplicate
3-to-1 function as well.

Proof. From Observation [2| we already know that F' has at most (2" — 1) /3 distinct non-trivial differential sets (in fact, this is
true for any canonical triplicate function, regardless of whether it is crooked or not). We now show that, in the crooked case, if
F' is 3-to-1, then all of the (2™ — 1)/3 differential sets corresponding to distinct triples T; are distinct. Since F' is crooked, we
know that it is plateaued [25]; let A, denote the amplitude of the component function Fj, for b € [F5... Since Fj is unbalanced
by Corollary [} we must have Wr(0,b) € {£\;}, and thus W2(0,b) = A? for all b € F3.. Since by Theorem [2| F has a
Gold-like Walsh spectrum, we know that \,, and hence W%(O, b), takes precisely two values across all b € F3,., viz. 2" and
2"+2 By Lemma E] we then have that the hyperplane 7 (b) corresponds to 3 differential sets H, if W2(0,b) = 2"2; and that
it corresponds to no differential set if W2(0,b) = 2". Thus, H,F = H,F for some a,b € F}, implies b € {a, Sa, 3%a}, and
so T is 3-to-1 as claimed. Conversely, if H,F' = H,F for some b ¢ {a, Ba, 3%a}, then we must have W2 (0,b) ¢ {2",2"+2}
by Lemma [ and so F' does not have a Gold-like Walsh spectrum. We thus obtain a contradiction to Theorem O

Based on some limited computational experiments, we suspect that the same is true for triplicate functions that are not
necessarily canonical and not necessarily crooked (or, a fortiori, quadratic); in other words, that a triplicate function has
(2™ —1)/3 + 1 distinct differential sets if and only if it is 3-to-1. We leave this as an open question.

C. Differential sets of Quadratic APN permutations

As we have seen above, for even dimensions n, quadratic canonical 3-to-1 functions behave in the same way that monomial
APN functions do with respect to their number of distinct differential sets. In this section, we show an analogue of this
observation for odd dimensions n. We know that any APN monomial over a finite field of odd extension degree must be a
permutation, and by Theorem [5] we know that all of its differential sets are distinct. Below, we will prove that any quadratic
APN permutation also has this property. In fact, our proof does not rely on the parity of the dimension; but since we know
that quadratic APN permutations cannot exist for even n [42], this observation only makes sense in the odd case.

The following Lemma [5] concerns APN functions, and does not assume that the function in question is a permutation; it
could thus be useful in the even case as well. It allows us to differentiate between distinct differential sets of an APN function
F by means of exponential sums. We show that if H,F' = HyF for some a,b € Fan, then the exponential sum takes a
pre-determined value. When H,F' # H,F, the values of the exponential sum can vary; however, in the quadratic case, we
know that all differential sets of F' are affine hyperplanes, and we can once again evaluate the exponential sum explicitly.

The adjoint of a linear function L is the linear function L* satisfying Tr(zL(y)) = Tr(L*(x)y) for any z,y € Fan.
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Lemma 5. Let F be an APN (n, n)-function, and let a,b € F,.. If H,F = H,F, then
> xp(Fla+z)+ F(x)+ Fb+y) + Fy)) = 2",

B,x,yEFan

If a =0 and b € F3,, then we have

> xs(Fla+z)+Fx) =Y Xal@)Wi(e, B) = 2"{x € Fan : F(z) = F(a+z)}. (10)
B,x,yEFan a,f3

If F is, in addition, quadratic, then for H,F' # H,F we have

> xs(Fla+a)+F(z) + Fb+y) + Fy) = 2°".
B,x,ycFan

Proof. The character x is evaluated over the sum of all pairs D,F(x) and D,F(y). If H,F = HyF, then for any z, there
are precisely two values of y for which D, F(x) = D,F(y). For each of these, the sum over [ evaluates to 2", while for the
remaining values of y (for which D, F(y) # D,F(z)) the sum evaluates to 0. There are 2™ choices of x, and hence the first
claim follows.

In general, the above sum can take many different values if H,F' # H,F. However, when F is quadratic, its differential
sets are affine hyperplanes, and so if H, # H;, then H, N Hy, is an (n — 2)-dimensional affine subspace. The differential sets
H,F and HyF thus have precisely 2"=2 elements in common, and for these elements, the sum over [ evaluates to 2™; while
for the remaining elements, it evaluates to 0. Any of these 2”2 elements has two pre-images under D, F, and so the entire
sum evaluates to 2772 .2.2.2" = 22, O

Thus, the sum 3, > 5 xs(DaF(2) + DyF(y)) can be used to count for how many b € Fan we have HyF' = H,F. If
we assume, in addition, that F' is a permutation, we can easily evaluate this sum.

Proposition 8. Let F' be a quadratic APN permutation of Fon for some natural number n. Then all differential sets of F' are
distinct.

Proof. Fix 0 # a € Fan; we want to compute the sum

> xp(F(z)+ Fla+a2)+ Fb+y)+ Fy) = > xs(F(x)+ Fla+z)+ F(y) + F(2)),
b,8,z,y B,x,y,z
which by Lemma (5| depends on the number of directions b € F3,, for which H,F' = H,F. Note that the case of b = 0 can
be ignored by since for a permutation F' we have #{z € Fan : F(x) = F(a + )} = 0 whenever a # 0. On account of
F being a permutation, we can run through F'~!(y) instead of y; and similarly, we can run through F~!(z) instead of 2. We
thus get

Y xp(F(z)+ Fla+z)+F(y) + F(2) = Y xp(F(z)+ Fla+z)+y+2)

Byx,y,z Byx,y,z
= xs(F(@)+ Fla+2))_ xsly+2) =2°"
B,x Y,z

since the sum »°, xs(y) = >_, x(By) is equal to 2" if 3 = 0 and is equal to 0 otherwise. We now denote by M the number
of directions ¢ € I3, for which H, = H., and by D the number of ¢ € F}, for which H, # H.. Then we solve the system
23 = 2* N 4 22" D
2" —2=M+D
to obtain M = 1. O
We suspect that the same might be true for APN permutations of higher algebraic degrees and, possibly, for permutations

in general. We have generated a number of permutations at random, and all of them appear to have this property. Due to the
huge number of permutations of Fyn, however, we do not consider this experimental data to be conclusive.

D. Other extremal properties of 3-to-1 functions

As we have seen above, 3-to-1 functions can be characterized among quadratic canonical triplicate functions by minimizing
or maximizing the value of certain parameters (such as the size of the image set, or the number of distinct differential sets).
In this section, we formulate several more characterizations of this form and show, in particular, that 3-to-1 functions can be
characterized by their number of bent components, and their number of components having non-zero linear structures.



23

1) Linear structures: Recall that a € 3, is called a linear structure of f : Fon — Fy if D, f is constant. If F' is a
crooked APN function (so that all of its differential sets are linear hyperplanes), then we can observe that H,F = H(b) for
some a,b € 5, if and only if a is a linear structure of Fj. Indeed, if H,F = H(b), then we have Tr(bD,F(x)) = 0 for
all x € Fan by the definition of H(b); but from the additivity of the trace function, we can write this as Tr(bD,F(z)) =
Tr(bF(x) + bF(a + x)) = Fy(z) + Fy(a + z) = Dy Fy(x) = 0 for any x € Fan. We thus know that some linear hyperplane
H(b) corresponds to a differential set of F' if and only if F}, has non-zero linear structures. The number of components with
non-zero linear structures of a crooked triplicate function is thus equal to the number of distinct differential sets. Theorem [f]
can then be equivalently formulated as follows.

Corollary 10. Let F' be a crooked canonical triplicate (n,n)-function. Then F' has at most (2" — 1)/3 components having
non-zero linear structures. Furthermore, this bound is met with equality if and only if F' is 3-to-1.

2) Bent components: Continuing from the above, we can see from Proposition 29 on page 100 of [25] that the derivative
D. f a Boolean function f : Fon — Fy is equal to 0 if and only if the support Supp(W;) of its Walsh transform is contained
in {0,e}* = H(e). Applying this to the components of an (n,n)-function F, we see that e € Fon is a linear structure of [}
for some b € F5, if and only if H, = #(b) if and only if Supp(Wr,) C H(e). On other hand, if I}, is bent for some b € Fan,
then we have Supp(Wp,) = Fan, and so the hyperplane 7 (b) does not correspond to any differential set. Thus, the number
of distinct differential sets of F' is equal to the number of non-bent components. From the preceding discussion, we know that
this number is no greater than (2™ — 1)/3 for any triplicate function, and is attained by the 3-to-1 functions; we thus obtain
yet another alternative expression of Theorem [6]

Corollary 11. Let F' be a crooked canonical triplicate (n, n)-function. Then F has as most (2" — 1)/3 non-bent components.
Furthermore, this bound is met with equality if and only if F' is 3-to-1.

V. EQUIVALENCE TO TRIPLICATE FUNCTIONS
In Section [VI|and [VII| we survey the known infinite families and sporadic APN instances, respectively, for triplicate functions.
Clearly, it is possible that some APN (n,n)-function F' is not a triplicate (or, equivalently, 3-to-1) function per se, but is EA-
equivalent to a triplicate function. As we have already observed, compositions with linear permutations L; and Lo of Fon
of the form L, o F o Ly do not change the property of being a triplicate (or 3-to-1) function. Thus, to decide whether F' is
EA-equivalent to a triplicate function, it suffices to check whether there exists a linear (n,n)-function L such that '+ L is a
triplicate function. The following observation is instrumental to our approach.

Observation 3. Let ), G, L be (n,n)-functions for some natural number n such that L is linear and F' = G + L + ¢ for some
¢ € Fyn. Then
WF(aab) = X(bc)WG(a+L*(b)vb) (11)

for any a,b € Fon, where L* is the adjoint operator of L.
Proof. From the definition of the Walsh transform, we have

Wr(a,b) = > x(bF(z)+azx) = > x(bG(x)+ bL(z)+ be + ax)
z€Fan z€Fyn

Z x(bG(x) + L*(b)x + bc + ax)
zE€Fon

x(be) Y x(bG(z) + (L7 (b) + a)x) = x(be)We(a + L7 (b),b),
z€Fon

which completes the proof. O

We can combine the characterization of triplicate functions by their Walsh coefficients from Theorem [3] with Observation [3]
above to obtain the following condition.

Observation 4. Let T be a triplicate (n,n)-function for some natural number n, and let F' = T 4+ L + ¢ for some linear
(n,n)-function L. Let L* be the adjoint operator of L. If L*(b) = a for some a,b € Fan, then x(bc)Wg(a,b) =1 (mod 3).

Proof. Since T is a triplicate function, we have Wr(0,b) = 1 (mod 3) for any b € Fa» by Theorem [3| If L*(b) = a for some
a,b € Fan, then Wg(a,b) = Wr(a + L*(b),b) = Wr(0,b) by (TI), and the claim follows. O

This now allows for a conceptually simple algorithm that, for a given (n,n)-function F, tries to guess the values of L*
on a basis B = {b1,bs,...,b,} of Fan such that F' + L is a triplicate function. Essentially, having guessed the values of L*
on by,bs,...,bx for some K < n, we also know the values of L* on the linear span of {by,bs,...,bx}, and we can check
whether any of these values violates the condition from Observation E} If so, we can immediately backtrack; and if not, then
we can proceed to guessing the value of b1 (if K < n); if we have already reached K = n and no contradictions have
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occurred, then we have found an L* satisfying Observation 4] from which we can, of course, immediately reconstruct L from
L*.

A pseudocode description of this search procedure is given under Algorithm

Algorithm 1: Testing EA-equivalence to a triplicate function

1

[V I RV )

=)

Data: A function F : Fon — Fon with F(0) =0
Result: A linear (n,n)-function L such that F'+ L is a triplicate function, or failure
begin
let B = {by,ba,...,b,} be a basis of Fan
for i =1 to n do
# Pre-compute possible values for L*(b;)
L D; «+ {x €Fan : Wp(z,b;) =1 (mod 3)}

# recursively try to guess the values of L* ob the basis
| return Guess(1)

8 Function Guess (i) :

9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28

29
30
31

# if we know the values of L* on the entire basis, we are finished
if i = n + 1 then
L reconstruct and return L

# otherwise, try the next value
backup D; #for backtracking
while #D; # 0 do
d < Random(D;)
L*(b;) « d
# Check for violations on all known inputs of L*
for 7C{1,2,...,i} do
T < Zie] b,’
v S, L ()
if Wp(y,z) #1 (mod 3) then
# try the next value for d
continue;

# if no contradictions have occured, go to the next basis element
result < Guess(i + 1)
if result # false then

L return result

# if we have run out of options for b;, then backtrack
restore D;
return false

To see how well this performs in practice, we test it on some of the known APN functions F' over Fan for n € {6, 8,10} as

follows: we take a random linear function L, add it to F' to obtain G = F'+ L, and then run a C implementation of Algorithm
[[ to check for equivalence to triplicates. We do this both for APN functions F' that are, or are equivalent to, triplicates, and for
ones that are not. For each tested function F', we repeat the experiment 10 times, and report the average running time of the
trials. We discuss the variant of Algorithm [T] which terminates upon finding the first linear L for which F' + L is a triplicate
function; and so we report separately on the average running times for functions equivalent to triplicates, and for ones that are
not equivalent to triplicates. The observed running times are given in Table In the case of n = 10, the running time in the
negative case was too long, and we aborted the searches.

TABLE III
SAMPLE RUNNING TIMES (IN SECONDS) FOR DECIDING WHETHER A GIVEN FUNCTION F' 1S EA-EQUIVALENT TO A TRIPLICATE FUNCTION VIA
ALGoRrITHM[I]
n 6 8 10

triplicate 0.006 1.035 1432
non-triplicate | 0.008 | 11.954 -
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Despite the fact that the running times increase rapidly with the dimension n, this procedure is still efficient enough to allow
us to check whether known sporadic instances, and instances from the know APN families are EA-equivalent to triplicates for
n < 8. Our computational results are summarized in Sections [VI| and

VI. TRIPLICATES IN THE INFINITE FAMILIES

In this section, we demonstrate that triplicate and canonical triplicate functions are heavily represented among the instances of
the known infinite APN families. More precisely, we observe the following. Note that in all cases we consider even dimensions
n.

(i) all power APN functions are canonical triplicates;

(i1) family C1-C2 consists entirely of canonical triplicates;

(ii1) the functions of family C3 are not canonical triplicates; the functions from C3 can be shown to be non-canonical 3-to-1
functions over Fa» when 4 | n (however, we can computationally verify that they are linear-equivalent to canonical 3-to-1
functions);

(iv) families C4, C5, C6 consist entirely of canonical triplicates;

(v) the only canonical triplicates in C7-C9 are the ones that intersect C1-C2;

(vi) the functions from C10 are not canonical triplicates;

(vii) some of the functions in families C10 and C12 are non-canonical triplicates, and the remaining ones are not EA-equivalent
to 3-to-1 functions;

(viii) family C13 consists entirely of canonical triplicates;
(ix) family C14 consists entirely of canonical triplicates when /2 is odd;
(x) family C15 consists entirely of canonical triplicates.

Proposition 9. All functions belonging to families C1-C2, C4, C5, C6, C13, Cl14, or C15, as well as any monomial APN
function over Fon for even n, is a canonical triplicate. None of the functions from family C3 are canonical triplicates. The
only functions from family C7-C9 that are canonical triplicates are the ones that intersect C1-C2.

Proof. The functions from family C1-C2 have the polynomial form
22+ + uzk—1x2“"+2""“+57

so that the exponents in their univariate form are 2° + 1 and 2°* + 2"%%5 One of the conditions for such functions to be
APN is ged(s, 3k) = ged(s,n) = 1, and since n is even, we must have that s is odd. Hence 2° + 1 is a multiple of 3. When
considering the other exponent, we consider the cases p = 3 and p = 4 separately. In both cases, we have m = p — 1, i.e.
m + i = p. In the case when p = 3, this means that we have either (i,m) = (1,2), or (i,m) = (2,1). In the first case, the
exponent becomes 2F + 22k+s = 2k(1 4 2k+5) which is divisible by 3 if and only if 3 | 14 25*#, which is true if and only
if k + s is odd; since we know that s must be odd, this means that the second exponent is a multiple of 3 if and only if £ is
even. Similarly, if (i,m) = (2, 1), the second exponent becomes 22% + 2k+s = 22F(1 4 25=F) which is divisible by 3 if and
only if 3 | (1 +2°~%) which, in turn, occurs if and only if s — & is odd; as before, we know that s is odd; we thus conclude
that when p = 3, the second exponent is divisible by 3 if and only if k£ is even. On the other hand, we have n = pk = 3k, and
since m is even by assumption, k£ must necessarily be even as well. Thus, all functions from C1-C2 for p = 3 are canonical
triplicates. When p = 4, we have three possibilities for the values of (i, m), viz. (1,3), (2,2), and (3, 1). The second exponent,
2tk 4 9mk+s then becomes 2% + 23F+s = 2k (1 4 22K+9) in the first case; 22F + 22k+5 = 22F(1 4 29) in the second case; and
23k 4 gkts — 9k+s(92k=s 1 1) in the third case. Since s is odd, we can immediately see that this exponent is divisible by 3
in all three cases, and so the functions from C1-C2 are canonical triplicates when p = 4 as well.

To see that the functions from C3 are canonical 3-to-1 functions when n = 2m = 4k, we refer to the bivariate representation
of these functions given in [23]], viz.

F(z,y) = (c+ D2+ (w? + 0?9+ w4+t oy + (w4 w? + cw + )z y + (w? 1 4 w1y
cw? T 4 12 )2 4 (4w zy + s(w? + w? 9 (2y)?

where w € Fan \ Fom, ¢ = 2™, and ¢, s € Fan satisfy the conditions given in Table The sum of the last two terms in the
above expression, i.e. (w + w?)zy + s(w? 4+ w?9)(xy)?, is linear, and can be ignored up to EA-equivalence. If n = 4k, so
that m is even, then we have that ¢ must be odd thanks to the condition gcd(é, m) = 1. Consequently, we can see that in all
of the terms x> 1, 29", 22"y, and y? 1, the total degree is always a multiple of 3, and so (z,v), (B, 3%y), and (3%z, By)
always map to the same output for any z,y € Fom. Consequently, the functions are triplicates, and thanks to Theorem |1} they
are 3-to-1. Clearly, the elements of Fy. represented by the pairs e.g. (z,y) and (Bz, 3%y) from F2, are not multiples of /3,
and so these functions are not canonical.

The functions from families C4, C5, and C6 are obviously canonical triplicates since the composition L o C' of a canonical
(n,n)-triplicate C' with any linear function L (and, in particular, any trace function Tt} for m | n) is a canonical triplicate as
well.
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Similarly, as we know from e.g. [25], any power APN function z° over a field of even extension degree n must satisfy
ged(e, 2™ — 1) = 3 and, in particular, e must be a multiple of 3.
The functions from family C13 are of the form

3+ a(inH)Qk + bz 4+ c(a:2i+m+2m)2k,

and we can clearly ignore the value of k since e is divisible by 3 if and only if e - 2¥ is divisible by 3 for any natural numbers
e and k. For the same reason, 3 - 2™ is always a multiple of 3, and 2°*™ + 2™ is a multiple of 3 if and only if the same is
true for 2¢ + 1. We thus only have to consider the exponent 2 + 1. According to the conditions for family C13, we must have
i€{m—2,m,2m—1,(m —2)"! mod n}, and m must be odd. We then immediately see that 2 + 1 is a multiple of 3 in
all cases, and so all functions from family C13 are indeed canonical triplicates.

The functions from family C14 are defined in bivariate form. We remark that a univariate representation of these functions
can be found in e.g. [20]. However, it can be easily seen that this univariate representation does not correspond to canonical
3-to-1 functions since not all exponents are multiples of 3. On the other hand, as we shall see immediately, the bivariate form
does correspond to canonical 3-to-1 functions. This illustrates that the exact way in which a function is “translated” from
bivariate to univariate form affects whether the function is a canonical triplicate.

We divide the proof of C14 into two cases, depending on the parity of m. If m is odd, then all elements of Fon = Fo2m
can be expressed as pairs (x,y) € F3.., with the pair (x,y) corresponding to the element x + By. We can see that 3 = (0, 1),
and that if X = (x,y) for some X € Fon, 1,y € Fom, then X = (y,x +y) and 32X = (z + y,2). We will now show that
in the case when m is odd, all three of these elements map to the same image for both constructions belonging to the C14
family. ‘ ‘ ' ' '

When F(z,y) = (Fi(x,y), Fa(z,y)) = (22T + 2y + yzz“,xzszy + xyzw), we can easily see that

Fiyz+y) =y T +y@+y)? +@+y)* T
_ y21+1 + 1'2111/ + y21+1 4 x21+1 4 "E21y 4 xy21 4 y21+1
=y T 42 by = Fi(a,y).

Similarly, we have Fi(x,y) = Fi(z + y,x) and Fy(z,y) = Fa(y,x +y) = Fa(x + y, x). Furthermore, we can see that
if e.g. (z,y) = (x + y,x), then we necessarily have (z,y) = (0,0). Thus, F(z,y) = (Fi(x,y), Fa(z,y)) is a canonical
triplicate function. Under the conditions given in Table [II, we know that F'(x,y) is APN, and so must be 3-to-1 by Theorem
Consequently, all functions from C14-1 are canonical 3-to-1 APN functions. The same approach can be used for C14-2,
whose functions have the bivariate form F(z,y) = (Fy(z,y), Fa(z,y)) = (22 + 2y + 32+ 22"y + 22" ); it is enough
to verify that ; and F» map to the same output value for (z,y), (y,z + y), and (x + y, z).

It remains to handle the case when m is even. This is only possible in the case of C14-1, since for C14-2 one of the
conditions for the function to be APN is that m must be odd. In the even case, 5 € Fom and so we cannot apply the above
approach. Instead, denoting F(x,y) = (Fi(x,y), Fa(x,y)) as above, we can note that F'(z,y) = F(Bz, 8%y) = F(8%z, By),
which can easily be verified by observing that for every term z’y’ in the bivariate representation of F'(x,y), we have 3 | i+ j.
Once again, we have shown that the functions from C14-1 are canonical triplicate functions; and combining Theorem [1| with
the fact that these functions are APN under the conditions in Table [[I, we see that they are, in fact, canonical 3-to-1 functions.

The function from family C15 have the univariate representation

aTr” (bz®) + a?Tr? (b322),

and, as remarked above, the property of a function being a canonical triplicate is invariant under composition with linear
functions; it is thus obvious that C15 consists of canonical 3-to-1 functions.
To see that the functions from family C3 can never be canonical triplicates, we observe that their univariate representation,

viz.
spdTl 4 g2 1 4 a1 4 ep2iatl 0y 27

contains the exponent 2t + 1 and so, if such a function is a canonical triplicate, we must have that ¢ is odd. On the other
hand, unless ¢ = 0, we also have the exponent 2¢ + ¢ = 2¢ + 2™ = 2™(2¢=™ + 1); if this exponent is also a multiple of 3,
then we must have that ¢ — m is odd, i.e. m must be even. However, since s € Fon \ F, (in particular, s # 0), the exponent
g+ 1=2"+1 has a non-zero coefficient, and it is clearly not divisible by 3. The only remaining possibility is that we have
¢ = 0; but in this case, the condition that z2'+! + 1 = 0 has no solution z with 291 = 1 is immediately violated since x = 1
is such a solution. Thus, no function from family C3 can be a canonical triplicate.

The functions from family C7-C9 have the univariate form

s k o—k_ ok+s —k k s ok+s
um2 +1+u2 xz +2 —I-U.%‘Q +1+wu2 +1x2 +2 .
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We can observe that 2% +1 = 225 4+ 1 is never a multiple of 3, and so we must have v = 0. Furthermore, if 3 | 2° + okts —
2°(1 + 2%), then k must be odd; and 3 | 2% + 1 implies that s is odd as well so that s — k is even. But then

27k + 2k+8 — 22k + 2k+8 — 22k(1 + 2571@)

cannot be a multiple of 3, and so we must have w = 0 if the function is a canonical triplicate. When v = w = 0, all functions
from C7-C9 are, in fact, contained in C1-C2.
The functions from C10 have a univariate representation of the form

(x + x27n)2k+1 + u/(ux + u27nx2'm)(2k+1)2i + u(m + xQﬂL)(ux + u2'mx2'm).

One of the conditions states that u should be a primitive element of Fon, and so in particular v # 0. The last term from the

above expression expands to
m m m-+1
u(uz® + (u* +u)z® T4+ 2?

)
and so these functions are clearly not canonical triplicates. O

Remark 5. As demonstrated in the previous proposition, the functions from families C14-1 and C14-2 as given by the
bivariate representation from Table [[I} are canonical triplicate functions. On the other hand, it is easy to see that the univariate
representation of these functions found in e.g. [20]] does not correspond to a canonical triplicate function. This suggests that
it may be possible to find a simple canonical form for these functions directly from their bivariate form. In the case of
n = 2m with m odd, we can easily obtain such a representation for C14-1 and C14-2 by writing every element X € Fon as
X =z + By for z,y € Fam where x,y € Fom and 3 is primitive in F4. This is possible only when m is odd due to 8 ¢ Fom.
The advantage in this case is that we have 8% € {1, 3, 3%} for any natural number k, which greatly simplifies the resulting
univariate translation. Denoting T = 22", we obtain:

o for m odd and ¢ odd, the functions from C14-1 take the univariate form

224 52T21’+1 + Ba:zmi + xfﬂ;
o for m odd and ¢ even, they take the form

27 + 22 T+ B2 T+ a7
e for ¢ odd, the functions from C14-2 take the univariate form
22y 32 (fziﬂ e +§23"+1) :

o for ¢ even, they take the form

27+ 32 <£U2if +22 T+ 5@2&) )

For the sake of completeness, we show how to derive the univariate form for C14-2 and 7 odd; the remaining three cases are
handled in the same way. Recall that any X € Fon can be written as X = z + Sy with z,y € Fam. Raising both sides to the
power 2™, we obtain X =z + B2y, and so y = X + X and hence x = 52X + X. Observe that for i odd, we have 52 = 32
and 32" +1 = 1. In the bivariate expression of C14-2, viz.
F(z,y) = (Fi(z,9), Fa(w,y) = (@ + 2y + 92+ 22 y +22),

we can first express the left-hand side as

Fi(z,y) = (82X + 5X)* 1+ (X + FX)(X + %)% + (X + X)*H

= X2H 4 XYY 4 XX + X T4 X2y g2 XX

2041 2041

T Eh G chalip cLENP Cl S il
= p2x? g px
Similarly, we get
Fy(a,y) = (87X + BX)” (X +X) + (82X + X)X + X)*
— Bx2 4 XX 4 B2 X2 4 52y23i+
S o

P _ 53i i 53
1+B2X23 +1+B2XX2 +6X23X+6X2 +1

Combining the two, we get

_ a2y 241, g2l 241 | a2l
F(z,y) = Fi(z,y) + fFa(z,y) = B°X° T + X7 7 + X" T + 58X
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it then suffices to divide by 3% in order to obtain the univariate representation above.

In the case where m is even, we have to decompose X € Fon as X = z + wy with 2,y € Fam for some w € Fan \ Fom.
We then get 2 = (WX +wX)/(w+w) and y = (X + X)/(w + w). By substituting this into the bivariate representation of
C14-1, we can obtain a univariate expression by following the same strategy as above. However, since the order of w will be
greater than 3, this expression will not be as compact in general as the one that we give above for m odd.

Remark 6. For functions from C3 in doubly even dimensions n = 2m = 4k, we see in the proof above that the elements (z, y),
(B, B2y), and (8%, By) map to the same output for any z,y € Fam. Such functions are clearly not canonical triplicates, but
could potentially be used to define a variation of the notion of a canonical triplicate for functions in bivariate representation.
Namely, we could say that a function F(z,y) for z,y € Fam with 2 | m is “bivariate canonical” if the total degree of every
term in its bivariate representation is a multiple of 3; that is, if for every xy7, we have 3 | i+ . This is equivalent to saying that
F(x,y) = F(Bz, B*y) = F(B%z, By) for all x,3y € Fym. Note that a canonical triplicate function also satisfies this condition
(except that for canonical triplicates, not only the total degree, but the individual degrees of = and y must be multiples of 3 for
each term) but not vice-versa. We leave the investigation of triplicate functions in bivariate form as a problem for future work.
We also conduct an ad-hoc computational search, in which we take functions from C3 for n = 8, and attempt to compose
them with linear permutations on the right in order to obtain canonical 3-to-1 functions. According to our computations, all
such “bivariate canonical” functions for n = 8 are linear-equivalent to canonical ones.

Remark 7. By Theorem 2] we now obtain a very simple proof that these families have a Gold-like Walsh spectrum. Computing
the Walsh spectra of the infinite families from first principles can be quite technical; one can find proofs that the known infinite
families have Gold-like Walsh spectrum in [5] (for C1-C2), [[7] (for C7-C9), [41] (for the Gold functions), [54] (for C10), [19]
(for C4, C5, C6).

In particular, we obtain the first (to the best of our knowledge) proof of the fact that families C13, C14, and C15 have a
Gold-like Walsh spectrum. We formulate this as a corollary.

Corollary 12. All functions from families C13, C14, and C15 in Table @ have a Gold-like Walsh spectrum.

With the help of Algorithm we can see (for n € {6, 8}) that the functions from C7-C9 and C10-C12 that are not triplicates,
are not EA-equivalent to triplicates either.

VII. TRIPLICATES AMONG THE SPORADIC APN INSTANCES

With triplicate functions being so widely represented among the known infinite families of APN functions, it is natural to
expect that we will find many triplicate functions among the known sporadic APN instances as well, especially in the case of
n = 8 where we know thousands of CCZ-inequivalent sporadic APN instances. Surprisingly, it turns out that this is not so,
and only a very small number of the known sporadic instances are 3-to-1 functions; moreover, with the help of Algorithm [I]
we can verify that the functions in question are not EA-equivalent to 3-to-1 functions either. This suggests that 3-to-1 among
APN functions are quite special, in some sense, and that the majority of the known infinite constructions seem to exploit some
intrinsic property of these functions.

More precisely, we have applied Algorithm || (along with a simple program for checking whether a given function already
is 3-to-1) to all known sporadic APN functions over Fo» with n = 6 (as given in [8]]) and n = 8 (as given in [40], [59], [2],
(58] and [56]).

In the case of n = 6, the only two APN functions equivalent to triplicates are the Gold function 3, and the trinomial
23 + al'28 + az” (where « is a primitive element of Fys). In particular, we note that neither the Kim function (which is
CCZ-equivalent to an APN permutation [10]) nor the only known APN function that is CCZ-inequivalent to monomials and
quadratic functions [40] is EA-equivalent to a 3-to-1 function. In the case of the Kim function (which is quadratic), we can
conclude that there is no triplicate function in its CCZ-equivalence class at all (due to EA- and CCZ-equivalence coinciding for
quadratic functions as discussed in Section [[I-D). In the case of the non-quadratic function, we cannot rule out the possibility
that it is CCZ-equivalent to a triplicate function, and can only state that it does not contain any triplicate functions in its
EA-equivalence class.

In the case of n = 8, with the exception of APN functions originating from the known infinite families, the only functions
that are EA-equivalent to triplicates are those obtained by Edel and Pott using the so-called switching construction [40]]. In
addition, we find a new APN instance for n = 8 using our computational searches described in Section An overview of
all known quadratic 3-to-1 functions over Fos is given in Table

In the case of n = 10, the running time of Algorithm [I] is unfortunately too long for us to go check whether the known
sporadic instances from [2] are EA-equivalent to 3-to-1 functions. We can, however, confirm, that they are not 3-to-1 functions
themselves.

VIII. EXPANSION SEARCHES FOR CANONICAL TRIPLICATES

A natural way to search for new e.g. APN functions is to perform an exhaustive search over all polynomials with a short
univariate representation. One would thus perform an exhaustive search over all monomials, binomials, trinomials, etc. of a
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given form, and check all of them for APN-ness. A variation of this technique is to “expand” a given function F' by adding
a small number of terms to it; in other words, one would traverse all functions of the form F + G, where G runs through all
possible monomials, binomials, trinomials, etc. We remark that some of the earliest known instances of APN functions have
been found in this way [9]; and that computational searches of this form have provided sufficient data for the construction of
infinite families of APN functions in the past [18]].

We can see that searching for quadratic canonical triplicate APN functions in this way is particularly promising since, for
one thing, by restricting the exponents of all terms to multiples of 3, we can guarantee that the examined functions will be
canonical triplicates; and, for another thing, the complexity of testing whether a quadratic triplicate function is APN amounts
to checking whether it is 3-to-1, which is a linear operation in the size of the finite field (in general, testing whether a given
function is APN is a quadratic operation). These considerations significantly reduce the time needed to perform an exhaustive
search, and allow us to search for APN functions over finite fields of larger dimensions than has been previously been possible.
Thanks to the differential spectrum and extended Walsh spectrum of the ortho-derivatives [21], we can quickly partition the
functions obtained in this way into smaller sets of functions; in the case of n = 8 and n = 10, we can use linear-code
equivalence test to classify the functions up to EA-equivalence.

Tables [[V] [V] and [VII] provide an exact summary of the expansion searches that we conducted. In all cases, we attempted to
expand one of the quadratic Gold functions x> T1 with i odd to a quadratic canonical 3-to-1 function by adding to it & terms
with coefficients in the subfield s and quadratic exponents divisible by 3. The aforementioned tables list the exact values of
the parameters k& and d in our searches. Each entry of the tables lists the total number of APN functions that we obtained in
this way, and the number of distinct CCZ-equivalence classes. In the case of Table where the number of CCZ-classes is
very small, we give an explicit list of the CCZ-classes that we obtain from each search.

A. Dimension 8

Table [[V| summarizes the results of the expansion searches for n = 8. The running times are within a few hours in all cases;
in fact, the memory needed for storing the truth tables of the obtained APN functions is a bigger issue than the computation
time.

We are able to express a total of 18 distinct CCZ-classes of functions in this way. Among these, one is newﬂ This class is
represented by e.g.

23 4 aP218 4 o38460 4 0945152
where « is a primitive element of Fys. Surprisingly, this function is not CCZ-inequivalent to any of the thousands of APN
instances given in [2]] and [60], which can be verified by examining the differential spectrum of its ortho-derivative, viz.

38196 22008 /4608 »456 Q12
038196 922008 44608 456 g12)

The EA-class of this function can be represented by a quadrinomial with coefficients in Fos or Fo4, i.e. for K =3 and d = 8
or d = 4 for both 2% and 2. Functions EA-equivalent to it also occur in the output of all searches for k > 3 for both 2% and
2°. Using SboxU [52]], we can verify that this function is not CCZ-equivalent to a permutation.

TABLE IV
POLYNOMIAL EXPANSION OF QUADRATIC POWER FUNCTIONS ON Fys
- | d\k 1 2 3 4 5 6 7 8
3 8 0/0 | 54/4 | 3396/6 - - - - -
3 4 - - 260/6 1402/14 | 20396/18 - - -
3 2 - - - - - 17996/14 | 56872/14 | 197491/14
3 1 - - - - - - - -
9 8 - - 3388/6 - - - - -
9 4 - - - 1244/14 | 17608/18 - - -
9 2 - - - - - 17970/14 | 56824/14 | 197519/14
9 1 - - - - - - - -

B. Dimension 10

Table |V| documents the results of our computational search for n = 10. The running times are within a day in all cases; for
instance, the expansion of x33 by 7 terms with coefficients in F, takes around 1119 minutes. The other “extremal” cases (e.g.
expansion of 23 by 7 terms with coefficients in Fy2, or by 4 terms with coefficients in Fys) have comparable running times.

We obtain six previously unknown (up to CCZ-equivalence) APN instances. Polynomial representations of these new classes,
along with the differential spectra of their ortho-derivatives are given in Table To be more precise, we can obtain previously
unknown classes of APN functions by adding 3, 6, or 7 terms with coefficients in Fy2 to 3, 2° or 233. Using SboxU [52]],

7A function from the same CCZ-class was independently discovered by a computational search in [50].
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TABLE V
POLYNOMIAL EXPANSION OF QUADRATIC POWER FUNCTIONS ON ]F210
- d\k 1 2 3 4 5 6 7
3 10 2/1 320/1 - - - - -
3 5 X X 0/- 0/0 - - -
3 2 X X X 0/- | 2290/9 | 3757/16 | 17856/16
9 10 2/1 320/1 41650/8 - - - -
9 5 X X 0/- 0/0 - - -
9 2 X X X 0/- | 2286/9 | 3730/16 | 17836/16
33 10 -/0/- | 64072 | 158728/4 - - - -
33 5 X X 0/- 0/0 - - -
33 2 X X X 0/- | 4504/4 | 9190/15 | 17480/16

we can verify that none of these functions is CCZ-equivalent to a permutation. In Table we give the shortest possible
polynomial representations of these new classes. We note that all six classes can be obtained by expanding either of the three
monomials 2%, 2%, or £33; in Table [VI| we list representatives obtained by expanding 3. Furthermore, we note that the first
two classes from the table can be expressed as hexanomials, while the shortest representation of the remaining four classes that
we know contains seven terms. Classes 1 and 2 can also be represented as heptanomials; and all six classes can be represented
as octanomials; in particular, all the new APN functions that we find by adding 7 terms to a Gold function are EA-equivalent
to the six classes represented in Table

TABLE VI
NEW APN INSTANCES OVER Fy10

’ 1D ‘ F ‘ diff. spec. of mp ‘

23 + 33 + 52m36 + ﬁIE66 + Bm96 + 2129 0634041’ 2320166’ 4784207 613020, 81830, 10607 1215}
23 +6279 +6"E36 +$96 +521129 +$768
3 +16 +ﬂ21.24 +,81.48 +,81.72 +:E132 +r288

[

[0636306’ 2315018’ 4823357 611715, 82145, 2233]

[
a:3 +1,9 _,'_521,12 +$36 -|—:L‘48 +/81'264+6$516 [0632286 9322566 478540 612675 81320 10165]

[

[

0631911 , 2323421’ 4784957 611775, 81725, 102101 1215]

3;3 + 1‘18 + 1824324 + 62$36 + 1‘48 + $72 + ﬂ23}288 063474:67 2318081’ 4799207 613485, 81215, 10907 1215}

3;3 +Z‘9 +5$24 +J}33 +£E66 +6$72 +6$258

[= N B S O R

636591 316371 478720 13740 Q1935 165 30
0 2 4 ,613740 1935 10165 1930]

C. Dimension 12

Although the linear code equivalence test cannot be used in Fs12 due to the excessive memory requirements, we can still
compute the ortho-derivatives of any functions that we find in this dimension, and compare their differential spectrum to that
of the ortho-derivatives of instances from the known infinite families. To the best of our knowledge, there are no sporadic APN
instances currently known in this dimension, and so finding a differential spectrum of the ortho-derivative that is distinct from
those of the infinite families is enough to justify that a function is new. In this way, we find at least one new APN instance
over [Fy12 (that is, we find several functions with a new differential spectrum of the ortho-derivative; since we are not able to
test the functions for equivalence among themselves, it is possible that they represent more than one CCZ-equivalence class).

Table gives an overview of the searches that we conducted for n = 12. The format is similar to that of Table [V} since
the number of CCZ-classes obtained in all cases is very small, we explicitly list them in the table (unlike Table [V| where we
only list the number of classes). The labels “A,B,C,D,E, X" assigned to the CCZ-classes correspond to the ones given in Table
Most of the functions that we find have the same differential spectrum of the ortho-derivative as known APN instances;
however, we do find functions whose ortho-derivative’s differential spectrum is new, e.g. the quadrinomial

23 4 512400 4 6215129 4 §14,1536 (12)
where § is a primitive element of Fys. This quadrinomial has an ortho-derivative with the differential spectrum

[010231011’ 25093109’ 41162917’ 6228501, 842462, 102268’ 126615’ 1611347 2039697 221134}.

We provide a list of the differential spectra that the ortho-derivatives of functions from the known families can take over Foi2
in Table it can then be easily verified that the above function is indeed new. To the best of our knowledge, this is the first
sporadic APN instance over Fo12 since 2006 [39], and the only APN instance in that dimension that has not been classified
into an infinite family at the time of writing.
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TABLE VII
ORTHO-DERIVATIVE DIFFERENTIAL SPECTRA FOR THE KNOWN INFINITE FAMILIES ON F212
Family Label | Differential spectrum
Gold z3 A 09&51095’ 26220305’ 67166257 84095
Gold 233 B 010077795, 25225220’ 41253070’ 62129407 84095
Cl1 C
D 010149615’25124105741267560 6201285 829295 101260
C3 F 01077‘0(2 21QJ1IQI 4]202 503 ()2‘3{3( ! 812162 10/938 20‘56
C4 G 010137531 25156403 41240776 6208725 826694 102466 12360 14156 169
H 010146186 25159556 41215488 6219798 850204 105537 12524 1427
[e%] E 0101714677 250967577 412595327 62151457 8269047 102664’ 123967 141447 1663, 1836, 2612
1 010164375 25105754 41262763 6209601 827261 102835 12459 1472
C6 i 010156995 25113977 41268280 6203805 826442 103060 12432 14120 249
K 010173339 25094351 41259388 6215262 827090 102943 12657 1490
C7-C9 L1
L2 01014961595124105 41267560 5201285829295 1 (11260
L3 01015000795128963 41257844 206017827699 1 ()2492 19841414
L4 01015683995115460 41265180 5204659283781 ()238019217147
L5 01016008095110679 41265103 5206094828707 1 ()2205 192241428
L6 01016168395109307 41264235 3205863 8292251 (2569192171421
L7 01016169095107872 41266636 5205086 829246 1()2373 19210147
L8 01016301395109461 41260098 5207977830149 12170192381 414
L9 01016436495103028 41268729 5204869 829386 1()2548 19189147
L10 01016476395104071 41265488 5206493829757 1()2296 19245157
L11 01016513495102972 41266370 5206325298481 (1234519126
L12 01017203695094460 41263815 §2100148298201()2716 192451414
L13 01017456395086389 4127001052110858286371()2296 191121428
L14 01017489295089266 41263759 5213654291271 (1222619196
C10 M 01021 072 249)4194 412)2’303 62373 z 84246 107938 20)6!
N 0101'70950 25169087 41263276 6191835 82'545’7 022(‘8 12189 3663
C12 01 (]10120‘) 50 2)169087 41263276 (,1‘7183 82 1022(8 1218‘7 3()6
02 010161144 25117994 41247967 6214.)78 828728 102268 12441
03 010171791’ 2;)0993467 41257291’ 62097907 831752, 102772’ ]_22;)27 14126
04 010171854’ 250911567 41272159, 62042467 830240, 103402’ 1263
05 010199448’ 250593417 41258362, 62175397 834650, 103402’ 12378
TABLE VIII
POLYNOMIAL EXPANSION OF QUADRATIC POWER FUNCTIONS ON ]F212
AV 2 3 7} 3 6
3 12 - - - - - -
3 6 | - | 183 (AB) | 12928 (A,.B.C.D,X) - - ;
3 4 - 3 (A) 136(A,B) 480(A,B.E) - -
3 3 - - 276 (A,B,C,.D) 944(A,B,C,D,E) - -
3 2 - ; - - 74(A,B) ;
9o [ 12 | - - 2184 (AB.C.D) - : N
9| 6 |- ; : ; ; ;
o | 4 |- 0 24 (A,B) 120 (A,B,E) ; ;
9| 3 |- 0 0 56 (A,B.E) 6864 (A.B,.CD) | -
9| 2 |- ) - - ) ;
B 12 |- : - - : -
33 6 - | 183 (AB) - - - -
330 4 | -| 3(AB) 32 (AB) - ; ;
33 3 - 39 (A,B) 276 (A,B,C,.D) 930 (A,B,C.D,E) | 6864 (AB,.C,D) | -
B 2 |- ; - } } ;

IX. THE KNOWN QUADRATIC 3-TO-1 FUNCTIONS UP TO DIMENSION 12

As mentioned above, for n = 6, the only known 3-to-1 APN functions are 23 and 22 + o'1z% + . Tables and
[[X] summarize the known 3-to-1 APN functions for n = 8,10, 12, including the new instances found in the present paper. The
labels “sc” in Table refer to the switching classes given in [40]; for instance, “sc 4” means that the function corresponds
to switching class number 4. The classes are enumerated in the same order that they are given in Table 9 of [40].

X. CONCLUSION AND FUTURE WORK

We have introduced the classes of triplicate functions and canonical triplicate functions, and expressed 3-to-1 functions as
extremal objects among them in several ways. We have investigated the properties of such functions, with a particular focus
on quadratic 3-to-1 APN functions. We have computed the exact number of distinct differential sets of power APN functions,
and of quadratic canonical 3-to-1 functions. We have also conducted computational searches over Fon with n € {8,10, 12},



TABLE IX

ALL KNOWN QUADRATIC 3-TO-1 FUNCTIONS OVER ]F28 UP TO EA-EQUIVALENCE

Families

[

Representative

[ Ortho-derivative differential spectrum

Gold

3

39780 521930 53570
0 ,2 ,6

Gold

xT
.ZEQ

35700 926520 ,3060
035700 26520 4

C3, C10

23 + axl” + a8 £ aB233 4 T8

39600 19680 45220 600 Q180
(39600 19680 15220 G600 g

C4

23 + Tr(z7)

38004 522614 44008 630 124
0 ,2 4 ,6°°7,10

C4

23 + a T Tr(a’z%)

38592 521426 44590 654 QI8
038592 21426 44590 G654 g

C10,C12,C14

OLQIQ + 3 + 29,12 + OL35.’IE17 +
:c18+oc17a:32+x33+x48+a89x72+
a149x152+a209x192

36420 525080 ,3780
0 2 4

sc 4

3 +x6 +.77144

37980 922272 44716 312
037980 22272 JATIG g

sc 6

3 +Oé65$18 +a120x66 +a1351144

38160 22164 4428 492 36
(38100 22164 4128 6A97 g

sc 19

1.3 + 0524276 +a182m132 +a671.192

37872 922788 44068 £492 Q60
0 2 43058 6302 g

sc 13

160,.3 + a?7 26 + 19 + P2 +
236,18 + 6824 + 185,433

187 4,36 a3l 48 229,66 +
239,72 + 133,96 + a2lp129 +
22,132 + Q143,144 + 189,192

38076 922311 44374 495 Q24
(038076 22311 4374 GA95 g

sc 15

241x3+a189x6 +0494CC9+O¢2021}12+
234x18+a145x24+x33+a168136+
142 .48 +a69$66 +a232$72 +a88$96+
77129 + 223,132 + 96144 +
155,192

38457 521552 44743 510 QI8
038457 21552 4743 G510 g

sc 16

236x3+o¢244x6+o¢119x9+a231x12+
237,24 + Q187436 + 148,48
187 .66 + Q221,72 + a79 496 +
222,129 + 221,132 + all9,144 +
126,192

38184 522179 44338 1531 @48
(38184 22179 44338 G531 g

sc 17

107x3+a19x6+a201x9+o¢201x12+
76118+a69x24+a180x36+a8$33+
26$48+Oé2442?66+Oc$72+0é110x96
43I129 + 0513I144 + 05151:)3192 +
58,.132

—

x

38439 21618 4671 528 27
035439 521018 4671 G528 g

sc 18

254x3+a58x6 +a101x12+a170x18+
14m24+a17om33+a102w36+a129x48+
1021‘66+04163x96+Oé224517129+0(86$192

0380407 222461’ 442187 6513, 836, 1012

sc 19

4T3 +a54a:6 +CM32(E9 +a230m12 +
148,18 +0423I24 +a58$33+a202$48+
159 4,36 +a234x66 +a45z72+a84x96+
98 1,129 + 195,132 + 242,144 +
95,192

38256 522116 44230 ;648 Q30
0 ,2 4 ,6°%°,8

sc 20

181933+a216:176+0416319+041851‘12+
13x18+a83x24+a81x33+o¢421’36+
252,48 +a46166+a162172+a76x96+
188,.129 + a914132 + a37 144 +
132,192

38388 521723 44626 507 Q30
0 ,2 , 4 ,6°00,8

sc 21

157333+a241336+04453312+oc250118+
32,24 -‘1—04100I33+0458CC36+05163CC48+
138,66 + al72,72 + a®9,96
106 4,129 + 214,132 + ql24,144 +
91,.192

0384427 2216037 446867 65347 812, 103

sc 22

x
27&03+o¢147x6+a185a:9+04130x12+
463618+a9x24+a211$33+0474x36+
119x48+a149m66+a164x72+a42m96+
129:13129 + (X59Z132 + (X140.1}l44 +
251192

CORRRIL2RRRIELLRLLRIECLRLLRILRRICLL2RRIPL2L2RRICL2R2LRQI2Q2RLQD0Q

38160 522104 44536 456 Q24
38100 22104 44536 G456 g

sc 23

a178z3+a222x6 +0496$9+06100:L‘12+
aglml8+a238m24+a14x33+a194x36+
a30m48+a159$66+a78x72+a91$96+
185,129 + 684132 + ab6 144 +
1134192

03 4397 2217177 445067 65647 8517 103

new

3 + ad 18 +a38$66 +a94z132

38196 522008 44608 456 Ql12
(38196 522008 14608 GA56 g

32

and have found new quadratic 3-to-1 APN functions in all three dimensions, including the first (to the best of our knowledge)
sporadic APN instances for n = 12.

The topic of triplicate functions, 3-to-1 functions, and their relation to APN-ness appears to be very deep and quite promising,
and there are many avenues for future research remaining to be investigated. For one thing, all of the currently known quadratic
3-to-1 functions are canonical, or linear-equivalent to canonical. It would be very interesting to find examples of triplicate
3-to-1 APN functions linear-inequivalent to canonical ones, or to show that such functions do not exist. In the former case,
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TABLE X
CLASSIFICATION OF ALL KNOWN QUADRATIC 3-TO-1 FUNCTIONS OVER Fy10 UP TO EA-EQUIVALENCE

[ Families | Representative | Ortho-derivative differential spectrum
Gold 23 (BY5386_oaT636T (35805
Gold 29 Q7T303T 52TTT6T 492070 15345 g5115 1510230
3 233+ 272 + o3l 4258 QBZSA0T 5329871 75330 12555 Q1395
3 28 F 235 & o317 192 02933T 5330336 472540 13020 32375
4 2 + Tr(20) (B336306 5322701 475045 GI3980 QI905 15285
4 25 + o TTr(adz%) (B302T6 532708T 476215 12150 gT665 (195 1930
C13 25 ¥ a3t 30 (B30306 53T5018 82335 GIT715 g2T45 59533
C13, CI4-1 | 23 + 236 + of82596 | 341129 QBZ054T 5330336 479515 10230 g930
C13. Cla-1 | 23 + o339 + 082,96 | ;288 B3770T 53T3I3T 480910 14415 QT35
Cld2 25 + 52 (2% + 29 + 2259) (022216 5334986 76725 GITT60 IG5
Cld2 5 1 290 + 290 | Gz QBA0A9T 5304296 489280 GI3020 gA6H
sporadic see Table
TABLE XI

CLASSIFICATION OF ALL KNOWN QUADRATIC 3-TO-1 FUNCTIONS OVER IF212 UP TO EA-EQUIVALENCE

[ Families [ Representative [ Ortho-derivative differential spectrum
Gold 23 (9832095 56220305 716625 84095
Gold 233 QIOOTTT95 55225220 41253070 212940 g4095
Cl 25 F a5 728 QTOTTS0T0 95T86790 41238265 200130 g26775 (3150
Cl 233 F a5 708 QTOTA96T5 95122105 41267560 201285 g29295 1(jT260
2 25+ a 528 QTU2ATIT0 55003460 41263465 219555 g34335 (5670 193150 14945 5630
2 235 F a7z 708 QTOT7I350 95TT8I20 41234485 211050 g30555 (410 191890 4630 5630
C3. CI0 QTO3T ;756 1~ 192 1 180 1= 129 - [ (10278072 52954192 41252503 737384 gA2AGZ 17938 5567
@B15128 | 564,66 4 165 | 4014 4 3 4
200,.2
ca 25 + Tr(29) QTOT3753T 95156403 41240776 208725 26694 (2406 19300 14150 169
4 2+ a 'Tr(azY) QTOTA6T8G 95159556 41213488 219798 g30204 (3537 19324 1427
5 25 + Tri2 (29 + o1® QTOT7TAGT 95096757 41259532 215145 g26904 (2604 19396 14144 1603 1830 0612
5 23+ a 1Tr}2(a32° + a2 ™®) QIOTBA3TS 55T05754 4T262763 209601 g2726T (2835 19459 472
C6 23 + T2 (z1® + 299) QT0T56995 95TI3977 41268280 (203805 26442 (13060 19432 14120 949
C6 23 + a 1Tr}2(a®2™® + a12250) Q10173339 9509435 41259388 215262 g27090 1()2943 19657 1490
CI0, C12 | 334708 | o981 ;516 1 ;329,264 1 197 1 [ (T0T20950 95169087 41263276 I9T835 Q754527 12268 15189 3663
2129 4 65,128 4 266 L 2211,65
aTT212 4 23 4+ ¢242
sporadic 73 F 042400 J 521,129 | 5141536 QT0Z3TOIT 95093109 41162917 228501 ga2462 (2208 190015 {1184 (3969 501134

we will obtain a 3-to-1 APN instance behaving in a completely different way than all the know ones. In the same vein, it
would be useful to resolve the inclusions between the classes of 3-to-1 functions having the zero-sum property and the triple
summation property.

Another interesting question would be to try to find non-quadratic 3-to-1 APN functions CCZ-inequivalent to monomials,
or to show that such functions do not exist. Regardless of whether the answer is positive or negative, this would be a step
towards resolving the problem of finding APN functions CCZ-inequivalent to quadratic functions and monomials.

Many of the properties derived in our investigation are proved for the case of quadratic 3-to-1 functions, or for canonical
3-to-1 functions. We suspect that many of them also hold for 3-to-1 functions of higher algebraic degree, but were not able
to prove or disprove this. For instance, we have proved that any quadratic canonical 3-to-1 function over Fy» has precisely
(2™ — 1)/3 distinct differential sets. We suspect that this is true for 3-to-1 triplicate functions in general, but it is not clear to
us at the moment how one could prove this.
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