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Abstract. Dot-product is a widely used operation in many machine learning and
scientific computing algorithms. Recently, NVIDIA has introduced dot-product
instructions (DP2A and DP4A) in modern GPU architectures, with the aim of
accelerating machine learning and scientific computing applications. These dot-
product instructions allow the computation of multiply-and-add instructions in a
clock cycle, effectively achieving higher throughput compared to conventional 32-bit
integer units. In this paper, we show that the dot-product instruction can also
be used to accelerate matrix-multiplication and polynomial convolution operations,
which are commonly found in post-quantum lattice-based cryptographic schemes. In
particular, we propose a highly optimized implementation of FrodoKEM, wherein
the matrix-multiplication is accelerated by the dot-product instruction. We also
present specially designed data structures that allow an efficient implementation
of Saber key encapsulation mechanism, utilizing the dot-product instruction to
speed-up the polynomial convolution. The proposed FrodoKEM implementation
achieves 4.37× higher throughput in terms of key exchange operations per second
than the state-of-the-art implementation on V100 GPU. This paper also presents
the first implementation of Saber on GPU platforms, achieving 124,418, 120,463,
and 31,658 key exchange operations per second on RTX3080, V100, and T4 GPUs,
respectively. Since matrix-multiplication and polynomial convolution operations are
the most time-consuming operations in lattice-based cryptographic schemes, our
proposed techniques are likely to benefit other similar algorithms. The proposed high
throughput implementation of KEMs on various GPU platforms allows the heavy
computations (KEMs) to be offloaded from the server. This is very useful for many
emerging applications like Internet of Things and cloud computing.
Keywords: Post-quantum Cryptography · Dot-product · Polynomial Convolution ·
Matrix-multiplication · Graphics Processing Unit · FrodoKEM · Saber

1 Introduction
In 2016, National Institute of Standards and Technology (NIST) [NIS17] initiated a stan-
dardization process to select key encapsulation mechanism (KEM), public key encryption,
and digital signature schemes that are resistant to quantum computer attacks. This is
a timely response to the threat from quantum computers that can break existing RSA
and elliptic-curve discrete logarithm based public key cryptography schemes. This stan-
dardization process has stimulated a lot of interest in post-quantum cryptography (PQC),
which focuses on improving the security of PQC algorithms and performance of their
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implementations. Currently, the standardization is in Round-3, wherein 15 candidates are
selected [NIS]. Among these 15 Round-3 candidates, seven of them are based on lattice
hard problems. One of the main performance bottlenecks in lattice-based cryptography is
polynomial convolution or matrix multiplication. Some schemes (e.g., Kyber and Dilithium)
are based on a special ring structure that allows the polynomial convolution to be computed
efficiently using Number Theoretic Transform (NTT). However, other schemes that do
not have such a ring structure (e.g., FrodoKEM and Saber), require carefully designed
implementations in order to achieve reasonably fast performance.

Graphics Processing Unit (GPU) with a massively parallel architecture can be used in
accelerating non-graphics computation, which de-facto makes it one of the accelerators
available in many server-side environments. GPU has been widely used to speed-up
algorithms in various domains, including deep learning [DSA+21], power engineering
[SHLW19], and healthcare [TBY+20]. Recently, there are also several attempts on utilizing
GPU for implementing cryptographic algorithms. For instance, an attempt to accelerate
homomorphic encryption using GPU was presented by Al Badawi et al. [ABPA+19,
ABVMA18], and later on extended to support multiple GPUs [ABVL+20]. Another similar
work that utilized GPU for implementing high performance homomorphic encryption was
presented by Lei et al. [LGZ+19]. Besides that, GPU was also used to implement symmetric
key cryptographic algorithms [LGP19, HMKG19, Tez21] achieving high throughput.

Since the commencement of NIST standardization process, there are some research works
that explore the possibility of accelerating PQC with GPU. One notable work was presented
by Sun et al., wherein they exploited the parallel architecture in GPU to implement the tree
structure in SPHINCS signature scheme [SZM20]. Another attempt along this direction
is the work by Akleylek et al. [ASL+20]. They proposed a novel PQC scheme based on
multivariate quadratic problems and instantiate a practical implementation using GPU.
However, these two schemes are not included in the Round-3 of NIST standardization.
Gupta et al. [GJCC21] presented a comprehensive benchmark of FrodoKEM, NewHope,
and Kyber on various GPU platforms. Authors proposed single mode and batch mode to
compute PQC algorithms on GPU. Recently, Lee et al. [LH21] and Gao et al. [GXW21]
also showcased high throughput implementations of Kyber and NewHope KEM on GPU.
These prior works are able to achieve a high throughput implementation by using GPU as
an accelerator, but they only focus on algorithmic parallelization and low level optimization,
without using advanced features found in modern GPU architectures.

Since 2017, NVIDIA has released several modern GPU architectures that come with
special purpose computing units. Tensor core was firstly introduced in the Volta archi-
tecture to speed-up the computations in machine learning algorithms. Although it is
intended for machine learning applications, the introduction of tensor core in GPU is also
beneficial to other domains [NCB+20]. In a recent work, Lee et al. has introduced some
techniques to compute polynomial convolution and matrix-multiplication using tensor
core in GPU [LSZH21]. The key idea is to pack many polynomials into a matrix form
and compute them efficiently using the tensor core in a GPU. Although performance
improvements are impressive, this technique can only achieve its full benefit if the usage of
non-ephemeral key is permitted. Moreover, this technique relies on fast tensor core that
supports half precision, which implies that it cannot be used by lattice-based cryptography
schemes that has a large modulus (q > 2, 048). In particular, FrodoKEM (q = 32, 768
or q = 65, 536) and Saber (q = 8, 192 and p = 1, 024) cannot benefit from the tensor-
core-based solution. In this paper, we intend to fill this research gap by proposing novel
implementation techniques on GPU that can be applicable to a larger modulus size.

1.1 Motivations
Dot-product is a common operation found in various algorithms. Due to this reason, many
research works have been devoted to design specific hardware for dot-product computation
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[BC18, VSG+20], which offers faster and more energy efficient solutions than straight-
forward implementations. The popular processor architecture ARM has released special
instructions [ARM] to handle dot-product operation. Unsurprisingly, NVIDIA also follows
this trend through the introduction of DP4A and DP2A dot-product instructions into its
Pascal architecture GPU. Such specialized hardware units require effort to develop efficient
techniques in order to exploit its full performance. Surprisingly, this special hardware
(dot-product) is not used in accelerating the cryptographic algorithms in any previous
works. We found that the DP2A instruction is particularly useful in computing polynomial
convolution and matrix-multiplication found in FrodoKEM and Saber KEM, which are
both NIST PQC Round-3 candidates. However, utilizing dot-product instructions to
compute these operations in parallel is not straightforward. This is because dot-product
allows two polynomial coefficients to be packed into a single 32-bit register, wherein each
thread is accessing a different portion (upper or lower 16-bit) of this 32-bit register. A
naïve implementation could lead to a serious overhead in loading/storing intermediate
results.

1.2 Contributions
This paper provides the first implementation that utilizes the dot-product instruction in
modern GPU architectures to accelerate lattice-based cryptography. Proposed techniques
can achieve a higher performance on various modern GPU architectures, compared to other
state-of-the-art works that rely only on conventional 32-bit integer units. Contributions of
this paper are summarized below:

1. We propose a highly optimized matrix-multiplication implementation on GPU in
which the DP2A instruction is used to speed-up dot-product operations between two
matrices. The proposed data packing technique allows the polynomial coefficients
to be loaded from and stored to the global memory efficiently. Combining this
packing technique with the dot-product instructions, our implementation is able to
accelerate the matrix-multiplication up-to 1.37×, 1.83×, and 1.58× compared to
implementations with conventional 32-bit integer units (i.e., without dot-product
instructions) on RTX3080, V100, and T4 GPUs, respectively. This dot-product
aided technique is applied to FrodoKEM (i.e., DPFrodo), achieving a 4.37× speed-up
compared to the state-of-the-art implementation of FrodoKEM [GJCC21] on V100
GPU platform.

2. Polynomial convolution in Saber exhibits similar computational pattern like the
matrix-multiplication. Unlike ordinary polynomial multiplication, the polynomial
convolution requires coefficients to be read in a cyclic form, making it non-trivial
to utilize the dot-product instruction. To alleviate this limitation, we propose a
novel data structure that allows the polynomial data to be read in cyclic form, at
the same time achieving fully coalesced global memory access. When applied to the
polynomial convolution (i.e., matrix-vector multiplication) in Saber, the proposed
technique with dot-product instructions (i.e., DPSaber) can achieve up-to 1.63×,
1.28×, and 1.54× compared to the proposed implementation using 32-bit integer
units (i.e., without dot-product instructions) on RTX3080, V100, and T4 GPUs,
respectively. The dot-product aided technique is applied to the standard Saber with
parameter set N = 256 and l = 3, where the achieved key exchange throughputs are
124,418, 120,463, and 20,225 on RTX3080, V100, and T4 GPUs, respectively. This
is also the first implementation of Saber on GPU platforms.

In summary, the proposed techniques are suitable to be used in lattice-based cryp-
tographic schemes that cannot leverage the NTT directly to speed-up the polynomial
convolution. It is also beneficial for schemes that utilize a larger modulus (2, 048 <
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Table 1: Overview of FrodoKEM [ABD+20] and Saber [DASS+20] parameters.

Algorithm Category Modulus (q) Dimension of NIST PQC Round-3polynomial/matrix
FrodoKEM-640 215 n = 640, n′ = 8
FrodoKEM-976 Standard 216 n = 976, n′ = 8 Alternate candidate
FrodoKEM-1344 216 n = 1344, n′ = 8

LightSaber n = 256, l = 2
Saber Module 213 n = 256, l = 3 Finalist

FireSaber n = 256, l = 4

q ≤ 65, 536), which cannot take advantage of the tensor-core-based solution proposed
by Lee et al. [LSZH21]. Proposed DPFrodo and DPSaber implementations support
both ephemeral and non-ephemeral key usage, which is more flexible compared to Lee
et al. [LSZH21]. They support high throughput KEM, which is beneficial to conven-
tional client-server based Internet communication, as well as the emerging Internet of
Things (IoT) applications. Implementation codes discussed in this paper can be found in
https://anonymous.4open.science/r/DPCrypto-D242/.

2 Background
In this section, we provide an introduction to selected lattice-based cryptographic schemes
(i.e., FrodoKEM and Saber) and the related hard problems. Following this, we also present
a summary of the key features in modern NVIDIA GPU architectures.

2.1 FrodoKEM
FrodoKEM is a lattice-based KEM that relies on the hardness of learning with errors
(LWE) problems. It was firstly introduced as a key exchange protocol in [BCD+16] and
later on developed into a KEM. FrodoKEM was selected as an alternate candidate in
Round-3 of NIST PQC standardization. The main performance bottleneck in FrodoKEM
comes from the matrix multiplication.

2.2 Saber
Saber is a lattice-based KEM which is based on module-lattices. Unlike most other
lattice-based cryptosystems, the security of Saber is based on learning with rounding
problem [BPR12] rather than the learning with errors [Reg04]. The advantage of the
former over the later is that the error term is generated inherently in the former case
whereas it needs to be added in the latter case. This results in lesser requirements of pseudo-
random numbers which leads to better efficiency than other schemes. Saber is a one of four
finalist candidates in the KEM category of the NIST’s standardization procedure. Similar
to other lattice-based KEM schemes, it has been shown that the polynomial multiplication
is the most computationally expensive component [KRSS, BMK+21, MKV20, DKRV18]
of Saber.

2.3 Overview of NVIDIA GPU Architecture
2.3.1 CUDA Programming Model

A GPU hardware has multiple Streaming Multiprocessors (SMs), where each SM hosts
hundreds of CUDA cores. For instance, the RTX3080 is an Ampere architecture GPU with
68 SMs, each SM consists of 128 cores. CUDA is the SDK released by NVIDIA to ease

https://anonymous.4open.science/r/DPCrypto-D242/
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programming of the GPU for general purpose computing. Under the CUDA programming
model, multiple threads are grouped into a block, where multiple blocks form a GPU grid.
This relationship is illustrated in Figure 1, where each thread and block can be indexed
individually for the parallel computing. NVIDIA GPUs grouped 32 threads into one warp
in order to allow efficient instruction scheduling and memory access. Warp divergence
occurs if threads within a warp do not execute the same path, which may cause a serious
performance penalty.

GPU Grid

Thread

Block 0

Block 1

Block N-1

0-31
Thread
32-63

Thread
224 - 255

Warp 0 Warp 1

Warp 7

Thread
192 - 223

Warp 6

Block 1

Figure 1: Relationship between grid, block, warp, and thread in CUDA.

2.3.2 Memory Hierarchy

Similar to many CPU architectures, GPU also has a deep memory hierarchy. There are two
types of GPU memory in general, which have a huge difference in performance: on-chip
and off-chip memory. Global memory is essentially the DRAM (i.e., off-chip memory),
which is large in size but slow in performance. The use of global memory is unavoidable in
most of the situations, as one needs to share the data between CPU and GPU. To achieve
a high performance in global memory, the read/write must be performed in contiguous
memory locations. This allows the memory access to be performed in burst mode in
DRAM. Shared memory is only accessible by threads within the same block, but it is a
user-managed cache, which has better performance compared to global memory. Register
is the fastest memory in a GPU; it comes with a very limited size (e.g., 64K words per SM
for the RTX3080).

2.3.3 Dot-Product Instructions

Dot-product instructions were firstly introduced into Pascal architecture (i.e., compute
capability 6.1), and they are supported in the subsequent GPU architectures. Referring
to Figure 2, there are two versions of dot-product instructions in NVIDIA GPU. DP4A
supports 4-way dot-product operations on four 8-bit inputs, where the result is accumulated
on a 32-bit integer. Similarly, DP2A allows 2-way dot-product operations on two 16-bit
inputs with another two 8-bit inputs; the result is also accumulated on a 32-bit integer.
DP2A comes with two variants; they are either operated on the first (DP2A_hi) or the
last (DP2A_lo) two 8-bit inputs. Both versions support signed and unsigned operands.
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Figure 2: Dot-product instructions in NVIDIA GPU.
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Figure 3: Parallel implementation of matrix multiplication in FrodoKEM.

2.4 Related Work

The first FrodoKEM implementation on GPU was presented by Gupta et al. [GJCC21].
Authors utilized single mode to compute FrodoKEM, wherein multiple blocks and multiple
threads cooperatively execute algorithms on GPU. This involves the use of atomic instruc-
tions to avoid data hazard introduced by parallel read/write from different blocks. They
also proposed a tiling technique to compute the matrix-matrix multiplication, efficiently.
However, their implementation does not show high throughput performance, due to the
high amount of atomic instructions. Moreover, FrodoKEM can be computed by using
16-bit coefficients, but Gupta et al. [GJCC21] only utilize the 32-bit integer units, which
is not an optimal choice.

Another two notable works published recently are from Lee et al. [LH21] and Gao et
al. [GXW21]. These works showcased high throughput implementations of Kyber and
NewHope KEM on GPU platforms, which rely on the use NTT. However, these works
also do not use advanced features (e.g., dot-product instructions) found in modern GPU
architectures.

In this paper, we show that FrodoKEM can achieve a higher throughput through a more
optimized matrix-matrix multiplication technique and the use of dot-product instructions.
We also showcase the first optimized implementation of Saber on various GPU platforms.

3 GPU Implementation Techniques
In this section, we present details of GPU implementation techniques targeting two selected
lattice-based cryptographic schemes.
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3.1 Highly Optimized (INT32) and Dot-product Aided (DPFrodo) Ma-
trix Multiplication Implementations of FrodoKEM on GPU

Matrix multiplication is one of the most time-consuming operations in FrodoKEM. Referring
to Figure 3, the matrix multiplication in key encapsulation and decapsulation involves
a rectangular matrix (i.e., N × N ′) and a square matrix (i.e., N × N). This can be
implemented on a GPU through the following steps described in Algorithm 1. Firstly, N
values are loaded in parallel from the matrix A (line 5). Next, the algorithm executes k
loop (lines 6 ∼ 8), wherein values from matrix A are multiplied with a value from matrix
s, and then added to results in matrix out. The same steps are repeated for N times to
complete the j loop in lines 4 ∼ 9. This process is also illustrated in Figure 3, in which
highlighted portions represent the parallel execution of lines 5 and 7 in GPU. However,
this naïve implementation causes a lot of read/write into the global memory, seriously
limiting the performance of implementation in GPU.

Algorithm 1 Parallel matrix multiplication in FrodoKEM.
1: procedure Mat_Mul_and_Add(out, A, s)
2: sum = 0;
3: for (j = 0; j < N; j + +) do . N × N ′ is the size of matrix
4: load_a = A[j × N + tid]; . tid is the thread ID
5: for (k = 0; k < N’; k + +) do
6: out[k × N + tid] += load_a × s[k × N + j];
7: end for
8: end for
9: end procedure

Algorithm 2 Unrolled parallel matrix multiplication in FrodoKEM.
1: procedure Mat_Mul_Unroll(out, A, s)
2: sum0 = 0, sum1 = 0, sum2 = 0, sum3 = 0;
3: sum4 = 0, sum5 = 0, sum6 = 0, sum7 = 0; . N × N ′ is the size of matrix
4: for (j = 0; j < N; j + +) do
5: load_a = A[j * N + tid]; . tid is the thread ID
6: sum0 += load_a × s[j]; . Unroll 8 times (N’)
7: sum1 += load_a × s[1 × N + j];
8: sum2 += load_a × s[2 × N + j];
9: sum3 += load_a × s[3 × N + j];

10: ... . Removed for brevity
11: end for
12: out[tid] = sum0 ; . Unroll 8 times (N’)
13: out[1 × N + tid] = sum1 ;
14: out[2 × N + tid] = sum2 ;
15: out[3 × N + tid] = sum3 ;
16: ... . Removed for brevity
17: end procedure

A closer look into FrodoKEM reveals that the parameter N’ is small (e.g., N ′ = 8
across all three proposed parameter sets) compared to parameter N [ABD+20]. Hence, it
is possible to fully unroll the k loop in Algorithm 1. By doing this, we can exploit the use
of more registers during the computation of multiply-and-add operations. Algorithm 2
shows this improved implementation technique.

Referring to Table 1, the modulus q is either 32,768 or 65,536. This implies that the
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Figure 4: Parallel implementation of matrix multiplication in FrodoKEM.

matrix multiplication and accumulation can be carried out entirely on a 16-bit variable
without causing any error. In this paper, we exploited this property and proposed a more
optimized implementation to push the performance of FrodoKEM matrix multiplication to
the limit. Note that the Matrix A was originally stored in a column major and read in a
row major; this is illustrated in Figure 4. When the proposed DPFrodo is used, two matrix
elements are packed into one register, which can be indexed as x or y component. To access
these packed elements in Matrix A, even-indexed threads load only x components, while
odd-indexed threads load only y components. For the smaller Matrix s (see Algorithm 3),
the packing is more straightforward.

Algorithm 3 DPFrodo: packing the matrix s.
1: procedure Pack_Mat_s(spacked, s)
2: for (i = 0; i < N’; i + +) do . N’ is 8 for FrodoKEM
3: spacked[i × N/2 + tid].x = s[i × N + 2 × tid]; . tid is the thread ID
4: spacked[i × N/2 + tid].y = s[i × N + 2 × tid + 1];
5: end for
6: end procedure

The proposed parallel implementation of matrix-matrix multiplication in FrodoKEM
using the dot-product instruction is detailed in Algorithm 4. The j (lines 4 ∼ 20) loop is
executed to accumulate results of matrix multiplication. In each iteration, even threads
load x components of matrix A (lines 5 ∼ 7), while odd threads load y components (lines
8 ∼ 10). This is followed by multiplications between matrix A and b (lines 12 ∼ 19), which
is fully unrolled by N ′ = 8×. Finally, results are stored in the output array (lines 21 ∼ 25),
which marks the end of the Algorithm 4.

3.2 The First Optimized (INT32) and Dot-product Aided (DPSaber)
Polynomial Convolution Implementations of Saber on GPU

The most time-consuming operation in Saber is the polynomial convolution, which is
detailed in Algorithm 5. The j loop (lines 2 ∼ 10) iterates through all coefficients in the
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Algorithm 4 DPFrodo: parallel matrix multiplication in FrodoKEM with dot-product
instruction.

1: procedure Mat_Mul_and_Add_Unroll(out, A, s)
2: sum0 = 0, sum1 = 0, sum2 = 0, sum3 = 0;
3: sum4 = 0, sum5 = 0, sum6 = 0, sum7 = 0;
4: for (j = 0; j < N/2; j + +) do . N × N ′ is the size of matrix
5: if tid%2 == 0 then . tid is the thread ID
6: load_a.x = A[j ∗ N + tid/2].x;
7: load_a.y = A[j ∗ N + N/2 + tid/2].x;
8: else
9: load_a.x = A[j ∗ N + tid/2].y;

10: load_a.y = A[j ∗ N + N/2 + tid/2].y;
11: end if
12: sum0 +=load_a.x × s[j].x + load_a.y × s[j].y;
13: sum1 +=load_a.x × s[1 × N + j].x+
14: load_a.y × s[1 × N + j].y;
15: sum2 +=load_a.x × s[2 × N + j].x+
16: load_a.y × s[2 × N + j].y;
17: sum3 +=load_a.x × s[3 × N + j].x+
18: load_a.y × s[3 × N + j].y;
19: ... . Unroll 8 times (N’). Removed for brevity
20: end for
21: out[tid] = sum0 ;
22: out[1 × N + tid] = sum1 ;
23: out[2 × N + tid] = sum2 ;
24: out[3 × N + tid] = sum3 ;
25: ... . Unroll 8 times (N’). Removed for brevity
26: end procedure

Algorithm 5 Nega-cyclic polynomial convolution.
1: procedure Schoolbook_Poly_Conv(out, a, b)
2: for (j = 0; j < N; j++) do . N is the degree of polynomial
3: sum = 0;
4: for (i = 0; i < j+1; i++) do . Accumulation
5: sum = sum + a[j − i] × b[i];
6: end for
7: for (i = 1; i < N-j; i++) do . Subtraction
8: sum = sum − a[j + i] × b[N − i];
9: end for

10: out[j] = sum; . out is the array to store the final results
11: end for
12: end procedure

polynomial; in each iteration, there is another i loop to accumulate intermediate results
(lines 4 ∼ 9).

Figure 5a shows a simple example of parallel polynomial convolution on GPU, where
the polynomial degree N = 8. Since each thread can perform the multiplication and
accumulation independently, this technique is considered quite efficient for the GPU
implementation. Recently, Lee et al. [LSZH21] proposed an improved version of this
technique, wherein multiplication and accumulation operations are represented in a matrix
form and computed entirely on tensor cores. The tensor-core-based solution is able to



10 DPCrypto

a0b0

a7b1

a6b2

a5b3

a2b6

a1b7

a4b4

a3b5

a3 a2 a1 a0

b3 b2 b1 b0

a1b0a2b0a3b0

a0b1a1b1a2b1

a7b2a0b2a1b2

a6b3a7b3a0b3

a7 a6 a5 a4

b7 b6 b5 b4

a4b0a5b0a6b0a7b0

a3b1a4b1a5b1a6b1

a2b2a3b2a4b2a5b2

a1b3a2b3a3b3a4b3

a3b6

a2b7

a5b4

a4b5

a2b4

a1b5

a3b4

a2b3

a0b4

a7b5

a1b4

a0b3

a6b4

a5b5

a7b4

a6b5

a0b6

a7b7

a1b6

a0b7

a6b6

a5b7

a7b6

a6b7

a4b6

a3b7

a5b6

a4b7

c7 c6 c5 c4 c3 c2 c1 c0

T7 T6 T5 T4 T3 T2 T1 T0

Parallel threads

(a)

a0.x b0.x

a3.y b0.y

a3.x b1.x

a2.y b1.y

a1.x b3.x

a2.x b2.x

a1.y b2.y

a3 a2 a1 a0
b3 b2 b1 b0

a7 a6 a5 a4
b7 b6 b5 b4

c7 c6 c5 c4 c3 c2 c1 c0

T7 T6 T5 T4 T3 T2 T1 T0

Parallel threads

a0.xa0.ya1.xa1.ya2.xa2.ya3.xa3.y

Packed

b0.xb0.yb1.xb1.yb2.xb2.yb3.xb3.y

a0.y

a0.x

a3.y

a3.x

a1.y

a0.x

a2.y

a2.x

a1.x

a0.y

a0.x

a3.y

a2.x

a1.y

a3.x

a2.y

a1.y

a1.x

a0.y

a0.x

a0.y

a0.x

a1.y

a1.x

a3.y a2.y

a2.x

a1.y

a1.x

a3.y

a3.x

a0.y

a0.x

a2.x

a1.y

a1.x

a0.y

a3.x

a2.y

a0.x

a3.y

a3.x

a2.y

a2.x

a1.y

a1.x

a3.y

a0.y

a0.x

a3.x

a2.y

a2.x

a1.y

a1.x

a0.y

a0.x

Poly b was
removed
for brevity

a0.y b3.y

i=0

i=1

i=2

i=3

(b)

Figure 5: Comparison of proposed methods for polynomial convolution in Saber, (a)
parallel implementation with int 32-bit integer units, (b) naïve implementation with DP2A
instruction.

achieve the polynomial convolution with high throughput, but it can only support the
polynomial convolution for lattice-based schemes that utilize a small modulus q. The
modulus q must be lesser than 211, due to the limitation in half precision floating point
arithmetic. Hence, it is not suitable to be used in Saber.

Referring to Table 1, the modulus q of Saber parameter sets is always 8, 192 = 213.
Considering the Saber parameter set, coefficients of small polynomial (b) are in the range
of -4 to +4, which can be conveniently represented in an 8-bit variable. Coefficients of
polynomial (a), which range from 0 to 8,191, can fit into a 16-bit variable. Referring to
Figure 2, the DP2A instruction can be used to compute the dot-product operation between
a pair of 16-bit/8-bit values. Hence, we can pack two 16-bit and two 8-bit coefficients
into the respective 32-bit registers, then perform a series of dot-products to compute the
polynomial convolution in Saber. Since each polynomial coefficient is packed into a 32-bit
register with x and y components, loading these coefficients in parallel is a non-trivial
task. In addition, the polynomial a is loaded in a cyclic form, which is less straightforward
compared to the case in a matrix-multiplication. A detailed illustration of this problem is
shown in Figure 5b.

Considering thread 2 (T2), it reads the x component from a1 in the first iteration (i=0),
but it loads the y component from a0 in the next iteration (i=1). This inconsistency in
the array index and component to be loaded, exists in all even threads. Odd threads
(i.e., T1, T3, ...) also need to access a different component from even threads. These access
patterns cause many conditional statements (e.g., if/else) in a naïve GPU implementation,
since each thread needs to decide whether to read the x or y component, as well as deciding
the right index to read the polynomial a. Note that this problem is not found in polynomial
b, because it is always accessed in a sequential and fixed manner.

In this paper, we proposed a novel data structure to hold the polynomial a in order
to avoid the problems mentioned above. A closer look into Figure 5b reveals that all the
even threads are reading different values, but they exhibit a cyclic pattern. For instance,
when i = 0, T0 reads a0.x and a3.y; the same pair of values are being read by T2, T4, and
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Figure 6: Proposed packing method for polynomial convolution in Saber.

T6 at different time (See bolded parts). The same patterns also apply to the odd threads.
Due to this reason, we can pack the polynomial a into two arrays to cater for these two
different accessing patterns. This is illustrated in Figure 6, in which the polynomial a is
packed into two different arrays (ArrayA1 and ArrayA2) for parallel access. For instance,
values a0 and a7 can be accessed in ArrayA1[0].x and ArrayA1[0].y; values a5 and a4 can
be read from ArrayA2[2].x and ArrayA2[2].y. To utilize this proposed data structure, we
also need half the number of parallel threads (from N = 256 to N = 128, where N is the
degree of polynomial in Saber).

Another important aspect in the implementation of parallel polynomial convolution
is that Saber employs a nega-cyclic convolution, which needs to add or subtract the
intermediate results when the i loop progresses. Referring to Figure 7, values to be
added/subtracted are marked in black/blue colour, respectively. A close look into this
pattern reveals that values to be subtracted can be either the x or y, depending on the
thread index and index i. For instance, considering the case of odd threads (i.e., T1, T3, ...),
they need to decide whether an addition or subtraction should be performed. On the other
hand, considering the thread T2, operations to be performed are different when i = 0,
i = 1, and i = 2, 3. This happens to all other even threads, wherein there are always
three different operations to be performed. This is because the value to be subtracted can
be either stored on the x or y component. This also implies that the implementation of
parallel polynomial convolution in Saber is more complicated compared to FrodoKEM, as
there are more conditional checks required.

Detailed implementation steps are presented in Algorithm 6. Firstly, packed polynomials
are loaded into shared memory to improve the accessing speed (lines 3 ∼ 5). Following
this, the algorithm loads a value from s_A2 and proceeds to compute the dot-product
operation (lines 8 ∼ 15). To process even threads, there are three different conditions,
which should be checked (lines 8, 10, and 13). This corresponds to the situations explained
in Figure 7 for even threads. The computation for odd threads is simpler as we only need
to check the condition to perform an addition (line 17) and subtraction (line 20). Note
that each thread computes one even and one odd element. This process is repeated for
N/2 times (line 6) to complete the entire convolution. Finally, results of accumulations
(sum1 and sum2) are stored into the output array following respective odd and even
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Figure 7: Computing nega-cyclic polynomial convolution in Saber.

Algorithm 6 DPSaber: parallel polynomial convolution in Saber with dot-product
instruction.

1: procedure Poly_Conv(out, A1, A2, b)
2: sum1 = 0, sum2 = 0;
3: _shared_ s_A1[tid] = A1[tid]; . tid is the thread ID
4: _shared_ s_A2[tid] = A2[tid];
5: _shared_ s_b[tid] = b[tid];
6: for (i = 0; i < N/2; i + +) do . N is the degree of polynomial
7: load_a = s_A2[(tid × (N/2 − 1) + i)%(N/2)];

. Processing the even elements.
8: if i > tid then
9: sum1 -= load_a.x × s_b[i].x + load_a.y × s_b[i].y;

10: else if i == tid then
11: sum1 += load_a.x × s_b[i].x + load_a.y × s_b[i].y;
12: sum1 -= load_a.y × s_b[i].y + load_a.y × s_b[i].y;
13: else
14: sum1 += load_a.x × s_b[i].x + load_a.y × s_b[i].y;
15: end if
16: load_a = s_A1[(tid + i × (N/2 − 1))%N/2];

. Processing the odd elements.
17: if i ≤ tid then
18: sum2 += load_a.x × s_b[i].x + load_a.y × s_b[i].y;
19: else
20: sum2 -= load_a.x × s_b[i].x + load_a.y × s_b[i].y;
21: end if
22: end for
23: out[tid × 2] = sum1 ;
24: out[tid × 2 + 1] = sum2 ;
25: end procedure
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Table 2: Experimental platforms for proposed implementations.
Platforms CPU Clock (GHz) RAM (GB) GPU Clock (GHz) Mem. BW (GB/s)

A i9-10900K 3.7 16 RTX3080 1.44 760.3

B Xeon Gold 2.2 16 V100 1.25 897.0
5120 T4 0.585 320.0

positions (lines 23 ∼ 24). With the proposed technique in Algorithm 6, the schoolbook
polynomial convolution is mapped into a series of parallel dot-product operations. This
allows efficient parallel polynomial convolution to be implemented on GPU, improving the
speed performance against the conventional method that only uses 32-bit integer units.

4 Experimental Results
This section presents the experimental results of FrodoKEM and Saber KEM on various
GPU platforms, which are compared against the state-of-the-art works. Proposed algo-
rithms are implemented in C language under CUDA 11.2 SDK. Performance was evaluated
on two different platforms as described in Table 2. Platform A is a workstation equipped
with a Intel Core i9-10900K CPU and a RTX 3080 GPU. Platform B is the Compute
Canada platform (a national computing grid) [com21], which has a module configuration
of four CPU cores (Xeon Gold), 16-GB RAM, and a GPU. The GPU can be configured as
V100 or T4. Note that the three selected GPU (V100, T4 and RTX3080) represents the
state-of-the-art GPU architectures (Volta, Turing and Ampere) from NVIDIA that sup-
ports dot-product instructions. The AVX2 implementation was executed on the i9-10900K
CPU, configured to clock at 3.7 GHz.

In this paper, we have selected the FrodoKEM976 and Saber parameter sets belonging
to the NIST security category 3 for the performance evaluation. All implementations follow
the fine-grain parallel approach, wherein one block consists of multiple threads that are
used to complete one KEM or one matrix/vector operation. On top of that, many parallel
blocks are initiated, where the number of parallel blocks, K, varies. In each experiment, K
increases gradually to observe the achieved throughput, until the performance saturates.

4.1 Evaluation of Proposed FrodoKEM Implementations (INT32 and
DPFrodo)

Table 3: Comparison of proposed matrix-matrix multiplication implementations in
FrodoKEM976 based on int 32-bit integer units (INT32) and DP2A (DPFrodo) instructions.

K INT32 DPFrodo Sp-up INT32 DPFrodo Sp-up INT32 DPFrodo Sp-up
RTX 3080 V100 T4

Matrix-Matrix Multiplication (operations per second)
64 44221 61159 1.38 32726 58062 1.77 14767 29270 1.98
128 173319 215922 1.25 123535 188501 1.53 29695 41712 1.40
256 178088 244308 1.37 150347 275649 1.83 48810 76973 1.58
512 182266 246275 1.35 157413 274175 1.74 59300 78916 1.33
1024 189441 245960 1.3 178323 294464 1.65 58801 78573 1.34
2048 193600 250790 1.3 180920 274288 1.52 60028 82634 1.38

Table 3 shows the throughput of computing one matrix multiplication in FrodoKEM
using different implementation techniques. Results show that DPFrodo is at least 1.25×
faster than the conventional implementation using integer unit (INT32), across different
K on various GPU platforms. Performance saturates when K is relatively large (≥ 512),
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indicating that further increasing the number of parallel blocks does not help in improving
performance anymore.

Table 4: Comparison of proposed FrodoKEM976 scheme implementations based on int
32-bit integer units (INT32) and DP2A (DPFrodo) instructions.

RTX 3080

K Encap Throughput Decap Throughput KX/s
INT32 DPFrodo Sp-Up INT32 DPFrodo Sp-Up INT32 DPFrodo

64 7044 7356 1.04 7406 7804 1.05 3610 3610
128 8691 8994 1.03 9055 9229 1.02 4435 4555
256 9802 9912 1.01 10082 10554 1.05 5111 5111
512 10794 11247 1.04 10563 11261 1.07 5213 5627
768 11899 12769 1.07 11207 12083 1.08 5771 6208

V100
64 6108 6084 1 6559 6486 0.99 3163 3139

128 7305 7412 1.01 7098 7159 1.01 3600 3642
256 8544 8815 1.03 8249 8397 1.02 4197 4300
512 9388 9827 1.05 8771 8910 1.02 4535 4673
768 9624 10321 1.07 8920 9275 1.04 4629 4885

[GJCC21] 1749 1839 1117
T4

64 2570 2562 1 4803 4720 0.98 1674 1661
128 3402 3396 1 4500 4491 1 1937 1934
256 5078 5161 1.02 4871 4957 1.02 2486 2528
512 5189 5398 1.04 4915 5160 1.05 2534 2638
768 5145 5390 1.05 4976 5153 1.04 2530 2634

CPU, Intel Core i9-10900K (3700 MHz)
AVX2 1428 1495 731

The proposed DPFrodo technique is applied to FrodoKEM parameter set FrodoKEM976
to speed up the matrix multiplication. Referring to Table 4, DPFrodo is able to produce
1.07× higher throughput for both RTX 3080 and V100, and 1.05× for T4, against the
conventional implementation utilizing 32-bit integer units. Compared to the state-of-the-
art results produced by the implementation from Gupta et al. [GJCC21], our proposed
implementation is able to achieve 4.37× higher throughput in terms of key exchanges
per second on the same GPU (V100). The main reason for this performance gain is due
to the proposed data packing technique that allows the dot-product computation to be
carried out efficiently, which is better than using conventional 32-bit integer units. Besides
that, their implementation uses many blocks and threads to compute one FrodoKEM,
which requires many communication between threads. This also requires the ues of atomic
instructions to avoid data hazard, which is a huge overhead. Our implemenation avoid this
problem by computing many FrodoKEMs with multiple blocks, and each block computes
one FrodoKEM. The communication between threads is reduced, at the same time avoided
the use of atomic instructions. The DPFrodo key exchange throughput is also higher than
the AVX2 implementation by 8.49×, 6.68×, and 3.61×, on RTX3080, V100, and T4 GPU
platforms, respectively.

4.2 Evaluation of Proposed Saber Implementations (INT32 and DPSaber)
In the Saber implementation, the polynomial convolution is used to perform two types of
operations: inner product and matrix-vector multiplication. Table 5 shows throughput
achieved in the proposed implementation. Considering the case of matrix-vector multi-
plication, when parallel blocks K ≥ 256, DPSaber is able to achieve at least 1.13 higher
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Table 5: Comparison of proposed inner product and matrix-vector multiplication imple-
mentations in Saber KEM based on int 32-bit integer units (INT32) and DP2A (DPSaber)
instructions.

K INT32 DPSaber Sp-up INT32 DPSaber Sp-up INT32 DPSaber Sp-up
RTX 3080 V100 T4

Matrix-Vector (thousands operations per second)
64 500 530 1.06 406 381 0.94 169 177 1.05
128 862 992 1.15 710 702 0.99 193 273 1.42
256 1115 1645 1.48 1008 1136 1.13 236 338 1.43
512 1176 1931 1.64 1247 1475 1.18 258 391 1.52
1024 1185 1931 1.63 1278 1641 1.28 256 395 1.54

Inner Product (thousands operations per second)
64 3289 1533 0.47 1838 962 0.52 574 505 0.88
128 3799 2551 0.67 2976 1812 0.61 617 788 1.28
256 4262 4635 1.09 3731 2874 0.77 718 982 1.37
512 4000 5646 1.41 4903 4276 0.87 794 1157 1.46
1024 4441 6491 1.46 5906 6038 1.02 781 1186 1.52

throughput across all GPU platforms. The similar performance is also observed in the
inner product, with exception of V100, wherein the throughput is only high enough when
K ≥ 1024. Overall, the speed-up gained by DPSaber in the matrix-vector multiplication
is more significant compared to inner product. This is because the proposed DPSaber
requires some pre-computations to pack the polynomials, which introduced some overhead.
Hence, the memory to compute ratio has to be large enough in order to capitalize the
benefits of dot-product instruction. The matrix-vector multiplication is performing more
computations compared to the inner product, which explains why it can achieve a more
significant speed-up even with a small K.

Table 6 shows results of Saber KEM implementation on several GPUs across various
block sizes (K), compared against the CPU AVX2 implementation. On RTX 3080 and
V100, DPSaber is able to achieve higher key exchange (KX/s) rate compared to the
conventional implementation using 32-bit integer (INT32), when parallel blocks (K ) are
more than 256. On T4, DPSaber is better than INT32 for all cases starting from K = 64.
The best result is achieved when the K = 768 or K = 512, where DPSaber is 1.09×,
1.02×, and 1.19× faster than INT32 implementation on RTX 3080, V100, and T4 GPUs,
respectively. The throughput achieved by DPSaber implementation is 4.17×, 4.04×, and
1.06× higher than AVX2 implementation on RTX 3080, V100, and T4, respectively.

4.3 Practical Use Cases of Proposed GPU Implementation
4.3.1 Secure Cloud Computing

Cloud computing is the fundamental technology that supports many important online
activities involving various facets in our daily life. Some online activities that involve
sensitive data need to be protected by security protocols. Key exchange is a fundamental
feature supported by many security protocols such as SSL/TLS [RD18] and IPsec (IKE)
[KHN+10]. KEM can be used to support the key exchange between the client/server for
Internet communication. Under such communication paradigm, the server is required
to process massive amount of KEM (i.e., hundreds of thousands) requests from various
clients within a short period of time. This situation is especially common for e-commerce,
online banking and transactions. It is challenging to cope with such a demanding and
ever increasing computations, even for a very high performance server, as the server itself
may need to handle other computations as well. One of the possible solutions is to offload
the KEM computations to hardware accelerators like FPGA and GPU, which are more
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Table 6: Comparison of proposed Saber KEM implementations based on int 32-bit integer
units (INT32) and DP2A (DPSaber) instructions.

RTX 3080

K Encap Throughput Decap Throughput KX/s
INT32 DPSaber Sp-Up INT32 DPSaber Sp-Up INT32 DPSaber

64 104178 101906 0.98 105535 98980 0.94 52426 50211
128 163172 163995 1.01 154595 153421 0.99 79384 79266
256 206276 220580 1.07 191856 204405 1.07 99402 106092
512 231094 251707 1.09 209578 229542 1.1 109905 120057
768 238367 262209 1.1 219714 236761 1.08 114330 124418

V100
64 27354 26974 0.99 17468 17134 0.98 10660 10478
128 49748 49839 1 58417 55599 0.95 26868 26281
256 80802 81494 1.01 155461 155751 1 53168 53501
512 115921 118909 1.03 182066 181402 1 70826 71827
768 187361 194557 1.04 298764 316310 1.06 117827 120463

T4
64 15548 15620 1 37383 37218 1 10981 11002
128 25749 32596 1.27 48744 53288 1.09 16849 20225
256 37666 48195 1.28 56559 64750 1.14 22609 27630
512 47707 58157 1.22 60700 69480 1.14 26712 31658
768 51888 62400 1.2 61052 70585 1.16 16849 20225

CPU, Intel Core i9-10900K (3700 MHz)
AVX2 52835 53981 29836

specialized in performing batch computation. Proposed high throughput implementation
on various GPU platforms shows that it is possible to perform thousands to hundreds
of thousands key encapsulation/decapsulations per second. By utilizing our proposed
solution, we can effectively offload batch computations of KEMs to GPU and eventually
save a lot of time in CPU, which thus allows the server to execute other tasks. Note that
GPUs are already commonly found in many major cloud computing services like AWS
[AWS21] and IBM [IBM21], as GPUs are widely used for artificial intelligence. Hence, the
use of GPU in accelerating KEMs is a more natural choice compared to FPGA or ASIC
solution, which are more rarely available or costlier.

4.3.2 Secure Internet of Things Communication

Another interesting use case is the IoT, which is an emerging and paradigm shifting
technology. In many IoT applications, the sensor nodes are actively interacting with the
cloud servers. The scale of IoT system ranges from hundreds to thousands of sensor nodes
[CGD+20]. To secure such a communication, symmetric keys used to encrypt the sensor
data, need to be refreshed frequently, which can be done through one of the following
methods:

1. New session keys are produced by the IoT sensor nodes and transmitted to the cloud
server via KEM. Typically, the symmetric key is refreshed in every communication
session using pseudo random number generator (PRNG) or KDF.

2. The cloud server produced many new session keys and send them to each sensor node
via KEM for update. In such a case, the cloud server can decide the time interval for
refreshing the symmetric keys. In other words, the symmetric key can be refreshed
every communication session, every hour, or every day, depending on the required
level of security.
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Method 1 requires the cloud server to decapsulate and obtain session keys, while
method 2 requires the cloud server to encapsulate many session keys. Regardless of the
chosen method, the cloud server needs to perform a lot of KEM computations in a timely
manner. Hence, a high throughput KEM proposed in this paper can be very useful to
offload compute-intensive KEM computations on GPU, leaving the cloud server with
more resources to handle other computations. For instance, this was previously discussed
in a recent publication by Lee et al. [LH21], wherein the concept of KEM-as-a-service
(KEDaaS) was proposed to reduce the burden of the cloud server. The success of such
proposal relies heavily on the high throughput performance of KEM implemented on GPU.
We believe that our proposed implementation techniques are very suitable to this use case.

5 Conclusion
In this paper, we show that the dot-product instruction (DP2A) offered by modern NVIDIA
GPU architectures can be used to accelerate lattice-based cryptographic schemes. A highly
optimized implementation of matrix-matrix multiplication was presented, which allows
the proposed FrodoKEM implementation to be 4.37× faster than the state-of-the-art
work proposed by Gupta et al. [GJCC21]. A novel data structure was also proposed
to allow the parallel polynomial convolution to be computed efficiently using the DP2A
instruction. Note that these two proposed techniques are generic; they can be adapted to
any parallel processor architectures that offer dot-product instructions. For instance, the
latest AMD GPU also supports similar dot-product instructions (e.g., V_DOT2_U32_U16)
[rdn], which is a good candidate to adopt the proposed method to speed-up lattice-based
cryptographic schemes. Moreover, the proposed technique can be used for LAC [LLZ+18],
which is a NIST round 2 candidate.

An interesting extension from this work is to explore possibilities to use dot-product
instruction for NTT computation, which is widely used for some NIST finalist candidates
(e.g., Kyber and Dillithium). A more optimized implementation of random samples
generation (through AES or SHAKE) can also help in improving the performance of
lattice-based cryptographic schemes on GPU platforms.
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