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Abstract
Branching program (BP) is a DAG-based non-uniform com-
putational model for L/poly class. It has been widely used
in formal verification, logic synthesis, and data analysis. As
a special BP, a decision tree is a popular machine learning
classifier for its effectiveness and simplicity. In this work,
we propose a UC-secure efficient multi-party computation
platform for outsourced branching program and/or decision
tree evaluation. We construct a constant-round protocol and
a poly-round protocol. In particular, the overall (online +
offline) communication cost of our poly-round protocol is
O(d(`+ logm+ logn)) and its round complexity is 2d− 1,
where m is the DAG size, n is the number of features, ` is
the feature length, and d is the longest path length. To en-
able efficient oblivious hopping among the DAG nodes, we
propose a lightweight 1-out-of-N shared OT protocol with
logarithmic communication in both online and offline phase.
This partial result may be of independent interest to some
other cryptographic protocols. Our benchmark shows, com-
pared with the state-of-the-arts, the proposed constant-round
protocol is up to 10X faster in the WAN setting, while the
proposed poly-round protocol is up to 15X faster in the LAN
setting.

1 Introduction

Branching program (BP) or binary decision diagram is a
nonuniform computational model for L/poly class. The com-
putation is specified by a directed acyclic graph (DAG) with
a unique source node and several sink nodes; an evaluation
is usually performed by traverse from the source node to a
sink node. BP has been widely used in formal verification,
logic synthesis and data analysis, etc. In particular, decision
tree is a special case of BP, known for its effectiveness and
simplicity as a machine learning classifier with a number of
useful applications, including credit-risk assessment, spam
classification, medical diagnosis.

Privacy concerns often raise, when sensitive information
are involved. In the past decades, the privacy-preserving BP

and decision tree evaluation problem has been extensive stud-
ied in the literature [2, 3, 7, 15, 16, 18, 21, 22, 26]. These works
can be divided into two main categories based on protocol
round complexity: (i) constant-round solutions [3,7,15,21,26],
and (ii) polynomial-round solutions [11, 16, 20, 22]. As sum-
maries in [18], a typical constant-round solution consists of
three functional modules: (a) private feature selection, (b) se-
cure comparison, and (c) oblivious path evaluation. Each step
can be realized by either garbled circuit or homomorphic en-
cryption based protocols. The overall protocol usually needs
to obliviously evaluate each decision node of the DAG for
privacy preservation; therefore, they are suitable for BPs and
decision trees with small DAG size, say less than 220. On the
other hand, polynomial-round solutions can bypass this lim-
itation by obliviously hopping along a DAG path according
to the outcome of previous decision nodes. This is known as
oblivious access index (OAI) [22], which can be realized by
either OT or ORAM. The OT-based OAI private decision tree
evaluation protocol proposed in [22] takes linear communi-
cation (in tree size, m) and 4d rounds. When OAI is realized
by Circuit ORAM [24], the online communication complex-
ity can be reduced to O(d4), but it takes up to O(d2) rounds.
Moreover, the ORAM initialization phase is very slow for
large tree size and/or feature numbers. For instance, it could
take 20 days to insert 216 elements of 512 bits each [14].

The best polynomial-round solution is recently proposed
by Ma et al. [20]. It reduces the online communication cost
to O(d) using key management and conditional OT. However,
prior to each evaluation, the model owner has to prepare and
share a one-time encoding of the tree to the client, which
leads to linear communication in the offline phase. Mean-
while, the protocol proposed by [20] can be modified to fit
the outsourcing setting, where the model owner and the data
owner just need to share their private input to the computing
servers without heavily involved in the evaluation process.
This setting enables the usage scenarios when the features
are spited among multiple clients, and it is friendly to mobile
devices with low-computation resources, such as IoT sensors.
However, their outsourcing solution [20] needs to pad the
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decision tree to a complete tree for privacy preservation, and
it costs O(2d) communication to refresh the shared decision
tree in the offline phase of each evaluation. In addition, their
solution does not naturally support BP evaluation.

1.1 Our approach

In this work, we investigate the outsourced private branch-
ing program and decision tree evaluation problem. We first
propose a new 1-out-of-N shared OT protocol with logarith-
mic communication. In a shared OT, given a vector of shared
messages x := (x0, . . . ,xN−1) and an shared index i ∈ ZN , the
MPC parties can jointly obtain xi in the shared form without
revealing i. Our approach follows the line of research initiated
by Boyle et al. [5], which introduces the distributed point
function (DPF). DPF enables an efficient two-server PIR pro-
tocol, where two servers hold the same set of messages x, and
the client wants to obliviously fetch xi. Namely, the client first
generates a pair of DPF keys encoding a point function fi(x),
which has only one non-zero output, 1, when the input is i.
The client then distributes the DPF keys to the two servers,
and the servers jointly evaluate and return xi :=∑

N−1
j=0 fi( j) ·x j.

Later, Doerner et al. [12] adopt DPF in the MPC setting to
achieve ORAM. In [12], both servers S1 and S2 hold encrypted
messages x̃ j := x j⊕PRFk( j), j ∈ ZN , where k is shared be-
tween them. For a given shared index i ∈ ZN , S1 and S2 first
generates the DPF keys for fi(x) via MPC. After obtaining
the shared x̃i, S1 and S2 then needs to obliviously evaluate
PRFk(i) via MPC to decrypt xi. Therefore, the entire process
is time-consuming.

In this work, we eliminate the needs of aforementioned two
costly MPC operations by introducing more servers. Our plat-
form utilizes four servers S1, . . . ,S4. Suppose S1 and S2 needs
to evaluate the DPF on i, where i is additively shared among
four servers. To avoid MPC generation of DPF keys, we let
a third server (an non-evaluator of this DPF), say S3, gener-
ate a pair of DPF keys (K (1),K (2)) on fϕ(x) for a random
ϕ ∈ ZN in the offline phase. S3 then sends K (1) and K (2) to
S1 and S2, respectively. In online phase, δ := i−ϕ (mod N)
is opened to the evaluators, i.e. S1 and S2. The evaluators
then cyclic-shift the messages vector x to the right δ positions
and evaluate DPF fϕ(x) on the shifted messages to obtain
shared xi. To avoid oblivious PRF evaluation via MPC, we
share the messages x among four servers using replicated addi-
tively shares. That is, S j, j ∈ [4] holds share x( j) := (x( j)

k )k∈ZN ,

where x(1)k = x(2)k , x(3)k = x(4)k , and xk = x(1)k +x(3)k = x(2)k +x(4)k .
During the shared OT, S1 and S2 evaluate DPF on the same
shares of messages x(1)(or x(2)) and obtain x(1)i (or x(2)i ) in the
additively shared form. Meanwhile, S3 and S4 evaluate the
other DPF on the same shares of messages x(3)(or x(4)) and
obtain x(3)i (or x(4)i ) in the additively shared form. Then they
re-randomize shares of xi to ensure the uniform distribution in
local. Namely, xi is additively shared among the four servers.

Our constant-round solution. We construct a 3-round pri-
vate decision tree evaluation protocol, using the proposed
1-out-of-N shared OT protocol as a building block. We as-
sume the model and features are already shared among the
four servers. Note that the model needs to be padded to a
complete tree to avoid privacy leakage. In the first round, the
servers obliviously select corresponding features for all de-
cision nodes. In the second round, for each decision node, a
secure comparison is performed using distributed comparison
function (DCF) [4]. More specifically, S4 plays the role of
DCF key generator while S1 and S2 play the role of DCF eval-
uators. In the offline phase, S4 precomputes the DCF keys and
distribute them to S1 and S2. In the online phase, the servers
mask the difference of its threshold and feature, and open
it to S1 and S2. They then jointly evaluate DCF to securely
compare the corresponding feature with the threshold. When
the feature is less than the threshold, S1 and S2 obliviously set
the left out-going edge cost of the decision node to 0 and the
right out-going edge cost to a random value; vice versa. In
the third round, for each leaf node of the decision tree, S1 and
S2 sum up the edge costs along the path to get its path cost.
They then cyclic shift the vector of path costs of all the leaf
nodes together with the corresponding classification values.
After that, S1 and S2 open the shifted path costs and re-share
the shifted classification values to S3 and S4. They output the
classification value of the leaf node whose path cost is 0 as
the evaluation result to the receiver.

Our polynomial-round solution. For large decision trees
(and BP DAGs), we construct a 2d-round private decision
tree and BP evaluation protocol as follows. Our protocol sup-
ports sparse trees, and it only needs to pad one dummy node
instead of transforming the model into a complete tree. The
dummy node points to itself and all sink nodes point to it.
For uniformity, besides sink nodes, all the other nodes have a
dummy classification value 0. The protocol takes d steps with
2 rounds each. For each step along the evaluation path, the
servers first invoke the proposed shared OT protocols to obliv-
iously fetch the current node together with its corresponding
feature; they then jointly perform a conditional shared OT
(CSOT) to determine the index of the next node together with
the corresponding feature index. In a CSOT, the servers want
to obliviously obtain one of two (shared) messages in the
shared form based on a secure comparison result. It can be
realized by a DCF evaluation and then a shared multiplica-
tion, but it would take 2 rounds. To reduce round complexity,
we divide the four servers into two groups. Each group in-
dependently evaluates a DCF to perform secure comparison
between the corresponding threshold and feature in a parallel.
Subsequently, the shared multiplication can be reduced to a
scalar product which can be evaluated locally without fur-
ther communication. Once a sink node is reached, the servers
would obliviously evaluate the dummy node (repeatedly) until
the protocol reaches d total steps. The classification values of
all nodes in the evaluation path are summed to the final result.
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Table 1: Performance comparison: m is the DAG(or decision tree) size, mc is the number of decision nodes, m̃ is the DAG(or decision tree) size after depth-padding,
m̃c is the number of decision nodes in padded tree, n is the number of features, N is the number of model owners, ` is the bit-length of feature and classification
value, λ1 is the size of symmetric ciphertext (= 128), λ2 is the size of ElGamal ciphertext (= 514 for 40-bit security), λ3 is the size of DGK ciphertext (= 2048 for
40-bit security), λ4 is the size of Paillier ciphertext (= 4096 for 40-bit security), λ5 is the size of BGV(SWHE) public key, λ6 is the size of BGV ciphertext, λ7 is
the size of MKBGV ciphertext, λ8 is the size of AES key (= 128).

Scheme Communication Rounds Outsourcingoffline online

[2] (GGG) ((n+ m̃c) logn+2mc log m̃c−n+2+2m̃c)`λ1+2m̃c(λ1+
log(m̃c +1)) n`(2λ1 +1) 2 ◦

[21] (HHH) - ((mc +n)`+2(mc +1)+n)λ2 4 ◦
[18] (GGH) ((n+mc) logn+2mc logmc−n+2+2mc)`λ1 n`(2λ1 +1)+(3mc +2)λ2 4 ◦
[18] (HGH) 5mc`λ1 (mc +n)λ3 +mc`(2λ1 +1)+(3mc +2)λ2 6 ◦
[1]** - n`λ1 +λ5 +λ6 +(2N +5)λ7 2 •
Ours (constant) 4 ·2d(logn+ log`+d)λ8 2d(3logn+3d +7`) 3 •
[11] 6(2dn`+d(3`− log l−2)+2d−1) 4(2dn`+d(3`− log l−2)+2d−1) log`+d +1 •
[27] 6((2dn+4)`−5) 4((2dn+4)`−5) 2`−1 •
[19]** 6(2d−1)` 3 ·2d−1λ4 +4(2d−1)` d +1 •
[22] (OT) 6d`λ1 d((m+n)`+2(logm+ logn)λ1) 4d ◦
[20] (complete) 2d(`+ logn) d(4λ1 +n`+(7`+8)λ1) 2d−1 •
[20] (sparse) m(`+ logn+λ1 +3d) d((4λ1 +n`)+(7`+8)λ1 +8) 2d−1 ◦
Ours (poly-round) 4d(logn+ logm+ log`)λ8 12d(2(logm+ logn)+ `) 2d−1 •
** Those protocols do not hide the feature index from the servers.

Performance. Table 1 shows the communication and round
complexity comparison between our scheme and the related
works. The schemes that supports outsourcing are marked
with •. m is the DAG size, mc is the number of decision nodes,
m̃ is the DAG size after depth-padding, m̃c is the number of
decision nodes in padded tree, n is the number of features, ` is
the bit-length of feature and classification value. We empha-
size that the concrete security parameters vary a lot among
different schemes, and we use λ1, . . . ,λ8 to differentiate them.
For instance, λ4 refers to the ciphertext size of Paillier en-
cryption, which is 4096 bits for 40-bit security; whereas, the
security parameter λ8 is the 128-bit AES key size in our
schemes. Note that some works (marked with **), e.g., [1,19]
do not protect the feature indices from the servers.

Our constant-round protocol supports outsourcing without
the leakage of feature index, but it needs to pad the DAG to
a complete tree; therefore, its communication size linearly
depends on 2d ; yet it has the best performance for small tree
evaluations in the WAN setting when the network delay is
80ms. (cf. Sec. 8) With regards to polynomial-round solutions,
[20] is the most efficient scheme in the literature; nevertheless,
their offline communication depends on the tree size, and
complete tree padding is needed to support outsourcing. Our
polynomial-round scheme has logarithmic communication in
both online and offline phase.

2 Preliminaries

Notations. Throughout this paper, we use the following no-
tations and terminologies. Let λ ∈ Z be the security param-
eter. Denote a value x indexed by a label b as x(b), while xb

means the value of x power of b. Denote a (2,2)-additive se-
cret sharing in Zn by JxK := {x(1),x(2)}, where x(1)+x(2) = x

(mod n). Denote a (4,4)-additive secret sharing in Zn by
〈x〉 := {x(1),x(2),x(3),x(4)}, where x(1)+x(2)+x(3)+x(4) = x
(mod n). When K is a set, k← K stands for sampling k uni-
formly at random from K, and |K| stands for the size of
K in terms of the number of elements. When f is a algo-
rithm, y← f (x) stands for running f on input x. We map x ∈[
−2`−1,2`−1

]
to Z2` , i.e.,when x is negative, x′ = x+2`−1.

Branching Program and Decision Tree. In this work, we
focus on the deterministic branching program based on DAG
and support its generalizations to integer-valued sink labels
and input features. Let B denote a branching program. B has
a unique source node and one or more sink nodes. Each non-
sink node of B corresponds to an input feature x ∈ Z2` and
has two outgoing edges labeled 0 or 1. Each sink node of B
has a label vi ∈Z2` that determines the output of B evaluation.
For a B , m is defined as the number of its nodes, mc is defined
as the number of its non-sink nodes, and its depth d is the
length of the longest path.

A decision tree is a special branching program whose un-
derlying DAG is a tree. Denote a decision tree by T . Without
loss of generality, we assume T is a binary tree, which can
be met by converting a general tree to a binary tree. T fol-
lows the notations of B . The leaves and root in T correspond
to the sinks and source node in B , respectively. In addition,
each non-sink node of T has a comparison function for input
feature x ∈ Z2` and a given threshold t ∈ Z2` .

The evaluation of T or B is performed by traversing from
the source node to a sink node. Thus the evaluation takes
linear time with respect to d. In detail, T or B receives an
n-dimensional feature vector x := (xi)i∈Zn as evaluation input.
Starting from the source node, for the i-th node, if current
node is a non-sink node, fetch xki from x, where ki ∈ Zn is the
index of the corresponding feature. Then determine the next
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node as

c← (xki < ti) for T , or
c← xki for B.

If c = 1, the next node is connected to outgoing edge labeled
1 of the current node; otherwise, if c = 0, the next node is
connected to outgoing edge labeled 0 of the current node. If
current node is a leaf node (or sink node), the attached vi is
outputted as evaluation result. We refer to the path from the
root to a leaf (or from the source node to the sink node) as the
evaluation path for given x.

In addition, we use depth-padding to indicate that dummy
nodes are introduced in B or T such that its evaluation path
for each input x ∈ (Z2`)

n has the same length. B ′ (or T ′)
stands for B (or T ) after depth-padding, while m̃ is defined
as the number of its nodes and m̃c is defined as the number of
its non-sink nodes.

Function Secret Sharing. Function Secret Sharing (FSS)
is introduced by Boyle et al. [5]. Given a function family
F = { f : Gin→Gout} , a dealer uses the FSS scheme for F
to split a function f ∈ F into two additive shares f1, f2, such
that for ∀x ∈Gin, f1(x)+ f2(x) = f (x) (mod |Gout|).

Distributed Point Function (DPF) is an FSS scheme for the
point function fα,β : Gin→ Gout whose range only has one
non-zero value fα,β(α) = β. It consists of algorithms Gen and
Eval defined as follows:

• Gen(1λ,α,β,Gin,Gout) is a key generation algorithm
that outputs a pair of keys (K (1),K (2)). Each key in-
cludes a random PRF seed s and dlog2 |Gin|e+1 correc-
tion words. Each key is able to efficiently describe the
share of fα,β without revealing α,β.

• Eval(b,K (b),x) is an evaluation algorithm. For ∀x∈Gin,
∀b∈{1,2}, it outputs β

(b)
x ∈Gout, such that β

(1)
x +β

(2)
x =

fα,β(x) (mod |Gout|).
When DPF is used to realize a PIR protocol, the servers need
to run Eval on every element of the input domain. Boyle et
al. [6] provide a more efficient scheme for this case, rather
than executing |Gin| independent invocations of Eval. We
adopt their scheme and denote it by EvalAll(b,K (b)).

Distributed Comparison Function (DCF) is an FSS scheme
for the comparison function f<

α,β : Gin→Gout, outputting β

if 0≤ x < α and 0 if x≥ α. To enable secure comparison on
private input, the recent work of Boyle et al. [4] provides an
FSS schemes (GenIC,EvalIC) for the class of offset compar-
ison functions F IC with given offset rin and rout, such that
for ∀ f IC ∈ F IC, f IC

α,β(x+ rin)− rout = f<
α,β(x). We focus on

the case of rout = 0. Similar to DPF, it consists of a pair of
algorithms (GenIC,EvalIC) as follows:

• GenIC(1λ,α,β,Gin,Gout,rin) generates (K (1),K (2)).
• EvalIC(b,K (b),∆x) outputs c(b) ∈ Z2 for given ∆x :=

x+ rin, such that c(1)+ c(2) = f<
α,β(x) .

Definition 1. Let T ⊂ [2]. We say a two-party FSS scheme
(Gen,Eval) is T -secure for function family F = { f : Gin→
Gout}, if for all non-uniform PPT adversaries A , it holds that

Adv(1λ,A)=

∣∣∣∣∣∣∣∣Pr


( f0, f1,φ)← A(1λ);b←{0,1};
(K (1),K (2))← Gen(1λ, fb);
b∗← A((K (i))i∈T ,φ) :
f0, f1 ∈ F ∧ b = b∗

− 1
2

∣∣∣∣∣∣∣∣
is negligible in λ.

3 System Architecture and Security Model

System architecture. Fig. 1 gives a high-level architecture
of our outsourced private decision tree and BP evaluation
platform. The entities consists of a set of four non-colluding
computing servers S := {S1, . . . ,S4}, the model owner M, the
data owner D, and the receiver R. Initially, the model owner
shares its model M among the computing servers. For each
evaluation, a subset of data owners provide their feature data
to the computing servers in the shared form; the servers then
obliviously evaluate the model on given data and output the
result to a subset of the receivers.

Figure 1: System architecture.

Universal Composability. Our security model is based on
the Universal Composibility (UC) framework [8], which lays
down a solid foundation for designing and analyzing protocols
secure against attacks in an arbitrary network execution envi-
ronment (therefore it is also known as network aware security
model). Roughly speaking, in the UC framework, protocols
are carried out over multiple interconnected machines; to cap-
ture attacks, a network adversary A is introduced, which is
allowed to corrupt some machines (i.e., have the full control
of all physical parts of some machines); in addition, A is
allowed to partially control the communication tapes of all un-
corrupted machines, that is, it sees all the messages sent from
and to the uncorrupted machines and controls the sequence in
which they are delivered. Then, a protocol ρ is a UC-secure
implementation of a functionality F , if it satisfies that for
every network adversary A attacking an execution of ρ, there
is another adversary S—known as the simulator—attacking
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It interacts with a set of computing servers S := {S1, . . . ,Sκ},
the model owner M, the data owner D, the receiver R, and the
adversary Sim. It is parameterized with a set J and a variable
status.
Initially, set J := /0 and status := 0.

Outsourcing phase:
• Upon receiving (MODEL,sid,M ) from the model owner M:

– Send notification (MODEL,sid,M,(M .m,M .d)) to Sim;
– Set status := 1;
– Record M ;

• Upon receiving (DATA,sid,x) from the data owner D, if
status = 1:
– Send notification (DATA,sid,D, |x|) to Sim;
– Set status := 2;
– Record x;

Evaluation phase:
• Upon receiving (EVAL,sid) from server Si ∈ S , if status = 2

does:
– Send notification (Eval,sid,Si) to Sim;
– Set J := J ∪{Si};
– If |J |= κ, run y←M (x);
– Send (RESULT,sid,y) to R via input delayed channel;

Functionality F κ
bp

Figure 2: The ideal functionality F κ
bp

the ideal process that uses F (by corrupting the same set
of machines), such that, the executions of ρ with A and that
of F with S makes no difference to any network execution
environment.

The idea world execution. In the ideal world, the computing
servers S := {S1, . . . ,Sκ}, the model owner M, the data owner
D, and the receiver R only communicate with an ideal func-
tionality F κ

bp during the execution. As depicted in Fig. 2, the
ideal functionality F κ

bp consists of two phases. In the out-
sourcing phase, the model owner M sends its model M to
the ideal functionality. Later, the data owner D sends its data
x to the ideal functionality. Note that the size and depth of
the model as well as the number of features are leaked to the
adversary Sim. During the evaluation phase, once all com-
puting servers has sent (EVAL,sid) to the functionality F κ

bp,
F κ

bp runs y←M (x) and then sends (RESULT,sid,y) to R via
input delayed channel.

The real world execution. In the real world, the model owner
M, the data owner D, and the receiver R, only communicate
with the computing servers S := {S1, . . . ,Sκ} to submit the
input and/or obtain the output. While the computing servers
jointly evaluate the model with privacy preservation. The
protocols are described in Sec. 6, below.

Definition 2. We say protocol Π UC-secure realizes func-
tionality F κ

bp if for all PPT adversaries A there exists a PPT

It interacts with S := {S1, . . . ,S4} and the adversary Sim.

• Upon receiving (FETCH,sid,x( j) := (x( j)
0 , . . . ,x( j)

N−1), i
( j)) from

S j ∈ S :
– Send notification (FETCH,sid,S j) to Sim;
– Record (x( j), i( j));

• Once all players have submitted their input, does:
– Assert x(1) = x(2) and x(3) = x(4);
– Compute i := ∑

4
j=1 i( j) (mod N);

– Upon receiving (RAND,sid,y∗) from Sim for the
corrupted party Sk:
* Pick random y(1), . . . ,y(4) ∈ Z2` under the constraint

∑
4
j=1 y( j) = x(1)i + x(3)i (mod 2`) and y(k) = y∗;

* Send (RETURN,sid,y( j)) to all parties S j ∈ S via private
delayed channel.

Functionality F N,`
sot

Figure 3: The shared OT functionality F N,`
sot

simulator Sim such that for all PPT environment Z it holds:

ExecΠ,A ,Z ≈ ExecF κ
bp,Sim,Z

4 OT with logarithmic communication

In the 1-out-of-N shared OT protocol, given a vector of shared
messages x := (x0, . . . ,xN−1) and an shared index i ∈ ZN , the
MPC parties can jointly obtain xi in the shared form with-
out revealing i. We propose an efficient shared OT protocol
with logarithmic communication in both offline and online
phase. As depicted in Fig. 3, our shared OT is a 4-party com-
putation protocol. The messages are replicated shared, while
the index is additively shared. Let x( j) := (x( j)

0 , . . . ,x( j)
N−1) and

i( j) be the shares of player S j, j ∈ [4]. We have x(1) = x(2)

and x(3) = x(4); messages x = x(1) + x(3) = x(2) + x(4) and
i = ∑

4
j=1 i( j) (mod N). To facilitate our private decision tree

and BP evaluation protocol, the output of shared OT is ad-
ditively shared among the four players; nevertheless, it is
possible to add 1 round share conversion to any other shared
type at the end.

Intuition. Our construction utilizes the DPF technique [5]
in a novel way, and in this work the output of DPF for fi(x)
is additive shared in Z2` instead of GF(2`). Conventionally,
in a DPF-based two-server OT protocol, the client holds an
index i ∈ ZN and both servers hold the messages x ∈ (Z2`)

N .
During the protocol, the client generates a pair of DPF keys
(K (1),K (2)) for fi(x) and then distributes them to the two
servers. The servers then jointly evaluate and return shares
of xi := ∑

N−1
j=0 fi( j) · x j to the client. On the other hand, in

shared OT, the index and messages are both stored in the
shared form. To address the former issue, we let a third server
(an non-evaluator of this DPF), say S3, generate a pair of
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(a) Offline. (b) Online.

Figure 4: Communication diagram for protocol Π
N,`
sot .

DPF keys (K (1),K (2)) on fϕ(x) for a random ϕ ∈ ZN in
the offline phase. S3 then sends K1 and K2 to S1 and S2,
respectively. In online phase, δ := i−ϕ (mod N) is opened to
the evaluators, i.e. S1 and S2. The evaluators then cyclic-shift
the messages vector x to the right δ positions and evaluate
DPF fϕ(x) on the shifted messages to obtain shared xi. To
address the latter issue, the messages are replicated shared,
i.e., x := x(1)+x(3) = x(2)+x(4), such that S1 and S2 (S3 and
S4) hold the same share; therefore, they can perform DPF
evaluation on the shares instead of the plaintext.
Protocol description. Our 1-round shared OT protocol is de-
signed in the online/offline model (cf. Fig. 5). During the
initialization, S1 and S3 agree on a random seed η1 ∈ {0,1}λ;
S2 and S4 agree on a random seed η2 ∈ {0,1}λ; S1 and S2
agree on a random seed η3 ∈ {0,1}λ; S3 and S4 agree on a ran-
dom seed η4 ∈ {0,1}λ. In offline phase, S3 and S1 act as DPF
generator locally invoke DPFZN ,Z2` .Gen with random input
ϕ1,ϕ2← ZN to get DPF keys (K (1)

ϕ1 ,K (2)
ϕ1 ) and (K (1)

ϕ2 ,K (2)
ϕ2 ),

respectively. Then S3 sends K (1)
ϕ1 to S1, K (2)

ϕ1 to S2; S1 sends

K (1)
ϕ2 to S3, K (2)

ϕ2 to S2. In online phase, four servers compute
〈δ1〉 := 〈i〉− Jϕ1K and 〈δ2〉N := 〈i〉− Jϕ2K with fresh random
mask w1 and w2. Then reveal δ1 to S1 and S2, δ2 to S3 and S4,
as shown in Fig. 4b. For j ∈ {1,2}, S j first cyclic-shifts the
share of messages x( j) to the right δ1 positions and denotes the
array after shift as x̃( j). Next, S j invokes DPFZN ,Z2` .EvalAll
with the DPF key that received in offline phase. After that,
S1 and S2 obtain a secret shared array (βk,ϕ1)k∈ZN whose the
only non-zero value is βϕ1,ϕ1 = 1. We have xi = ∑

4
j=1 ŷ( j)

(mod 2`) where

ŷ( j) :=
N−1

∑
k=0

(x̃(1)k ·β
( j)
k,ϕ1

) (mod 2`).

Finally, we re-randomize ŷ( j) to ensure the uniform distribu-
tion.
Efficiency. Π

N,`
sot is a one-round 1-out-of-N shared OT proto-

col with offline communication cost 4λ logN bits and online
communication cost 12` bits.

Initialization:
• S1 and S3 agree on a random seed η1←{0,1}λ;
• S2 and S4 agree on a random seed η2←{0,1}λ.
• S1 and S2 agree on a random seed η3←{0,1}λ;
• S3 and S4 agree on a random seed η4←{0,1}λ.

Offline phase:
• Upon initialization, S1 does:

– Generate ϕ2← ZN and set ϕ
(1)
2 := ϕ2−PRFZN

η3 (sid,0);

– Set K (1)
ϕ2 ,K (2)

ϕ2 ←DPF.Gen(1λ,ϕ2,1,ZN ,Z2` );

– Send K (1)
ϕ2 to S3, K (2)

ϕ2 to S4;
• Upon initialization, S3 dose:

– Generate ϕ1← ZN and set ϕ
(1)
1 := ϕ1−PRFZN

η4 (sid,0);

– Set K (1)
ϕ1 ,K (2)

ϕ1 ←DPF.Gen(1λ,ϕ1,r1,ZN ,Z2` );

– Send K (1)
ϕ1 to S1, K (2)

ϕ1 to S2;

• Upon initialization, S2 sets ϕ
(2)
2 := PRFZN

η3 (sid,0);

• Upon initialization, S4 sets ϕ
(2)
1 := PRFZN

η4 (sid,0);

Online phase:
• Upon receiving (FETCH,sid,x( j), i( j)) from the environment

Z, player S j, j ∈ {1,2} does:

– Set w( j)
1 ← PRFZN

η j (sid,1), w( j)
2 ← PRFZN

η j (sid,2);

– Set δ
( j)
1 := i( j)+w( j)

1 (mod N);

– Set δ
( j)
2 := i( j)−ϕ

( j)
2 +w( j)

2 (mod N);

– Send δ
( j)
1 to S3− j , δ

( j)
2 to S3 and S4;

• Upon receiving δ
(3− j)
1 from S3− j , δ

(3)
1 from S3 , and δ

(4)
1

from S4, player S j, j ∈ {1,2} does:

– Set δ1 := δ
(1)
1 +δ

(2)
1 +δ

(3)
1 +δ

(4)
1 (mod N);

– Set x̃( j)
k := x( j)

k+δ1 (mod N), for k ∈ ZN ;

– Set (β( j)
k,ϕ1

)k∈ZN ←DPF.EvalAll( j,K ( j)
ϕ1 );

– Set ζ j ← PRF
Z2`
η j (sid), ζ3← PRF

Z2`
η3 (sid);

– Return y( j) := ∑
N−1
k=0 (x̃

( j)
k ·β

( j)
k,ϕ1

)+ζ j +(−1) j ·ζ3.

• Upon receiving (FETCH,sid,x( j), i( j)) from the environment
Z, player S j, j ∈ {3,4} does:

– Set w( j)
1 ← PRFZN

η j−2 (sid,1), w( j)
2 ← PRFZN

η j−2 (sid,2);

– Set δ
( j)
1 := i( j)−ϕ

( j−2)
1 −w( j)

1 (mod N);

– Set δ
( j)
2 := i( j)−w( j)

2 (mod N);

– Send δ
( j)
1 to S1 and S2, δ

( j)
2 to S7− j;

• Upon receiving δ
(1)
2 from S1, δ

(2)
2 from S2, and δ

(7− j)
2 from

S7− j , player S j, j ∈ {3,4} does:

– Set δ2 := δ
(1)
2 +δ

(2)
2 +δ

(3)
2 +δ

(4)
2 (mod N);

– Set x̃( j)
k := x( j)

k+δ2 (mod N), for k ∈ ZN ;

– Set (β( j)
k,ϕ2

)k∈ZN ←DPF.EvalAll( j−2,K ( j−2)
ϕ2 );

– Set ζ j−2← PRF
Z2`
η j−2 (sid), ζ4← PRF

Z2`
η4 (sid);

– Return y( j) := ∑
N−1
k=0 (x̃

( j)
k ·β

( j−2)
k,ϕ2

)−ζ j−2 +(−1) j ·ζ4.

Protocol Π
N,`
sot

Figure 5: 1-out-of-n shared OT protocol Π
N,`
sot .

Security. We show the security of our 1-out-of-N shared OT
Protocol Π

N,`
sot with the following theorem, and its proof can

be found in Appendix A.
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It interacts with S := {S1, . . . ,S4} and the adversary Sim.

• Upon receiving (COMPFETCH,sid,x( j),m( j)) from S j ∈ S :
– Send notification (COMPFETCH,sid,S j) to Sim;
– Record (x( j),m( j));

• Once all players have submitted their input, does:
– For k ∈ {0,1}, compute xk := ∑

4
j=1 x( j)

k (mod 2`1 ) and

mk := ∑
4
j=1 m( j)

k (mod 2`2 );
– Set b← (m0 < m1);
– Upon receiving (RAND,sid,y∗) from Sim for the

corrupted party Sk:
* Pick random y(1), . . . ,y(4) ∈ Z2`1 under the constraint

∑
4
j=1 y( j) = x1−b (mod 2`1 ) and y(k) = y∗;

* Send (RETURN,sid,y( j)) to all parties S j ∈ S via private
delayed channel.

Functionality F `1,`2
csot

Figure 6: The conditional shared OT functionality F `1,`2
csot

Theorem 1. Let DPFZN ,Z2` be a secure function secret shar-
ing scheme for point function fα,β(x) : ZN 7→ Z2` with adver-

sarial advantage Adv
ZN ,Z2`
DPF (1λ,A). Let PRFZN : {0,1}λ×

{0,1}in 7→ ZN be a secure pseudorandom function with ad-
versarial advantage AdvPRFZN (1

λ,A). The protocol Π
N,`
sot as

described in Fig. 5 UC-realizes F N,`
sot as described in Fig. 3

against semi-honest adversaries who can statically corrupted
up to 1 server with distinguishing advantage

3 ·AdvPRFZN (1
λ,A)+Adv

ZN ,Z2`
DPF (1λ,A) .

5 Conditional Shared OT

In the conditional shared OT protocol, given a vector of shared
messages x := (x0,x1) ∈ (Z2`1 )

2 and two shared keywords
m := (m0,m1) ∈ (Z2`2 )

2, the MPC players first securely com-
pare b← (m0 < m1) and then obtain x1−b in the shared form
without revealing b. As depicted in Fig. 6, our conditional
shared OT is a 4-party computation protocol. The messages
and keywords are additively shared among the 4 parties. Let
x( j) := (x( j)

0 ,x( j)
1 ) and m( j) := (m( j)

0 ,m( j)
1 ) be the shares of

player S j, j ∈ [4]. We have x = ∑
4
j=1 x( j) and m = ∑

4
j=1 m( j).

Intuition. Naively, the conditional shared OT protocol can
be realized by a secure comparison followed by a oblivious
selection (a.k.a. multiplication) protocol. However, this would
result a 2-round protocol. We compress the round complex-
ity to one. In our protocol, the servers are divided into two
groups. ∆m := m1−m0 is opened to each groups with the
corresponding DCF offset, while the (4,4)-addictive secret
sharing messages are converted to replicated secret sharing,
where the servers of each group have the same shares. The
two groups then perform two DCF evaluations in a parallel.
Subsequently, the oblivious selection can be computed locally

Initialization:
• S1 and S3 agree on a random seed η1←{0,1}λ;
• S2 and S4 agree on a random seed η2←{0,1}λ;
• S1 and S2 agree on a random seed η3←{0,1}λ;
• S3 and S4 agree on a random seed η4←{0,1}λ.

Offline phase:
• Upon initialization, S1 dose:

– Generate ρ2← Z2`2 and set ρ
(1)
2 := ρ2−PRF

Z
2`2

η3 (sid,0);

– K (1)
ρ2 ,K (2)

ρ2 ←DCF.GenIC(1λ,2`2−1,1,Z2`2 ,Z2`1 ,ρ2);

– Send K (1)
ρ2 to S3, K (2)

ρ2 to S4;
• Upon initialization, S3 dose:

– Generate ρ1← Z2`2 and set ρ
(1)
1 := ρ1−PRF

Z
2`2

η4 (sid,0);

– K (1)
ρ1 ,K (2)

ρ1 ←DCF.GenIC(1λ,2`2−1,1,Z2`2 ,Z2`1 ,ρ1);

– Send K (1)
ρ1 to S1, K (2)

ρ1 to S2;

• Upon initialization, S2 sets ρ
(2)
2 := PRF

Z
2`2

η3 (sid,0);

• Upon initialization, S4 sets ρ
(2)
1 := PRF

Z
2`2

η4 (sid,0).

Online phase:
• Upon receiving (COMPFETCH,sid,x( j),m( j)) from the

environment Z, player S j, j ∈ {1,2} does:

– Set w( j)
m,1← PRF

Z
2`2

η j (sid,1), w( j)
m,2← PRF

Z
2`2

η j (sid,2);

– Set w( j)
x,0← PRF

Z
2`1

η j (sid,1), w( j)
x,1← PRF

Z
2`1

η j (sid,2);

– Set ∆m( j)
ρ1 := m( j)

1 −m( j)
0 +w( j)

m,1 (mod 2`2 );

– Set ∆m( j)
ρ2 := m( j)

1 −m( j)
0 +ρ

( j)
2 +w( j)

m,2 (mod 2`2 );

– Set x̃( j)
i := x( j)

i +w( j)
x,i (mod 2`1 ), for i ∈ {0,1};

– Send (∆m( j)
ρ1 , x̃

( j)) to S3− j , ∆m( j)
ρ2 to S3 and S4;

• Upon receiving (∆m(3− j)
ρ1 , x̃(3− j)) from S3− j , (∆m(3)

ρ1 , x̃
(3))

from S3, (∆m(4)
ρ1 , x̃

(4)) from S4, player S j, j ∈ {1,2} does:

– Set ∆mρ1 := ∑
4
i=1 ∆m(i)

ρ1 (mod 2`2 );

– Set x̂( j)
0 := ∑

4
i=1 x̃(i)0 (mod 2`1 ), x̂( j)

1 := ∑
4
i=1 x̃(i)1 (mod 2`1 );

– Set β
( j)
1 ←DCF.EvalIC( j,K ( j)

ρ1 ,∆mρ1 );

– Set ζ j ← PRF
Z

2`1
η j (sid,3), ζ3← PRF

Z
2`1

η3 (sid,1);

– y( j) := β
( j)
1 · x̂

( j)
0 +( j−1−β

( j)
1 ) · x̂( j)

1 +ζ j +(−1) j ·ζ3;
• Upon receiving (COMPFETCH,sid,x( j),m( j)) from the

environment Z, player S j, j ∈ {3,4} does:

– Set w( j)
m,1← PRF

Z
2`2

η j−2 (sid,1), w( j)
m,2← PRF

Z
2`2

η j−2 (sid,2);

– Set w( j)
x,0← PRF

Z
2`1

η j−2 (sid,1), w( j)
x,1← PRF

Z
2`1

η j−2 (sid,2);

– Set ri← PRF
Z

2`1
η4 (sid, i), i ∈ [4];

– Set x̂( j)
0 := r1 + r2 (mod 2`1 ), x̂( j)

1 := r3 + r4 (mod 2`1 );

– Set ∆m( j)
ρ1 := m( j)

1 −m( j)
0 +ρ

( j−2)
1 −w( j)

m,1 (mod 2`2 );

– Set ∆m( j)
ρ2 := m( j)

1 −m( j)
0 −w( j)

m,2 (mod 2`2 );

– Set x̃( j)
i := x( j)

i − r j+2i−2−w( j)
x,i (mod 2`1 ), i ∈ {0,1};

– Send {∆m( j)
ρ1 , x̃

( j)} to S1 and S2, ∆m( j)
ρ2 to S7− j;

• Upon receiving ∆m(1)
ρ2 from S1, ∆m(2)

ρ2 from S2, ∆m(7− j)
ρ2 from

S7− j , player S j, j ∈ {3,4} does:

– ∆mρ2 := ∑
4
i=1 ∆m(i)

ρ2 (mod 2`2 );

– β
( j−2)
2 ←DCF.EvalIC( j−2,K ( j−2)

ρ2 ,∆mρ2 );

– Set ζ j−2← PRF
Z

2`1
η j−2 (sid,3), ζ4← PRF

Z
2`1

η4 (sid,5);

– y( j) := β
( j−2)
2 · x̂( j)

0 +( j−3−β
( j−2)
2 ) · x̂( j)

1 −ζ j−2+(−1) j ·ζ4.

Protocol Π
`1,`2
csot

Figure 7: Conditional shared OT Protocol Π
`1,`2
csot .
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(a) Offline. (b) Online.

Figure 8: Communication diagram for protocol Π
`1,`2
csot .

by scalar product.

Protocol description. Our 1-round conditional shared OT is
depicted in Fig. 7. During the initialization, S1 and S3 agree on
a random seed η1 ∈ {0,1}λ; S2 and S4 agree on a random seed
η2 ∈ {0,1}λ; S1 and S2 agree on a random seed η3 ∈ {0,1}λ;
S3 and S4 agree on a random seed η4 ∈ {0,1}λ.

In offline phase, S1 invokes DCF2`2 ,2`1 .GenIC with random
offset ρ2 and input 2`−1 (the decomposition point of pos-
itive and negative numbers) to generate (K (1)

ρ2 ,K (2)
ρ2 ), then

distributes them to S3 and S4; S3 invokes DCF2`2 ,2`1 .GenIC

with the other random offset ρ1 and input 2`−1 to generate
(K (1)

ρ1 ,K (2)
ρ1 ), then distributes them to S1 and S2.

In online phase, four servers reveal
〈
∆mρ1

〉
:= 〈m1〉 −

〈m0〉+ρ1 to S1 and S2, reveal
〈
∆mρ2

〉
:= 〈m1〉−〈m0〉+ρ2 to

S3 and S4. Meanwhile, S3 and S4 generate x̂(3) := (x̂(3)0 , x̂(3)1 )

and x̂(4) := (x̂(4)0 , x̂(4)1 ) by PRF with the same random seed η4

respectively, such that x̂(3) = x̂(4); then four servers compute
〈x̃〉 := 〈x〉− Jx̂(3)K (mod 2`1) and reveal it to S1 and S2 with
the help of fresh random mask w1 and w2. S1 denotes x̃ by
x̂(1), S2 denotes x̃ by x̂(2), where messages x = x̂(1)+ x̂(3) =
x̂(2)+ x̂(4) as shown in Fig. 8. After that, servers locally eval-
uate DCF with received key and masked input to obtain the
shared comparison result β1,β2, then compute scalar multipli-
cation and re-randomize the result to get the shares of selected
message 〈y〉 in uniform distribution.

Efficiency. Π
`1,`2
csot is a one-round protocol with offline com-

munication cost 4λ log`2 bits and online communication cost
12(`1 + `2) bits.

Security. We show the security of our conditional shared OT
Protocol Π

`1,`2
csot with the following theorem, and its proof can

be found in Appendix B.

Theorem 2. Let DCF
Z

2`2
,Z

2`1
IC be a secure function secret

sharing scheme for offset comparison function f IC
α,β(x) :

Z2`2 7→ Z2`1 with adversarial advantage Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A).

Let PRF
Z

2`1 : {0,1}λ × {0,1}in 7→ Z2`1 be a secure

Figure 9: Complete tree depth-padding.

pseudorandom function with adversarial advantage
Adv

PRF
Z

2`1
(1λ,A). Let PRFZ2`2 : {0,1}λ×{0,1}in 7→ Z2`2

be a secure pseudorandom function with adversarial advan-
tage Adv

PRF
Z

2`2
(1λ,A). The protocol Π

`1,`2
csot as described

in Fig. 7 UC-realizes F `1,`2
csot as described in Fig. 6 against

semi-honest adversaries who can statically corrupted up to 1
server with distinguishing advantage

8 ·Adv
PRF

Z
2`1

(1λ,A)+3 ·Adv
PRF

Z
2`2

(1λ,A)

+Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A).

6 Private Decision Tree and BP Evaluation

In this section, we propose two solutions for outsourced pri-
vate decision tree and BP evaluation. The first solution is a
constant-round protocol for (small) complete trees; whereas,
the second solution is a polynomial-round protocol for BP
and (large) sparse tree evaluation.

6.1 Constant-Round Protocol
Our constant-round protocol requires three communication
rounds and a complete decision tree, which can be trans-

Figure 10: Path cost diagram.
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• Upon receiving (MODEL,sid,(P ,v)) from the environment
Z, the model owner M:
– foreach element i in P :

* Set k(1)i ← Zn , k(2)i := ki− k(1)i (mod n)

* Set t(1)i ← Z2` , t(2)i := ti− t(1)i (mod 2`);

* Set P(1)
i := {k(1)i , t(1)i } , P(2)

i := {k(2)i , t(2)i };
– foreach element i in v:

* v(1)i ← Z2` , v(2)i := vi− v(1)i (mod 2`);
– Send (P (1),v(1)) to S1, (P (2),v(2)) to S2.

• Upon receiving (DATA,sid,x) from the environment Z, the
data owner D:
– foreach feature xi ∈ x:

* Generate x(1)i ← Z2` , set x(2)i := x(1)i ;

* Set x(3)i := xi− x(1)i (mod 2`), x(4)i := x(3)i ;
– Send x( j) to S j , j ∈ [4].

Outsourcing Protocol Πconst
os

Figure 11: Outsourcing Protocol Πconst
os .

formed from a normal DAG by adding dummy nodes as illus-
trated in Fig. 9, i.e. m̃ = 2d , m̃c = 2(d−1)−1 . All leaf nodes
extended by dummy decision nodes have the same classifi-
cation value as real path. We use a vector, denoted as P , to
represent all decision nodes and complete tree structure. Each
Pi ∈ P consists of the input selection index ki and a threshold
value ti. The left and right child of Pi are P2i+1 and P2i+2,
respectively. The leaf nodes’ classification values form the
other vector, denoted as v.

Our protocol selects corresponding features and compares
thresholds with them for all decision nodes. For each Pi ∈ P ,
S1 and S2 obliviously set its “selected” out-going edge cost
(based on the comparison result) to 0, and set the other out-
going edge cost to random value. Then S1 and S2 sum up the
share of edge costs along all paths to get a vector of path costs
for all leaf nodes in a shared form. As shown in Fig 10, only
one path cost takes the value of 0 and the corresponding leaf
nodes’ classification value is the evaluation result.

Outsourcing. First of all, the model owner M invokes Πconst
os

as described in Fig. 11 to generate the additive share of P ,v
and distribute them to S1 and S2. This step only needs to be
performed once for a given model. Before the start of each
evaluation, the data owner D shares the input features x :=
(xi)i∈Zn to four servers in replicated secret sharing. After the
exection, for j ∈ [4], S j hold the shares x( j) := (x( j)

i )i∈Zn , such
that x(1) = x(2), x(3) = x(4) and x = x(1)+x(3) = x(2)+x(4).
Evaluation. Our constant-round protocol follows the modular
design framework of [18]. As depicted in Fig. 12, it consists
of feature selection, comparison and path evaluation.

Feature selection. For each Pi ∈ P , with the secret shared
index JkiK in S1 and S2 , four servers construct the (4,4)-
secret-sharing 〈ki〉 by setting k(3)i := 0 and k(3)i := 0 in S3
and S4. Then four servers invoke our 1-out-of-N shared OT

Initialization:
• S1 and S3 agree on a random seed η1←{0,1}λ;
• S2 and S4 agree on a random seed η2←{0,1}λ;
• S1 and S2 agree on a random seed η3←{0,1}λ.

Offline phase:
• Upon initialization, S3 dose:

– for i := 0 to m̃c−1:

* Generate ρi← Z2` and set ρ
(1)
i := ρi−PRF

Z2`
η4 (sid, i);

* K (1)
i,ρ ,K (2)

i,ρ ←DCF.GenIC(1λ,2`−1,1,Z2` ,Z2λ ,ρi);

– Send (K (1)
i,ρ )i∈Zm̃c

to S1, (K (2)
i,ρ )i∈Zm̃c

to S2;

• Upon initialization, S4 sets ρ
(2)
i := PRF

Z2`
η4 (sid, i) , i ∈ Zm̃c .

Online phase:
• Upon receiving (Eval,sid) from the environment Z,

S j, j ∈ {1,2} does:
– for i := 0 to m̃c−1:

* Set k̃( j)
i := k( j)

i , w( j)
i ← PRF

ZZ2`
η j (sid, i);

* Send (FETCH,sid,x j, k̃( j)
i ) to F n,`

sot to get x( j)
ki

;

* Set ∆x( j)
i := t( j)

i − x( j)
ki

+w( j)
i (mod 2`);

– Send ∆x( j) to S3− j;
• Upon receiving ∆x(3− j) from S3− j , ∆x(3) from S3 , and ∆x(4)

from S4, player S j, j ∈ {1,2} does:
– for i := 0 to m̃c−1:

* Set ∆xi := ∑
4
q=1 ∆x(q)i (mod 2`);

* Set b( j)
i ←DCF.EvalIC( j,K ( j)

i,ρ ,∆xi);

* Set ri← PRF
Z

2λ

η3 (sid, i)

* Set e( j)
i,1 := ( j−1−b( j)

i ) · ri (mod 2λ);

* Set e( j)
i,2 := b( j)

i · ri (mod 2λ);

– Set δ← PRF
Zm̃c+1
η3 (sid,0);

– for i := 0 to m̃c :
* Sum up the share of edge costs along i-th leaf node’s

path to get c( j)
i , set ĉ( j)

i := c( j)
i−δ (mod mc+1);

* Set v̂( j)
i,1 ← Z2` , v̂( j)

i,2 := v( j)
i−δ (mod m̃c+1)− v̂( j)

i,1 (mod 2`);

– Send (ĉ( j)
i , v̂( j)

i,1 )i∈Zm̃c+1 to S3, (ĉ( j)
i , v̂( j)

i,2 )i∈Zm̃c+1 to S4;
• Upon receiving (Eval,sid) from the environment Z,

S j, j ∈ {3,4} does:
– for i := 0 to m̃c−1:

* Set k̃( j)
i := 0, w( j)

i ← PRF
Z2`
η j−2 (sid, i);

* Send (FETCH,sid,x j, k̃( j)
i ) to F n,`

sot to get x( j)
ki

;

* Set ∆x( j)
i := ρ

( j−2)
i − x( j)

ki
−w( j)

i (mod 2`);

– Send ∆x( j) to S1 and S2;
• Upon receiving (ĉ(1)i , v̂(1)i, j−2)i∈Zm̃c+1 from S1,

(ĉ(2)i , v̂(2)i, j−2)i∈Zm̃c+1 from S2, player S j, j ∈ {3,4} does:

– for i := 0 to m̃c :

* ĉi := ĉ(1)i + ĉ(2)i (mod 2λ);

* if ĉ = 0 set v̂( j−2)
i := v̂(1)i, j−2 + v̂(2)i, j−2 (mod 2`) and return

v̂( j−2)
i to the receiver R.

Constant-round Evaluation Protocol Πconst
eval

Figure 12: Constant-round Evaluation Protocol Πconst
eval in the

Fsot-hybrid model.
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Figure 13: Sparse DAG depth-padding.

protocol described in Sec. 4 to obtain corresponding feature
〈xki〉.
Comparison. Our comparison protocol is based on the DCF
scheme [4], where S4 plays the role of generator while S1 and
S2 play the role of evaluator. To avoid leaking features and
thresholds to servers, we let S4 precompute the DCF keys for
∀Pi ∈ P , which compares the input value with a random value
ρi, and distribute the keys to evaluators S1 and S2. In online
phase, four servers jointly compute ∆xi := ti− xki +ρi and
open it to DCF evaluators, S1 and S2. Then S1 and S2 are able
to obtain shared comparison result vector {JbiK}i∈Zm̃c

, where
bi := 1 if ti− xki is positive and bi := 0 otherwise.
Path evaluation. S1 and S2 first generate random masks
(ri)i∈Zm̃c

together. Next, for each decision node Pi ∈ P , S1
and S2 locally compute its left out-going edge cost Je`,iK :=
J(1− bi) · riK and right out-going edge cost Jer,iK := Jbi · riK.
For each leaf node vi ∈ v, S1 and S2 sum up the edge costs
along its path from the root to get its path cost ci in shared
form. Subsequently, S1 and S2 generate a random number
δ←Zm̃c+1 together. Denote path cost vector as C (cf. Fig. 10).
S1 and S2 circular shift the JC K and JvK to the right δ positions.
Then open C and reshare v to S3 and S4. S3 and S4 can easily
select the classification value share vi of evaluation result ac-
cording to the position i of ci = 0. Finally, they return the v(1)i

and v(2)i to the receiver.

6.2 Polynomial-Round Protocol

Security. We show the security of our constant-round protocol
(Πconst

os , Πconst
eval ) with the following theorem, and its proof can

be found in Appendix C.

Theorem 3. Let DPF
Z2` ,Z2λ

IC be a secure function secret shar-
ing scheme for offset comparison function fα,β(x) :Z2` 7→Z2λ

with adversarial advantage Adv
Z2` ,Z2λ

DCFIC
(1λ,A). Let PRFZ2` :

{0,1}λ×{0,1}in 7→ Z2` be a secure pseudorandom function
with adversarial advantage Adv

PRF
Z

2`
(1λ,A). Let PRFZ2λ :

{0,1}λ×{0,1}in 7→ Z2λ be a secure pseudorandom function
with adversarial advantage Adv

PRF
Z

2λ
(1λ,A). The protocol

Figure 14: Overview of our polynomial-round protocol.

Πconst
os as described in Fig. 11 and Πconst

eval as described in
Fig. 12 UC-realizes F 4

bp as described in Fig. 2 in the Fsot-
hybrid model against semi-honest adversaries who can stati-
cally corrupted up to 1 server with distinguishing advantage

3mc ·Adv
PRF

Z
2`
(1λ,A)+(mc +1) ·Adv

PRF
Z

2λ
(1λ,A)

+mc ·Adv
Z2` ,Z2λ

DCFIC
(1λ,A)

Our polynomial-round protocol supports sparse tree and
BP evaluation. To hide the model structure, we introduce only
one dummy node instead of transforming the sparse decision
tree into a full tree, i.e. m̃ = m+1. Let the dummy node point
to itself and all leaf nodes point to it as shown in Fig. 13. The
main idea is that, during privacy-preserving evaluation, once
a sink node is reached, servers will obliviously access this
dummy node (repeatedly) until the protocol reaches d steps.
Thus, the length of evaluation path is always d.

We use a vector to describe this padded model, which in-
cludes all kinds of nodes. Without confusion, we also denote
it as P . Each Pi ∈ P consists of the index I left

i and the input
selection index J left

i of its left child, the index I right
i and the

input selection index J right
i of its left child, a threshold value ti

and a classification value vi of Pi. If Pi represents the dummy
node, I left

i and J right
i take the value of the index of dummy

node m̃, J right
i and J right

i take random values, and vi is equal
to 0. If Pi represents a decision node, vi is dummy data such
that vi = 0. If Pi represents a sink node, I left

i , I right
i , J right

i and
J right

i are the same dummy data as the dummy node. Since
there only is one leaf node in a path, and only if v belongs
to a leaf node the value of v is non-zero, the accumulation of

10



• Upon receiving (MODEL,sid,P ) from the environment Z,
the model owner M:
– Build the position mapping, denote i-th element as

Pi := {I left
i ,I right

i ,J left
i ,J right

i , ti,vi};
– for i := 0 to m̃−1 do:

* Set I left,(1)
i ← Zm̃ , I left,(2)

i := I left,(1)
i ;

* Set I left,(3)
i = I left,(4)

i := I left
i − I left,(1)

i (mod m̃);

* Set J left,(1)
i ← Zn , J left,(2)

i := J left,(1)
i ;

* Set J left,(3)
i = J left,(4)

i := J left
i − J left,(1)

i (mod n);

* Set I right,(1)
i ← Zm̃ , I right,(2)

i := I right,(1)
i ;

* Set I right,(3)
i = I right,(4)

i := I right
i − I right,(1)

i (mod m̃);

* Set J right,(1)
i ← Zn , J right,(2)

i := J right,(1)
i ;

* Set J right,(3)
i = J right,(4)

i := J right
i − J right,(1)

i (mod n);

* Set t(1)i ← Z2λ , t(2)i := t(1)i ;

* Set t(3)i = t(4)i := ti− t(1)i (mod 2λ);

* Set v(1)i ← Z2λ , v(2)i := v(1)i ;

* Set v(3)i = v(4)i := vi− v(1)i (mod 2λ);
– Set id1 = 1 and k1 is the feature index of the source note;
– Generate id

(1)
1 , . . . , id

(4)
1 ← Zm̃ , id1 = ∑

4
i=1 id

(i)
1 (mod m);

– Generate k(1)1 ,k(2)1 ,k(3)1 ,k(4)1 ← Zn, k1 = ∑
4
i=1 k(i)1 (mod n);

– Send (P ( j), id
( j)
1 ,k( j)

1 ) to S j , j ∈ [4];
• Upon receiving (DATA,sid,x) from the environment Z, the

data owner D:
– foreach feature xi ∈ x:

* Generate x(1)i ← Z2` , set x(2)i := x(1)i ;

* Set x(3)i := xi− x(1)i (mod 2`), x(4)i := x(3)i ;
– Send x( j) to S j , j ∈ [4].

Outsourcing Protocol Π
poly
os

Figure 15: Outsourcing Protocol Πpoly
os .

v of all nodes in the evaluation path is exactly equal to the
classification value of the reached leaf node.

Our polynomial-round protocol requires 2d rounds. Refer-
ring to the example in Fig. 14, for i-th step in the evaluation,
servers first obliviously fetch the “current node” Pidi and the
appropriate feature xki in the Round 1. Then compute:

res := res+ vi,

c← (xki < ti).

and indicates the next node index is I left
i (c = 1) or I right

i
(c = 0) in the Round 2. After repeating the above process d
times, the 〈res〉 is open to receiver as the evaluation result.
Outsourcing. For polynomial-round protocol, the data owner
outsourcing protocol is identical to our constant-round
scheme, but the model owner outsourcing protocol is different.
As described in Fig. 15, for each Pi ∈ P , the model owner M
generates replicated shares P( j)

i , j ∈ [4]. Send them to S1,S2
and S3,S4 respectively. In order to make servers aware of
the evaluation entry, M shares the element index id1 and the
feature selection index kid1 of the root node to four servers in
(4,4)-additive secret sharing.

• Upon receiving (Eval,sid) from Z, each server S j, j ∈ [4] do:

– for i := 1 to d:
* Send (FETCH,sid,x( j),k( j)

i ) to F n,`
sot to get x( j)

ki
;

* Send (FETCH,sid,P ( j), id
( j)
i ) to F m̃,∗

sot to get

P( j)
idi

:= (I left,( j)
idi

,I right,( j)
idi

,J left,( j)
idi

,J right,( j)
idi

, t( j)
idi

,v( j)
idi
)a;

* Set res( j) := res( j)+ v( j)
idi

(mod 2`);

* if i≥ d, return res( j) to the receiver R and break;

* Obliviously fetch id
( j)
i+1 and k( j)

i+1
b:

· Send (COMPFETCH,sid,(I left,( j)
idi

,I right,( j)
idi

),(x( j)
ki
, t( j)

idi
)) to

F log m̃,`
csot

· Send (COMPFETCH,sid,(J left,( j)
idi

,J right,( j)
idi

),(x( j)
ki
, t( j)

idi
)) to

F logn,`
csot

aHere, we invoke F m̃,∗
sot for readability. In practice, the

servers select each item for the element P( j)
idi

by the same DPF
keys but different output bit-lengths of evaluation. And all selec-
tions of i-th step are performed in the same round, including the
feature selection of the previous row. Details of our oblivious
selection subroutine can be found in Appendix E.

bServers select idi+1 and ki+1 based on the same DCF keys
and during the same round.

Polynomial-round Evaluation Protocol Π
poly
eval

Figure 16: Polynomial-round Evaluation Protocol Π
poly
eval in

the {Fsot,Fcsot}-hybrid model.

Evaluation. For i-th step in the evaluation, with the secret
shared element index 〈ki〉 and feature index 〈idi〉 , servers
invoke the 1-out-of-N shared OT protocol to fetch the feature
〈xki〉 and the element 〈Pidi〉 in a parallel. For readability, we
describe our protocol Π

poly
eval in the {Fsot,Fcsot}-hybrid model

in Fig. 16, and the details of our real-world oblivious selection
subroutine Πsel can be found in Appendix E. Then servers
sum the vidi for path evaluation, which is a free operation in
our protocol. If i < d, servers invoke the conditional shared
OT protocol to compare the threshold and corresponding fea-
ture of current node and obtain the element index 〈ki+1〉 and
feature index 〈idi+1〉 of next node; then repeat the above op-
eration. If i = d, each server returns its share of res to the
requester, who is able to reconstruct the classification result
locally.

Security. We show the security of our polynomial-round pro-
tocol (Πpoly

os , Π
poly
eval ) with the following theorem, and its proof

can be found in Appendix D.

Theorem 4. The protocol Πpoly
os as described in Fig. 15 and

Π
poly
eval as described in Fig. 16 UC-realizes F 4

bp as described in
Fig. 2 in the {Fsot,Fcsot}-hybrid model against semi-honest
adversaries who can statically corrupted up to 1 server.
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Table 2: Parameters of the models in the UCI dataset.

Decision Tree Features Depth Nodes
Iris 4 4 7

Wine 7 5 11
Linnerud 3 6 19

Breast 12 7 21
Digits 47 15 168

Spambase 57 17 58
Diabetes 10 28 393
Boston 13 30 425

7 Malicious Security

We can upgrade the proposed protocols to tolerate malicious
adversary; that is the malicious behavior can be detected but
without identifiable abort. First of all, as shown in [4], it is
possible to modify the DPF and DCF schemes such that the
correctness of the evaluation result can be tested when one
of the evaluators are malicious. More specifically, we gener-
ate two pairs of FSS keys. One pair express the same point
function (or less than function) f as in semi-honest protocol,
and the other express fα := α f , where α←Gout. To detect
malicious FSS key generator behavior, we let the two non-
evaluation servers (say S1 and S2) generate the same key pairs
with a common random seed; therefore, the corresponding
keys are identical. We let them independently send the FSS
keys1 to the evaluation servers S3 and S4, respectively. If one
of the FSS key generators is malicious, the FSS keys would be
different. We rest MPC operations can be upgraded to achieve
malicious security using the linear MAC techniques presented
in SPDZ protocols [9, 10].

8 Implementation and Benchmarks

The proposed constant-round scheme and polynomial-round
scheme are implemented in C++. The DCF and DPF schemes
are improved from [23]. Since Ma et al. [20] did not re-
lease their source code, we re-implement their scheme us-
ing AES-NI and EMP-toolkits [25]. In addition, the state-
of-the-art constant-round protocols are adopted from [17]
for performance comparison. Our benchmarks are executed
on a desktop with Intel(R) Core i7 8700 CPU @ 3.2 GHz
running Ubuntu 18.04.2 LTS; with 6 CPUs, 32 GB Mem-
ory and 1TB SSD. There network environments are sim-
ulated: local-area network (LAN, RTT: 0.1ms, bandwidth:
1Gbps), metropolitan-area network (MAN, RTT: 6ms, band-
width: 100Mbps), and wide-area network (WAN, RTT: 80ms,
bandwidth: 40Mbps).

Our experiment uses datasets from the UCI machine learn-
ing repository [13], which consists of Iris, Wine (chemical
analysis), Linnerud (physical exercise performance), Breast

1One of them could be hash for efficiency.

Table 3: Offline phase running time comparison (ms) between
our (2d-1)-round protocol and MTZC [20] in the outsourced
setting. (Network setting: MAN (100Mbps/6ms RTT) and
WAN (40Mbps/80ms RTT)

Linnerud Breast Digits Spambase

MAN MTZC 4.319 5.190 102.4 177.5
Ours(Poly) 9.14 13.21 41.54 46.32

WAN MTZC 7.541 11.56 615.9 879.9
Ours(Poly) 9.88 15.26 164.7 196.9

(cancer), Digits, Spambase, Diabetes, and Boston (housing
value). Their concrete parameters are shown in Table 2. We set
secure parameter λ to 128, feature bit-length ` to 64. Note that
the performance results of the related works, e.g., MTZC [20],
are slightly different from that presented in the original papers
due to different implementation and experiment environment.
The main overhead of the offline phase of our protocol is to
generate the FSS key. Table 3 shows the offline phase perfor-
mance comparison between our polynomial-round protocol
and MTZC [20] in the outsourced setting. Compared with
MTZC [20], our protocol is slightly slower for small DAG
models, while it is about 4X faster for big DAG models.

Fig.17 illustrates the online runtime comparison between
our two protocols and the related works. The results are taken
as the average of 10 evaluations. We fail to obtain the evalua-
tion results for Diabetes and Boston models for our constant-
round protocol and MTZC outsourcing protocols, as both pro-
tocols require complete-tree padding. For depth d = 28,30
trees, complete decision tree padding would cause the mem-
ory out of computer capacity.

In a network environment with higher bandwidth and lower
latency such as the LAN setting, our polynomial-round pro-
tocol runs much more faster than the state-of-the-arts. More
precisely, our polynomial-round protocol is up to 15X faster
than the others in the LAN setting.

In a network environment with lower bandwidth and higher
latency such as the WAN setting, our constant-round protocol
outperforms the state-of-the-art protocols. In particular, our
constant-round protocol is up to 10X faster than the others in
the WAN setting.

9 Related Work

There has been a huge literature in private BP and/or de-
cision tree evaluation. The first work is proposed by Ishai
and Paskin [15]. They evaluate a BP on encrypted input via
homomorphic public-key cryptosystem, and require O(md)
communication. It is impractical for cases with a large number
of input features, like medical diagnosis. And their protocol
does not include comparison in each non-sink node.

Later, many evaluation protocols are proposed also with
constant communication round. Brikell et al. [7] present a
private diagnosis system based on BP model. They imple-
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(a) LAN(1Gbps/0.1ms) (b) MAN(100Mbps/6ms) (c) WAN(40Mbps/80ms)

Figure 17: Online runtime (in different log scales) in LAN/MAN/WAN (bandwidth/RTT) setting with Intel(R) Core i7 8700
CPU @ 3.2 GHz running Ubuntu 18.04.2 LTS, 32 GB Memory and 1TB SSD. Ours(Poly)/Ours(Const) refers to our polynomial-
round/constant-round protocol. MTZC [20] refers to the sparse tree variant; MTZC-Outsourcing refers to their outsourcing
variant.

ment privately feature selection with additive HE (AHE) and
oblivious transfer (OT), and transform the whole BP into a
secure program consisiting of GCs representing permuted
nodes to evaluate comparisons. [3] treats a decision tree as
a high-degree polynomial with a priori fixed multiplicative
depth and evaluate the polynomial through costly full HE
(FHE) to obtain result. [26] gets rid of FHE by using DGK
protocol based on AHE for comparison and OT for leaf node
selection. But [26] requires a complete tree (with dummy
nodes) and permuting it. [21] improves [26] by a new “path
cost” approach, which is a linear function for each path and de-
termines whether a leaf node contains the classification result.
Their protocol is purely based on AHE, without introducing
dummy nodes. Obviously, [26] and [21] take advantage of
the properties of the tree structure, thus no longer support BP
evaluation. [18] systematically reviews prior constant-round
solutions and proposes a modular construction from three
constant-round sub-protocols: (a) private feature selection, (b)
secure comparison, and (c) oblivious path evaluation. [18] also
identifies novel combinations of these linear sub-protocols
that provide better tradeoffs.

On the other hand, constant-round protocols above always
require the client to have at least linear computation in the
model size m, which is not friendly to weak client with limited
computational resource. Thus, researchers are attracted to pur-
sue new solutions with sublinear computation complexity for
client, i.e., the parties can only adaptively perform necessary
feature selections and comparisons along with the evaluation
path. The main idea is to obliviously select only one decision
node for comparison at each layer of the DAG via either OT or
ORAM, such as [16] and [22]. The dependence of the current
selection on previous comparison results leads to the round
complexity of protocol is usually linear in the length d of the
longest path.

Recently, the outsourcing extension is considered in private

BP and/or decision tree evaluation2. The protocol of [11]
is based on boolean secret sharing. It requires (padded) full
decision trees, and includes m secure matrix multiplications
for input selection, 2d−1−1 bit-wise comparison with SS and
O(2d) multiplications for path evaluation, which needs O(d)
rounds and O(mn) communication. [27] is inspired by [11],
and use additive secret sharing. [27] introduces a standard
modulus conversion after bit-wise comparison and follows
the path cost computation of [21]. The protocol of [27] has
the same communication complexity as [11]. The state-of-
the-art work of outsourced evaluation protocol is from [20].
It presents a key management and uses conditional OT to
reduce the communication cost, and reaches 2d− 1 rounds
and O(d) communication in online phase. The outsourced
protocol of [20] requires both parties refresh their shared
decision tree for each evaluation, and only support complete
decision tree. They lead to O(2d) offline communication. In
addition, none of the above outsourced evaluation protocol
support privacy-preserving BP evaluation.

10 Concluding Remarks

We presented a 4-server MPC platform for outsourced private
decision tree and BP evaluation. For uniformity, we assume
each BP decision node also has a comparison; however, it
can be easily removed to adapt to any other binary decision
diagram. Our key building block is a lightweight 1-out-of-N
shared OT protocol with logarithmic communication. Un-
like [12], we utilize the DPF scheme in a novel way such
that the ORAM functionality is achieved without the need of
oblivious PRF evaluation via MPC. Our polynomial-round
outsourced private decision tree evaluation protocol achieves

2We consider the secure outsourcing without the leakage of the index
mapping between decision nodes and input features. [19] and [1] do not meet
this condition.
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logarithmic communication in both online and offline; Yet,
it is unknown if there exists a constant-round protocol with
logarithmic overall communication. We leave this as an open
problem. As a future work, we will extend our 4-server MPC
platform to support RAM programs.
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A Proof of Theorem 1

Theorem 1. Let DPFZN ,Z2` be a secure function secret shar-
ing scheme for point function fα,β(x) : ZN 7→ Z2` with ad-

versarial advantage Adv
ZN ,Z2`
DPF (1λ,A). Let PRFZN : {0,1}λ×

{0,1}in 7→ ZN be a secure pseudorandom function with ad-
versarial advantage AdvPRFZN (1

λ,A). The protocol Π
N,`
sot as

described in Fig. 5 UC-realizes F N,`
sot as described in Fig. 3

against semi-honest adversaries who can statically corrupted
up to 1 server with distinguishing advantage

3 ·AdvPRFZN (1
λ,A)+Adv

ZN ,Z2`
DPF (1λ,A) .

Proof. To prove Thm. 1, we construct a PPT simulator Sim
such that no non-uniform PPT environment Z can distinguish
between (i) the real execution Exec

Π
N,`
sot ,A ,Z where the parties

S := {S1, . . . ,S4} run protocol Π
N,`
sot in the real world and the

corrupted parties are controlled by a dummy adversary A who
simply forwards messages from/to Z, and (ii) the ideal execu-
tion ExecF N,`

sot ,Sim,Z where the parties S1, . . . ,S4 interact with

functionality F N,`
sot in the ideal world, and corrupted parties are

controlled by the simulator Sim. We consider following cases.

Case 1: S1 (or S2) is corrupted.

Simulator. The simulator Sim internally runs A , forwarding
messages to/from the environment Z. Sim simulates the in-
terface of honest parties S2,S3,S4. In addition, the simulator
Sim simulates the following interactions with A .
• Upon initialization, the simulator Sim acts as the honest

party S3 to do:
– Generate ϕ1,ϕ

(2)
1 ← ZN and set ϕ

(1)
1 := ϕ1−ϕ

(2)
1 ;

– Set K (1)
ϕ1 ,K (2)

ϕ1 ← DPF.Gen(1λ,ϕ1,1,ZN ,Z2`);

– Send K (1)
ϕ1 to S1, K (2)

ϕ1 to S2;
• The simulator Sim does:

– Pick random w(1)
1 ,w(2)

1 ← ZN ;

– Set w(3)
1 := w(1)

1 , w(4)
1 := w(2)

1 ;
• Upon receiving (FETCH,sid,S j) for an honest party S j, j ∈
{1,2} from the external F N,`

sot , the simulator Sim does:
– Set δ

( j)
1 := w( j)

1 and δ
( j)
2 := 0;

– Send δ
( j)
1 to S3− j, δ

( j)
2 to S3 on behave of S j;

• Upon receiving (FETCH,sid,S j) for an honest party S j, j ∈
{3,4} from the external F N,`

sot , the simulator Sim does:
– Set δ

( j)
1 :=−ϕ

( j−2)
1 −w( j)

1 and δ
( j)
2 := 0;

– Send δ
( j)
1 to S1 and S2, δ

( j)
2 to S7− j on behave of S j;

• Upon receiving δ
(1)
1 from the corrupted S1 to S2 and δ

(1)
2

from the corrupted S1 to S3,S4, the simulator Sim does:
– Extract i(1) := δ

(1)
1 −PRFη1(sid,1) (mod N);

– Send (FETCH,sid,x(2), i(1)) to the external F N,`
sot ;

– Compute δ1 := δ
(1)
1 +δ

(2)
1 +δ

(3)
1 +δ

(4)
1 (mod N);
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– Set x̃(1)k := x(2)k+δ1 (mod N), for k ∈ ZN ;

– Set (β(1)
k,ϕ1

)k∈ZN ← DPF.EvalAll(1,K (1)
ϕ1 );

– Set ζ1← PRF
Z2`
η1 (sid), ζ3← PRF

Z2`
η3 (sid);

– Compute y(1) := ∑
N−1
k=0 (x̃

(1)
k ·β

(1)
k,ϕ1

)+ζ1−ζ3 (mod 2`).

– Send (RAND,sid,y(1)) to the external F N,`
sot ;

Indistinguishability. We assume that the parties S1, . . . ,S4
communicate with each other via the secure channel function-
ality Fsc (omitted in the protocol description for simplicity).
The indistinguishability is proven through a series of hybrid
worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution Exec

Π
N,`
sot ,A ,Z .

Hybrid H1: H1 is the same as H0 except that in H1,
{w( j)

1 } j∈[2] and ϕ
(2)
1 are picked uniformly random from ZN

instead of calculating from PRFZN . Set w(3)
1 := w(1)

1 , w(4)
1 :=

w(2)
1 .

Claim 1. If PRFZN : {0,1}λ × {0,1}in 7→ ZN is a se-
cure pseudorandom function with adversarial advantage
AdvPRFZN (1

λ,A), then H2 and H1 are indistinguishable with
advantage ε1 := 3 ·AdvPRFZN (1

λ,A).

Proof. We have changed 3 PRF outputs to uniformly random
strings; therefore, the overall advantage is 3 ·AdvPRFZN (1

λ,A)
by hybrid argument via reduction.

Hybrid H2: H2 is the same as H1 except that in H2:
• For j ∈ {1,2}, set δ̃

( j)
1 := w( j)

1 and δ̃
( j)
2 := 0.

• For j ∈ {3,4}, set δ̃
( j)
1 :=−ϕ

( j−2)
1 −w( j)

1 and δ̃
( j)
2 := 0.

instead of
• For j ∈ {1,2}:

– Set δ
( j)
1 := i( j)+w( j)

1 and δ
( j)
2 := i( j)−ϕ

( j)
2 +w( j)

2 .
• For j ∈ {3,4}:

– set δ
( j)
1 := i( j)−ϕ

( j−2)
1 −w( j)

1 and δ
( j)
2 := i( j)−w( j)

2 .

Claim 2. If DPFZN ,Z2` := (Gen,Eval) is a secure function se-
cret sharing scheme for point function fα,β(x) :ZN 7→Z2` with

adversarial advantage Adv
ZN ,Z2`
DPF (1λ,A), then H2 and H1 are

indistinguishable with advantage ε2 := Adv
ZN ,Z2`
DPF (1λ,A).

Proof. Note that the corrupted party S1 only sees {δ( j)
1 } j∈[4];

therefore, the modification of {δ( j)
2 } j∈[4] is oblivious to S1. In

the hybrid H1, we have
• δ

(1)
1 := i(1)+w(1)

1 ;

• δ
(2)
1 := i(2)+w(2)

1 ;

• δ
(3)
1 := i(1)−ϕ

(1)
1 −w(3)

1 ;

• δ
(4)
1 := i(1)−ϕ

(2)
1 −w(4)

1 ;

It is straightforward that the distribution of {δ( j)
1 } j∈[4] are uni-

formly random under the condition δ1 := ∑
4
k=1 δ

(k)
1 = i−ϕ1,

where ϕ1 is used to generate the DPF keys K (1)
ϕ1 ,K (2)

ϕ1 ←
DPF.Gen(1λ,ϕ1,1,ZN ,Z2`). Whereas δ1 := −ϕ1 in the hy-
brid H2, we can show that if there exists an adversary A who
can distinguish the view of H2 from the view of H1 then
we can construct an adversary B who uses A in a blackbox
fashion can break DPFZN ,Z2` := (Gen,Eval) with the same
advantage. Therefore, H2 and H1 are indistinguishable with
adversarial advantage ε2 := Adv

ZN ,Z2`
DPF (1λ,A).

The adversary’s view of H2 is identical to the simulated
view ExecF N,`

sot ,S ,Z . Therefore, the overall distinguishing ad-
vantage is

3 ·AdvPRFZN (1
λ,A)+Adv

ZN ,Z2`
DPF (1λ,A) .

Case 2: S3 (or S4) is corrupted.

Simulator. The simulator Sim internally runs A , forwarding
messages to/from the environment Z. Sim simulates the in-
terface of honest parties S1,S2,S4. In addition, the simulator
Sim simulates the following interactions with A .
• Upon initialization, the simulator Sim acts as the honest

party S1 to do:
– Generate ϕ2,ϕ

(2)
2 ← ZN and set ϕ

(1)
2 := ϕ2−ϕ

(2)
2 ;

– Set K (1)
ϕ2 ,K (2)

ϕ2 ← DPF.Gen(1λ,ϕ2,1,ZN ,Z2`);

– Send K (1)
ϕ2 to S3, K (2)

ϕ2 to S4;
• The simulator Sim does:

– Pick random w(1)
2 ,w(2)

2 ← ZN ;
– Set w(3)

2 := w(1)
2 , w(4)

2 := w(2)
2 ;

• Upon receiving (FETCH,sid,S j) for an honest party S j, j ∈
{1,2} from the external F N,`

sot , the simulator Sim does:
– Set δ

( j)
1 := 0 and δ

( j)
2 := w( j)

2 −ϕ
( j)
2 ;

– Send δ
( j)
1 to S3− j, δ

( j)
2 to S3 on behave of S j;

• Upon receiving (FETCH,sid,S j) for an honest party S j, j ∈
{3,4} from the external F N,`

sot , the simulator Sim does:
– Set δ

( j)
1 := 0 and δ

( j)
2 :=−w( j)

2 ;
– Send δ

( j)
1 to S1 and S2, δ

( j)
2 to S7− j on behave of S j;

• Upon receiving δ
(3)
1 from the corrupted S3 to S1,S2 and δ

(3)
2

from the corrupted S3 to S4, the simulator Sim does:
– Extract i(3) := δ

(3)
2 +PRFη1(sid,1) (mod N);

– Send (FETCH,sid,x(4), i(3)) to the external F N,`
sot ;

– Compute δ2 := δ
(1)
2 +δ

(2)
2 +δ

(3)
2 +δ

(4)
2 (mod N);

– Set x̃(3)k := x(4)k+δ2 (mod N), for k ∈ ZN ;

– Set (β(1)
k,ϕ2

)k∈ZN ← DPF.EvalAll(1,K (1)
ϕ2 );

– Set ζ1← PRF
Z2`
η1 (sid), ζ4← PRF

Z2`
η4 (sid);

– Compute y(3) := ∑
N−1
k=0 (x̃

(1)
k ·β

(1)
k,ϕ1

)−ζ1−ζ4 (mod 2`).

– Send (RAND,sid,y(3)) to the external F N,`
sot ;
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Indistinguishability. We assume that the parties S1, . . . ,S4
communicate with each other via the secure channel function-
ality Fsc (omitted in the protocol description for simplicity).
The indistinguishability is proven through a series of hybrid
worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution Exec

Π
N,`
sot ,A ,Z .

Hybrid H1: H1 is the same as H0 except that in H1,
{w( j)

2 } j∈[2] and ϕ
(2)
2 are picked uniformly random from ZN

instead of calculating from PRFZN . Set w(3)
2 := w(1)

2 , w(4)
2 :=

w(2)
2 .

Claim 3. If PRFZN : {0,1}λ × {0,1}in 7→ ZN is a se-
cure pseudorandom function with adversarial advantage
AdvPRFZN (1

λ,A), H2 and H1 are indistinguishable with ad-
vantage ε1 := 3 ·AdvPRFZN (1

λ,A).

Proof. We have changed 3 PRF outputs to uniformly random
strings; therefore, the overall advantage is 3 ·AdvPRFZN (1

λ,A)
by hybrid argument via reduction.

Hybrid H2: H2 is the same as H1 except that in H2:
• For j ∈ {1,2}, set δ̃

( j)
1 := 0 and δ̃

( j)
2 := w( j)

2 −ϕ
( j)
2 .

• For j ∈ {3,4}, set δ̃
( j)
1 := 0 and δ̃

( j)
2 :=−w( j)

2 .
instead of
• For j ∈ {1,2}:

– Set δ
( j)
1 := i( j)+w( j)

1 and δ
( j)
2 := i( j)−ϕ

( j)
2 +w( j)

2 .
• For j ∈ {3,4}:

– set δ
( j)
1 := i( j)−ϕ

( j−2)
1 −w( j)

1 and δ
( j)
2 := i( j)−w( j)

2 .

Claim 4. If DPFZN ,Z2` := (Gen,Eval) is a secure function se-
cret sharing scheme for point function fα,β(x) :ZN 7→Z2` with

adversarial advantage Adv
ZN ,Z2`
DPF (1λ,A), then H2 and H1 are

indistinguishable with advantage ε2 := Adv
ZN ,Z2`
DPF (1λ,A).

Proof. Note that the corrupted party S3 only sees {δ( j)
2 } j∈[4];

therefore, the modification of {δ( j)
1 } j∈[4] is oblivious to S3. In

the hybrid H1, we have
• δ

(1)
2 := i(1)−ϕ

(1)
2 +w(1)

2 ;
• δ

(2)
2 := i(2)−ϕ

(2)
2 +w(2)

2 ;
• δ

(3)
2 := i(1)−w(3)

2 ;
• δ

(4)
2 := i(1)−w(4)

2 ;
It is straightforward that the distribution of {δ( j)

1 } j∈[4] are uni-

formly random under the condition δ2 := ∑
4
k=1 δ

(k)
2 = i−ϕ2,

where ϕ2 is used to generate the DPF keys K (1)
ϕ2 ,K (2)

ϕ2 ←
DPF.Gen(1λ,ϕ2,1,ZN ,Z2`). Whereas δ2 := −ϕ2 in the hy-
brid H2, we can show that if there exists an adversary A who
can distinguish the view of H2 from the view of H1 then
we can construct an adversary B who uses A in a blackbox
fashion can break DPFZN ,Z2` := (Gen,Eval) with the same
advantage. Therefore, H2 and H1 are indistinguishable with
adversarial advantage ε2 := Adv

ZN ,Z2`
DPF (1λ,A).

The adversary’s view of H2 is identical to the simulated
view ExecF N,`

sot ,S ,Z . Therefore, the overall distinguishing ad-
vantage is

3 ·AdvPRFZN (1
λ,A)+Adv

ZN ,Z2`
DPF (1λ,A) .

This concludes the proof.

B Proof of Theorem 2

Theorem 2. Let DCF
Z

2`1
,Z

2`2
IC be a secure func-

tion secret sharing scheme for offset comparison func-
tion f IC

α,β(x) : Z2`2 7→ Z2`1 with adversarial advantage

Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A). Let PRFZ2`1 : {0,1}λ×{0,1}in 7→ Z2`1
be a secure pseudorandom function with adversarial advan-
tage Adv

PRF
Z

2`1
(1λ,A). Let PRFZ2`2 : {0,1}λ×{0,1}in 7→

Z2`2 be a secure pseudorandom function with adversarial ad-
vantage Adv

PRF
Z

2`2
(1λ,A). The protocol Π

`1,`2
csot as described

in Fig. 7 UC-realizes F `1,`2
csot as described in Fig. 6 against

semi-honest adversaries who can statically corrupted up to 1
server with distinguishing advantage

8 ·Adv
PRF

Z
2`1

(1λ,A)+3 ·Adv
PRF

Z
2`2

(1λ,A)

+Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A).

Proof. To prove Thm. 2, we construct a PPT simulator Sim
such that no non-uniform PPT environment Z can distinguish
between (i) the real execution Exec

Π
`1 ,`2
csot ,A ,Z

where the parties

S := {S1, . . . ,S4} run protocol Π
`1,`2
csot in the real world and

the corrupted parties are controlled by a dummy adversary
A who simply forwards messages from/to Z, and (ii) the
ideal execution Exec

F `1 ,`2
csot ,Sim,Z

where the parties S1, . . . ,S4

interact with functionality F `1,`2
csot in the ideal world, and

corrupted parties are controlled by the simulator Sim. We
consider following cases.

Case 1: S1 (or S2) is corrupted.

Simulator. The simulator Sim internally runs A , forwarding
messages to/from the environment Z. Sim simulates the in-
terface of honest parties S2,S3,S4. In addition, the simulator
Sim simulates the following interactions with A .
• Upon initialization, the simulator Sim acts as the honest

party S3 to do:
– Generate ρ1,ρ

(2)
1 ← Z2`2 and set ρ

(1)
1 := ρ1−ρ

(2)
1 ;

– K (1)
ρ1 ,K (2)

ρ1 ← DCF.GenIC(1λ,2`2−1,1,Z2`2 ,Z2`1 ,ρ1);

– Send K (1)
ρ1 to S1, K (2)

ρ1 to S2;
• The simulator Sim does:

– Pick random w(1)
x,0 ,w

(2)
x,0 ,w

(1)
x,1 ,w

(2)
x,1 ,r1,r2,r3,r4← Z2`1 ;
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– Pick random w(1)
m,1,w

(2)
m,1,← Z2`2 ;

– Set w(3)
x,0 := w(1)

x,0 , w(4)
x,0 := w(2)

x,0 , w(3)
x,1 := w(1)

x,1 , w(4)
x,1 := w(2)

x,1 ,

w(3)
m,1 := w(1)

m,1, w(4)
m,1 := w(2)

m,1;
• Upon receiving (COMPFETCH,sid,S j) for an honest party

S j, j ∈ {1,2} from the external F N,`
sot , Sim does:

– Set ∆m( j)
ρ1 := w( j)

m,1, ∆m( j)
ρ2 := 0;

– Set x̃( j)
i := w( j)

x,i , for i ∈ {0,1};
– Send (∆m( j)

ρ1 , x̃
( j)) to S3− j, ∆m( j)

ρ2 to S3 and S4 on behalf
of the honest party S j;

• Upon receiving (COMPFETCH,sid,S j) for an honest party
S j, j ∈ {3,4} from the external F N,`

sot , Sim does:

– Set x̂( j)
0 := r1 + r2 (mod 2`1), x̂( j)

1 := r3 + r4 (mod 2`1);

– Set ∆m( j)
ρ1 := ρ

( j−2)
1 −w( j)

m,1 (mod 2`2), ∆m( j)
ρ2 := 0;

– Set x̃( j)
i :=−r j+2i−2−w( j)

x,i (mod 2`1), i ∈ {0,1};
– Send {∆m( j)

ρ1 , x̃
( j)} to S1 and S2, ∆m( j)

ρ2 to S7− j;

• Upon receiving (∆m(1)
ρ1 , x̃

(1)) from the corrupted S1 to S2

and ∆m(1)
ρ2 from the corrupted S1 to S3,S4, the simulator Sim

does:
– For i ∈ {0,1}, extract x(1)i := x̃(1)i −w(3)

x,i (mod 2`1);

– Extract ∆m(1) := ∆m(1)
ρ1 +w(3)

m,1 (mod 2`2);

– Pick random m(1)
0 ,m(1)

1 ← Z2`2 s.t. m(1)
1 −m(1)

0 = ∆m(1);
– Send (COMPFETCH,sid,x(1),m(1)) to the external

F `1,`2
csot ;

– Set ∆mρ1 := ∑
4
i=1 ∆m(i)

ρ1 (mod 2`2);

– Set x̂(1)0 := ∑
4
i=1 x̃(i)0 (mod 2`1);

– Set x̂(1)1 := ∑
4
i=1 x̃(i)1 (mod 2`1);

– Set β
(1)
1 ← DCF.EvalIC(1,K (1)

ρ1 ,∆mρ1);

– Set ζ1← PRF
Z

2`1
η1 (sid,3), ζ3← PRF

Z
2`1

η3 (sid,1);

– Compute y(1) := β
(1)
1 · (x̂

(1)
0 − x̂(1)1 )+ζ1−ζ3;

– Send (RAND,sid,y(1)) to the external F `1,`2
csot ;

Indistinguishability. We assume that the parties S1, . . . ,S4
communicate with each other via the secure channel function-
ality Fsc (omitted in the protocol description for simplicity).
The indistinguishability is proven through a series of hybrid
worlds H0, . . . ,H3.
Hybrid H0: It is the real protocol execution Exec

Π
`1 ,`2
csot ,A ,Z

.

Hybrid H1: H1 is the same as H0 except that in H1,
{w( j)

x,0} j∈[2], {w
( j)
x,1} j∈[2] and {r j} j∈[4] are picked uniformly

random from Z2`1 instead of calculating from PRF
Z

2`1 ;

{w( j)
m,1} j∈[2] and ρ

(2)
1 are picked uniformly random from Z2`2

instead of calculating from PRF
Z

2`2 . Set w(3)
x,0 := w(1)

x,0 , w(4)
x,0 :=

w(2)
x,0 , w(3)

x,1 := w(1)
x,1 , w(4)

x,1 := w(2)
x,1 , w(3)

m,1 := w(1)
m,1, w(4)

m,1 := w(2)
m,1.

Claim 5. If PRF
Z

2`1 : {0,1}λ × {0,1}in 7→ Z2`1 is a se-
cure pseudorandom function with adversarial advantage

Adv
PRF

Z
2`1

(1λ,A), PRFZ2`2 : {0,1}λ × {0,1}in 7→ Z2`2 is
a secure pseudorandom function with adversarial advan-
tage Adv

PRF
Z

2`2
(1λ,A), then H1 and H0 are indistin-

guishable with advantage ε1 := 8 ·Adv
PRF

Z
2`1

(1λ,A)+ 3 ·
Adv

PRF
Z

2`2
(1λ,A).

Proof. We have changed 8 PRF
Z

2`1 outputs and 3 PRF
Z

2`2

outputs to uniformly random strings; therefore, the overall
advantage is 8 ·Adv

PRF
Z

2`1
(1λ,A)+3 ·Adv

PRF
Z

2`2
(1λ,A) by

hybrid argument via reduction.

Hybrid H2: H2 is the same as H1 except that in H2:
• For j ∈ {1,2}:

– Set ∆m( j)
ρ1 := w( j)

m,1 and ∆m( j)
ρ2 := 0;

• For j ∈ {3,4}:
– Set ∆m( j)

ρ1 := ρ
( j−2)
1 −w( j)

m,1 (mod 2`2), ∆m( j)
ρ2 := 0;

instead of
• For j ∈ {1,2}:

– Set ∆m( j)
ρ1 := m( j)

1 −m( j)
0 +w( j)

m,1 (mod 2`2);

– Set ∆m( j)
ρ2 := m( j)

1 −m( j)
0 +ρ

( j)
2 +w( j)

m,2 (mod 2`2);
• For j ∈ {3,4}:

– Set ∆m( j)
ρ1 := m( j)

1 −m( j)
0 +ρ

( j−2)
1 −w( j)

m,1 (mod 2`2);

– Set ∆m( j)
ρ2 := m( j)

1 −m( j)
0 −w( j)

m,2 (mod 2`2);

Claim 6. If DCF
Z

2`2
,Z

2`1
IC := (GenIC,EvalIC) is a secure

function secret sharing scheme for offset comparison func-
tion f IC

α,β(x) : Z2`2 7→ Z2`1 with adversarial advantage

Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A), then H2 and H1 are indistinguishable

with advantage ε2 := Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A).

Proof. Note that the corrupted party S1 only sees
{∆m( j)

ρ1 } j∈[4]; therefore, the modification of {∆m( j)
ρ2 } j∈[4] is

oblivious to S1. In the hybrid H1, we have
• ∆m(1)

ρ1 := m(1)
1 −m(1)

0 +w(1)
m,1 (mod 2`2);

• ∆m(2)
ρ1 := m(2)

1 −m(2)
0 +w(2)

m,1 (mod 2`2);

• ∆m(3)
ρ1 := m(3)

1 −m(3)
0 +ρ

(1)
1 −w(3)

m,1 (mod 2`2);

• ∆m(4)
ρ1 := m(4)

1 −m(4)
0 +ρ

(2)
1 −w(4)

m,1 (mod 2`2);

It is straightforward that the distribution of {∆m( j)
ρ1 } j∈[4] are

uniformly random under the condition ∆mρ1 := ∑
4
k=1 ∆m(k)

ρ1 =
m1 − m0 + ρ1, where ρ1 is used to generate the DCF
keys K (1)

ρ1 ,K (2)
ρ1 ← DCF.GenIC(1λ,2`2−1,1,Z2`2 ,Z2`1 ,ρ1).

Whereas ∆m1 := ρ1 in the hybrid H2, we can show that if
there exists an adversary A who can distinguish the view
of H2 from the view of H1 then we can construct an ad-
versary B who uses A in a blackbox fashion can break

DCF
Z

2`2
,Z

2`1
IC := (GenIC,EvalIC) with the same advantage.

Therefore, H2 and H1 are indistinguishable with adversar-

ial advantage ε2 := Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A).
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Hybrid H3: H3 is the same as H2 except that in H2:
• For j ∈ {1,2}:

– Set x̃( j)
i := w( j)

x,i (mod 2`1), i ∈ {0,1};
• For j ∈ {3,4}:

– Set x̃( j)
i :=−r j+2i−2−w( j)

x,i (mod 2`1), i ∈ {0,1};
instead of
• For j ∈ {1,2}:

– Set x̃( j)
i := x( j)

i +w( j)
x,i (mod 2`1), for i ∈ {0,1};

• For j ∈ {3,4}:
– Set x̃( j)

i := x( j)
i − r j+2i−2−w( j)

x,i (mod 2`1), i ∈ {0,1};

Claim 7. H3 and H2 are perfectly indistinguishable.

Proof. Since {ri}i∈[4] and {w( j)
x,0,w

( j)
x,1} j∈[2] are uniformly

random in Z2`1 , the distribution of {x̃( j)
0 , x̃( j)

1 } j∈[4] and

{x( j)
0 ,x( j)

1 } j∈[4] are identical. Therefore, H3 and H2 are per-
fectly indistinguishable.

The adversary’s view of H3 is identical to the simulated
view Exec

F `1 ,`2
csot ,S ,Z

. Therefore, the overall distinguishing ad-
vantage is

8 ·Adv
PRF

Z
2`1

(1λ,A)+3 ·Adv
PRF

Z
2`2

(1λ,A)

+Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A).

Case 2: S3 (or S4) is corrupted.

Simulator. The simulator Sim internally runs A , forwarding
messages to/from the environment Z. Sim simulates the in-
terface of honest parties S1,S2,S4. In addition, the simulator
Sim simulates the following interactions with A .
• Upon initialization, the simulator Sim acts as the honest

party S1 to do:
– Generate ρ2,ρ

(2)
2 ← Z2`2 and set ρ

(1)
2 := ρ2−ρ

(2)
2 ;

– K (1)
ρ2 ,K (2)

ρ2 ← DCF.GenIC(1λ,2`2−1,1,Z2`2 ,Z2`1 ,ρ2);

– Send K (1)
ρ2 to S3, K (2)

ρ2 to S4;
• The simulator Sim does:

– Pick random w(1)
x,0 ,w

(2)
x,0 ,w

(1)
x,1 ,w

(2)
x,1 ,r1,r2,r3,r4← Z2`1 ;

– Pick random w(1)
m,2,w

(2)
m,2,← Z2`2 ;

– Set w(3)
x,0 := w(1)

x,0 , w(4)
x,0 := w(2)

x,0 , w(3)
x,1 := w(1)

x,1 , w(4)
x,1 := w(2)

x,1 ,

w(3)
m,2 := w(1)

m,2, w(4)
m,2 := w(2)

m,2;
• Upon receiving (COMPFETCH,sid,S j) for an honest party

S j, j ∈ {1,2} from the external F N,`
sot , Sim does:

– Set ∆m( j)
ρ1 := 0, ∆m( j)

ρ2 := ρ
( j)
2 +w( j)

m,2 (mod 2`2);

– Set x̃( j)
i := w( j)

x,i , for i ∈ {0,1};
– Send (∆m( j)

ρ1 , x̃
( j)) to S3− j, ∆m( j)

ρ2 to S3 and S4 on behalf
of the honest party S j;

• Upon receiving (COMPFETCH,sid,S j) for an honest party
S j, j ∈ {3,4} from the external F N,`

sot , Sim does:

– Set x̂( j)
0 := r1 + r2 (mod 2`1), x̂( j)

1 := r3 + r4 (mod 2`1);

– Set ∆m( j)
ρ1 := 0, ∆m( j)

ρ2 :=−w( j)
m,2 (mod 2`2);

– Set x̃( j)
i :=−r j+2i−2−w( j)

x,i (mod 2`1), i ∈ {0,1};
– Send {∆m( j)

ρ1 , x̃
( j)} to S1 and S2, ∆m( j)

ρ2 to S7− j;

• Upon receiving (∆m(3)
ρ1 , x̃

(3)) from the corrupted S3 to S1,S2

and ∆m(3)
ρ2 from the corrupted S3 to S4, the simulator Sim

does:
– Extract x(3)i := x̃(4)i + r1+2i +w(1)

x,i (mod 2`1), i ∈ {0,1};
– Extract ∆m(4) := ∆m(3)

ρ2 +w(1)
m,2 (mod 2`2);

– Pick random m(3)
0 ,m(3)

1 ← Z2`2 s.t. m(3)
1 −m(3)

0 = ∆m(3);
– Send (COMPFETCH,sid,x(3),m(3)) to the external

F `1,`2
csot ;

– Set ∆mρ2 := ∑
4
i=1 ∆m(i)

ρ2 (mod 2`2);

– Set β
(1)
2 ← DCF.EvalIC(1,K (1)

ρ2 ,∆mρ2);

– Set ζ1← PRF
Z

2`1
η1 (sid,3), ζ4← PRF

Z
2`1

η4 (sid,5);

– Compute y(4) := β
(1)
2 · x̂

(3)
0 +(1−β

(1)
2 ) · x̂(3)1 −ζ1−ζ4;

– Send (RAND,sid,y(4)) to the external F `1,`2
csot .

Indistinguishability. We assume that the parties S1, . . . ,S4
communicate with each other via the secure channel function-
ality Fsc (omitted in the protocol description for simplicity).
The indistinguishability is proven through a series of hybrid
worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution Exec

Π
`1,`2
csot ,A ,Z

.

Hybrid H1: H1 is the same as H0 except that in H1,
{w( j)

x,0} j∈[2], {w
( j)
x,1} j∈[2] and {r j} j∈[4] are picked uniformly

random from Z2`1 instead of calculating from PRF
Z

2`1 ;

{w( j)
m,2} j∈[2] and ρ

(2)
2 are picked uniformly random from Z2`2

instead of calculating from PRF
Z

2`2 . Set w(3)
x,0 := w(1)

x,0 , w(4)
x,0 :=

w(2)
x,0 , w(3)

x,1 := w(1)
x,1 , w(4)

x,1 := w(2)
x,1 , w(3)

m,2 := w(1)
m,2, w(4)

m,2 := w(2)
m,2.

Claim 8. If PRF
Z

2`1 : {0,1}λ × {0,1}in 7→ Z2`1 is a se-
cure pseudorandom function with adversarial advantage
Adv

PRF
Z

2`1
(1λ,A), PRFZ2`2 : {0,1}λ × {0,1}in 7→ Z2`2 is

a secure pseudorandom function with adversarial advan-
tage Adv

PRF
Z

2`2
(1λ,A), then H1 and H0 are indistin-

guishable with advantage ε1 := 8 ·Adv
PRF

Z
2`1

(1λ,A)+ 3 ·
Adv

PRF
Z

2`2
(1λ,A).

Proof. We have changed 8 PRF
Z

2`1 outputs and 3 PRF
Z

2`2

outputs to uniformly random strings; therefore, the overall
advantage is 8 ·Adv

PRF
Z

2`1
(1λ,A)+3 ·Adv

PRF
Z

2`2
(1λ,A) by

hybrid argument via reduction.

Hybrid H2: H2 is the same as H1 except that in H2:
• For j ∈ {1,2}:

– Set ∆m( j)
ρ1 := 0 and ∆m( j)

ρ2 := ρ
( j)
2 +w( j)

m,2 (mod 2`2);
• For j ∈ {3,4}:
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– Set ∆m( j)
ρ1 := 0, ∆m( j)

ρ2 :=−w( j)
m,2 (mod 2`2);

instead of
• For j ∈ {1,2}:

– Set ∆m( j)
ρ1 := m( j)

1 −m( j)
0 +w( j)

m,1 (mod 2`2);

– Set ∆m( j)
ρ2 := m( j)

1 −m( j)
0 +ρ

( j)
2 +w( j)

m,2 (mod 2`2);
• For j ∈ {3,4}:

– Set ∆m( j)
ρ1 := m( j)

1 −m( j)
0 +ρ

( j−2)
1 −w( j)

m,1 (mod 2`2);

– Set ∆m( j)
ρ2 := m( j)

1 −m( j)
0 −w( j)

m,2 (mod 2`2);

Claim 9. If DCF
Z

2`2
,Z

2`1
IC := (GenIC,EvalIC) is a secure

function secret sharing scheme for offset comparison func-
tion f IC

α,β(x) : Z2`2 7→ Z2`1 with adversarial advantage

Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A), then H2 and H1 are indistinguishable

with advantage ε2 := Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A).

Proof. Note that the corrupted party S3 only sees
{∆m( j)

ρ2 } j∈[4]; therefore, the modification of {∆m( j)
ρ1 } j∈[4] is

oblivious to S1. In the hybrid H1, we have
• ∆m(1)

ρ2 := m(1)
1 −m(1)

0 +ρ
(1)
2 +w(1)

m,2 (mod 2`2);

• ∆m(2)
ρ2 := m(2)

1 −m(2)
0 +ρ

(2)
2 +w(2)

m,2 (mod 2`2);

• ∆m(3)
ρ2 := m(3)

1 −m(3)
0 −w(3)

m,2 (mod 2`2);

• ∆m(4)
ρ2 := m(4)

1 −m(4)
0 −w(4)

m,2 (mod 2`2);

It is straightforward that the distribution of {∆m( j)
ρ2 } j∈[4] are

uniformly random under the condition ∆mρ2 := ∑
4
k=1 ∆m(k)

ρ2 =
m1 − m0 + ρ2, where ρ2 is used to generate the DCF
keys K (1)

ρ2 ,K (2)
ρ2 ← DCF.GenIC(1λ,2`2−1,1,Z2`2 ,Z2`1 ,ρ2).

Whereas ∆m2 := ρ2 in the hybrid H2, we can show that if
there exists an adversary A who can distinguish the view
of H2 from the view of H1 then we can construct an ad-
versary B who uses A in a blackbox fashion can break

DCF
Z

2`2
,Z

2`1
IC := (GenIC,EvalIC) with the same advantage.

Therefore, H2 and H1 are indistinguishable with adversar-

ial advantage ε2 := Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A).

The adversary’s view of H2 is identical to the simulated
view Exec

F `1 ,`2
csot ,S ,Z

. Therefore, the overall distinguishing ad-
vantage is

8 ·Adv
PRF

Z
2`1

(1λ,A)+3 ·Adv
PRF

Z
2`2

(1λ,A)

+Adv
Z

2`2
,Z

2`1
DCFIC

(1λ,A).

This concludes the proof.

C Proof of Theorem 3

Theorem 3. Let DPF
Z2` ,Z2λ

IC be a secure function secret shar-
ing scheme for offset comparison function fα,β(x) :Z2` 7→Z2λ

with adversarial advantage Adv
Z2` ,Z2λ

DCFIC
(1λ,A). Let PRFZ2` :

{0,1}λ×{0,1}in 7→ Z2` be a secure pseudorandom function
with adversarial advantage Adv

PRF
Z

2`
(1λ,A). Let PRFZ2λ :

{0,1}λ×{0,1}in 7→ Z2λ be a secure pseudorandom function
with adversarial advantage Adv

PRF
Z

2λ
(1λ,A). The protocol

Πconst
os as described in Fig. 11 and Πconst

eval as described in
Fig. 12 UC-realizes F 4

bp as described in Fig. 2 in the Fsot-
hybrid model against semi-honest adversaries who can stati-
cally corrupted up to 1 server with distinguishing advantage
at most

3mc ·Adv
PRF

Z
2`
(1λ,A)+(mc +1) ·Adv

PRF
Z

2λ
(1λ,A)

+mc ·Adv
Z2` ,Z2λ

DCFIC
(1λ,A)

Proof. To prove Thm. 3, we construct a PPT simulator Sim
such that no non-uniform PPT environment Z can distinguish
between (i) the real execution ExecFsot

{Πconst
os ,Πconst

eval },A ,Z where

the parties M,D, S := {S1, . . . ,S4} run protocol Πconst
os ,

Πconst
eval in the Fsot-hybrid world and the corrupted parties

are controlled by a dummy adversary A who simply
forwards messages from/to Z, and (ii) the ideal execution
ExecF 4

bp,Sim,Z where the parties M,D, S1, . . . ,S4 interact with

functionality F 4
bp in the ideal world, and corrupted parties are

controlled by the simulator Sim. We consider following cases.

Case 1: S1 (or S2) is corrupted.

Simulator. The simulator Sim internally runs A , forwarding
messages to/from the environment Z. Sim simulates the in-
terface of Fsot as well as honest parties M,D, S2,S3,S4. In
addition, the simulator Sim simulates the following interac-
tions with A .
• Upon receiving (MODEL,sid,M,(m,d)) from the external

F 4
bp , the simulator Sim computes mc := 2d−1−1 and acts

as the honest model owner M to do:
– for i := 0 to mc−1:

* Set k(1)i ,k(2)i ← Zn;

* Set t(1)i , t(2)i ← Z2` ;

* Set P(1)
i := {k(1)i , t(1)i } , P(2)

i := {k(2)i , t(2)i };
– for i := 0 to mc:

* v(1)i ,v(2)i ← Z2` ;
– Send (P (1),v(1)) to S1, (P (2),v(2)) to S2.

• Upon receiving (DATA,sid,D,n) from the external F 4
bp, the

simulator Sim acts as the honest data owner D to do:
– for i := 0 to n−1 do:

* Generate x(1)i ,x(3)i ← Z2` , set x(2)i := x(1)i , x(4)i := x(3)i ;
– Send x( j) to S j, j ∈ [4].

• Upon initialization, the simulator Sim acts as the honest
party S3 to do:
– for i := 0 to mc−1:

* Generate ρi,ρ
(2)
i ← Z2` and set ρ

(1)
i := ρi−ρ

(2)
i ;
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* K (1)
i,ρ ,K (2)

i,ρ ← DCF.GenIC(1λ,2`−1,1,Z2` ,Z2λ ,ρi);

– Send (K (1)
i,ρ )i∈Zmc

to S1, (K (2)
i,ρ )i∈Zmc

to S2;
• The simulator Sim does:

– For i ∈ Zmc , pick random w(1)
i ,w(2)

i ← Z2` and ri← Z2λ ;
– Pick random δ← Zmc+1

– For i ∈ Zmc , set w(3)
i := w(1)

i and w(4)
i := w(2)

i ;
• Upon receiving (Eval,sid,S j) for an honest party S j, j ∈
{1,2} from the external F 4

bp, Sim does:
– for i := 0 to mc−1:

* Set k̃( j)
i := 0;

* Send (FETCH,sid,x j, k̃( j)
i ) to F n,`

sot to get x( j)
ki

;

* Set ∆x( j)
i := w( j)

i − x( j)
ki

(mod 2`);

– Send ∆x( j) to S3− j on behalf of the honest party S j;
• Upon receiving (Eval,sid,S j) for an honest party S j, j ∈
{3,4} from the external F 4

bp, Sim does:
– for i := 0 to mc−1:

* Set k̃( j)
i := 0;

* Send (FETCH,sid,x j, k̃( j)
i ) to F n,`

sot to get x( j)
ki

;

* Set ∆x( j)
i := ρ

( j−2)
i − x( j)

ki
−w( j)

i (mod 2`);

– ∆x( j) to S1 and S2 on behalf of the honest party S j;
• Upon receiving ∆x(3− j) from S3− j, ∆x(3) from S3 , and ∆x(4)

from S4, for an honest party S j, j ∈ {1,2}, Sim does:
– for i := 0 to mc−1:

* Set ∆xi := ∑
4
q=1 ∆x(q)i (mod 2`);

* Set b( j)
i ← DCF.EvalIC( j,K ( j)

i,ρ ,∆xi);

* Set e( j)
i,1 := ( j−1−b( j)

i ) · ri (mod 2λ);

* Set e( j)
i,2 := b( j)

i · ri (mod 2λ);
– for i := 0 to mc :

* Sum up the share of edge costs along i-th leaf node’s
path to get c( j)

i , set ĉ( j)
i := c( j)

i−δ (mod mc+1);

* Set v̂( j)
i,1 ←Z2` , v̂( j)

i,2 := v( j)
i−δ (mod mc+1)− v̂( j)

i,1 (mod 2`);

– Send (ĉ( j)
i , v̂( j)

i,1 )i∈Zmc+1 to S3, (ĉ( j)
i , v̂( j)

i,2 )i∈Zmc+1 to S4;

Indistinguishability. We assume that the parties S1, . . . ,S4
communicate with each other via the secure channel function-
ality Fsc (omitted in the protocol description for simplicity).
The indistinguishability is proven through a series of hybrid
worlds H0, . . . ,H3.
Hybrid H0: It is the real execution ExecFsot

{Πconst
os ,Πconst

eval },A ,Z .

Hybrid H1: H1 is the same as H0 except that in H1,
{w(1)

i }i∈Zmc
, {w(2)

i }i∈Zmc
and {ρ(2)

i }i∈Zmc
are picked uni-

formly random from Z2` instead of calculating from PRFZ2` ;
{ri}i∈Zmc+1 is picked uniformly random from Z2λ instead

of calculating from PRFZ2λ . Set w(3)
i := w(1)

i , w(4)
i := w(2)

i ,
i ∈ Zmc .

Claim 10. If PRFZ2` : {0,1}λ × {0,1}in 7→ Z2` is a se-
cure pseudorandom function with adversarial advantage

Adv
PRF

Z
2`
(1λ,A), PRFZ2λ : {0,1}λ×{0,1}in 7→ Z2λ is a se-

cure pseudorandom function with adversarial advantage
Adv

PRF
Z

2λ
(1λ,A), then H1 and H0 are indistinguishable

with advantage ε1 := 3mc · Adv
PRF

Z
2`
(1λ,A) + (mc + 1) ·

Adv
PRF

Z
2λ
(1λ,A).

Proof. We have changed 3mc PRF
Z2` outputs and (mc + 1)

PRFZ2λ outputs to uniformly random strings; therefore,
the overall advantage is 2mc ·Adv

PRF
Z

2`
(1λ,A)+(mc +1) ·

Adv
PRF

Z
2λ
(1λ,A) by hybrid argument via reduction.

Hybrid H2: H2 is the same as H1 except that in H2:

For j ∈ {1,2},:
• Set ∆x( j)

i := w( j)
i − x( j)

ki
(mod 2`), i ∈ Zmc ;

instead of

For j ∈ {1,2}:
• Set ∆x( j)

i := t( j)
i − x( j)

ki
+w( j)

i (mod 2`), i ∈ Zmc ;

Claim 11. If DCF
Z2` ,Z2λ

IC := (GenIC,EvalIC) is a secure
function secret sharing scheme for offset comparison
function f IC

α,β(x) : Z2` 7→ Z2λ with adversarial advantage

Adv
Z2` ,Z2λ

DCFIC
(1λ,A), then H2 and H1 are indistinguishable with

advantage ε2 := mc ·Adv
Z2` ,Z2λ

DCFIC
(1λ,A).

Proof. Note that the corrupted party S1 only sees
{∆m( j)

ρ1 } j∈[4]; therefore, the modification of {∆m( j)
ρ2 } j∈[4] is

oblivious to S1. In the hybrid H1, we have i ∈ Zmc

• ∆x(1)i := ∆x(1)i := t(1)i − x(1)ki
+w(1)

i (mod 2`);

• ∆x(2)i := ∆x( j)
i := t(2)i − x(2)ki

+w(2)
i (mod 2`);

• ∆x(3)i := ρ
(1)
i − x(3)ki

−w(3)
i (mod 2`);

• ∆x(4)i := ρ
(2)
i − x(4)ki

−w(4)
i (mod 2`);

It is straightforward that for i ∈ Zmc , the distribution of
{∆x( j)

i } j∈[4] are uniformly random under the condition ∆xi :=

∑
4
q=1 ∆x(q)i = ti− xki + ρ1, where ρi is used to generate the

DCF keys K (1)
i,ρ ,K (2)

i,ρ ←DCF.GenIC(1λ,2`−1,1,Z2` ,Z2λ ,ρi).
Whereas ∆xi := ρi − xki in the hybrid H2, we can show
that if there exists an adversary A who can distinguish the
view of H2 from the view of H1 then we can construct
an adversary B who uses A in a blackbox fashion can

break DCF
Z2` ,Z2λ

IC :=(GenIC,EvalIC) with the same advantage.
Therefore, H2 and H1 are indistinguishable with adversarial

advantage ε2 := mc ·Adv
Z2` ,Z2λ

DCFIC
(1λ,A).

Hybrid H3: H3 is the same as H2 except that in H2:

For j ∈ {1,2}:
• Set k̃( j)

i := 0, i ∈ Zmc ;
instead of

For j ∈ {1,2}:
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• Set k̃( j)
i := k( j)

i , i ∈ Zmc ;

Claim 12. H3 and H2 are perfectly indistinguishable.

Proof. Since {k̃( j)
i }i∈Zmc , j∈[2] are only sent to the simulated

F n,`
sot , which is oblivious to S1, H3 and H2 are perfectly indis-

tinguishable.

The adversary’s view of H3 is identical to the simulated
view ExecF 4

bp,S ,Z
. Therefore, the overall distinguishing advan-

tage is

3mc ·Adv
PRF

Z
2`
(1λ,A)+(mc +1) ·Adv

PRF
Z

2λ
(1λ,A)

+mc ·Adv
Z2` ,Z2λ

DCFIC
(1λ,A)

Case 2: S3 (or S4) is corrupted.

Simulator. The simulator Sim internally runs A , forwarding
messages to/from the environment Z. Sim simulates the in-
terface of Fsot as well as honest parties M,D, S2,S3,S4. In
addition, the simulator Sim simulates the following interac-
tions with A .
• Upon receiving (MODEL,sid,M,(m,d)) from the external

F 4
bp , the simulator Sim computes mc := 2d−1−1 and acts

as the honest model owner M to do:
– for i := 0 to mc−1:

* Set k(1)i ,k(2)i ← Zn;

* Set t(1)i , t(2)i ← Z2` ;

* Set P(1)
i := {k(1)i , t(1)i } , P(2)

i := {k(2)i , t(2)i };
– for i := 0 to mc:

* v(1)i ,v(2)i ← Z2` ;
– Send (P (1),v(1)) to S1, (P (2),v(2)) to S2.

• Upon receiving (DATA,sid,D,n) from the external F 4
bp, the

simulator Sim acts as the honest data owner D to do:
– for i := 0 to n−1 do:

* Generate x(1)i ,x(3)i ← Z2` , set x(2)i := x(1)i , x(4)i := x(3)i ;
– Send x( j) to S j, j ∈ [4].

• Upon receiving (Eval,sid,S j) for an honest party S j, j ∈
{1,2} from the external F 4

bp, Sim does:
– for i := 0 to mc−1:

* Set k̃( j)
i := 0;

* Send (FETCH,sid,x j, k̃( j)
i ) to F n,`

sot to get x( j)
ki

;

* Set ∆x( j)
i := w( j)

i − x( j)
ki

(mod 2`);
– Send ∆x( j) to S3− j on behalf of the honest party S j;

• Upon receiving (Eval,sid,S j) for an honest party S j, j ∈
{3,4} from the external F 4

bp, Sim does:
– for i := 0 to mc−1:

* Set k̃( j)
i := 0;

* Send (FETCH,sid,x j, k̃( j)
i ) to F n,`

sot to get x( j)
ki

;

* Set ∆x( j)
i := ρ

( j−2)
i − x( j)

ki
−w( j)

i (mod 2`);
– ∆x( j) to S1 and S2 on behalf of the honest party S j;

• Upon receiving ∆x(3− j) from S3− j, ((K
( j)

i,ρ )i∈Zmc
,∆x(3))

from S3 , and ∆x(4) from S4, for an honest party S j, j ∈
{1,2}, Sim does:
– for i := 0 to mc−1:

* Set ∆xi := ∑
4
q=1 ∆x(q)i (mod 2`);

* Set b( j)
i ← DCF.EvalIC( j,K ( j)

i,ρ ,∆xi);

* Set e( j)
i,1 := ( j−1−b( j)

i ) · ri (mod 2λ);

* Set e( j)
i,2 := b( j)

i · ri (mod 2λ);
– for i := 0 to mc :

* Sum up the share of edge costs along i-th leaf node’s
path to get c( j)

i , set ĉ( j)
i := c( j)

i−δ (mod mc+1);

* Set v̂( j)
i,1 ←Z2` , v̂( j)

i,2 := v( j)
i−δ (mod mc+1)− v̂( j)

i,1 (mod 2`);

– Send (ĉ( j)
i , v̂( j)

i,1 )i∈Zmc+1 to S3, (ĉ( j)
i , v̂( j)

i,2 )i∈Zmc+1 to S4;

Indistinguishability. We assume that the parties S1, . . . ,S4
communicate with each other via the secure channel function-
ality Fsc (omitted in the protocol description for simplicity).
The indistinguishability is proven through a series of hybrid
worlds H0, . . . ,H3.
Hybrid H0: It is the real protocol execution
ExecFsot

{Πconst
os ,Πconst

eval },A ,Z .

Hybrid H1: H1 is the same as H0 except that in H1,
{w(1)

i }i∈Zmc
, {w(2)

i }i∈Zmc
and {ρ(2)

i }i∈Zmc
are picked uni-

formly random from Z2` instead of calculating from PRFZ2` ;
{ri}i∈Zmc+1 is picked uniformly random from Z2λ instead

of calculating from PRFZ2λ . Set w(3)
i := w(1)

i , w(4)
i := w(2)

i ,
i ∈ Zmc .

Claim 13. If PRFZ2` : {0,1}λ × {0,1}in 7→ Z2` is a se-
cure pseudorandom function with adversarial advantage
Adv

PRF
Z

2`
(1λ,A), PRFZ2λ : {0,1}λ×{0,1}in 7→ Z2λ is a se-

cure pseudorandom function with adversarial advantage
Adv

PRF
Z

2λ
(1λ,A), then H1 and H0 are indistinguishable

with advantage ε1 := 3mc · Adv
PRF

Z
2`
(1λ,A) + (mc + 1) ·

Adv
PRF

Z
2λ
(1λ,A).

Proof. We have changed 2mc PRF
Z2` outputs and (mc + 1)

PRFZ2λ outputs to uniformly random strings; therefore,
the overall advantage is 3mc ·Adv

PRF
Z

2`
(1λ,A)+(mc +1) ·

Adv
PRF

Z
2λ
(1λ,A) by hybrid argument via reduction.

Hybrid H2: H2 is the same as H1 except that in H1:

For j ∈ {1,2}:
• Set k̃( j)

i := 0, i ∈ Zmc ;
instead of

For j ∈ {1,2}:
• Set k̃( j)

i := k( j)
i , i ∈ Zmc ;

Claim 14. H2 and H1 are perfectly indistinguishable.
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Proof. Since {k̃( j)
i }i∈Zmc , j∈[2] are only sent to the simulated

F n,`
sot , which is oblivious to S1, H2 and H1 are perfectly indis-

tinguishable.

The adversary’s view of H2 is identical to the simulated
view ExecF 4

bp,S ,Z
. Therefore, the overall distinguishing advan-

tage is

3mc ·Adv
PRF

Z
2`
(1λ,A)+(mc +1) ·Adv

PRF
Z

2λ
(1λ,A)

This concludes the proof.

D Proof of Theorem 4

Theorem 4. The protocol Πpoly
os as described in Fig. 15 and

Π
poly
eval as described in Fig. 16 UC-realizes F 4

bp as described in
Fig. 2 in the {Fsot,Fcsot}-hybrid model against semi-honest
adversaries who can statically corrupted up to 1 server.

Proof. To prove Thm. 4, we construct a PPT simulator Sim
such that no non-uniform PPT environment Z can distinguish
between (i) the real execution ExecFsot,Fcsot

{Πpoly
os ,Π

poly
eval },A ,Z

where

the parties M,D, S := {S1, . . . ,S4} run protocol Πpoly
os ,

Π
poly
eval in the {Fsot,Fcsot}-hybrid world and the corrupted

parties are controlled by a dummy adversary A who simply
forwards messages from/to Z, and (ii) the ideal execution
ExecF 4

bp,Sim,Z where the parties M,D, S1, . . . ,S4 interact with

functionality F 4
bp in the ideal world, and corrupted parties are

controlled by the simulator Sim.

Simulator. The simulator Sim internally runs A , forwarding
messages to/from the environment Z. Sim simulates the inter-
face of {Fsot,Fcsot} as well as honest parties M,D, S2,S3,S4.
In addition, the simulator Sim simulates the following inter-
actions with A .
• Upon receiving (MODEL,sid,M,(m,d)) from the external

F 4
bp , the simulator Sim acts as the honest model owner M

to do:
– Build the position mapping, using dummy elements as

Pi := {I left
i := 0,I right

i := 0,J left
i := 0,J right

i := 0, ti :=
0,vi := 0};

– for i := 0 to m−1 do:
* Set I left,(1)

i ← Zm , I left,(2)
i := I left,(1)

i ;

* Set I left,(3)
i = I left,(4)

i := I left
i − I left,(1)

i (mod m);

* Set J left,(1)
i ← Zn , J left,(2)

i := J left,(1)
i ;

* Set J left,(3)
i = J left,(4)

i := J left
i − J left,(1)

i (mod n);

* Set I right,(1)
i ← Zm , I right,(2)

i := I right,(1)
i ;

* Set I right,(3)
i = I right,(4)

i := I right
i − I right,(1)

i (mod m);

* Set J right,(1)
i ← Zn , J right,(2)

i := J right,(1)
i ;

* Set J right,(3)
i = J right,(4)

i := J right
i − J right,(1)

i (mod n);

* Set t(1)i ← Z2λ , t(2)i := t(1)i ;

* Set t(3)i = t(4)i := ti− t(1)i (mod 2λ);

* Set v(1)i ← Z2λ , v(2)i := v(1)i ;

* Set v(3)i = v(4)i := vi− v(1)i (mod 2λ);
– Set id1 := 1 and k1 := 0;
– Generate id

(1)
1 , . . . , id

(4)
1 ← Zm , id1 = ∑

4
i=1 id

(i)
1

(mod m);
– Generate k(1)1 ,k(2)1 ,k(3)1 ,k(4)1 ← Zn, k1 = ∑

4
i=1 k(i)1

(mod n);
– Send (P ( j), id

( j)
1 ,k( j)

1 ) to S j, j ∈ [4];
• Upon receiving (DATA,sid,D,n) from the external F 4

bp, the
simulator Sim acts as the honest data owner D to do:
– for i := 0 to n−1 do:

* Generate x(1)i ,x(3)i ← Z2` , set x(2)i := x(1)i , x(4)i := x(3)i ;
– Send x( j) to S j, j ∈ [4].

• Upon receiving (Eval,sid,S j) for an honest party S j, from
the external F 4

bp, Sim does:
– for i := 1 to d:

* Send (FETCH,sid,x( j),k( j)
i ) to F n,`

sot to get x( j)
ki

;

* Send (FETCH,sid,P ( j), id
( j)
i ) to F m̃,∗

sot to get P( j)
idi

:=

(I left,( j)
idi

,I right,( j)
idi

,J left,( j)
idi

,J right,( j)
idi

, t( j)
idi

,v( j)
idi
);

* Set res( j) := res( j)+ v( j)
idi

(mod 2`);

* if i≥ d, return res( j) to the receiver R and break;

* Obliviously fetch id
( j)
i+1 and k( j)

i+1:

· Send (COMPFETCH,sid,(I left,( j)
idi

,I right,( j)
idi

),(x( j)
ki
, t( j)

idi
))

to F log m̃,`
csot

· Send (COMPFETCH,sid,(J left,( j)
idi

,J right,( j)
idi

),(x( j)
ki
, t( j)

idi
))

to F logn,`
csot

• When the simulated {Fsot,Fcsot} receives input from the
corrupted party S j, the simulator Sim sends (Eval,sid) to
the external F 4

bp;
• When the simulated receiver R terminates, the simulator
Sim allows the (RESULT,sid,y) message to be delivered to
R in the ideal world.

Indistinguishability. We assume that the parties M,D,
S1, . . . ,S4 communicate with each other via the secure chan-
nel functionality Fsc (omitted in the protocol description for
simplicity). The views of A and Z in ExecFsot,Fcsot

{Πpoly
os ,Π

poly
eval },A ,Z

and

ExecF 4
bp,Sim,Z are identical. Therefore, it is perfectly indistin-

guishable. This concludes the proof.

E Oblivious Selection Πsel

In this section, we provide the details of our oblivious se-
lection protocol invoked in our polynomial-round private de-
cision tree protocol Π

poly
eval in Sec. 6.2. The protocol Πsel is

described in Fig. 18.
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Offline phase:
• S1 dose for i = 1 to d:

– Generate ϕi,2← Zn, set ϕ
(1)
i,2 := ϕi,2−PRFZN

η3 (sid, i) and K (1)
i,ϕ2

,K (2)
i,ϕ2
←DPF.Gen(1λ,ϕi,2,1,Zn,Z2` );

– Generate ψi,2← Zm̃, set ψ
(1)
i,2 := ψi,2 and K (1)

i,ψ2
,K (2)

i,ψ2
←DPF.Gen(1λ,ψi,2,1,Zm̃,Z);

• S3 dose for i = 1 to d:
– Generate ϕi,1← Zn, set ϕ

(1)
i,1 := ϕi,1−PRFZN

η4 (sid, i) and K (1)
i,ϕ1

,K (2)
i,ϕ1
←DPF.Gen(1λ,ϕi,1,1,Zn,Z2` );

– Generate ψi,1← Zm̃, set ψ
(1)
i,1 := ψi,1 and K (1)

i,ψ1
,K (2)

i,ψ1
←DPF.Gen(1λ,ψi,1,1,Zm̃,Z);

• S1 sends (Key(1)i,ϕ2
,K (1)

i,ψ2
)i∈[d] to S3,(Key(2)i,ϕ2

,K (2)
i,ψ2

)i∈[d] to S4, and S3 sends (Key(1)i,ϕ1
,K (1)

i,ψ1
)i∈[d] to S1,(Key(2)i,ϕ1

,K (2)
i,ψ1

)i∈[d] to S4;

• S2 sets ϕ
(1)
i,2 := PRFZN

η3 (sid, i) and ψ
(1)
i,1 :=−PRFZN

η4 (sid,0), S3 sets ϕ
(1)
i,2 := 0 and ψ

(1)
i,2 := 0, for i ∈ [d];

Online phase:
• For select xki and Pidi :

– Upon receiving (FETCH,sid,x( j),k( j)
i ) from the environment Z, player S j, j ∈ {1,2} does:

* Set w( j)
k,1← PRFZn

η j (sid,1), w( j)
k,2← PRFZn

η j (sid,2), w( j)
id,1← PRF

Zm̃
η j (sid,3), w( j)

id,2← PRF
Zm̃
η j (sid,4);

* Set δ
( j)
k,1 := k( j)

i +w( j)
k,1 (mod n), δ

( j)
k,2 := k( j)

i −ϕ
( j)
i,2 +w( j)

k,2 (mod n);

* Set δ
( j)
id,1 := id

( j)
i +w( j)

id,1 (mod m̃), δ
( j)
id,2 := id

( j)
i −ψ

( j)
i,2 +w( j)

id,2 (mod m̃);

* Send (δ
( j)
k,1,δ

( j)
id,1) to S3− j , (δ

( j)
k,2,δ

( j)
id,2) to S3 and S4;

– Upon receiving (δ
(3− j)
k,1 ,δ

(3− j)
id,1 ) from S3− j , (δ

(3)
k,1 ,δ

(3)
id,1) from S3 , and (δ

(4)
k,1 ,δ

(4)
id,1) from S4, player S j, j ∈ {1,2} does:

* Set δk,1 := δ
(1)
k,1 +δ

(2)
k,1 +δ

(3)
k,1 +δ

(4)
k,1 (mod n), x̃( j)

q := x( j)
q+δk,1 (mod n), for q ∈ Zn;

* Set δid,1 := δ
(1)
id,1 +δ

(2)
id,1 +δ

(3)
id,1 +δ

(4)
id,1 (mod m̃), P̃( j)

q := P( j)
q+δid,1 (mod m̃), for q ∈ Zm̃;

* Set ζx, j ← PRF
Z2`
η j (sid,1), ζx,3← PRF

Z2`
η3 (sid,1), ζt, j ← PRF

Z2`
η j (sid,2), ζt,3← PRF

Z2`
η3 (sid,2), ζv, j ← PRF

Z2`
η j (sid,3),

ζv,3← PRF
Z2`
η3 (sid,3), ζI1 , j ← PRF

Zm̃
η j (sid,1), ζI1 ,3← PRF

Zm̃
η3 (sid,1), ζI2 , j ← PRF

Zm̃
η j (sid,2), ζI2 ,3← PRF

Zm̃
η3 (sid,2),

ζJ1 , j ← PRFZn
η j (sid,1), ζJ1,3← PRFZn

η3 (sid,1), ζJ2 , j ← PRFZn
η j (sid,2), ζJ2 ,3← PRFZn

η3 (sid,2);

* Set (β( j)
q,ϕ1 )q∈Zn ←DPF.EvalAll( j,K ( j)

i,ϕ1
) and (β

( j)
q,φ1

)q∈Zm̃ ←DPF.EvalAll( j,K ( j)
i,φ1

);

* Set x( j)
ki

:= ∑
n−1
q=0(x̃

( j)
q ·β( j)

k,ϕ1
)+ζx, j +(−1) j ·ζx,3;

* Set I le f t,( j)
idi

:= ∑
n−1
q=0(Ĩ

( j),le f t
q ·β( j)

q,φ1
)+ζI1 , j +(−1) j ·ζI1 ,3, I right,( j)

idi
:= ∑

n−1
q=0(Ĩ

( j),right
q ·β( j)

q,φ1
)+ζI2 , j +(−1) j ·ζI2 ,3;

* Set J le f t,( j)
idi

:= ∑
n−1
q=0(Ĩ

( j),le f t
q ·β( j)

q,φ1
)+ζJ1 , j +(−1) j ·ζJ1 ,3, J right,( j)

idi
:= ∑

n−1
q=0(Ĩ

( j),right
q ·β( j)

q,φ1
)+ζJ2 , j +(−1) j ·ζJ2 ,3;

* Set t( j)
idi

:= ∑
n−1
q=0 (̃t

( j)
q ·β( j)

q,φ1
)+ζt, j +(−1) j ·ζt,3, v( j)

idi
:= ∑

n−1
q=0(ṽ

( j)
q ·β( j)

q,φ1
)+ζv, j +(−1) j ·ζv,3;

* Return x( j)
ki
,P( j)

idi
:= (I left,( j)

idi
,I right,( j)

idi
,J left,( j)

idi
,J right,( j)

idi
, t( j)

idi
,v( j)

idi
);

– Upon receiving (FETCH,sid,x( j), i( j)) from the environment Z, player S j, j ∈ {3,4} does:

* Set w( j)
1 ← PRFη j−2 (sid,1), w( j)

2 ← PRFη j−2 (sid,2);

* Set δ
( j)
k,1 := i( j)−ϕ

( j−2)
1 −w( j)

1 (mod n), δ
( j)
k,2 := i( j)−w( j)

2 (mod n);

* Set δ
( j)
id,1 := id

( j)
i −ψ

( j)
i,1 −w( j)

1 (mod m̃), δ
( j)
id,2 := id

( j)
i −w( j)

2 (mod m̃);

* Send (δ
( j)
k,1,δ

( j)
id,1) to S1 and S2, (δ( j)

k,2,δ
( j)
id,2) to S7− j;

– Upon receiving (δ
(1)
k,2 ,δ

(1)
id,2) from S1, (δ(2)k,2 ,δ

(2)
id,2) from S2, and (δ

(7− j)
k,2 ,δ

(7− j)
id,2 ) from S7− j , player S j, j ∈ {3,4} does:

* Set δk,2 := δ
(1)
k,2 +δ

(2)
k,2 +δ

(3)
k,2 +δ

(4)
k,2 (mod n), x̃( j)

q := x( j)
q+δk,2 (mod n), for q ∈ Zn;

* Set δid,2 := δ
(1)
id,2 +δ

(2)
id,2 +δ

(3)
id,2 +δ

(4)
id,2 (mod m̃), P̃( j)

q := P( j)
q+δid,2 (mod m̃), for q ∈ Zm̃;

* Set ζx, j−2← PRF
Z2`
η j−2 (sid,1), ζx,4← PRF

Z2`
η4 (sid,1), ζt, j−2← PRF

Z2`
η j−2 (sid,2), ζt,4← PRF

Z2`
η4 (sid,2), ζv, j−2← PRF

Z2`
η j−2 (sid,3),

ζv,4← PRF
Z2`
η4 (sid,3), ζI1 , j−2← PRF

Zm̃
η j−2 (sid,1), ζI1,4← PRF

Zm̃
η4 (sid,1), ζI2 , j−2← PRF

Zm̃
η j−2 (sid,2), ζI2 ,4← PRF

Zm̃
η4 (sid,2),

ζJ1, j−2← PRFZn
η j−2 (sid,1), ζJ1 ,4← PRFZn

η4 (sid,1), ζJ2 , j−2← PRFZn
η j−2 (sid,2), ζJ2,4← PRFZn

η4 (sid,2);

* Set (β( j)
q,ϕ2 )q∈Zn ←DPF.EvalAll( j−2,K ( j−2)

i,ϕ2
) and (β

( j)
q,φ2

)q∈Zm̃ ←DPF.EvalAll( j,K ( j)
i,φ2

);

* Set x( j)
ki

:= ∑
n−1
q=0(x̃

( j)
q ·β( j)

k,ϕ1
)−ζx, j−2 +(−1) j ·ζx,4.

* Set I le f t,( j)
idi

:= ∑
n−1
q=0(Ĩ

( j),le f t
q ·β( j)

q,φ2
)−ζI1 , j−2 +(−1) j ·ζI1 ,4, I right,( j)

idi
:= ∑

n−1
q=0(Ĩ

( j),right
q ·β( j)

q,φ2
)−ζI2 , j−2 +(−1) j ·ζI2 ,4;

* Set J le f t,( j)
idi

:= ∑
n−1
q=0(Ĩ

( j),le f t
q ·β( j)

q,φ2
)−ζJ1, j−2 +(−1) j ·ζJ1 ,4, J right,( j)

idi
:= ∑

n−1
q=0(Ĩ

( j),right
q ·β( j)

q,φ2
)−ζJ2 , j−2 +(−1) j ·ζJ2 ,4;

* Set t( j)
idi

:= ∑
n−1
q=0 (̃t

( j)
q ·β( j)

q,φ2
)−ζt, j−2 +(−1) j ·ζt,4, v( j)

idi
:= ∑

n−1
q=0(ṽ

( j)
q ·β( j)

q,φ2
)−ζv, j−2 +(−1) j ·ζv,4;

* Return x( j)
ki
,P( j)

idi
:= (I left,( j)

idi
,I right,( j)

idi
,J left,( j)

idi
,J right,( j)

idi
, t( j)

idi
,v( j)

idi
).

Selection Protocol Πsel

Figure 18: Selection protocol.
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