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Abstract. In a recent talk of Hallgren on a joint work with Eldar (Sept
21, 2021, Simons Institute), a polynomial-time quantum algorithm for
solving BDD in a certain class of lattices was claimed. We show here that
known classical (and even, deterministic) polynomial-time algorithms al-
ready achieve this result.

1 Context and Claims

The problem considered by Eldar and Hallgren [Hal21] can be read as a worst-
case version of the LWE problem, with a secret dimension k “ 1, n samples,
modulus q “ cn for some c ą 1, and a sub-exponential approximation factor
α “ 1{2Θp

?
nq.

More formally, let us start by defining the Bounded Distance Decoding.

Definition 1.1 (Bounded Distance decoding (BDD)). The BDD problem
in a lattice L Ă Rn and radius with r ą 0 is the problem of, given t “ v` e for
a lattice vector v P L and an error e P Rn with }e} ă r, finding v.

For the solution to be unique, one requires r{λ1pLq ă 1{2. More generally, this
ratio is referred to as the BDD approximation factor.

The family of lattices considered in [Hal21] are the q-ary lattices spanned by
a single vector a P Zn

La “ qZn ` aZ.

Theorem 1.2 (Eldar & Hallgren [Hal21]). There exists a quantum polynomial-
time algorithm that solves BDD in La for any a P Zn and for any error up to
radius λ1pLaq ¨ 2

´Θp
?
nq.

In the average-case, this problem with these parameters is already known to
be easy to solve, simply by ignoring all but Op

?
nq many samples (geometrically,

a projection onto certain cannonical axes), applying the LLL reduction algorithm
to the basis, and finally decoding with Babai nearest plane algorithm. During
the panel discussion following the presentation, various expert discussed the
plausibility of a provable classical algorithm achieving the same result via known
randomization techniques.

While we share their optimism regarding the plausibility of such a classical
rerandomisation, we will show that such randomization is not even needed!



Namely we will prove that the LLL [LLL82] and Babai [Bab86] algorithms
already solve the problem in the full dimensional lattice, in the worst-case, and
deterministically.

Proving so requires considering the q-ary structure of the lattice, and other
guarentees of LLL than its approximation factor. Such reasoning are not new,
and already played a role in lattice cryptanalysis [CL15, KF17]. More specifically,
a key remark in our case is to note that the "perp lattice" (the dual lattice scaled
up by q) is an integer lattice with small determinant; the situation appears as
the dual of [CL15].

We also provide constant in the exponent for more refined comparison. To
this end, let us introduce δ “

a

4{3 ` ε for some arbitrary small ε ą 0 as the
constant appearing in László condition in LLL [LLL82]. The constant c ą 1
below is the constant such that q “ cn.

Theorem 1.3 (This note – First Version, Sept. 24, 2021). There exists a
deterministic polynomial-time algorithm that solves BDD in La for any a P Zn
for any error up to radius λ1pLaq ¨ pc

?
δq´

?
n´Op1q.

1.1 General analysis

In the same talk [Hal21], a more general result was claimed, but the exact pa-
rameters for that result were unclear and uncertain.

The analysis of the deterministic algorithm considered in this note also gen-
eralizes to other regimes: arbitrary choice of q, and more generating vectors.
Namely, for any matrix A P Znˆk, consider the lattice

LA “ qZn `AZk.

Theorem 1.4 (This note – Second version, Oct. 14, 2021). There exists
a deterministic polynomial-time algorithm that solves BDD in LA for any A P

Znˆk for any error up to radius 1
2λ1pLAq ¨ expp´

?
2k ¨ ln q ¨ ln δq.

Remark: Instantiating the new version with k “ 1 and q “ cn we recover the
same asymptotic result than in the first version, but with a better constant. This
is explained by a better choice for the concrete value of d in the proof below.

2 Proof

The volume of this lattice is an integer comprised between qn´k and qn. A key re-
mark to show that LLL already solves the problem is to exploit the knowledge of
a full rank set of short lattice vectors, namely the q-vectors p0, . . . , 0, q, 0, . . . , 0q.
We produce a controlled basis of the lattice via the following Lemma.

Lemma 2.1 ([MG02, Lemma 7.1, page 129], simplified). There is a de-
terministic polynomial-time algorithm that, given an arbitrary basis of an n-
dimensional lattice Λ and a full-rank set of lattice vectors V Ă Λ outputs a
basis pb1, . . . ,bnq of Λ such that the asssociated Gram-Schmidt vectors satisfy
}b˚i } ď maxvPV }v}.
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Denoting bi the basis vectors obtain via the above lemma, b˚i the associated
Gram-Schmidt vectors, and `1i “ ln }b˚i }, we have:

`1i ď ln q for i ď n. (1)

Let us now denote pciqi the basis obtained by applying LLL to this1 basis pbiqi,
and denote pc˚i qi the associated Gram-Schmidt vectors, and finally `i “ }c˚i }.

The first constraint on the profile is what is typically used to control LLL-
reduced bases, together with the invariant

ř

`i “
ř

`1i.

Fact 2.2 (László Condition) For all i P t1, . . . , n´ 1u,

`i`1 ě `i ´ ln δ. (2)

But there is much more that can be said about the LLL algorithm. In particular,
one can also show that partial volumes do not increase during the algorithm (this
is even a key fact to prove termination of LLL).

Fact 2.3 (Partial Volumes Decreases) For all i P t1, . . . , nu:

i
ÿ

j“1

`j ď
i

ÿ

j“1

`1j . (3)

At last, one can invoke duality to upper-bound the aggregated Gram-Schmidt
length of the last vectors. Indeed, the dual lattice is contained in 1

qZ
n, so any

partial basis of rank r of the dual lattice has volume at least 1{qr. By duality
(see [Mic17, Lecture 3 (Duality), Section 3] or [DD18, Lecture 5, Section 3]), this
implies the following.

Fact 2.4 (Left-over volume for q-ary lattices) For all i P t1, . . . , nu:

n
ÿ

j“i`1

`j ď pn´ iq ln q. (4)

The rest of our proof is a game of inequalities towards the following.

Proposition 2.5. With the notations above, and λ1 the minimal distance of
our lattice, it holds that

min
i
`i ě lnλ1 ´

a

2k ¨ ln q ¨ ln δ.

The final claim that Babai will properly solve BDD in the worst-case directly
follows.
1 as opposed to taking an arbitrary LLL-reduced basis
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Proof. Let d “
R

b

2k¨ln q
ln δ

V

. For i ď d, the bound `i ě lnλ1´ pd´ 1q ln δ directly

follows from Lovasz condition, noting that `1 ě lnλ1 because c˚1 “ c1 is a non-

zero lattice vector. Plugging the inequality d´ 1 ď
b

2k¨ln q
ln δ yields the result for

i ď d.
It remains to prove the statement for i ě d. First, note that the volume

invariant gives:

pn´ kq ln q ď
n

ÿ

j“1

`j ď n ln q (5)

Because of the q-ary structure of the input basis, this in fact generalizes to any
partial volumes:

pi´ kq ln q ď
i

ÿ

j“1

`j ď i ln q, for all i P t1, . . . , nu (6)

The upper bounds follows from Fact 2.3 and the upper bound `1i ď ln q on the
initial basis. The lower bound follows from substracting the inequality of Fact 2.4
to the volume invariant. Taking the difference of (6) at i ě d and i ´ d ` 1 we
get:

i
ÿ

j“i´d`1

`j ě pd´ kq ln q. (7)

By Lovasz condition (2.2) we further have that `j ď `i`pi´jq ln δ, which implies

d`i `
d´1
ÿ

j“0

j ln δ ě
i

ÿ

j“i´d`1

`j ě pd´ kq ln q. (8)

which rewrites as:
d`i ` dpd´ 1q

ln δ

2
ě pd´ kq ln q. (9)

Using ln δ ě 0, λ1 ď q, d´ 1 ď
b

2k¨ln q
ln δ and d ě

b

2k¨ln q
ln δ we get

min
dďiďn

`i ě
d´ k

d
ln q ´

1

2
pd´ 1q ln δ (10)

ě ln q ´
k

d
ln q ´

1

2
pd´ 1q ln δ (11)

ě lnλ1 ´
a

2k ¨ ln q ¨ ln δ (12)

[\

To conclude the proof of our main theorem, it remains to invoke the correct-
ness condition for solving BDD with Babai’s algorithm.

Fact 2.6 (Correctness of Babai’s Algorithm [Bab86]) Given a basis pciqi
of a lattice L, with associated Gram-Schmidt basis pc˚i qi, Babai’s Nearest Plane
algorithms solves BDD up to a radius r “ min }c˚i }{2.
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