
Practical Non-interactive Publicly Verifiable Secret Sharing with
Thousands of Parties

Craig Gentry1, Shai Halevi1, and Vadim Lyubashevsky2

1 Algorand Foundation
2 IBM Research

Abstract. Non-interactive publicly verifiable secret sharing (PVSS) schemes allow parties to re-share
a secret in a decentralized setting in the presence of malicious parties. A recently proposed application
of PVSS schemes is to enable permissionless proof-of-stake blockchains to “keep a secret” via a sequence
of committees that share that secret. Such committees can use the secret to produce signatures on the
blockchain’s behalf, or to disclose hidden data conditioned on consensus that some event has occurred.
Such a setting may involve thousands of parties, so the PVSS scheme that it uses must be very efficient,
both in computation and communication. Yet, previous PVSS schemes have large proofs and/or require
many exponentiations over large groups.
We present a non-interactive PVSS scheme in which the underlying encryption scheme is based on
the learning with errors (LWE) problem. While lattice-based encryption schemes are very fast, they
have issues with bandwidth (long ciphertexts and public keys). We deal with the bandwidth issue in
two ways. First, we adapt the Peikert-Vaikuntanathan-Waters (PVW) encryption scheme to the multi-
receiver setting so that the bulk of the parties’ keys is a common random string, and so that we get
good amortized communication: Ω(1) plaintext/ciphertext rate (rate ≈ 1/60 for 100 parties, ≈ 1/8
for 1000 parties, approaching 1/2 as the number of parties grows). Second, we use bulletproofs over a
DL-group of order about 256 bits to get compact proofs of correct encryption of shares. Switching from
the lattice setting to the DL setting is relatively painless, as we equate the LWE modulus with the
order of the group, and apply dimension reduction to vectors before the switch to minimize the number
of exponentiations in the bulletproof. An implementation of our PVSS for 1000 parties showed that it’s
quite practical, and should remain so with up to a two order of magnitude increase in the group size.

Table of Contents

1 Introduction . 1
1.1 The PVSS Problem and Related Work . 1
1.2 An Overview of Our PVSS Construction . 3
1.3 Organization . 6

2 The Underlying Encryption Scheme . 7
2.1 Learning with Errors (LWE) . 7
2.2 Variants of Regev Encryption . 7
2.3 The Multiparty Setting . 9
2.4 An Optimization: Using Module-LWE over Small Rings . 11
2.5 The Encryption Scheme in Our Protocol . 11

3 Proofs of Smallness . 12
3.1 Underlying Commit-and-Prove Systems . 13
3.2 Tails of Distributions and the Johnson-Lindenstrauss Lemma . 14
3.3 A Modular Johnson–Lindenstrauss Variant . 14
3.4 Approximate Proofs of Smallness . 15
3.5 Exact Proofs of Smallness . 16
3.6 Proofs of Smallness for LWE . 18

4 Implementation and Performance . 21
A Components and Parameters . 24

A.1 Key Generation . 25
A.2 Encryption . 25
A.3 Proof of Decryption . 25
A.4 Setting the Parameters . 27

B Aggregating DL-based Commit-and-Prove Protocols . 29
B.1 The Initial System . 29
B.2 Step 1: Aggregating the Linear Constraints . 30
B.3 Step 2: Aggregating the Norm Constraints . 30
B.4 Step 3: Enforcing the Norm Constraint . 31
B.5 Step 4: Removing v from the Linear Constraint . 31
B.6 The End Result . 32

C The Proactive VSS Scheme . 32
C.1 Reducing the Verification Cost . 33
C.2 Slow Renewal of Keys . 34

D More on the Normal-Distribution Heuristic . 34
E Bulletproof Variations . 37

E.1 Correctness and Soundness . 38
E.2 Zero Knowledge . 40
E.3 Lightweight Bulletproof for Linear Relations . 42

1 Introduction

A publicly-verifiable secret-sharing scheme (PVSS) lets a dealer share a secret among a committee
of shareholders, in such a way that everyone (not just the shareholders) can verify that the secret
was shared properly and be assured that it is recoverable. A noninteractive PVSS scheme lets the
sender broadcast just a single message to the entire universe, from which the shareholders can get
their shares and everyone else can check that sharing was properly done.3 A proactive PVSS scheme
further enables passing the secret from one committee of shareholders to the next, so that (a) the
secret remains hidden from an adversary that only controls a minority in each committee, and (b)
everyone can check that the secret is passed properly between consecutive committees.

Such protocols play crucial role in distributed cryptography, and were studied extensively in the
literature [17, 28, 54, 23, 52, 12, 56, 21, 15, 51, 32, 33, 24, 37, 50, 31]. They were also recently proposed
as enablers of secure computation on large-scale distributed networks such as public blockchains [8,
31]. Unfortunately, existing PVSS schemes in the literature fall short of what is needed for general-
purpose secure computation in large-scale systems, where committees may scale to hundreds or
even thousands of parties [8, 26]. See related work in Section 1.1.

In this work we propose a new system for (proactive, noninteractive) PVSS, that remains
feasible even with huge committees. In asymptotic terms, with security parameter λ and k-party
committees, the PVSS protocol that we propose has the dealer and each committee member perform
only O(λ+k) exponentiations and broadcast O(λ+k) scalars in Zp and O(log(λ+k)) group elements.
(In addition, each party needs to perform O(λ2 + λk) scalar multiplications in Zp, which comes to
dominate the running time.)

In terms of actual numbers, we wrote a preliminary, single-threaded, implementation of our
system and tested it on committees of up to 1000 members.4 With a 1000-member committee, the
dealer runs in about 40 seconds (single-threaded) and broadcasts a single message of size less than
300KB, while each committee member requires about 20 seconds to obtain its share and verify the
proofs. As we explain in the sequel, this system can be extended to a proactive PVSS protocol for
very large-scale systems, where the wall-clock time to refresh a secret is measured in just a few
minutes.

We also point out that while our goal of using LWE encryption was motivated by practical
consideration, a side effect is that the secrecy of the PVSS scheme is preserved even against quantum
attackers. This protects the PVSS scheme from potential “harvest-and-decrypt” attacks using future
quantum computers. This feature may be especially important for blockchain applications, where
all the data is “harvested” by design.

1.1 The PVSS Problem and Related Work

Verifiable secret sharing (VSS) was introduced by Chor et al. [17], with the objective of making
secret sharing robust against malicious parties – i.e., a malicious dealer distributing incorrect shares,
or malicious shareholders submitting incorrect shares in the reconstruction protocol.

Stadler [54] introduced publicly verifiable secret sharing (PVSS), in which the correctness of
shares is verifiable by everyone (not just shareholders). As Stadler notes, the idea appears implicitly
in earlier works. Chor et al.’s VSS protocol [17] happened to be publicly verifiable. GMW [28] also

3 Clearly such schemes must rely on some form of PKI.
4 The implementation should also support committees that are one or two orders of magnitude larger, with only a

mild increase in runtime.

1

includes a PVSS protocol (section 3.3), in which shareholders generate public keys independently,
and the encrypter sends encryptions of shares of the secret to the shareholders, together with
NIZK proofs that the ciphertexts are well-formed and indeed encrypt shares. These early schemes
can be made non-interactive, by using NIZKs with the PVSS protocol in [28], or by applying the
Fiat-Shamir heuristic to the Σ-protocols in [54].

Later PVSS works focused primarily on improving the efficiency of non-interactive ZK proofs
for the ciphertexts, and minimizing the assumptions underlying those proofs [23, 52, 12, 56, 21, 15,
51, 32, 33, 24, 37, 50, 31]. Below, we will focus on PVSS schemes that follow the GMW approach to
PVSS, where shareholders receive shares encrypted under their own independently generated public
keys. In [48], this approach to PVSS is called “threshold encryption with transparent setup”. We can
categorize these PVSS schemes according to what underlying encryption scheme they use to encrypt
shares. For the most part, these schemes all use 1) Paillier encryption, 2) ElGamal encryption of
scalars “in the exponent”, 3) pairing-based encryption of elements of the source group of the bilinear
map, or 4) lattice-based encryption.

Paillier encryption [45] might at first appear ill-suited to PVSS in the “threshold encryption
with transparent setup” setting, as shareholders have different Paillier public keys, and therefore
have incompatible plaintext spaces that make it awkward to prove relationships among shares.
However, this problem can be overcome by using a common interval that is inside the plaintext
spaces of all of the Paillier keys, and using a proof system that proves (among other things) that
the encrypted message is indeed within this interval. Camenisch and Shoup [15] build an encryption
scheme with verifiable encryption and decryption, based on Paillier’s decision composite residuosity
assumption, that uses such an “interval” approach; the Σ-protocols for verifiable encryption and
decryption each require only O(1) exponentiations.5 Recently, Lindell et al. [37] used essentially a
version of Camenisch-Shoup to construct a PVSS scheme with O(k) exponentiations per commit-
tee member (during re-sharing), for committees of size k (see Section 6.2).6 Later schemes using
variants of Paillier to encrypt PVSS shares include [51, 33, 24]. All of these PVSS schemes have
the usual disadvantage of schemes related to Paillier, namely that exponentiations are expensive,
as the exponentiations are over a group whose size should in principle be about exp(O(λ3)) for
security parameter λ to maintain sufficient security against the number field sieve, and which in
practice is much larger than, say, an elliptic curve group with comparable security (against classical
computers). Also, the size of the proofs is linear in the size of the ciphertexts.

PVSS schemes that encrypt shares “in the exponent” include [52, 37, 31]. For example, Groth’s
PVSS scheme [31, 30], affiliated with the Dfinity blockchain, shares the secret for BLS signing [10] by
dividing it “into small chunks, which can be encrypted in the exponent and later extracted using the
Baby-step Giant-step method”. The scheme employs a weak range proof to demonstrate that the
chucks in the exponent are small enough to be recovered. The scheme has numerous optimizations,
such as using the same randomness for ciphertexts in the multi-receiver setting. The paper [31]
mentions an implementation, but does not provide details.

Bilinear-map-based PVSS schemes can verifiably encrypt source group elements, as opposed to
scalars [20, 55]. An advantage of these schemes is that proofs of smallness – such as those needed in
Camenisch-Shoup and Groth’s PVSS scheme – are unnecessary, as the bilinear map makes verifiable
encryption very natural [9, 22]. A disadvantage is that these schemes are limited to settings where

5 In earlier work, Fouque and Stern [21] informally present a somewhat similar scheme.
6 Lindell et al. also constructed a scheme that avoids Paillier, but with much higher bandwidth.

2

one is content to have the secret be a source group element – e.g., as when the secret is being used
as a signing or decryption key in a pairing-based cryptosystem.

Lattice-based encryption schemes can encrypt large scalars, and have encryption and decryption
procedures that are much faster than group-based schemes.7 The main disadvantage of lattice-based
schemes is high bandwidth, as lattice-based ciphertexts and public keys are in the order of kilobytes.
The high bandwidth issue, however, can often be amortized away, since many plaintexts can be
packed into a single ciphertext, as in the Peikert-Vaikuntanathan-Waters encryption scheme [47].
In principle, ciphertext expansion in lattice-based schemes can be arbitrarily small [13]. Also, very
small ciphertext expansion (e.g., close to 2) can be compatible with very high performance that
can be orders of magnitude better than Paillier-based schemes [25]. (See also [44, 43], cf. [53].)

Proving that lattice-based ciphertexts are well-formed requires proofs of smallness (for vectors
that should be small, such as the secret key, encryption randomness). Some lattice-based schemes
[36, 18] have used the approach of decomposing the coefficients of the vectors into their binary
representations, and then proving that each purported bit in the representation is indeed in {0, 1}.
Alternatively, one can use an approach somewhat similar to Camenisch-Shoup: a Σ-protocol that
proves that a vector is inside a certain ball by revealing a statistically masked version of that
vector. In the lattice setting, Lyubashevsky [38] showed how to use rejection sampling to reduce
the required size gap between the masking vector and masked vector. Some other works on proofs
of smallness are: [5, 19].

In this paper, we are motivated in part by the blockchain setting, where PVSS can help enable
a blockchain to “keep a secret” [8] that it can use to sign or decrypt conditioned upon events,
but where bandwidth is at a premium. Currently, blockchains almost exclusively use proof systems
based on QAPs [46, 29] or bulletproofs [14], because these have the most concise proofs.8

1.2 An Overview of Our PVSS Construction

We assume we have a PKI, in which each party (and potential shareholder) has independently
generated its own key pair for public-key encryption. Based on this PKI, our goal is to design
a practical non-interactive PVSS scheme that allows a dealer to share a secret by verifiably (in
zero-knowledge) encrypting shares of the secret to a “committee” of shareholders under their keys.
The scheme should also allow each committee member to act as a dealer and verifiably “re-share”
its share to the next committee of shareholders. We use Shamir secret sharing, though essentially
any linear secret sharing will do.

Our PVSS scheme arises out of two design choices – namely, 1) to use lattice-based encryption,
and 2) to use bulletproofs. Below, we explain these choices and their consequences.

Lattice-based encryption Lattice-based encryption is a good fit for PVSS, not only because it
is exceptionally fast, but also because its disadvantages turn out not to be big problems in the
PVSS setting. One apparent disadvantage is that lattice-based encryption has long public keys and
ciphertexts. However, in the multi-receiver setting of PVSS, this disadvantage can be amortized
away by using the Peikert-Vaikuntanathan-Waters (PVW) encryption scheme [47]. Another ap-
parent disadvantage is that, for lattice-based PVSS, to prove that ciphertexts are well-formed, we

7 Of course, this statement refers to basic, possibly additively homomorphic lattice-based encryption schemes, not
fully homomorphic encryption.

8 Despite being compact, bulletproofs have linear verification complexity. The Dory scheme [35] is similar to bullet-
proofs, but with logarithmic verification complexity.

3

require zero-knowledge proofs of smallness – e.g., that the “noise” in the ciphertexts is small. How-
ever, as we have seen in Section 1.1, PVSS and verifiable encryption schemes based on Paillier and
ElGamal “in the exponent” also employ weak range proofs, and therefore they have no advantage
over lattices here.

We briefly review the PVW lattice-based encryption scheme, as used in our PVSS scheme. The
scheme uses a public random matrix A that is common to all parties. Each party i generates a
secret vector si, and sets bi = si · A+ ei to be its public key.9 The parties’ public key vectors (let
us suppose that there are k of them) are collected into a matrix B. The collective public key of the

PVSS system is

[
A
B

]
. The encryption of a message vector m = (m1, . . . ,mk) ∈ Zkq is

[
A
B

]
r +

[
e1
e2

]
+

[
0
m

]
=

[
c1
c2

]
, (1)

where r, e1, e2 are vectors with small coefficients and all operations take place in Zq. A committee
member will use this scheme to encrypt k re-shares of its share to the next k-member committee.10

Note how well the PVW scheme is suited to the multi-receiver setting. In the basic setting of
(single-user) Regev encryption [49], each user has its own matrix A as part of its public key, while
here A is amortized across all parties. Moreover, note that an encryption to an extra user costs just
an extra element in Zq. When the number of users becomes large, the ciphertext expansion factor
becomes a small constant.

As far as we know, however, the PVW lattice-based encryption scheme has not been used in
the multi-receiver setting before. (Instead, one uses PVW to encrypt a vector to a single user who
effectively holds k secret keys.) Indeed, proving the security of PVW in the multi-receiver setting
is subtle, since when decrypting each user implicitly obtains the inner product of si and r, which
leaks something about r. One therefore needs to show that, for practical parameters, the secrets
are still hidden despite the leakage. We cover this issue in Section 2.3.

Bulletproofs Our second design choice is to use bulletproofs. We are aiming for a PVSS scheme
that can be used on a blockchain, as blockchains provide an especially compelling platform for
PVSS. Linear-size proofs are not suitable for blockchains, as such proofs (which might appear in
many blocks) need to be downloaded and verified by everyone that is confirming the blockchain
state. For this reason, proof systems in use on actual blockchains are almost exclusively based on
QAPs [46, 29] or bulletproofs [14]. Bulletproofs have some advantages over proof systems based on
QAPs, such as being based on more natural assumptions, not requiring bilinear maps, and having
only linear (versus quasi-linear) prover time complexity. Bulletproofs also work over small groups
(a feature not shared by PVSS schemes based on Paillier encryption).

Recently, Bootle et al. [11] described a variant of bulletproofs based on lattice problems. In this
variant, the proofs are not as compact, but proof generation and verification presumably would
be faster. As future work, it may be interesting to investigate how using this variant affects the
performance of our scheme.

9 In the real scheme, each user creates several such vectors, but we defer this discussion to the body of the paper.
10 For convenience, we have described the system as having only k members total, but consecutive k-member com-

mittees could be non-overlapping subsets of a larger set of parties.

4

Using lattice-based encryption and bulletproofs together Now our goal is to construct a
proof system, ultimately based on bulletproofs, that allows a shareholder to prove that incoming
and outgoing PVW ciphertexts correctly encrypt re-shares associated to its share.

As a first step to make our encryption scheme and bulletproofs compatible, we set our LWE
modulus q to be the order of the bulletproof group. The plaintext space of our encryption scheme –
i.e., the space the shares live in – is also Z/(qZ).11 Now we “simply” need to create a commitment
of the messages and prove that the ciphertext encrypts them. After this, all the proofs can be done
using bulletproofs. The main contribution of this work is a collection of techniques, optimized for
efficiency, to prove that a lattice encryption is valid and that the message corresponds to some DL
committed value.

In more detail, we create a Pedersen commitment to all the coefficients of r, ei, and m. We
now would like to prove that the committed values satisfy the linear relationship in (1). Also, very
importantly, we need a proof that r and ei have small coefficients. Proving exact relationships is the
bread and butter of bulletproofs. We handle proofs of smallness in a multi-stage process that care-
fully calibrates the transition from “lattice world” to “bulletproof world”. Namely, in some cases,
we first reduce the dimension of the vectors involved, and instead prove that this dimension-reduced
vector has small coefficients. This dimension reduction in turn reduces the number of exponentia-
tions we eventually need to perform in the bulletproof world. Before moving to bulletproof world,
we also invoke a lattice-based (without bulletproofs) proof of smallness with a large gap. While
this proof is “slacky”, it is sufficient to prove certain expressions do not “wrap” modulo q, so that
we can now consider these expressions over Z. Now that we have reduced the dimension and are
assured that mod-q statements can be lifted to statements over Z, we can use bulletproofs to prove
the exact l2 norm of the vectors. We provide additional techniques to hide the exact l2 norm if only
a bound on the norm is desired. The bulletproofs for the linear relationships and for smallness are
aggregated to the extent possible. Details are provided below.

Dimension reduction and slacky lattice-based proofs of smallness Our dimension reduction
technique is based on the Johnson-Lindenstrauss lemma [34]. The idea is that for all vectors v, we
have ‖v‖ ≈ 1√

n
· ‖vR‖, where R is an n-column matrix whose entries are chosen from a normal

distribution of variance 1. When R is chosen in this way, the distribution of ‖vR‖2 follows the
chi-squared distribution and its confidence intervals are known. When the coefficients of R are
instead chosen from a discrete distribution over {0,±1} where the probability of 0 is 1/2, one can
heuristically verify that these confidence intervals are bounded by the continuous ones.12 If we
would like to be in a 1 − 2−128 interval, then R can have around 256 columns and then the ratio
between the smallest value of ‖vR‖ and the largest is under 4. This means that we can project
an arbitrary-dimensional vector into just 256 dimensions and prove the `2 norm of the resulting
vector, and be within a small factor of the correct result. And, of course, the projection operation
is linear. The concrete bounds for the dimension-reduction technique are described in Section 3.2.

Everything in the above discussion was based on the fact that we were working over the integers,
rather than over Zq. When working modulo q, it is possible that v has a large norm, but vR mod q

11 Unlike the more standard LWE encryption in which the message also needs to be small, we use a version of the
scheme implicit in [27] where the messages can be arbitrarily large in Zq, but the length of ~m has to increase to
encode all of the message. We describe this in Section 2.2.

12 There are concrete bounds for tails of some of these distributions (e.g. [1]), but they are asymptotic and are looser
than necessary for our concrete parameters.

5

has a small one. This event can clearly only occur if the coefficients of v are large enough that
multiplication with R causes a wraparound modulo q. It is therefore important to show that this
does not happen, and we do this in the manner as in the lattice-based proofs from [41]. We now
explain how the technique applies to our context. The main idea is to show that all the elements
of v are not too big. This seems a bit circular, as our goal is already to prove that ‖v‖ is small.
But our requirement now is not to get a very tight bound on the norm, but simply to show that
all the elements of v are small enough to not cause a wrap around. For this, one employs a simple
fact that is sometimes useful in lattice cryptography [7, Lemma 2.3], which states that if a vector v
has a large coefficient, then for any y ∈ Zq, 〈v, r〉+ y mod q has a large coefficient with probability
at least 1/2, where the coefficients of r are randomly chosen from {0,±1} as above. One would
therefore prove that the coefficients of v are small by committing to some masking vector y,
receiving a 128-column matrix R as a challenge, and then outputting vR + y. The purpose of y
is to hide v, and so some rejection sampling [39] is necessary to keep the distribution of vR + y
independent of v. Note that the gap between the actual `∞ norm of v and that of what we can
prove is increased by a factor of at least the dimension of v. This is because the `∞ norm is not
well-preserved under transformations and also due to the masking which is needed because we will
actually be outputting the value vR+ y. This is much larger than the factor of approximately 4 in
the `2-dimension reduction above, and this is why we only employ this technique for proving that
no wrap-around occurs.

In the context of our encryption scheme, instead of proving that the long vectors ei (with
dimension dependent on the number of users) have small norm, we can instead prove that the short
256-dimensional vector ([

c1
c2

]
−
[
A
B

]
r−

[
0
m

])
·R (2)

has small norm. Also, we prove that r · R has small norm instead of r. Other purportedly short
vectors are handled in the same way. For example, each of the k new committee members needs to
prove that the public key bi = siA+ ei is properly created. The combination of these techniques is
described throughout Section 3.

Bulletproofs and precise proofs of smallness Suppose now that we want to prove a tighter
upper bound β on the squared `2 norm of a vector v = (v1, . . . , vk). (Proving tighter bounds allows
us to use tighter parameters in our lattice-based encryption scheme.) Assume β is an integer. First,
we pick a vector x such that the squared l2 norm of the concatenated vector v‖x is exactly β. For
the vector x, 4 coefficients suffice, as the non-negative integer β −

∑
v2i can always be expressed

as the sum of at most 4 squares. We then use the “slacky” techniques above to prove that there is
no wraparound modulo q in the computation of the squared l2 norm of v‖x. Then, we commit to
v‖x, and use bulletproofs to prove the exact quadratic relation.

We can aggregate the relations that we prove using bulletproofs – e.g., these exact proofs of
smallness are combined together with proofs of the linear equations in (1).

1.3 Organization

In Section 2 we describe our lattice-based encryption scheme, and discuss the extension of PVW
to the multi-receiver setting. In Section 3 we present the size-proof protocols that we use in our
scheme and their parameters. In Appendix A we describe the various sub-protocols that the parties

6

run locally, for key-generation, encryption, decryption, and secret re-sharing. In Appendix B, we
describe how to aggregate all exact relations into a small number of bulletproofs. In Section 4,
we provide details about our implementation. Finally, in Appendix C we explain how we put all
these components together in a (proactive) publicly-verifiable secret-sharing protocol. For self-
containment, we also review in the appendix some slight variations of the Bulletproof protocol that
we use.

2 The Underlying Encryption Scheme

In this section we develop the encryption scheme that is used by our protocol, starting from a
(variant of) PVW encryption [47] and specializing it to our needs.

Below we denote integers and scalars by lowercase letters, vectors by bold lowercase letters,
and matrices by uppercase letters. Vectors are considered row vectors by default. (Parameters are
denoted by either lowercase English or lowercase Greek letters). For integers x, q, we denote by
x mod q the unique integer x′ ∈ [− q

2 ,+
q
2) such that x′ = x (mod q). We denote vectors by bold-

lowercase letters, and it will usually be evident from context whether they are row or column. The
l2 and l∞ norms of a vector v are denoted ‖v‖2, ‖v‖∞, respectively. For a matrix A, we let ‖A‖2,
(resp. ‖A‖∞) denote the largest l2, (resp. l∞) norm of any row in A.

2.1 Learning with Errors (LWE)

The LWE problem was introduced by Regev [49]. In the decision variant, the adversary is given
pairs (A,B) where A is chosen uniformly from Zk×mq , and it needs to distinguish the cases where:

– B is chosen uniformly at random in Zn×mq , or
– B is set as B := SA+E mod q, where the entries of S,E are chosen from some public distribu-

tions χs, χe over Zq that output integers of magnitude much smaller than q with overwhelming
probability.

This problem is believed to be hard for many different settings of the parameters k,m, n, q, χs, χe.
For some of them it is even proven to be as hard as solving some “famous” lattice problems in
the worst case. In this work we assume that this problem is (exponentially) hard when the χ’s
are uniform distributions on integers is some symmetric interval [±σ] with σ � q/2. The specific
parameters that we use were chosen according to the LWE hardness estimator of Albrecht et al.
[3]. See more details in Appendix A.4. Also in our protocol we always use k = m, so we drop the
distinction between these parameters in the sequel.

2.2 Variants of Regev Encryption

In [49], Regev described a public-key encryption scheme whose security is based on the hardness of
decision-LWE. Later, Peikert, Vaikuntanathan and Waters (PVW) described in [47] a variant with
improved plaintext-to-ciphertext expansion ratio. Our protocol is based on a variant of the PVW
construction. Underlying it is the following “approximate encryption” scheme, where decryption
only recovers a noisy version of the plaintext:

Key-generation. The key-owner chooses a random A ← Zk×kq , S ← χn×ks and E ← χn×ke and
computes B := SA + E mod q. The secret key is S and the public key is (A,B), which is
pseudorandom under the decision LWE assumption.

7

Encryption. To encrypt an n-vector x ∈ Znq , the encryptor chooses r ← χks , e1 ← χke , e2 ← χne ,
and sets c1 := Ar + e1 mod q and c2 := Br + e2 + x mod q. The ciphertext is (c1, c2), which is
again pseudorandom under the decision LWE assumption.

Decryption. To decrypt (approximately), the key-owner outputs x′ := c2 − Sc1 mod q. Substi-
tuting all the terms one can check that

x′ =
(
(SA+ E)r + e2 + x

)
− S(Ar + e1) = x +

e′︷ ︸︸ ︷
Er + e2 − Se1,

where for appropriate choices of χs, χe we will have ‖e′‖∞ � q.

Plaintext Encoding To be able to fully recover the plaintext, Regev encryption uses some form of
error-correction that allows the decryptor to compute x from the noisy x′. Most variants of Regev
encryption use encoding based on scaling, but for us it is more convenient to use a different form
of encoding13 (which was implicit in the homomorphic encryption scheme of Gentry, Sahai and
Waters [27]). We encode a plaintext vector x∗ ∈ Znq by a higher-dimension x ∈ Z`nq that includes
not just x∗ but also a large multiple of it. Let ∆ := b√qc and g := (∆, 1) ∈ Z2

q . The dimension-n
vector (x1, . . . , xn) ∈ Znq is encoded in the vector (x1g| . . . |xng) ∈ Z2n

q .

More generally, we could use a parameter ` ≥ 2 and set ∆ := b√̀qc and the “gadget vec-
tor” g := (∆`−1, . . . ,∆, 1) ∈ Z`q. We then encode a vector (x1, . . . , xn) in the higher-dimension

(x1g| . . . |xng) ∈ Zn`q . The larger we set the parameter `, the more redundant the encoded vector
becomes, which lets us tolerate larger noise and still recover the original vector. (On the other
hand, we need to increase the number of rows in the secret key from n to `n.) Specifically, for each
entry xi in the original plaintext vector, the approximate-decryption above yields a noisy `-vector
x′ = xg + e mod q, and xi can then recovered using the decoding procedure from Fig. 1.

Decode((x′1, . . . , x
′
`) ∈ Z`q): # x′i = x∆`−i + ei mod q

1. For i = 1, . . . , `− 1 let yi := x′i+1 −∆x′i mod q # yi = ei −∆ei+1 (w/o mod-q reduction)

2. Set z :=
∑`−1
i=1 ∆

`−i−1 · yi # telescopic cancellation, z = e1 −∆`−1e`
3. Set e := z mod ∆`−1 # e = e1
4. Output (x′1 − e)/∆`−1 # = x

Fig. 1. The plaintext decoding procedure

As long as all the ei’s are bounded in magnitude below q/2(∆+ 1) ≈ ∆`−1/2, then the equality
yi = ei −∆ei+1 in Row 2 holds not only modulo q but also over the integers. In that case we also
have z = e1 −∆`−1e` over the integers, and since |e1| < ∆`−1/2 then also e = e1 in Row 3 holds
over the integers, so we recover the correct output x.

For our implementation we stuck to the setting ` = 2, which is somewhat simpler to implement.
In general, however, setting a slightly larger value (such as ` = 4) may lead to somewhat better
parameters, since it can tolerate larger noise and therefore smaller lattice dimension for the same
security level. We leave exploring this direction to future work.

13 The reason that this encoding method is better for us, is that it allows us to work only with Zq elements. In other
variants of Regev encryption one usually must work with both Zq and Zp for some p� q.

8

2.3 The Multiparty Setting

A very useful property of the scheme above is that the i’th plaintext value xi can be recovered using
only rows {1 + (i− 1)`, . . . , i`} of the secret key matrix S (indexing start at 1). To wit, denote by
Si the sub-matrix of S consisting only of these rows, and let c2,i be the sub-vector of c2 consisting
of entries {1 + (i − 1)`, . . . , i`}, then xi can be recovered by setting x′ := c2,i − Sic1 ∈ Z`q, then
using the decoding procedure from Fig. 1.

It is therefore possible to use the encryption scheme above in a multiparty setting, where all
parties share the same random matrix A (a common-random-string which is chosen by a trusted
party during setup), and each party i chooses its own secret key S ← χ`×ks and noise Ei ← χ`×ke ,
and computes its own public key Bi := SiA+ Ei mod q.

The global public key is then set to include the matrix A, followed by all the Bi’s in order (which
are viewed as sub-matrices of the public-key matrix B from above). Encryption works just as above,
with the plaintext vector x ∈ Znq viewed as having one plaintext element xi ∈ Zq destined to each
party i. For decryption, each party i uses its secret key Si to get the noise vector x′i = xig + ei,
then apply the decoding procedure from Fig. 1 to recover xi from x′i.

LWE with Leakage The multiparty setting above brings up a new problem: what happens when
some of the parties are dishonest and deviate from the prescribed distribution for choosing their
public keys? The issue is that encryption uses the same vector r for encrypting all the plaintext
elements to all the parties. When party i is dishonest and Bi is chosen adversarially, seeing Bir + e
may leak information about r to the adversary, potentially making it possible for it to distinguish
some other Bjr + ej from random and maybe learn something about the plaintext encrypted for
party j.

Luckily, some characteristics of our application make it possible to counter this threat. In partic-
ular, each party i in our protocol is required to prove that its public key is “well formed”. Namely
it must provides a proof of knowledge of Si, Ei such that Bi := SiA + Ei mod q, and moreover
where the l2 norm of the rows in Si, Bi is bounded by some known bounds βs, βe, respectively. In
this setting, we can reduce security to plain LWE (without any leakage), as long as the encryptor
chooses e2 from a somewhat wider distribution than e1.

Specifically, fix the LWE parameters k, n, q, χs, χe1. Also let ρs, ρs ∈ R be factors related to
χs, χe1, such that for any fixed v ∈ Zkq , choosing s← χks and e← χke we get

|〈v, s〉| ≤ ρs · ‖v‖2 and |〈v, e〉| ≤ ρe · ‖v‖2,

except perhaps with a probability negligible in κ. Let βs, βe ∈ R be the bounds that the parties in
our protocol must prove, and let χe2 be another noise distribution over Z, which is wide enough
so that χe2 is statistically close14 to χe2 + δ for any fixed integer offset δ ≤ dρsβe + ρeβse. Then
consider the following game between an adversary and a challenger:

– The challenger chooses and sends to the adversary a random matrix A ∈ Zk×kq .

– The adversary chooses arbitrary S ∈ Zn×kq and E ∈ Zn×kq subject to the constraint that the l2
norm of each row in S,E is bounded by βs, βe, respectively.
The adversary computes BL = SA+ E mod q and sends S,E,B to the challenger.15

14 Up to a distance negligible in κ.
15 The adversary sends not only B but also S,E to the challenger, since in our protocol it will have to prove knowledge

of these matrices so they can be extracted from it.

9

– The challenger chooses r← χks , e1 ← χke1, e2 ← χke2, and a uniformly random vector u ∈ Zkq . It
also tosses a coin σ ∈ {0, 1}.
If σ = 1 then the challenger sets c1 := Ar + e1 mod q and c2 := Br + e2 mod q.
If σ = 0 then the challenger sets c1 := u and c2 := Sc1 + e2 mod q.

– The challenger sends (c1, c2) to the adversary, and the adversary outputs a guess σ′ for σ.

Lemma 2.1. Let the parameters k, n, q, χs, χe1, and ρs, ρs, χe2 be as above. Then under the hard-
ness of decision-LWE with parameters k, n, χs, χe1, the adversary in the game above has only a
negligible advantage in guessing the value of σ.

Proof. Substituting all the variables above, we have

(Ar + e1, Br + e2) =
(
Ar + e1, (SA+ E)r + e2

)
(3)

=
(
Ar + e1, S(Ar + e1)− Se1 + Er + e2

)
(s)
≈
(
Ar + e1, S(Ar + e1) + e2

) (c)
≈
(
u, Su + e2

)
. (4)

The last relation follows directly from the hardness of decision LWE with these parameters. To see
why the penultimate relation holds, note that ‖Er− Se‖∞ ≤ ρsβe + ρeβs except with a negligible
probability, and therefore e2 is statistically close to Er− Se + e2.

Semantic Security in the Multiparty Setting Lemma 2.1 implies that we can get semantic
security for the honest parties in our protocol, even if the dishonest parties deviate from the
prescribed distribution for choosing their public keys. (As long as they successfully prove knowledge
of S,E as above.)

To that end, we modify the encryption procedure from Section 2.2 so that it uses the wider noise
χe2 rather than χe when choosing the noise vector e2. We then view the CRS matrix together with
all the honest public keys as the matrix A from the lemma, and the dishonest public keys are viewed
as the matrix B from the lemma. We note that with this view, the matrix A is pseudorandom
from the adversary’s perspective. Lemma 2.1 tells us that A~r+~e1 is indistinguishable from random
even given Br+e2, and the encryption scheme uses the part of A~r+~e1 corresponding to the honest
parties’ public keys to mask the plaintext values for these parties, hence we get semantic security.

How Wide Must χe2 Be? Lemma 2.1 requires that χe2 is very wide, enough to “flood” the
term δ := Er − Se, i.e., larger by at least the (statistical) security parameter. In our application,
however, making χe2 very wide is costly: For security of 128 bits, adding one bit to the width of χe2
increases by about 40 the dimension of the LWE secret that we need to use. (So making it (say)
50-bit wider will increase the dimension by almost 2000.)

However, in our setting it seems likely that setting χe2 only slightly larger than (the expected
size of) δ is safe, since the encryption randomness and noise are only used once, and the adversary
gets at most t < 1000 samples from the “leakage”. We therefore took a pragmatic approach,
making χe2 only large enough so the distributions χt

e2 and χt
e2 + δ are “not too far”. Specifically,

we set it large enough to ensure that the Rényi divergence between them is a small constant. While
this is not enough to prove that decision-LWE remains hard, it is enough to show that the search
problem remains hard. As we are not aware of any attack on decision-LWE that does not go via
full recovery of the LWE secret, we take it as a strong indication of security even in our setting.

10

In more detail, in Appendix A.4 we will establish a high-probability bound on the l∞ norm of
δ (call it µ). We use the heuristic of modeling χe2 as a zero-mean Normal random variable with
variance σ2 (where σ is the parameter that we need to set). Using analysis similar to [4, 2], we
bound the Rényi divergence of order α between χt

e2 and χt
e2 + δ by ρ := exp

(
απt · (µ/σ)2

)
, and

use the probability-preservation property of Rényi divergence to conclude that for any event that
depends on a vector v, we have

Pr
v←χte2

[E(v)] ≥ Pr
v←χte2+δ

[E(v)]α/(α−1)/ρ.

In particular the above holds for the event in which the adversary finds the LWE-secret r. Set-
ting σ = b

√
2πt and using the (say) α = 2, yields ρ = exp(1) = e and hence Prv←χte2 [E(v)] ≥

Prv←χte2+δ[E(v)]2/e. By the hardness of search-LWE, the probability on the left-hand side is neg-
ligible, and hence so is the probability on the right-hand side.

2.4 An Optimization: Using Module-LWE over Small Rings

As is common in lattice-based cryptosystems, we gain efficiency by using operations over higher-
degree algebraic ring rather than directly over the integers. In our multiparty setting parties use
`-row public key (to enable or input encoding), so instead we use operations over a ring of dimension
`, namely R`=Z[X]/(X`+1). (We also denote R`,q = R/qR = Zq[X]/(X`+1).) (Recall that our
implementation uses ` = 2, and more generally we may use slightly larger value such as ` = 4.)
This means that the parties’ secret-key and noise vectors can now be specified using half as many
scalars, so in our protocols the parties will need to commit and prove relations for half as many
variables. The scheme thus needs to choose low-norm elements in R`, which is done by choosing
their representation in the power basis using the same distributions χs, χe1, χe2 over Zq. Below we
use the same notations χs, χe1, χe2 for both the Z distribution and the induced distributions over
R`.

2.5 The Encryption Scheme in Our Protocol

Using all the components above, we describe here explicitly the encryption scheme as we use it in
our protocol:

Parameters. Denote by n the number of parties and t < n/2 bound the number of dishonest
parties. For LWE we have a modulus q, The dimension k of the LWE secrets and noise vectors,
and the secret- and noise-distributions χs, χe1, χe2.
We also have the redundancy parameter `, and we denote n = n`, t = t`, and k = k`. Let
∆ = b√̀qc and let the “gadget vector” be g = (∆`−1, . . . ,∆, 1) ∈ Zq, representing the element
g ∈ R`,q.

Common reference string. A random matrix A← Rk×kq .

Key-generation. Each party i chooses the secret key and noise vectors in Rkq , si ← χks and

ei ← χke1, sets bi := siA+ ei ∈ R`,q as its public key, and broadcasts it to everyone.
Encryption. The global public key consists of the matrix A and all the bi’s. Let B ∈ Rn×k`,q be a

matrix whose rows are all the bi’s in order.
Given n plaintext scalars x1, . . . , xn ∈ Zq, we encode them in a vector x = (x1, . . . , xn)g ∈ Rn`,q.
Namely we encode each xi as the element xig ∈ R`,q. The encryptor chooses three vectors
r← χks , e1 ← χke1, and e1 ← χke1, and computes the ciphertext vectors

c1 := ArT + eT1 mod q, and c2 := BrT + eT2 + xT mod q.

11

Decryption. On ciphertext (c1, c2) and secret key si, party i uses the approximate decryption
procedure to compute y := c2 − 〈si, c1〉 mod q.

This yields y = xg + e for some scalar x ∈ Zq and small noise element e ∈ Rq,`, which can
also be written as a vector equation y = xg + e mod q. The decryptor then uses the decoding
procedure from Fig. 1 w to recover the scalar x.

The discussion above implies that this scheme is correct as long as the decryption noise is smaller
than ∆`−1/2, and and it offers semantic security for the honest parties under module-LWE (with
leakage if χe2 does not completely drown the other noise terms.)

3 Proofs of Smallness

Our scheme relies on parties committing to various vectors and broadcasting publicly-verifiable
proofs about them. Some of the statements that are proven are simple linear constraints (e.g.,
when a party proves that it re-shared its secret properly). But most of the proofs that we use are
proofs-of-smallness, when the prover needs to convince everyone that the norms of its vectors are
bounded by some public bounds.

The main reason for proving smallness is that lattice-based cryptosystems only provide correct-
ness guarantees when certain quantities are small enough. Another reason to use proofs-of-smallness
is because the underlying proof systems that we use are only capable of proving constraints modulo
some integer parameter P (e.g., discrete-logarithm-based commitments and proofs). To prove the
same constraints over the integers, we augment these underlying proofs by also proving smallness
of the relevant values, to establish that no wraparound modulo P occurs.

A publicly verifiable proof of smallness protocol lets a prover commit to a vector and convince ev-
eryone that the committed vector is smaller than some public bound. Such proofs are parametrized
by the norm in question (l2 or l∞) and a gap parameter γ ≥ 1. Completeness of such proofs for a
bound b only holds when the vector of the honest prover has norm bounded by b/γ, while soundness
ensures that even cheating provers cannot pass verification if their vector has norm larger than b.
Such protocols can be modeled as special cases of the commit-and-prove functionality (e.g., [16]),
except that the constraint enforced on honest parties is more strict than that for dishonest parties.
This is captured in the functionality SMLl[γ] from Fig. 2.

Parameters: norm l ∈ {l2, l∞} and gap γ ≥ 1

The functionality maintains a list −→w of (vector,commitment) pairs, initially empty.

Commitment. Upon receiving (commit, sid,w ∈ Zd, c ∈ {0, 1}∗) from the prover, if −→w does not contain any pairs
with the commitment value c then add the pair (w, c) to −→w , and send the message (receipt, sid, c, d) to everyone.

Proof. Given a message (prove, sid, c, b ∈ R) from the prover, if −→w contains a pair (w, c) such that
– either the prover is honest and ‖v‖l ≤ b/γ,
– or the prover is dishonest and ‖v‖l ≤ b,

then send the message (proof, sid, c, b) to everyone. (Otherwise, ignore the message.)

Fig. 2. The proof-of-smallness functionality SMLl[γ]

12

3.1 Underlying Commit-and-Prove Systems

Our scheme makes extensive use of underlying commit-and-prove systems, that let parties commit
to integer values and prove relations among these committed values. Specifically, these systems lets
a prover convince everyone of the veracity of two types of constraints:

Linear constraints. The prover commits to the secret vector x, then given the public vector a it
reveal the scalar b and proves that

∑
i aixi = b (mod P).

Quadratic constraints. The prover commits to (x|y), then given the public offset vectors16 u,v
it reveals the scalar b and proves that

∑
(xi + ui)(yi + vi) = b (mod P).

In our implementation we use Pedersen commitments to vectors, and small variations of the Bullet-
proof protocol [14]. (In this case the parameter P is the order of the hard-discrete-logarithm group.)
For the sake of self-containment, we describe the Bulletproof variants that we use in Appendix E.
We use some homomorphic properties of these commitments in order to aggregate them, see more
details in Appendix B. An alternative implementation could instead use lattice-based schemes, such
as the BDLOP scheme from [6], at the cost of giving up on compactness.

When using these commit-and-prove protocols in our scheme, we model them as ideal commit-
and-prove functionalities. That is, we argue security of our higher-level protocols in a model where
the prover presents the committed vectors to a trusted party, who verifies publicly that they satisfy
the relevant constraint modulo P . Formally, we have a functionality similar to the one in Fig. 2
that verifies these constraints.

We note that for the systems that we use, proving linear constraints is cheaper than proving
quadratic constraints, roughly because the prover only needs to commit to x rather than to both
x and y. We therefore strive to only prove quadratic constraints on low-dimension vectors, which
leads to noticeable savings. The main novel tool that we use for that purpose, and which we believe
will find other applications, is in showing how to use the Johnson-Lindenstrauss lemma to reduce
the dimension of the vectors on which we need to perform quadratic proofs. That is, we replace
a quadratic proof on a high-dimension vector with a linear proof on that vector, combined with a
quadratic proof on a low-dimension one (i.e. 256-dimensional). See more details later in this section.

l2 Norm Proofs Modulo P . In our scheme we often use commit-and-prove protocols for
quadratic constraints to prove the l2-norm of a vector modulo P , which is not entirely straightfor-
ward. Naively, we could try to let the prover commit to (x|x) and then directly use the underlying
quadratic proofs to prove that

∑
i x

2
i = b2 (mod P). This naive protocol doesn’t quite work, how-

ever, since a cheating prover may commit to two different vectors (x|x′) rather than to the same
vector twice. One solution could be to add linear proofs to establish that xi = x′i for all i, but that
could become expensive (as it may require commitments to each xi separately).

Instead, after the prover commits to (x|x′) ∈ Z2d
P and publishes the bound b, the verifier chooses

at random an offset vector u ∈ ZdP , and the prover uses the underlying quadratic proof protocol to
prove that

∑
i(xi + ui)(xi − ui) = b2 − ‖u‖2 (mod P). It is easy to see that if a cheating prover

commits to some (x|x′) with x 6= x′, then this last constraint would only hold with probability
1/P . In our implementation we let the verifier choose only a single random scalar u ∈ ZP , then use
the offset vector u = (1, u, u2, . . . , ud−1). Again it is easy to see that in this case, if x 6= x′ then the
constraint only holds with probability at most d/P .

16 See Section 3.1 for the reason for the offset vectors.

13

3.2 Tails of Distributions and the Johnson-Lindenstrauss Lemma

As we mentioned above, an important component in our scheme is projecting high-dimension vectors
down to lower dimension using the Johnson-Lindenstrauss Lemma. Namely, instead of directly
proving smallness of a high-dimension vector w, we choose a random rectangular matrix R, prove
smallness of the lower-dimension v = wR, and use Johnson-Lindenstrauss to argue that this implies
also tight approximation for the norm of the original w. (Specifically, the distribution D that we
use for the entries of R has D(0) = 1/2 and D(±1) = 1/4.)

To obtain very tight bounds, we use a heuristic that roughly states that the tail of the distri-
bution on ‖wR‖ can be bounded as if the entries of R were chosen from the zero-mean continuous
Normal distribution of the same variance. A strong justification for this heuristic comes from the
analysis of Achlioptas [1], who proved that for an arbitrary vector w and R ← Dn×k, all the mo-
ments of the induced distribution over ‖wR‖2 are bounded by the corresponding moments of the
distribution ‖wR′‖2 where the entries of R′ are chosen from the corresponding zero-mean contin-
uous Normal distribution. This intuitively implies that the tails of the continuous distribution are
fatter, and so bounding them will imply bounds on the discrete distribution. This intuition generally
holds except that the discretization may cause some minor discrepancies that vanish exponentially
with the dimension k. See more discussion in Appendix D. This heuristic lets us use the following
bounds when setting concrete parameters:

Fact 3.1 Let N be the continuous normal distribution centered at 0 with variance 1, and χ2[k] be
the χ2 distribution with k degrees of freedom.17 Then for every vector w ∈ Zd it holds that:

1. Pr
r←N d

[∣∣∣∣〈w,
1√
2
r

〉∣∣∣∣ > 9.75 · ‖w‖
]

= Pr
y←N

[
|y| > 9.75 ·

√
2
]
< 2−141.

2. Pr
R←N d×256

[∥∥∥∥ 1√
2
wR

∥∥∥∥2 < 30 · ‖w‖2
]

= Pr
y←χ2[256]

[y < 60] < 2−128.

3. Pr
R←N d×256

[∥∥∥∥ 1√
2
wR

∥∥∥∥2 > 337 · ‖w‖2
]

= Pr
y←χ2[256]

[y > 674] < 2−128.

Corollary 3.2. [heuristic] Let D be a distribution on {0,±1} such that D(1) = D(−1) = 1
4 and

D(0) = 1
2 . Under the heuristic substitution of D with 1√

2
N , for every vector w ∈ Zd:

1. Pr
r←Dd

[|〈w, r〉| > 9.75 · ‖w‖] / 2−141.

2. Pr
R←Dd×256

[‖wR‖2 < 30 · ‖w‖2] / 2−128.

3. Pr
R←Dd×256

[‖wR‖2 > 337 · ‖w‖2] / 2−128.

3.3 A Modular Johnson–Lindenstrauss Variant

In some cases we need a high probability bounds on the size of wR mod P rather than the size
of wR itself. When the bound that we seek is sufficiently smaller than P , we get this as an easy
corollary:

17 The χ2 distribution with k degrees of freedom is the distribution of
k∑
i=1

x2i where xi ← N .

14

Corollary 3.3. Fix d, P ∈ Z and a bound b ≤ P/45d, and let w ∈ [±P/2]d with ‖w‖ ≥ b. Let
D[0] = 1/2 and D[±1] = 1/4, then Pr

R←Dd×256
[‖wR mod P‖ < b

√
30] < 2−128.

Proof. We have two cases:

– The first case is when ‖w‖∞ ≥ P/4d. Let i be an index of an entry in w with magnitude at
least P/4d, and consider any column of R (denoted r): After choosing all but the i’th entry in
r, at most one of the three values {0,±1} yields |〈w, r〉 mod P | < P/8d. Hence the probability
that all the columns of R yield entries smaller than P/8d is at most (1/2)256. Since b ≤ P/45d
then P/8d > b

√
30 and therefore

Pr
R←Dd×256

[‖wR mod P‖ < b
√

30] ≤ Pr
R

[‖wR mod Pq‖ < P/8d] ≤ 2−256.

– The second case is when ‖w‖∞ < P/4d. Here with probability one we have wR ∈ [±P/2]256,
so mod-P reduction has no effect and the assertion follows directly from Corollary 3.2.

3.4 Approximate Proofs of Smallness

A tool from previous work that will be used as a subroutine in most of our new proofs is a zero-
knowledge proof that proves that a committed vector has small coefficients. We use the approximate
proofs of l∞-smallness of Lyubashevsky et al. [42] (which also utilize rejection sampling, as is
common in lattice-based proofs). This proof system has a fairly large gap between the l∞ norm of
the vector used by honest provers and what the prover can prove. But this gap will not show up
in the rest of our scheme, because these proofs are only used to show that there is no wraparound
modulo P (after which we use an exact proof for l2 norm modulo P). The main feature of this
proof is that the dimension of the transmitted vector is just 128, irrespective of how long the vector
whose smallness we would like to prove.

To bound the size of a vector w, the prover commits to w and to a masking vector y (chosen
at random to be somewhat larger than w), and sends the commitments to the verifier. The verifier
chooses a small random matrix R, and the prover opens z = wR + y (and convinces the verifier
that it is indeed the right z wrt w and y), and the verifier checks that z is small. Soundness relies
on the following lemma.

Lemma 3.4 ([42], Lemma 2.5). Fix q, d ∈ Z and any two vectors y ∈ [±q/2]128 and w ∈
[±q/2]d. Let D[0] = 1/2 and D[±1] = 1/4, then choosing R← Dd×128 we have

Pr
R

[∥∥wR+ y mod q
∥∥
∞ < 1

2‖w‖∞
]
< 2−128.ut

Describing the proof system in more detail, we use a hard-DL group of order P for the underlying
commit-and-prove protocols, as follows. The prover holds a vector w, and the verifier holds a
discrete-log-based commitment to w (e.g., Pedersen). The goal of the protocol is to prove that w
has l∞ norm bounded by some known b, where for the honest prover we assume that ‖w‖∞ ≤ b/γ
(with γ our gap parameter).

0. We use security parameter λ = 128 and the size gap is γ = 2 · 9.75λ
√
d < 2500

√
d.

1. The prover has a vector w ∈ Zd of bounded size ‖w‖∞ ≤ b/γ, and the verifier knows a
commitment to w.

2. The prover chooses a uniform masking vector y ← [±d b2(1 + 1
λ)e]λ and sends to the verifier a

commitment to y.

15

3. Let D(0) = 1/2 and D(±1) = 1/4, the verifier chooses R← Dd×λ and sends it to the prover.

4. The prover computes u := wR and z := u + y. It restarts the protocol from Step 2 if either
‖u‖∞ > b/2λ or ‖z‖∞ > b/2.

If the two tests above passed, then the prover sends z to the verifier along with a ZKPOK that
indeed z = wR+ y (mod P).

5. The verifier accepts if the ZKPOK succeeds, and in addition ‖z‖∞ ≤ b/2.

Lemma 3.5. The protocol above is an approximate proof-of-smallness for the l∞ norm, with size
gap γ < 2500

√
d.

Proof. The honest prover has ‖w‖∞ ≤ b/γ, so by the first part of Claim 3.2 and the union bound,
we have that ‖u‖∞ ≤ 9.75

√
d‖w‖∞ ≤ 9.75

√
db/γ < b/2λ except with probability 27 ·2−141 = 2−134.

A restart due to this check therefore only happens with negligible probability.

Conditioned on ‖u‖∞ ≤ b/2λ, the rejection sampling check for ‖u + y‖∞ ≤ b/2 leaks nothing
about u (or w), by [39]. Furthermore, using the analysis from [40, Section 5.2], the probability
of the prover restarting due to this check is about 1 − 1

e ≈ 0.63. Hence the expected number of
repetitions is constant.

It is left to show soundness, so consider a cheating prover with ‖w‖∞ > b. By Lemma 3.4 such
prover has probability at most 2−128 of getting ‖wR + y mod P‖∞ ≤ b/2, regardless of y. This
completes the proof.

3.5 Exact Proofs of Smallness

Using the protocol from Section 3.4, combined with a sum-of-squares proof, we can get an efficient
exact proofs of smallness, provided that the bound b that we need to prove is sufficiently smaller
than

√
P . Roughly, to prove that a value x has magnitude smaller than some public bound b, it is

sufficient to show that b2 − x2 is non-negative,18 which can be done by representing it as a sum of
squares: After committing to x, the prover finds and commits to four other integers α, β, γ, δ such
that b2 − x2 = α2 + β2 + γ2 + δ2. The prover uses the underlying commit-and-prove systems to
show that this equality holds modulo P , and also uses the approximate proof from above to show
that the numbers are small enough so that they do not trigger a wraparound modulo P . Taken
together, this means that this constraint holds over the integers, hence proving that indeed |x| < b.

In our implementation we actually use a slightly more general version, where the prover may
wish to amortize over m instances of this problem. The upside of amortizing is that he will only
need one l∞ proof (as opposed to one per vector). The downside is that the size-bounds that we
can prove this way are slightly more restricted, since the gap in the approximate proofs grows with
(the square root of) the total dimension of all the vectors combined.

The protocol is described below. In this description we assume that commitments to different
vectors can be combined to a single commitment for the concatenated vector (as needed for the
underlying proofs systems). This clearly holds for the Pedersen commitments that we use in our
implementation.

1. The prover has m vectors w1, . . .wm ∈ Zd, and the verifier has commitments to all these vectors.
For each vector wi, the prover wants to prove that ‖wi‖ ≤ bi (where the bi’s are public).

Denote b = maxi bi, and assume that b <
√
P/(3536(d+ 4)

√
m).

18 More generally, to show that x ∈ [a, b] it is sufficient to show that (x− a)(b− x) is non-negative.

16

2. For each wi, the prover finds four non-negative integers αi, βi, γi, δi such that α2
i +β2i +γ2i +δ2i =

b2i − ‖wi‖2.
Let ui := (αi, βi, γi, δi) and vi := (wi|ui) ∈ Zd+4. The prover sends to the verifier commitments
to all the ui’s, and they both combine them with the commitments to wi’s to get commitment
for the vi’s.

3. The prover provides a ZKPOK that for all i, ‖vi‖2 = b2i (mod P) (cf. Section 3.1).
4. The prover provides an l∞ ZKPOK showing that
‖(v1| · · · |vm)‖∞ <

√
P/2(d+ 4).

Lemma 3.6. If b = maxi bi <
√
P/ (3536(d+ 4)

√
m), then the protocol above is correct, and a

zero-knowledge proof of knowledge that ‖wi‖ ≤ bi for all i.

Proof. ZK follows from the ZK of the two underlying proofs.
For soundness, note that proving statement (3) implies that for all the vi’s we have ‖vi‖∞ <√
P/2(d+ 4), and therefore ‖vi‖2 =

∑d+4
j=1 v2

i,j < P/2. This implies that statement (2) holds over

the integers and not just modulo P , hence b2i − ‖wi‖2 is positive.
The only thing left to show is that the bound b = maxi bi is small enough to allow the use of the

l∞ approximate proof from Section 3.4 To prove that all the coefficients in the concatenated vector
(v1| · · · |vm) of dimension m(d + 4) are of size at most

√
P/2(d+ 4) using that proof, the honest

prover must have all the coefficients smaller than
√
P/2(d+ 4)/γ, where γ = 2500

√
m(d+ 4).

Hence we need

b ≤
√
P/2(d+ 4)

2500
√
m(d+ 4)

=
√
P/
(√

2 · 2500 · (d+ 4)
√
m
)
≈
√
P/
(
3536(d+ 4)

√
m
)
,

which is exactly the bound in the statement of the lemma.

As a side remark, if we can tolerate a one-bit leakage on each ‖wi‖2, then the prover can instead
find three integers αi, βi, γi such that α2

i +β2i +γ2i = b2i −‖wi‖2±1 (such three integers always exist
since every integer which is congruent to 1 or 2 modulo 4 is a sum of three squares). The prover
then does the same proof as above, but sending δi = ±1 to the verifier in the clear. (We do not use
this option in our protocol.)

Exact Proofs of Smallness with Larger Bounds In our scheme we sometimes need to prove
exact bounds on vectors with entries that are larger than the bound above. To do that, we let the
prover break each coefficients into (say) two digits of size ≤ d

√
be, commit to these digits and prove

exact smallness for them separately, and then prove that combining these digits indeed yields the
original coefficient.

Namely, the honest prover has a dimension-d vector w with ‖w‖ ≤ b, and the verifier has
a commitment to w. The prover uses radix φ ∈ Z, chosen as small as possible subject to φ2 −
φ ≥ b

√
d/2. It breaks w into two “digit vectors”, wlo := w mod φ (with entries in [±φ/2]) and

whi := (w −wlo)/φ. It commits to these vectors, produces a linear-constraint proof showing that
w = ρ ·whi + wlo (mod P), and uses the exact proof protocol from above to prove that

‖wlo‖ ≤
√
d · φ/2, and ‖whi‖ ≤ b/φ+

√
d/2. (5)

To see why the last inequality must hold, observe that

‖whi‖ = ‖w −wlo‖/φ ≤ (‖w‖+ ‖wlo‖)/φ ≤ (b+ φ
√
d/2)/φ = b/φ+

√
d/2.

17

Let b∗ :=
√
P/
(
3536(d + 4)

√
m) be the bound that we need in order to be able to use the exact

proofs from above. The condition φ2 − φ ≥ b
√
d/2 ensures that b/φ+

√
d/2 ≤

√
d · φ/2, so we can

use the above proofs as long as we are able to set the radix φ small enough such that
√
d ·φ/2 ≤ b∗.

It is not hard to verify that when
√
b < b∗ · (4/d)3/4− (4/d)1/4, the two conditions φ2− φ ≥ b

√
d/2

and
√
d · φ/2 ≤ b∗ can always be satisfied.19

Combining the two bounds from Eq. (5) and the linear-relation proof, we can therefore conclude
that the size of the original w is bounded by

‖w‖ ≤ φ‖whi‖+ ‖wlo‖ ≤ φ(b/φ+
√
d/2) + φ

√
d/2 = b+ φ

√
d.

Therefore, this technique induces a multiplicative size gap of γ = 1 + φ
√
d

b between what the honest
prover holds and what we can conclude about the vector of a cheating prover. (In our setting this
gap will be miniscule.)

We remark that when using this technique, the prover needs to commit to more vectors and
prove quadratic constraints on them, incurring a somewhat higher computational cost. Also, in the
amortized setting, we can deal with a mix of some “small” and “large” vectors by breaking into
digits only the large vectors and keeping the small vectors intact.

Approximate Proofs of Smallness for l2 Norm The protocol in the previous section for
proving that ‖w‖ ≤ b require proving quadratic constraints on the vi’s to show that ‖vi‖2 = b2i ,
which may be costly. We note, however, that a simple application of Corollary 3.2 allows us to reduce
the number of coefficients that are involved in the quadratic proof to 256 + 4 = 260, regardless of
the dimension of w. The price that we pay is a small gap between what we can prove and what the
honest prover actually uses (and the restriction on the bound that the protocol supports becomes
somewhat smaller).

The idea is to first project the d-dimensional vector down to a 256-dimensional one by setting
u = wR, for a random matrix R, and then apply the proof from the previous section to the
projected vector u. Using Corollary 3.2, an exact bound on ‖u‖ yields a very narrow range for the
bound on ‖w‖. In our protocol, however, we use a more general form of this approximate proof,
which is tailored to proving LWE relations, as we described next.

3.6 Proofs of Smallness for LWE

In the encryption scheme from Section 2.5, the prover sometimes has an LWE instance b = sA+ e
(mod q), and it needs to prove that s, e are small. While the prover can commit to s, e and use the
proofs above, in this case we can save about half the cost by skipping the commitment to e, since
e is implicitly committed by seeing the commitment to s and knowing A and b.

Below we describe this more efficient protocol, for the case q = P (with P the parameter of
the underlying commit-and-prove systems). In fact we need a slightly more general variant that
includes a committed “offset vector”, and as in previous sections we also let the prover amortize
over m such proofs. We also use the technique from Section 3.5 to handle vectors with larger norm
by splitting the projected vectors into high and low digits.

In more detail, both prover and verifier know public matrices Ai ∈ Zki×diP , i = 1, . . . ,m and
bounds bi, b

′
i, and let γ be the size gap (to be defined below). The prover has vectors si ∈ ZkP and

19 Jumping ahead, in our setting we have b∗ > 2104 and d = 256, so we can handle bounds up to b ≈ 2190. The
bounds that we actually need to prove will all be much much smaller.

18

ei,xi ∈ ZdiP , where ‖si‖ ≤ bi/γ and ‖ei‖ ≤ b′i/γ. The 2m vectors si, ei are partitioned into a set L
of ml “large” vectors and a set S of ms “small” ones (so ml +ms = 2m). The designation of which
vector belongs to what set is also public.

To simplify notations somewhat, below we assume that the LWE secrets are all “small” and the
noise vectors are all “large”, which would be the case in our application. The protocol can be easily
extended to handle an arbitary mix of “large” and “small”, but the notations get rather swkward.

Let β :=
√
P/(
√

2 · 2500 · 260 ·
√
ms + 2ml) ≈

√
P/(219.9

√
ms + 2ml). For correctness of the

protocol below, we require that the the bounds on the “small” vectors in S all satisfy bi ≤ β/
√

30.
For the “large” vectors in L, let b∗ = mini(b

′
i) (i.e., the smallest “large” bound) and b∗ = maxi(b

′
i),

and we require that 8b∗/
√
b∗ ≤ β.

The radix for breaking integers into digits is set to φ ∈ Z, taken as large as possible subject to√
30b∗/φ + 8 ≥ 8φ, specifically we use φ := b

√
b∗ · 30/64c. Denoting γ1 :=

√
337/30 ≤ 3.36 and

γ2 := 1 + 16φ√
30b∗

< 1 + 2√
b∗

, the size-gap that the protocol below achieves is γ1 · γ2. 20 The protocol

proceeds as follows:

0. For all i, let b̂i :=
√

30 bi/γ2 and b̂hii := (
√

30 b′i/φ+
√

256/2)/γ2 = (
√

30 b′i/φ+ 8)/γ2, and also
let b̂lo :=

√
256φ/(2γ2) = 8φ/γ2.

1. The prover sets bi := siAi + ei + xi mod P for all i, and sends to the verifier the bi’s and also
commitments to the si’s and xi’s.

2. Let D[0] = 1/2 and D[±1] = 1/4. The verifier chooses Ri ← Dki×256 and R′i ← Ddi×256, and
sends to the prover.

3. The prover computes ui := siRi, vi := eiR
′
i. If ‖ui‖ >

√
30bi/γ2 or ‖vi‖ >

√
30b′i/γ2 then the

prover aborts.

Otherwise it splits the vi’s into digits, vloi = vi mod φ (with entries in [±φ/2]), and vhii =
(vi − vloi)/φ.

The prover commits to all the ui’s, vloi ’s, and vhii ’s and sends to the verifier.

4. the parties then engage in the following ZKPOK protocols:

A. Exact smallness proofs (cf. Section 3.5): For all i the prover proves that ‖ui‖ ≤ b̂i, ‖vloi ‖ ≤
b̂lo, and ‖vhii ‖ ≤ b̂hii .

B. Linear-constraint proofs for the projected LWE secrets, siRi = ui (mod P) for all i.

C. Linear-constraint proof for the LWE relation: For each all i it proves that

biR
′
i = siAiR

′
i + φvhii + vloi + xiR

′
i (mod P).

5. The verifier accepts if all the proofs passed.

Lemma 3.7. Assume that the dimensions and bounds satisfy the following conditions:

– For vectors in S we have bi ≤ β/
√

30, and for vectors in L we have 8b∗/
√
b∗ ≤ β.

– For all i, bi ≤ P/45ki and b′i ≤ P/45di.

Then the protocol is correct ZKPOK, proving that bi = siAi+ei+xi mod P holds for some ‖si‖ ≤ bi
and ‖ei‖ ≤ b′i. The size gap for both the si’s and ei’s is γ :=

√
337/30 · (1 + 16φ

b∗) ≤ 3.36(1 + 20√
b∗

).

20 In our setting we have b∗ > 290, so the term 2√
b∗

is insignificant.

19

Proof. ZK follows from the ZK of all the components. For completeness, first note that since the
honest prover has si ≤ bi/γ and si ≤ b′i/γ then by Corollary 3.2 the prover only aborts in Step 3
with negligible probability.

We also need to show that the bounds used in Step 4A satisfy the constraints from Lemma 3.6.
As we have ms + 2ml projected vectors ui,vi ∈ Z256

P , we need to ensure that the bounds b̂i, b̂
hi
i , b̂

lo

that are used in the exact-smallness proofs do not exceed
√
P/
(√

2 · 2500 · 260
√
ms + 2ml

)
= β.

For vectors in S we have bi ≤ β/
√

30 and therefore b̂i ≤
√

30bi ≤ β. For vectors in L, recall that
we set φ = b

√
b∗ · 30/64c to get b̂hii ≥ b̂lo, and since b′i ≤ b∗ we get:

b̂lo ≤ b̂hii ≤ (
√

30 b′i/φ+ 8)/γ2 ≤
(
√

30 b∗ + 8φ)/φ

(
√

30 b∗ + 16φ)/(
√

30 b∗)

=

√
30 b∗ + 8φ√
30 b∗ + 16φ

·
√

30 b∗

b
√
b∗ · 30/64c

≤ (b∗/b∗) · 8
√
b∗ = 8b∗/

√
b∗ ≤

√
P/(
√

2 · 2500 · 260 ·
√
ms + 2ml).

It remains to prove soundness. Due to the proofs in Step 4 we can extract concrete si,xi,ui,
vhii ,v

lo
i even from cheating provers. For each i, we can therefore define ei := bi−siAi−xi mod P ∈

[±P/2]di (so the constraint bi = siAi + ei + xi (mod P) holds by definition). All we need to show,
then, is that ‖si‖ ≤ bi and ‖ei‖ ≤ b′i.

Due to constraint 4C, it holds by definition of ei that (φvhi + vlo) = eiR
′
i (mod P). Letting

vi := φvhi + vlo, the bounds that we proved on the size of ‖vhi‖ and ‖vlo‖, together with the
setting γ2 = 1 + 16φ/(

√
30b∗) ≥ 1 + 16φ/(

√
30b′i), imply that

‖vi‖ ≤ φb̂hii + b̂lo = (
√

30 b′i + 8φ)/γ2 + 8φ/γ2 ≤
√

30 b′i + 16φ

1 + 16φ/(
√

30b′i)
=
√

30b′i.

Since bi ≤ P/45ki and b′i ≤ P/45di then we can use Corollary 3.3. By this corollary, it must be
the case that ‖si‖ ≤ bi and ‖ei‖ ≤ b′i for all i, or else we would only have negligible probability of
getting ‖ui‖ ≤ bi

√
30 or ‖vi‖ ≤ b′i

√
30. This completes the proof.

Using different φi for different LWE equations. The protocol above uses the same radix φ for
all the “large” vectors, adding an extra factor of b∗/b∗ in the conditions of Lemma 3.7. In our
application this factor does not make a difference, but it can be avoided by using a different radix
φi = b

√
b′i · 30/64c for splitting the i’th “large” vector vi. This would have the effect of only

requiring 8
√
b∗ ≤ β (rather than 8b∗/

√
b∗ ≤ β).

Sharing LWE secrets across instances. When using the proof above in our protocol, we often need
to prove multiple LWE instances for the same LWE secret. For example the same secret key is used
in both the proof of key generation and the proof of decryption.

In this case, the prover will only send a single commitment to that LWE secret s, the verifier
will only send a single challenge matrix R, and the parties will only run a single exact-smallness
proof for u = sR in Step 4A and a single instance of the linear proof for it in Step 4B. On the
other hand, they will run a separate instance of the proof in Step 4C for each LWE relation. The
bounds will remain exactly as in Lemma 3.7 (although in this case we may have ms + 2ml < 2m).

20

Proofs for Module-LWE As mentioned in Section 2.4, our implementation actually uses Module-
LWE over a low dimension extension field FP ` rather than over the integers (specifically we use
` = 2).

The proofs-of-smallness protocols above can easily be extended to this case, treating b = sA+e
(mod q) as an equation over the FP ` , which can be written as B = SA′ + E (mod P) in matrix
notation over the integers.

Given A′ and B, every entry in E can be expressed as an affine expression in the entries of S,
and moreover, the entries in S are all known linear combinations of the (representation over Zp of)
s. We can therefore arrange the entries of E in a vector ẽ, and get a new equation over the integers
b̃ = sÃ+ ẽ (mod P), which we can prove using the protocol above.

4 Implementation and Performance

We implemented the scheme and proofs above in C++, with operations in the Curve 25519 using
libsodium and operations in FP 2 using NTL. The implementation is available under MIT license
from https://github.com/shaih/cpp-lwevss. Our implementation is still quite naive, operating
single-threaded, and making direct call to the exponentiation routines of libsodium without any
optimizations for multi-exponentiations.

We run this program on an old server that we had access to, featuring Intel Xeon CPU, E5-2698
v3 running at 2.30GHz (which is a Haswell processor) with 32 cores and 250GB RAM. The software
configurations included libsodium 1.0.18, NTL version 11.3.0, and GMP version 6.2.0, all compiled
with gcc 7.3.1 and running on CentOS Linux 7, kernel version 3.10.0.

The performance results with number of parties from 128 to 1024 are summarized in Tables 1
and 2. In Table 1 we specify for each setting the time spent in each of the high-level subroutine:
key-generation, encryption, decryption, proving, and verifying. We also specify there the number
of scalar-point multiplications (denoted #exp) performed in each subroutine, and the total RAM
consumption.

of Keygen Encrypt Decrypt Prove Verify RAM
parties time(sec) time(sec) time(ms) # exp time(sec) # exp time(sec) usage

128 5.1 4.2 1.4 80392 22.9 23145 15.3 2.26GB

256 5.2 4.4 1.4 82608 23.7 23451 15.9 2.73GB

512 5.2 5.0 1.4 84030 25.3 24063 17.4 3.74GB

1024 5.3 5.8 1.4 87524 28.2 24939 20.0 5.28GB

Table 1. Performance results with 128-1024 parties, by high-level subroutine.

In Table 2 we specify for each setting the running-time spent in some of the lower-level subrou-
tines: In particular the time spent by vector-matrix multiplication by the CRS matrix over Zq, and
the time spend performing scalar-point multiplications on the curve.

As can be seen in Table 2, only about 25-30% of the prover time and about 15% of the ver-
ifier time was spent performing scalar-point multiplications on the curve. The reason is that the
number of these curve operations is linear in the dimensions k, while the number of scalar multi-
plications modulo q is quadratic (since we compute a few vector-matrix multiplications.) We also
note that switching to a structured CRS matrix (by moving to operations over dimension-k exten-
sion field/ring and relying on ring-LWE) would have reduced the multiply-by-CRS time, making it

21

Prover Verifier
of multiply point-scalar total multiply point-scalar total

parties by CRS multiply time by CRS multiply time

128 15.2 9.6 32.2 6.1 2.8 15.3

256 15.3 9.9 33.3 6.1 2.8 15.9

512 15.8 10.1 35.5 6.4 2.9 17.4

1024 16.1 10.5 39.4 6.5 3.0 20.0

Table 2. Running time (seconds) with 128-1024 parties, by low-level subroutine.

insignificant. Implementing this optimization could yield an almost 2× speedup for the prover and
about 1.5× speedup for the verifier. It is clear from these tables that this PVSS scheme is quite fea-
sible, even for committees with many hundreds of parties and with our rather naive, single-thread
implementation.

References

1. D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of Com-
puter and System Sciences, 66(4):671–687, 2003. Special Issue on PODS 2001.

2. S. Agrawal, D. Stehlé, and A. Yadav. Towards practical and round-optimal lattice-based threshold and blind
signatures. IACR Cryptol. ePrint Arch., 2021:381, 2021.

3. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. Journal of Mathematical
Cryptology, 9:169–203, October 2015. https://bitbucket.org/malb/lwe-estimator/src/master/.

4. S. Bai, T. Lepoint, A. Roux-Langlois, A. Sakzad, D. Stehlé, and R. Steinfeld. Improved security proofs in lattice-
based cryptography: Using the Rényi divergence rather than the statistical distance. Journal of Cryptology,
31(2):610–640, Apr. 2018.

5. C. Baum, I. Damg̊ard, K. G. Larsen, and M. Nielsen. How to prove knowledge of small secrets. In Annual
International Cryptology Conference, pages 478–498. Springer, 2016.

6. C. Baum, I. Damg̊ard, V. Lyubashevsky, S. Oechsner, and C. Peikert. More efficient commitments from structured
lattice assumptions. In D. Catalano and R. De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 368–385.
Springer, Heidelberg, Sept. 2018.

7. C. Baum and V. Lyubashevsky. Simple amortized proofs of shortness for linear relations over polynomial rings.
IACR Cryptol. ePrint Arch., page 759, 2017.

8. F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T. Rabin, and L. Reyzin. Can a public
blockchain keep a secret? In TCC, 2020. https://eprint.iacr.org/2020/464.

9. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from bilinear
maps. In International conference on the theory and applications of cryptographic techniques, pages 416–432.
Springer, 2003.

10. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In International conference on the
theory and application of cryptology and information security, pages 514–532. Springer, 2001.

11. J. Bootle, A. Chiesa, and K. Sotiraki. Sumcheck arguments and their applications. IACR Cryptol. ePrint Arch.,
2021:333, 2021.

12. F. Boudot and J. Traoré. Efficient publicly verifiable secret sharing schemes with fast or delayed recovery. In
International Conference on Information and Communications Security, pages 87–102. Springer, 1999.

13. Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Leveraging linear decryption: Rate-1 fully-homomorphic
encryption and time-lock puzzles. In Theory of Cryptography Conference, pages 407–437. Springer, 2019.

14. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA, pages 315–334. IEEE Computer Society, 2018.

15. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In Annual
International Cryptology Conference, pages 126–144. Springer, 2003.

16. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure
computation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

22

17. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving simultaneity in the
presence of faults. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pages 383–395.
IEEE, 1985.

18. N. Costa, R. Mart́ınez, and P. Morillo. Proof of a shuffle for lattice-based cryptography. In Nordic Conference
on Secure IT Systems, pages 280–296. Springer, 2017.

19. R. Del Pino and V. Lyubashevsky. Amortization with fewer equations for proving knowledge of small secrets. In
Annual International Cryptology Conference, pages 365–394. Springer, 2017.

20. R. D’Souza, D. Jao, I. Mironov, and O. Pandey. Publicly verifiable secret sharing for cloud-based key management.
In International Conference on Cryptology in India, pages 290–309. Springer, 2011.

21. P.-A. Fouque and J. Stern. One round threshold discrete-log key generation without private channels. In
International Workshop on Public Key Cryptography, pages 300–316. Springer, 2001.

22. G. Fuchsbauer. Commuting signatures and verifiable encryption. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 224–245. Springer, 2011.

23. E. Fujisaki and T. Okamoto. A practical and provably secure scheme for publicly verifiable secret sharing and
its applications. In International Conference on the Theory and Applications of Cryptographic Techniques, pages
32–46. Springer, 1998.

24. R. Gennaro and S. Goldfeder. Fast multiparty threshold ecdsa with fast trustless setup. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages 1179–1194, 2018.

25. C. Gentry and S. Halevi. Compressible fhe with applications to pir. In Theory of Cryptography Conference, pages
438–464. Springer, 2019.

26. C. Gentry, S. Halevi, B. Magri, J. B. Nielsen, and S. Yakoubov. Random-index PIR with applications to large-
scale secure MPC. https://eprint.iacr.org/2020/1248, 2020.

27. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay, editors, Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I,
volume 8042 of Lecture Notes in Computer Science, pages 75–92. Springer, 2013.

28. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all languages in np
have zero-knowledge proof systems. Journal of the ACM (JACM), 38(3):690–728, 1991.

29. J. Groth. On the size of pairing-based non-interactive arguments. In Annual international conference on the
theory and applications of cryptographic techniques, pages 305–326. Springer, 2016.

30. J. Groth. Applied crypto: Introducing noninteractive distributed key generation. https://medium.com/dfinity/
applied-crypto-one-public-key-for-the-internet-computer-ni-dkg-4af800db869d, accessed June 2021,
2021.

31. J. Groth. Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive, Report
2021/339, 2021. https://eprint.iacr.org/2021/339.

32. S. Heidarvand and J. L. Villar. Public verifiability from pairings in secret sharing schemes. In International
Workshop on Selected Areas in Cryptography, pages 294–308. Springer, 2008.

33. M. P. Jhanwar, A. Venkateswarlu, and R. Safavi-Naini. Paillier-based publicly verifiable (non-interactive) secret
sharing. Designs, codes and Cryptography, 73(2):529–546, 2014.

34. W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space 26. Contemporary
mathematics, 26, 1984.

35. J. Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial commitments.
IACR Cryptol. ePrint Arch., 2020:1274, 2020.

36. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Zero-knowledge arguments for matrix-vector
relations and lattice-based group encryption. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 101–131. Springer, 2016.

37. Y. Lindell and A. Nof. Fast secure multiparty ECDSA with practical distributed key generation and applications
to cryptocurrency custody. In ACM CCS 18, pages 1837–1854. ACM Press, 2018.

38. V. Lyubashevsky. Lattice-based identification schemes secure under active attacks. In International workshop
on public key cryptography, pages 162–179. Springer, 2008.

39. V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In M. Matsui,
editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616. Springer, Heidelberg, Dec. 2009.

40. V. Lyubashevsky. Basic lattice cryptography: Encryption and Fiat-Shamir signatures. https://www.tinyurl.

com/latticesurvey, accessed Apr-2021, 2020.
41. V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Practical lattice-based zero-knowledge proofs for integer relations.

In CCS, pages 1051–1070. ACM, 2020.

23

42. V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Shorter lattice-based zero-knowledge proofs via one-time com-
mitments. IACR Cryptol. ePrint Arch., 2020:1448, 2020.

43. C. A. Melchor, J. Barrier, L. Fousse, and M.-O. Killijian. Xpir: Private information retrieval for everyone.
Proceedings on Privacy Enhancing Technologies, 2016:155–174, 2016.

44. F. Olumofin and I. Goldberg. Revisiting the computational practicality of private information retrieval. In
International Conference on Financial Cryptography and Data Security, pages 158–172. Springer, 2011.

45. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In International conference
on the theory and applications of cryptographic techniques, pages 223–238. Springer, 1999.

46. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable computation. In 2013
IEEE Symposium on Security and Privacy, pages 238–252. IEEE, 2013.

47. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious transfer. In
D. A. Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science,
pages 554–571. Springer, 2008.

48. M. Rambaud and A. Urban. Almost-asynchronous mpc under honest majority, revisited. IACR Cryptol. ePrint
Arch., 2021:503, 2021.

49. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6):34:1–34:40,
2009.

50. L. Reyzin, A. Smith, and S. Yakoubov. Turning hate into love: Compact homomorphic ad hoc threshold encryp-
tion for scalable mpc. In International Symposium on Cyber Security Cryptography and Machine Learning, pages
361–378. Springer, 2021.

51. A. Ruiz and J. L. Villar. Publicly verifiable secret sharing from paillier’s cryptosystem. In WEWoRC 2005–
Western European Workshop on Research in Cryptology. Gesellschaft für Informatik eV, 2005.

52. B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to electronic voting. In
Annual International Cryptology Conference, pages 148–164. Springer, 1999.

53. R. Sion and B. Carbunar. On the computational practicality of private information retrieval. In Proceedings of
the Network and Distributed Systems Security Symposium, pages 2006–06. Internet Society, 2007.

54. M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology - EUROCRYPT ’96, International
Conference on the Theory and Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996,
Proceeding, volume 1070 of Lecture Notes in Computer Science, pages 190–199. Springer, 1996.

55. T.-Y. Wu and Y.-M. Tseng. A pairing-based publicly verifiable secret sharing scheme. Journal of Systems Science
and Complexity, 24(1):186–194, 2011.

56. A. Young and M. Yung. A pvss as hard as discrete log and shareholder separability. In International Workshop
on Public Key Cryptography, pages 287–299. Springer, 2001.

A Components and Parameters

q = P ≈ 2252 The lattice modulus and order of the hard-DL group for commitments & proofs.

` = 2 Redundancy parameter, encryption scheme operates over F = Fq` .

∆ = 2126 ≈ b√̀qc Also g ∈ F is the element represented by g. To encrypt a plaintext scalar x ∈ Zq,
g = (∆`−1, . . . , 1) it is expanded to the field element x′ = x · g, represented by the vector x · g ∈ Z`q.

k Dimension of LWE secrets and noise vectors, over Fq` .
k = k` ≈ 6000 Dimension of integer vector representation of LWE secrets and noise.

n, t < n/2 Number of parties and secret-sharing threshold.

n = n`, t = t` Dimension of integer vector representation of vectors in Fnq` ,F
t
q` .

D distribution for verifier challenges: D[0] = 1/2 and D[±1] = 1/4.

σs = 3 l∞ norm of LWE secrets. Entries in the integer representation of LWE secrets are drawn from
χs: χs[0] = 1/σs and χs[x] = 1/2σs for all x ∈ [±σs], x 6= 0.

σe1 = 294 − 1 l∞ norm of LWE noise. Integers in the representation of the noise vectors are
σe2 = 2114 − 1 drawn from χe1, χe2: χei[0] = 1/σei and χs[x] = 1/2σei for x ∈ [±σei], x 6= 0.

Table 3. Notations for encryption and commit-and-prove schemes

24

In this section we describe the main components of our scheme, combining the encryption scheme
from Section 2 with the proofs from Section 3, and setting concrete parameters for them. Notation
that were introduced in previous sections and used here are summarized in Table 3, together with
their setting as described in Appendix A.4. Throughout this section we use �̃ to denote quantities
held by dishonest parties. For example, if an honest party needs to prove something about a vector
v, then we denote by ṽ the quantity that a dishonest party holds (which can be extracted from the
relevant ZKPOK).

A.1 Key Generation

Given the CRS matrix A ∈ Fk×k, each key holder i chooses si ← χks and ei ← χke1. Each entry in
the integer representation of si has variance E[χ2

s] = 3.5, hence E[‖si‖2] = 3.5k. The key-holder
resets its choice until it gets ‖si‖ ≤ 2

√
k (with less than two expected trials). Similarly each entry

in the integer representation of ei has variance ≤ σ2e1/3, hence E[‖ei‖2] ≤ kσ2e1/3. The key-holder
resets its choice until it gets ‖ei‖ ≤ σe1

√
k/2 (with less than two expected trials).

The key holder sets bi := siA+ ei (over F), then broadcasts bi along with a commitment to si,
then uses the LWE-smallness protocol from Section 3.6, with si ∈ S and ei ∈ L (i.e., the projected
vector for ei is broken into two digits, and the one for si is not). Since that protocol has a size gap
of γ =

√
337/30, we can conclude that even for dishonest parties we have

‖s̃i‖ ≤ bs :=
√

337/30 · 2
√

k ≈ 6.7
√

k, and

‖ẽi‖ ≤ bek :=
√

337/30 · σe1
√

k/2 ≈ 2.37σe1
√

k.

A.2 Encryption

Given the matrices A ∈ Fk×k, B ∈ Fn×k and the plaintext vector x ∈ Znq ⊂ F, the encryptor

chooses r← χks , e1← χke1, and e2← χne2. Similarly to above, the encryptor resets its choices until
‖r‖ ≤ 2

√
k, ‖e1‖ ≤ σe1

√
k/2, and ‖e2‖ ≤ σe2

√
n/2 (with less than two expected trials each).

The encryptor sets c1 := ArT +e1T and c2 := BrT +e2T +g ·xT (both over F), then broadcasts
c1, c2 along with a commitment to r and x (which implies a commitment also to x′ = gx ∈ F). It
then uses the LWE-smallness protocol from Section 3.6 with r ∈ S and e1, e2 ∈ L, ensuring that
even for dishonest encryptors we have

‖r̃‖ ≤ br :=
√

337/30 · 2
√

k ≈ 6.7
√

k,

‖ẽ1‖ ≤ be1 :=
√

337/30 · σe1
√

k/2 ≈ 2.37σe1
√

k, and

‖ẽ2‖ ≤ be2 :=
√

337/30 · σe2
√

n/2 ≈ 2.37σe2
√

n.

A.3 Proof of Decryption

On the receiving end of our protocol, each party i considers the first t ciphertexts with valid proofs
of encryption (ordered by the sender’s IDs). It collects the c1 vectors from all these ciphertexts
(corresponding to ArT +e1T) as well as “its entries” from the c2 vectors (corresponding to 〈bi, r〉+
e2i + xig). Hence the receiver gets a k-vector plus one more element of F from each of these t
ciphertexts.

The receiver arranges these ciphertexts in a matrix C1 ∈ Fk×t and a vector c2 ∈ Ft, with the
columns corresponding to the different senders. It uses its secret key to decrypt the noisy plaintext

25

vector x∗ := c2 − siC1, then apply the decoding procedure to obtain the plaintext vector x ∈ Ztq,
and recovers the error vector e := x∗ − gx.

Let x′ := gx ∈ Ft be the encoded plaintext vector, the receiver broadcasts a commitment to
x (that implies a commitment to x′) and uses the LWE-smallness protocol from Section 3.6 with
si ∈ S, e ∈ L. Note that a commitment to si and a bound on its norm were already included in the
proof of key-generation above. The bound that we use for the norm of e is specified below.

By the proof of correct encryption, each column of C1 and the corresponding entry of c2 have

the form Ar̃T + ẽ1
T

and 〈bi, r〉 + e2i + xig, respectively, with ‖r̃‖ ≤ br and ‖e2i‖ ≤ ‖e2‖ ≤ be2.
This holds even if that sender was dishonest.

For an honest receiver we also have bi = siA+ e, so each entry of the decryption noise vector
is of the form ẽ2i − 〈e, r̃〉 − 〈si, ẽ1〉. Let us denote η := 〈e, r̃〉 − 〈si, ẽ1〉. Since the honest receiver
chooses s← [±3] and e← [±σe1], then η is a zero mean random variable, with a bounded variance

E[|η|2] ≤ ‖r̃‖2 · σ2e1/3 + ‖ẽ1‖2 · 3.5 ≤ br
2 · σ2e1/3 + be1

2 · 3.5
= (337 · 4k · 3.5)/30 + (337 · σ2e1 · k)/60 = (σ2e1 + 28) · k · 337/60.

Using the same heuristic as in Section 3.2, we can bound the tails of the distribution of η as if s
and e were Gaussian random vectors, obtaining Pr[|η| > 9.75 ·

√
2 · (σ2e1 + 28) · k · 337/60] < 2−141.

In our setting we use σe1 > 290 and hence
√
σ2e1 + 28 ≈ σe1, so we can simplify the bound above as

Pr
[
|η| > 33σe1

√
k
]
< Pr

[
|η| > 9.75

√
337/30 · σe1 ·

√
k
]
< 2−141.

Thus we can bound the l∞ norm of the decryption noise with overwhelming probability by: ‖ed‖∞ ≤
be2 + 33σe1

√
k ≈ 2.37σe2

√
n + 33σe1

√
k, which implies that

‖ed‖ ≤ bed :=
√

t
(
2.37σe2

√
n + 33σe1

√
k
)
<
√

n/2
(
2.37σe2

√
n + 33σe1

√
k
)

≈ 1.7σe2n + 24σe1
√

kn.

Validity of Decrypted Values Consider a pair of sender and receiver, where the sender produces
a ciphertext that passes the proof of encryption, encrypting some scalar x ∈ Zq to that receiver.
We argue that if the receiver produced passing proofs for key generation and decryption of some
x′ from that sender, then necessarily x = x′ (mod q). Note that this guarantee holds even if both
sender and receiver are dishonest, so long as their proofs pass verification.

– By validity of the receiver key, we know that b = s̃A+ ẽkg with ‖s̃‖ < bs and ‖ẽkg‖ ≤ bek.

– By the proof of correct encryption we also know that c1 = Ar̃ + ẽ1 and c2 = 〈b, t̃〉+ ẽ2 + xg,
where ‖r̃‖ ≤ br, ‖ẽ1‖ ≤ be1, and ‖ẽ2‖ ≤ be2.

– Combining these two we get c2−〈̃s, c1〉 = ẽ2+〈ẽkg, r̃〉−〈̃s, ẽ1〉+xg, with ‖ẽ2+〈ẽkg, r̃〉−〈̃s, ẽ1〉‖ ≤
be2 + bekbr + bsbe1.

– At the same time, the proof of correct decryption tells us that c2 − 〈̃s, c1〉 = ẽd + x′g for some
x′ (that may or may not be the same as x), with ‖ẽd‖ < bed.

The last two bullets imply that

d := (x− x′)g = ẽe2 + 〈ẽkg, r̃〉 − 〈̃s, ẽe1〉 − ẽd. (6)

26

Denoting the representation of d by d ∈ Z`, we have

‖d‖∞ ≤ be2 + bekbr + bsbe1 + bed

≤ 2.37σe2
√

n + 2(2.37σe1
√

k · 6.7
√

k) + (1.7σe2n + 24σe1
√

kn)

≈ σe1
(

24
√

kn + 31.8k
)

+ σe2
(
2.37
√

n + 1.7n
)

(7)

At the same time, Eq. (6) tells us that d belongs to the integer lattice spanned by g modulo q,
namely

d ∈ Lg := {z ∈ Z` : ∃x ∈ Z s.t. z = xg (mod q)}.

But it is easy to see that every non-zero vector in Lg must have at least one entry of size ∆`−1:
Indeed for any index i > 0, if the i’th entry is of size b < ∆`−1 then the i− 1’st entry has size b ·∆.

If q is large enough so that the bound from Appendix A.3 is smaller than ∆`−1, then d cannot
be a non-zero vector in Lg, it must therefore be the zero vector which means that x = x′ (mod q).
In other words, a sufficient condition for correct decryption is

∆`−1 ≈ q(`−1)/` > σe1

(
24
√

kn + 31.8k
)

+ σe2
(
2.37
√

n + 1.7n
)
. (8)

(As we explain in Appendix A.4, the term 1.7nσe2 turns out to be by far the largest term above.)

Proof of Re-Sharing In our proactive secret sharing protocol, each party needs to prove that
the plaintext values that it received in the previous round are consistent with the ones that it is
sending in the current one. Specifically, denote the t values that it received in the previous round
by x1, . . . , xt and the n values that it is sending in the current round by y1, . . . , yn. Let λ1, . . . , λt
be the Lagrange coefficients that this party used to reconstruct its share in the previous round,
then it needs to prove that the vector

v =
(∑t

i=1λixi, y1, y2, . . . , yn
)
∈ Zn+1

q

consists of the evaluations of some polynomial F of degree (at most) t− 1 at the points 0, 1, . . . , n
in Zq. The set of all vectors with this property is a linear subspace of Zn+1

q , whose rank is t. Let

H ∈ Z(n+1)×(n+1−t)
q be the parity-check matrix for this linear subspace, namely v has the right

format is and only if vH = 0 (mod q).
The values xi, yj were committed by this party as part of its proofs of decryption and encryption,

respectively. So it just remains to prove that the linear relation holds.

A.4 Setting the Parameters

Below we collect all the constraints from the analysis above and explain how we set our concrete
parameters.

– We begin by looking at the setting of σe2. Let e∗ be the vector that should be “flooded” in the
proof of Lemma 2.1, namely each entry of e∗ has the form δ := 〈̃s, e1〉+ 〈ẽek, r〉.
Recall from Section 2.3 that we want to set σe2 just large enough to ensure that the Rényi
divergence (say, of order α = 2) between e2 and e2 + e∗ is a small constant. The random
variable δ has zero-mean, and its variance is bounded by

E[|δ|2] = ‖s̃‖2 · σ2e1/3 + ‖ẽkg‖2 · 3.5 < (6.7
√

k)2 · σ2e1/3 + (2.37σe1
√

k)2 · 3.5 < 35σ2e1k.

27

We use the same heuristic from Section 3.2, bounding the size of e∗ as if the honestly-chosen
r, e1 are zero-mean Normal random vectors. Setting bδ := 9.75

√
2 · σe1

√
35k < 82σe1

√
k, we

get the high -probability bound Pr
[
‖e∗‖∞ > bδ

]
< t · 2−141 < 2−128. This also implies that

‖e∗‖ > bδ
√

t (except with negligible probability).
Next, we also model e2 as a zero-mean Normal vector whose entries have variance σ2e2/3. Then
we can use the analysis from [2] (see Claim 3.4 there) to bound the Rényi divergence of order α
between e2 and e2 + e∗ by

ρ ≤ exp
(
2π‖e∗‖2/(σ2e2/3)

)
< exp(124080 kt · σ2e1/σ2e2).

Therefore, setting σe2 ≥ σe1
√

124080 kt we can bound the Rényi divergence of order α = 2
between these distributions below exp(1) = e, as needed.

– The correctness condition from Eq. (8) can now be written as

q
`−1
` > σe1

(
24
√

kn + 31.8k
)

+ σe1
√

124080 kt
(
2.37
√

n + 1.7n
)

≈ σe1
√

k
(

31.8
√

k + 24
√

n + 835
√

nt + 600n
√

t
)
. (9)

We remark that as n grows, the term 600σe1n
√

kt becomes by far the most significant term in

the expression above, so this condition is implied by q
`−1
` ≈ 2126 ≥ 29.3σe1n

√
kt, or σe1n

√
kt ≤

2126−9.3 = 2116.7.
– Another size constraint stems from our use of Lemma 3.7, where we must ensure that the bounds

are small enough so we can apply that lemma. In our protocol we have a total of 10 projected
vectors in all the sub-protocols specifically the “small” vectors are the LWE secrets S = {si, r}
,and the “large” vectors are the LWE noise vectors L = {ei, e1, e2, e}, we have ms = 2 and
ml = 4 hence ms + 2ml = 10.
To use that lemma we need to ensure that for the small vectors we have bs, br <

√
P/(219.9

√
10 ·√

30) ≈ 2102. For the large vectors we have b∗ = max(bek, be1, be2, bed) = bed and b∗ =
min(bek, be1, be2, bed) = bek, and we need 8b∗/

√
b∗ ≤

√
P/(219.9

√
10) ≈ 2104.

The first condition easily holds, as we see below we will have k < 213 and therefore bs = br ≈
6.7
√
k ≈ 210.3 � 2102. For the second condition, with out settings we have b∗ = bek = 2.37σe1

√
k

and
b∗ = bed ≈ 1.7σe2n + 24σe1

√
kn ≈ σe1

√
k(600n + 24

√
n) < 210σe1n

√
k.

Hence we get the constraint

8 · 210σe1n
√

k√
2.37σe1

√
k
≤ 2104 ⇔ σe1n2

√
k / 2184.

Clearly, this constraint is subsumed by the constraint from the previous bullet, for any reason-
able value of n.

– Finally, for LWE security we must set the dimension of the LWE secrets large enough relative
to the bit-size of the modulus q vs. the noise magnitude. Targeting security level 128, the LWE
estimators [3] implies LWE secrets of dimension roughly 37.5 log2(q/σ) + 75. 21 With q ≈ 2252,
we therefore need to set

k ≥ 37.5 log2(q/σe1) + 75 ≈ 37.5 · (254− log2(σe1)). (10)
21 The formula dim ≥ 37.5 log2(q/σ)+75 is a useful shorthand, giving results that are very close to what the estimator

gives for 128-bit security level.

28

Given the number of parties n (which implies the values n = n ·` and t ≈ n/2), we therefore need to
find σe1 and k that satisfy both σe1n

√
kt ≤ 2116.7 and k ≥ 37.5(254− log2(σe1)). It is easy to verify

that the for parameter regime that we care about (where n is at most a few thousands), these two
constraints are satisfied with

σe1 := 2108−d(3 logn)/2e − 1, σe2 := 2123−d(3 logn)/2e − 1, k ≈ 5438 + 37.5d(3 log n)/2e. (11)

For example, for n = 1024 we have σe1 = 293 − 1, σe2 = 2113 − 1, and k = 6038.

B Aggregating DL-based Commit-and-Prove Protocols

Our scheme uses different proofs for the different components, with different vectors (or parts of
them) participating in different proofs. Recalling that the DL-proofs that we use cost (roughly) two
exponentiations for each variable that participate in a norm-squared proof and one exponentiation
for each variable in linear proofs, we would like to reduce as much as possible the intersection
between the different proofs.

In this section we describe a few transformations that we apply to these proofs, aggregating them
into just two instances, once for a linear constraint and the other for a quadratic constraint. This
aggregation maintain the soundness of these proofs (so that all the original constraints still hold),
while minimizing the number of exponentiations needed to verify them. Specifically, variables that
only participated in linear proofs in the original system will only participate in the linear constraint
in the resulting system, and all the other variables will only participate in the quadratic constraint.
In addition, the transformation adds just a single variable to the system, which is the only variable
in the intersection between the linear and quadratic constraints.

B.1 The Initial System

Our starting point is a system of linear and quadratic constraints, with some vectors only participate
in linear constraints (i.e., the original high-dimension vectors), some participate in both linear and
norm constraints (i.e., the projected 265-dimensional vectors), and some only participate in norm
constraints (i.e., the dimension-4 vectors for the sum-of-squares).

Below we denote the linear-only vectors by ui, the ones participating in both linear and norm
constraints by vi and the ones participating only in norm constraints by wi, i = 1, . . . , n. That is,
the set of constraints that need to be proven are as follows:{

〈ai,ui〉+ 〈bi,vi〉 = pi
}n
i=1

and
{
〈vi,vi〉+ 〈wi,wi〉 = qi

}n
i=1
.

The prover knows all these vectors explicitly, while the verifier only knows the public ai, bi, pi and
qi, and has commitments to everything else.

In the actual system we do not have the same number of vectors of each type, and moreover
some of the linear-only vectors ui participate in multiple linear proofs. But here we only describe
this simplified variant, since it makes indexing much simpler while still conveying all the technical
ideas. On the other hand, it is important for the transformation below that the norm constraints
are disjoint on their variables.

In the Bulletproof-like system that we use for these proofs, different variable are committed
relative to different generators. Specifically, for the vectors vi and wi that participate in the norm

29

constraints, the prover is supposed to provide “double commitments”, namely commitment to the
vectors (vi|vi) (wi|wi) with the different halves committed wrt different generators. For vectors
ui that only participate in linear constraints, the prover only commits with respect to one set of
generators.

In more detail, we have vectors of generators Gi, G′i, G′′i, H′i, and H′′i, i = 1, . . . , n, and
another generator F . These are chosen such that it is hard for the prover to find non-trivial repre-
sentation of any of these generators relative to the others (using hash-to-curve). The honest prover
computes and sends to the verifier the following commitments:

Ci := riF + 〈ui,Gi〉, # linear-only vectors
C ′i := siF + 〈vi,G′i〉+ 〈vi,H′i〉, # both linear and norm
C ′′i := tiF + 〈wi,G

′′
i〉+ 〈wi,H

′′
i〉, # norm-only vectors

where ri, si, ti are randomizing scalars that the prover chooses uniformly at random in ZP .

B.2 Step 1: Aggregating the Linear Constraints

We begin by aggregating all the linear constraints into a single one, simply by taking a random
linear combination of them. Specifically, the verifier chooses a random scalar ρ ∈ ZP and asks that
the prover replaces all the linear constraints from above by the single constraint

n∑
i=1

〈ρi−1ai,ui〉+ 〈ρi−1bi,vi〉 =

n∑
i=1

ρi−1pi.

This constraint can be written as 〈a∗,u∗〉+ 〈b∗,v∗〉 = p∗, where p∗ :=
∑n

i=1 ρ
i−1pi and

a∗ := (a1|ρa2| . . . |ρn−1an), b∗ := (b1|ρb2| . . . |ρn−1bn),
u∗ := (u1| u2| . . . |un), v∗ := (v1| v2 | . . . |vn).

Clearly (), if the vectors committed by the prover fail to satisfy any of the linear constraints
from above, they will also fail to satisfy the aggregated constraint (except with probability n/P).

This aggregation step can be used even when some vectors appear in multiple linear constraints.
For example, if a vector u appears in the linear constraints i and j with coefficients ai and aj ,
respectively, then it will appear in the aggregate constraint with coefficients ρi−1ai + ρj−1aj . After
this aggregation step, each of the vectors ui,vi appears only once in the the aggregate linear
constraint, and each of the vectors vi,wi appears only once in one of the norm constraints.

So far, this transformation did not modify any of the commitments.

B.3 Step 2: Aggregating the Norm Constraints

Next we aggregate the norm constraints into a single one by taking a random linear combination
of them. Specifically, the verifier chooses a random scalar τ ∈ ZP and asks that the prover replaces
all the norm constraints from above by the single norm constraint

n∑
i=1

〈τ i−1vi, τ i−1vi〉+ 〈τ i−1wi, τ
i−1wi〉 =

n∑
i=1

τ2(i−1)qi.

30

This constraint can be written as 〈v̂, v̂〉 + 〈ŵ, ŵ〉 = q̂, where v̂ := (v1|τv2| . . . |τn−1vn), ŵ :=
(w1|τw2| . . . |τn−1wn), and q̂ :=

∑n
i=1 τ

2(i−1)qi.

As before, if the vectors committed by the prover fail to satisfy any of the original norm
constraints, they will also fail to satisfy the aggregated constraint (except with probability 2n/P).

Differently from the first step, here the prover does change the witness that it uses to prove
the new constraint, multiplying the vectors that appear in the i’th constraints by τ i−1. (This is
where we use the condition that the different norm constraints are disjoints on their variables.) The
prover and verifier will therefore also change the commitments to these vectors, modifying each C ′i
to Ĉ ′i := τ i−1C ′i and similarly Ĉ ′′i := τ i−1C ′′i .

In addition, the verifier will also adjust the linear constraint, so that it will use the same witness v̂
as the new norm constraint. (This is important for the steps below.) Specifically, the verifier replaces
the linear constraint 〈a∗,u∗〉 + 〈b∗,v∗〉 = p∗ by the equivalent constraint 〈a∗,u∗〉 + 〈b̂, v̂〉 = p∗,
where

b̂ := (b1|(ρ/τ)b2| . . . |(ρ/τ)n−1bn) and v̂ := (v1|τv2| . . . |τn−1vn).

Change of notations. To avoid dragging extra notations to the following steps, we switch notations
now and denote the resulting single linear constraint and single norm constraint by

〈a,u〉+ 〈b,v〉 = p and 〈v,v〉+ 〈w,w〉 = q.

The honest prover has the secret vectors u,v,w, and both prover and verifier know the public
quantities a,b, p, q as well as commitments to the secret vectors, which can be computed from the
commitments above via C∗ :=

∑
iCi, C

∗∗ :=
∑

i Ĉ
′
i +
∑

i Ĉ
′′
i . These commitments are supposed to

be

C∗ = r∗F + 〈u,Gu〉, C∗∗ = r∗∗F + (〈v,Gv〉+ 〈v,Hv〉) + (〈w,Gw〉+ 〈v,Hw〉),

where the generator vectors Gu,Gv,Gw,Hv,Hw are the concatenation of the generators from
above, and the prover knows r∗, r∗∗.

B.4 Step 3: Enforcing the Norm Constraint

Next we apply the transformation from Section 3.1 to ensure that Cv, Cw are indeed “double
commitments” with the same vectors committed relative to both the G’s and the H’s. Let dv be
the dimension of v and dw be the dimension of w. The verifier chooses a random scalar x ∈ ZP
and sets xv := (1, x, . . . , xdv−1) and xw := (xdv , . . . , xdv+dw−1), then asks the prover to replace the
norm constraint by the quadratic constraint

〈v + xv,v − xv〉+ 〈w + xw,w − xw〉 = q − ‖xv‖2 − ‖xw‖2.

The committed witnesses remain unchanged (i.e., the vectors v,w), but we use the fact that our
underlying commit-and-prove system (as noted in Section 3.1 above) supports public offset vectors.

B.5 Step 4: Removing v from the Linear Constraint

Finally, we make the quadratic and linear constraints almost disjoint on their variables by removing
v from the linear constraint and replacing it by just a single variable. Specifically, the prover
computes the scalar z := 〈a,u〉 (mod P) and commits to it via Z := rzF + zGz (where Gz is yet

31

another random generator, computed by hashing to the curve). The prover sends the commitment
Z to the verifier, who replies with yet another random scalar y ∈ ZP . The verifier then asks the
prover to prove the two new constraints

Linear: 〈(a| − 1), (u|z)〉 = 0, and
Quadratic: 〈(v|w|z) + offset1, (v|w|0) + offset2〉 = q − ‖xv‖2 − ‖xw‖2 + y(p+ 〈xv,b〉).

where the offset vectors are offset1 = (xv|xw|0), offset2 = (yb−xv| −xw|y). Completeness of the
linear constraint holds by definition. For the quadratic constraint, we have

〈(v|w|z) + offset1, (v|w|0) + offset2〉
= 〈v + xv,v + yb− xv〉+ 〈w + xw,w − xw〉+ yz

= 〈v + xv,v − xv〉+ 〈w + xw,w − xw〉+ y(z + 〈v + xv,b〉)
= 〈v + xv,v − xv〉+ 〈w + xw,w − xw〉+ y(〈u,a〉+ 〈v,b〉+ 〈xv,b〉)
= q − ‖xv‖2 − ‖xw‖2 + y(p+ 〈xv,a〉),

as needed. For soundness, we can assume that indeed z := 〈a,u〉 (mod P) (or else the linear con-
straint will fail). Then, if either of the previous two constraints was not satisfied, then there is at
most one value of y for which the new quadratic constraint will be satisfied, hence this transforma-
tion only adds 1/P to the soundness error. The commitments are modified by incorporating also
the commitment to z (as described below).

B.6 The End Result

At this point we are left with only two constraints: a linear constraints over the vector u′ = (u|z),
and a quadratic constraint over the vectors v′1 = (v|w|z) and v′2 = (v|w|0), with the public offset
vectors offset1, offset2 from above.

Both prover and verifier have commitments to the vectors u′,v′1,v
′
2, computed as Cu′ := C∗+Z,

Cv′1
:= C∗∗ + Z, and Cv′2

:= C∗∗. At this point the prover and verifier have everything they need
for the underlying Bulletproof-like protocols that we use (cf. Appendix E). They run two instances
of these protocols, one for the linear constraint and the other for the quadratic constraint.

C The Proactive VSS Scheme

Putting all these components in a proactive VSS scheme is straightforward in principle, but some
optimizations are still possible. The parties maintain a Shamir sharing of some global secret s, and
need to refresh that sharing in every step. Since we aim at a protocol that will be usable in the
secrets-on-blockchain architecture of Benhamouda et al.[8], our high-level protocol is essentially the
one described there, with the components from the current work. Some important optimizations
are possible even at this high level, however, and are in fact needed to make the overall scheme
practical.

Recall that in the protocol from [8], refreshing the shares is done by each party preparing a
second-level sharing of its share, and then recovering its next-step share of the global secret from
all the shares-of-shares that it get from everyone else. Specifically

In more detail, each party does the following in every epoch:

32

– Generates a re-sharing of its share, and encrypts the different shares-of-share under the public
keys of the respective recipients;

– Generate proofs of valid encryption, decryption, and re-sharing, as per Appendix A;

– Generates a new secret/public key pair with a proof of valid key-generation as in Appendix A;

– Broadcasts a message consisting of the new public key, the ciphertext, and all the proofs.

The parties all listen to messages on the broadcast channel, and each party verifies all the proofs
in these messages. Each party then uses its secret key to decrypt the messages addressed to it by
“good senders” (i.e. those senders whose proofs verify). Since all honest parties agree on the set
of good senders, and since there are more than t of them, then the honest parties can recover a
Shamir sharing of the underlying secret from the messages that they received.

C.1 Reducing the Verification Cost

As described above, each party must generate one set of proofs but verify n of them. While ver-
ification of the proofs from Appendix A is somewhat cheaper than proof generation, it is not all
that much cheaper. For example, for 1024 parties each verification takes about 20 seconds, so each
party would need to spend close to six CPU-hours verifying all the proofs.

Such verification cost is a gross overkill, however. We note that all we need is that (a) all
the honest parties agree on the set of “good senders” (of cardinality more than t), and (b) all
the senders in this set have valid proofs. When the committee size is significantly more than the
security parameter, n � λ, we can easily get that effect without every party verifying all proofs.
For example, we can assign to each sender a (pseudo)random verification-committee of size only
O(λ), and decide whether or not that sender is “good” by a majority vote of that committee.

This is already an improvement, but we can still do better: We can choose smaller verification
committees, then designate a sender as “good” if it has a large majority among the votes of this
committee, and “undetermined” otherwise. Each party can then go down the list of the remaining
“undetermined” senders, verifying their proofs and adding them to the good set, until the set is
large enough. A standard analysis of this solution shows that it significantly reduces the verification
load. For example, with a committees of n = 1024 parties, of which less than 1/3 are corrupted, we
can get the error probability below 2−128 while having each party verify only about 200-300 proofs
(vs. 1024 in the naive protocol). The verification cost is therefore reduced to 1-2 CPU-hours (that
can be done in only a few minutes of wall-clock if we use multiple CPUs).

The verification protocol proceeds as follows: Let k be parameter denoting the size of the
verification committees, and τ > 1/2 be a threshold value, both to be determined later. We first
choose for each sender a (pseudo)random verification committee of size k, derived publicly from the
messages of that sender, using a random oracle or VRFs. (In the analysis below we treat this set
as if it were truly random.) Each member of the verification-committee verifies the proofs of their
sender, and broadcasts a vote as to whether or not the proofs are valid. Once all the votes for all
the senders are sent, every party does the following:

1. Set the initial good set G to include all the senders for which at least a τ -fraction of the votes
are YES;

2. If |G| < t + 1 then order the remaining senders in order of the fraction of their YES votes,
breaking ties in an arbitrary (but consistent) manner. Then verify their proofs in that order,
adding every sender whose proofs verify, until the set G reaches cardinality of t+ 1.

33

At a high level, the reason that this procedure works is that the expected fraction of YES for
good senders is at least 2/3 (over the choice of the verification committee), while the expected
fraction for bad senders is at most 1/3. We set τ to be the smallest fraction such that for bad
senders we have Pr[more than τ fraction of YES] < 2−128, using τ > 1/2 to get smaller committee-
size k. This may mean that some good senders will fail to clear the threshold, but we will get them
back in the second step above. It is left to analyze the expected number of proofs that parties need
to verify in the second step, and show that it is only a very small number.

D More on the Normal-Distribution Heuristic

We would like to compute the following two quantities:

arg sup
α∈R

[
∀w ∈ Zd Pr

R←Dd×256

[
‖wR‖2 < α · ‖w‖2

]
< 2−128

]
(12)

arg inf
β∈R

[
∀w ∈ Zd Pr

R←Dd×256

[
‖wR‖2 > β · ‖w‖2

]
< 2−128

]
(13)

We will obtain the values of α and β using two heuristics. The first heuristic assumes that the
fattest tails are achieved by the vector w all of whose coefficients are the same. Hence bounding α
and β involves just considering, for simplicity, the element w = 1d. The second heuristic substitutes
the distribution D by the normal distribution with the same mean and standard deviation – i.e.
1√
2
N .

The intuition for both heuristics stems from two lemmas proved in [1]. It is shown in [1, Lemma
7] that all the respective moments of the distribution of ‖wR‖2 are largest among w of norm

√
d

when w = 1d. And Lemma 8 of that paper states that when the distribution of the coefficients of
R is switched to a normal distribution with the same mean and variance as D, then the moments
of the distribution of ‖wR‖2 are larger.

The distribution of ‖1d · R‖2, where the coefficients of R ∈ Rd×256 are normally distributed,
is the (scaled) χ2 distribution with 256 degrees of freedom. More specifically, it’s the distribution
1
2d ·χ

2[256] because the variance of each coefficient of R is 1
2 , and so the variance of each coefficient

of wR (which is normally distributed) is d/2. The two lemmas from [1] therefore intuitively imply
that the tails of the scaled χ2 distribution are fatter than those of the distribution we’re trying to
bound in (12) and (13). And so we can hope that by bounding those, we bound the quantities that
we’re interested in. Specifically,

∀w ∈ Zd Pr
R←Dd×k

[
‖wR‖2 < α · ‖w‖2

]
/ Pr[χ2[k] < 2α] = cdfχ2[k](2α) (14)

∀w ∈ Zd Pr
R←Dd×k

[
‖wR‖2 > β · ‖w‖2

]
/ Pr[χ2[k] > 2β] = 1− cdfχ2[k](2β) (15)

Thus computing heuristic bounds for (12) and (13) involves simply evaluating the inverse cdf
of the χ2[k] distribution, which can be done via, for example, a python command.22 We will now
look at how well the heuristic holds. Let us first examine the validity of (14) and (15) for w = 1d.

22 See https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html

34

degree of freedom k 16 32 64 128 256

cdf−1
χ2[k]

(
2−k/2

)
4.929 8.787 16.374 31.398 61.278

cdf−1
χ2[k]

(
1− 2−k/2

)
35.055 76.747 161.318 331.612 673.328

Table 4. The largest α (middle row) such that cdfχ2[k](α) is < 2−128. And the smallest β (bottom row) such that

1− cdfχ2[k](β) is < 2−128.

d \ k 16 32 64 128 256

16 (left tail) -8.08 -16.15 -32.55 -64.75 -129.62

16 (right tail) -8.25 -16.69 -33.72 -67.76 -135.96

64 (left tail) -8.04 -16.03 -32.13 -64.23 -128.44

64 (right tail) -8.06 -16.17 -32.41 -64.91 -129.93

256 (left tail) -8.01 -16.02 -32.03 -64.06 -128.11

256 (right tail) -8.03 -16.04 -32.10 -64.23 -128.48

512 (left tail) -8.01 -16.01 -32.02 -64.03

512 (right tail) -8.01 -16.02 -32.05 -64.11

Table 5. The “left tail” is the base-2 logarithm of the cdf of the distribution ‖1d ·R‖2, where R← Dd×k, evaluated
at α · ‖1d‖2 = αd = d

2
· cdf−1

χ2[k]
(2−k/2). The right tail is the base-2 logarithm of 1−cdf of the distribution ‖1d · R‖2

,where R← Dd×k, evaluated at β · ‖1d‖2 = βd = d
2
· cdf−1

χ2[k]
(1− 2−k/2). The cdf−1

χ2[k]
values, which correspond to 2α

(resp. 2β), are taken from Table 4.

In Table 4, we compute the inverse cdf of the χ2[k] distribution at 2−k/2 and 1− 2−k/2 for various
values of k. 23

If (14) and (15) were true (rather than heuristic) inequalities, then the cdf of the distribution
of ‖1d ·R‖2 evaluated at α · ‖w‖2 = αd for

α =
1

2
· cdf−1

χ2[k]

(
2−k/2

)
(16)

(and resp. β · ‖w‖2 = βd for β = 1
2 · cdf

−1
χ2[k]

(
1− 2−k/2

)
) would always be less than 2−k/2 (resp.

greater than 1 − 2−k/2). Based on some experiments, for w = 1d, the / in (14) and (15) indeed
appear to be true inequalities (at least when we would like the area under the tails to be 2−k/2).
In Table 5, we compute the true values of the areas under the left and right tails of the cdf of
‖1d · R‖2 when the boundaries are the aforementioned appropriately-scaled values derived from
Table 4. For example, from Table 4, we know that cdf−1

χ2[128]

(
2−64

)
= 31.398 = 2α. From Table 5,

we then see that PrR←D512×128 [‖1d · R‖2 < α · d] < 2−64.03 < 2−64. We also see that the values in
Table 5 approach 2−k/2 as d increases, which is consistent with the central limit theorem.

We now move on to the heuristic where we assume that the fattest tails in the distribution of
‖wR‖2 occur when w is balanced. For simplicity, we will assume that the squared norm of w is d,

23 The k = 256 column gives us the value of 2α and 2β that we need for (heuristically) obtaining the values for α
and β in (12) and (13). Even though we are only interested in k = 256, we also compute for other values of k just
to get a sense of how well the heuristic holds in general.

35

Fig. 3. The X-axis is the degrees of freedom k. If the value of (19) for α = 1
2
· cdf−1

χ2[k]

(
2−k/2

)
is 2−k/2+δ, then the

Y coordinate is set to δ. For example, for k = 256, the value of (19) is ≈ 2−126, and thus the Y coordinate is 2. The
lack of monotonicity is due to the discrete nature of the sum in (19); in particular the fact that the upper limit of
the sum is defined by bαc. A rough approximation of δ is k/64.

and so the fattest tails supposedly occur for w = 1d. In other words, we assume the heuristic:

∀w ∈ Zd s.t. ‖w‖2 = d, Pr
R←Dd×k

[
‖wR‖2 < α

]
/ Pr

R←Dd×k

[
‖1d ·R‖2 < α

]
(17)

∀w ∈ Zd s.t. ‖w‖2 = d, Pr
R←Dd×k

[
‖wR‖2 > β

]
/ Pr

R←Dd×k

[
‖1d ·R‖2 > β

]
(18)

The lower bound in (18) may very well hold, but unfortunately the upper bound in (17) is false
at the extreme tails. If w is 0 everywhere except for its first coefficient, then the distribution ‖wR‖2
eventually flattens out at the left tail. In particular, for all positive α, Pr

R←Dd×k
[‖w ·R‖2 < α] ≥ 2−k.

The reason is that wR = 0 whenever the first row of R is 0, which happens with probability exactly
2−k. More generally, if ‖w‖2 = d and all the coefficients of w except the first are 0 (so the first
coefficient is

√
d), then

Pr
R←Dd×k

[‖w ·R‖2 ≤ α · ‖w‖2] = Pr[first row of R has at most bα · ‖w‖2/dc ± 1’s]

= Pr[first row of R has at most bαc ± 1’s]

=

bαc∑
i=0

(
k

i

)
· 2−k. (19)

In our specific case, we would like the area under the left tail between 0 and α · ‖w‖2 = αd,
for α as in (16), of the distribution ‖wR‖2 to be less than 2−k/2. For k = 256, the value in (19)
for such α is ≈ 2−126. This is slightly larger than 2−128 and so (14) is not an inequality, but an
approximation. In Figure 3 we plot how the value of (19) differs from 2−k/2 as k grows for such
α. While the difference in the exponent between the heuristic value and the actual value increases

36

(in an absolute sense), for the k and the tails that we’re interested in, the heuristic appears to be
fairly good.

One might also wonder whether there is yet a different shape of w, apart from having its
weight being concentrated completely on one coordinate, that may completely break our heuristic
assumption. We do not believe this to be the case, as any choice of w that is not concentrated all
on one element would result in the distribution of ‖wR‖ being closer to that of 1

2χ
2, via by the

central limit theorem. It would certainly be worthwhile to have a formal proof of some version of
our heuristic assumption, and we leave this to future work. But as it stands, we are fairly confident
of the statements in Corollary 3.2 which is used throughout the paper.

E Bulletproof Variations

The base recursion in Bulletproof can be generalized slightly: Recall that both prover and verifier
know the generator vectors G1,G2,H1,H2 ∈ Gn and another generator F , and in addition a
“commitment element” C, and the prover claims to know scalar vectors a1,a2,b1,b2 ∈ Zn such
that

C = 〈(a1|a2), (G1|G2)〉+ 〈(b1|b2), (H1|H2)〉+ 〈(a1|a2), (b1|b2)〉 · F. (20)

The heart of the Bulletproof system is a method for reducing this system to a system of half the
dimension, by having the verifier send a random challenge x and the prover replying with just two
group elements L,R. A slight generalization of this method will use two challenges x, y rather than
one, then the prover will send the exact same L,R and the commitment-update rule will use xy
and (xy)−1 instead of x2 and x−2, respectively. Specifically, the prover sets as normal

L := 〈a1,G2〉+ 〈b2,H1〉+ 〈a1,b2〉 · F
R := 〈a2,G1〉+ 〈b1,H2〉+ 〈a2,b1〉 · F

and sends them to the verifier. The verifier sends back x, y, and then the prover sets

a′ := x · a1 + y−1a2

b′ := x−1 · b1 + yb2

and C ′ := C + xy · L+ (xy)−1 ·R

and sends C ′ to the verifier. The prover and verifier agree on the new generator-vectors G′ =
x−1G1 + yG2 and H′ = xH1 + y−1H2, and they now have a new instance where the prover claims
that for the vectors a′, b′ above it holds that

C ′ =
〈
a′,G′

〉
+
〈
b′,H′

〉
+ 〈a′,b′〉 · F. (21)

The Bulletproof system as described in [14] corresponds to x = y, but one can also use other choices.
In particular choosing x at random and setting y = 1 would be (very) slightly more efficient.

37

E.1 Correctness and Soundness

Seeing that Eq. (21) holds involves some mind-numbing parenthesis-opening, as follows:

C ′ = C + xy · L+ (xy)−1 ·R
= 〈(a1|a2), (G1|G2)〉+ 〈(b1|b2), (H1|H2)〉+ 〈(a1|a2), (b1|b2)〉 · F

+ xy ·
(
〈a1,G2〉+ 〈b2,H1〉+ 〈a1,b2〉 · F

)
+ (xy)−1

(
〈a2,G1〉+ 〈b1,H2〉+ 〈a2,b1〉 · F

)
=
〈
a1 + (xy)−1a2,G1

〉
+ 〈a2 + xya1,G2〉 + 〈b1 + xyb2,H1〉

+
〈
b2 + (xy)−1b1,H2

〉
+
(
〈a1,b1〉+ 〈a2,b2〉

+ xy〈a1,b2〉+ (xy)−1〈a2,b1〉
)
· F

=
〈
(xa1 + y−1a2), x

−1G1

〉
+
〈
(y−1a2 + xa1), yG2

〉
+
〈
(x−1b1 + yb2), xH1

〉
+
〈
(yb2 + x−1b1), y

−1H2

〉
+
(
〈xa1, x

−1b1〉+ 〈y−1a2, yb2〉+ 〈xa1, yb2〉+ 〈x−1a2, y
−1b1〉

)
· F

=
〈
a′,G′

〉
+
〈
b′,H′

〉
+ 〈a′,b′〉 · F

The soundness proof is exactly the same as in [14], showing that rewinding the prover four
times with the same L,R but with different xi and yi, each time getting different G′i,H

′
i and a′i,b

′
i,

i = 1, 2, 3, 4, we can extract the original a,b (or else find a nontrivial discrete logarithm among the
generators). Fix L,R, and we assume that for i = 1, 2, 3, 4 we get

C ′i = C + xiyiL+ (xiyi)
−1R =

〈
a′i,G

′
i

〉
+
〈
b′i,H

′
i

〉
+ 〈a′i,b′i〉 · F (22)

=
〈
x−1i a′i,G1

〉
+
〈
yia
′
i,G2

〉
+
〈
xib
′
i,H1

〉
+
〈
y−1i b′i,H2

〉
+ 〈a′i,b′i〉 · F

Assuming linear independence, we can use the values xi, yi for i = 1, 2, 3 to get ui, vi, wi satisfying

3∑
i=1

ui(xiyi) = 1, and

3∑
i=1

ui =

3∑
i=1

ui(xiyi)
−1 = 0,

3∑
i=1

vi(xiyi)
−1 = 1, and

3∑
i=1

vi =

3∑
i=1

vi(xiyi) = 0,

3∑
i=1

wi = 1, and
3∑
i=1

wi(xiyi) =
3∑
i=1

ui(xiyi)
−1 = 0.

38

This yields three linear combinations of Eq. (22) for i = 1, 2, 3, satisfying:

L =
3∑
i=1

uiC
′
i = 〈

∑
i uix

−1
i a′i︸ ︷︷ ︸

aL,1

,G1〉+ 〈
∑

i uiyia
′
i︸ ︷︷ ︸

aL,2

,G2〉

+〈
∑

i uixib
′
i︸ ︷︷ ︸

bL,1

,H1〉+ 〈
∑

i uiy
−1
i b′i︸ ︷︷ ︸

bL,2

,H2〉+
∑

i ui〈a
′
i,b
′
i〉︸ ︷︷ ︸

γL

·F (23)

R =

3∑
i=1

viC
′
i = 〈

∑
i vix

−1
i a′i︸ ︷︷ ︸

aR,1

,G1〉+ 〈
∑

i viyia
′
i︸ ︷︷ ︸

aR,2

,G2〉

+〈
∑

i vixib
′
i︸ ︷︷ ︸

bR,1

,H1〉+ 〈
∑

i viy
−1
i b′i︸ ︷︷ ︸

bR,2

,H2〉+
∑

i vi〈a
′
i,b
′
i〉︸ ︷︷ ︸

γR

·F (24)

C =
3∑
i=1

wiC
′
i = 〈

∑
iwix

−1
i a′i︸ ︷︷ ︸

aC,1

,G1〉+ 〈
∑

iwiyia
′
i︸ ︷︷ ︸

aC,2

,G2〉

+〈
∑

iwixib
′
i︸ ︷︷ ︸

bC,1

,H1〉+ 〈
∑

iwiy
−1
i b′i︸ ︷︷ ︸

bC,2

,H2〉+
∑

iwi〈a
′
i,b
′
i〉︸ ︷︷ ︸

γC

·F (25)

Substituting the expressions for L,R,C from Eqs. (23-25) back into Eq. (22) we get for all i =
1, 2, 3, 4

〈aC,1,G1〉+ 〈aC,2,G2〉+ 〈bC,1,H1〉+ 〈bC,2,H2〉+ γC · F // C

+ xiyi ·
(
〈aL,1,G1〉+ 〈aL,2,G2〉+ 〈bL,1,H1〉+ 〈bL,2,H2〉+ γL · F

)
// + xiyiL

+ (xiyi)
−1(〈aR,1,G1〉+ 〈aR,2,G2〉+ 〈bR,1,H1〉+ 〈bR,2,H2〉+ γR · F

)
// + (xiyi)

−1R

=
〈
x−1i a′i,G1

〉
+
〈
yia
′
i,G2

〉
+
〈
xib
′
i,H1

〉
+
〈
y−1i b′i,H2

〉
+ 〈a′i,b′i〉 · F

Note that the extractor knows all the scalars a?,a
′
?, b?,b

′
? and γ? in the equations above. So either

is can find a nontrivial discrete logarithm between these generators, or else for all i the following
equalities hold:

x−1i a′i = aC,1 + xiyi · aL,1 + (xiyi)
−1aR,1

yi · a′i = aC,2 + xiyi · aL,2 + (xiyi)
−1aR,2

xi · b′i = bC,1 + xiyi · bL,1 + (xiyi)
−1bR,1

y−1i b′i = bC,2 + xiyi · bL,2 + (xiyi)
−1bR,2

〈a′i,b′i〉 = γC + xiyi · γL + (xiyi)
−1γR (26)

The first four equalities above imply that we gave for all i = 1, 2, 3, 4:

x2i yi · aL,1 + xi(aC,1 − aL,2) + y−1i (aR,1 − aC,2) − x−1i y−2i aR,2 = 0 (27)

x−2i y−1i bR,1 + x−1i (bC,1 − bR,2) + yi(bL,1 − bC,2) − xiy
2
i · bL,2 = 0 (28)

We can view the last two equations as a homogeneous linear systems with:

– four equations (i = 1, 2, 3, 4),

39

– in four variables (the expression in the a’s and b’s),
– with the coefficients being the expressions the the x’s and y’s.

Note again that the terms a?,b? in these equalities do not depend on the choice of xi, yi, or else
we could extract from the prover nontrivial discrete logarithm relative to the bases G,H, F . Hence
they must satisfy these equalities for any choice of xi, yi,

24 and since whp the coefficients are linearly
independent it must be that the expressions in the a’s and b’s are all zero. Namely we must have

aL,1 = aC,1 − aL,2 = aR,1 − aC,2 = aR,2 = bR,1 = bC,1 − bR,2 = bL,1 − bC,2 = bL,2 = 0. (29)

Plugging these equalities back into the top equalities from Eq. (26) we get

a′i = xi · aC,1 + y−1i aC,2 and b′i = x−1i bC,1 + yi · bC,2

and plugging these into the bottom equality from Eq. (26) we have for all i

γC + xiyi · γL + (xiyi)
−1γR = 〈a′i,b′i〉

= 〈aC,1,bC,1〉+ 〈aC,2,bC,2〉+ xiyi · 〈aC,1,bC,2〉+ (xiyi)
−1〈aC,2,bC,1〉

Observing yet again that the terms a?,b? do not depend on the choice of xi, yi, it must therefore
be the case that γC = 〈aC,1,bC,1〉 + 〈aC,2,bC,2〉. The extractor therefore sets a = (aC,1|aC,2) and
b = (bC,1|bC,2), which together with γC are a valid witness for the original statement.

E.2 Zero Knowledge

The core system above is not zero-knowledge, in particular because L,R contain information about
a,b. The Bulletproof paper [14] shows how to use it as-is to get zero-knowledge range proofs (as
well as proofs for general arithmetic circuits), by changing the statement being proved. This may
be a generic transformation from non-ZK to ZK inner-product argument system, but in [14] it
is conflated with the range proof (or Hadamard product). This transformation requires that the
prover computes at least 2n+ 1 more exponentiations (and a handful more for the verifier).

Here we describe another approach, modifying the core protocol itself to make it directly zero-
knowledge. This modification induces (almost) no additional exponentiations for the prover or
verifier. The construction consists of two steps: in the first step the verifier sends a new random
generator F ′, then ask the prover to prove a weaker inner-product statement, namely one that
contains an arbitrary exponent for F ′. Since F ′ is fresh and random, then barring finding nontrivial
discrete-logarithm, the only such representation must include (F ′)0. Also as it turns out, it is easier
to recuse on this weak inner-product proof while keeping it zero-knowledge.

The public input to the protocol are the generators G,H, F and the element C, and the prover
claims to know a,b such that C = 〈(a1|a2), (G1|G2)〉+〈(b1|b2), (H1|H2)〉+(〈(a1|a2), (b1|b2)〉) ·F.

The protocol begins with the verifier choosing a new random generator F ′ and sending it to the
prover, asking the prover to prove the knowledge of a,b and also another scalar δ such that

C = 〈(a1|a2), (G1|G2)〉+ 〈(b1|b2), (H1|H2)〉+ (〈(a1|a2), (b1|b2)〉) · F +δ · F ′︸ ︷︷ ︸
new

.

24 More precisely, only for those xi’s and yi’s for which the prover does not abort. Observe that we assume that it
answers with noticeable probability, and the probability of the linear system being degenerate is negligible.

40

The prover then chooses at random δL and δR and sets

L := 〈a1,G2〉+ 〈b2,H1〉+ 〈a1,b2〉 · F + δL · F ′

R := 〈a2,G1〉+ 〈b1,H2〉+ 〈a2,b1〉 · F + δR · F ′

and sends them to the verifier. The rest of this step is as usual, the verifier replies with random
x, y, the prover sets

a′ := x · a1 + y−1a2

b′ := x−1 · b1 + yb2

and C ′ := C + xy · L+ (xy)−1 ·R

and sends C ′ to the verifier, and they both agree on the new generator-vectors G′ = x−1G1 + yG2

and H′ = xH1 + y−1H2. They now have a new instance of half the dimension, where the prover
claims that the vectors a′, b′ and δ′ = δ + xyδL + (xy)−1δR satisfy

C ′ =
〈
a′,G′

〉
+
〈
b′,H′

〉
+ 〈a′,b′〉 · F + δ′ · F ′.

The parties continue by recursion, each time cutting in half the dimension. At the base of the
recursion (n = 1), the parties use an arbitrary ZKPOK protocol to prove the last step. For example
they can use a Schnorr-based protocol, or a ZK transformation similar to the Bulletproof paper (as
described in Appendix E.2 below).

To see that the modified protocol remains sound, note that given three δ′is for three different
choices of xi, yi, it is possible to recover the original δ and the values δ′L, δ

′
R. This allows the extractor

to recover the transcript of the underlying non-ZK Bulletproof protocol, and then it can use the
extraction procedure from above. Moreover, the final extracted δ must be zero, since any other
value would imply finding a nontrivial discrete logarithm for the base F ′.

To argue zero-knowledge, note that the L,R values sent in the protocol are completely random
and independent elements of G, so the simulator can just choose them at random. Then the simu-
lator only needs to supply the transcript of the base step, for which it can use the ZK-simulator of
that step.

A different “generic” ZK transformation The weaker inner-product protocol is also easier
to make zero knowledge directly. Fix an order-P group and 2n + 2 generators G,H, F, F ′. The
public input is a group element C, and the prover claims that it knows a,b, δ such that C =
〈a,G〉 + 〈b,H〉 + 〈a,b〉 · F + δ · F ′. To get a zero-knowledge proof of knowledge, the prover does
the following:

– Chooses at random two n-vectors r, s← Znp and two more scalars u, v ← Zp.
– Send to the verifier R := 〈r,G〉+ 〈s,H〉+ (〈a, s〉+ 〈b, r〉) ·F + u ·F ′ and S := 〈r, s〉 ·F + v ·F ′.

The verifier replies with a random challenge x← Zp, and the two parties compute the new public
input

C ′ := C + xR+ x2S.

The prover then proves knowledge of a′,b′, δ′ such that C ′ = 〈a′,G〉+ 〈b′,H〉+ 〈a′,b′〉+ ·F +δ′ ·F ′
(either by just sending them, or by engaging in some other POK protocol). The honest prover
computes these quantities as

a′ := a + xr, b′ := b + xs, and δ′ = δ + ux+ vx2.

41

The prover overhead in this transformation is one multi-exponentiation of dimension (2n + 2) for
R and two dimension-2 multi-exponentiations, one for S and one for C ′. The verifier’s overhead is
just the dimension-2 multi-exponentiation for C ′.

Soundness is proved as usual: it is possible to recover the original a,b, δ given the prover’s
answers a′,b′, δ′ for three different x’es. To prove honest-verifier zero-knowledge we need to show
a simulator that given a random x ∈ Zp generates an accepted transcript which is consistent with
that x.

E.3 Lightweight Bulletproof for Linear Relations

The power of Bulletproof comes from its ability to prove quadratic relations (i.e. inner-product)
on committed values, but in our setting we often just need to prove linear relations. It turns out
that in that case we can save a factor of two in the number of exponentiations that are needed,
making the proof as computationally efficient as a Schnorr proof (but a lot shorter). Proving a
linear relation can be casted as an inner-product proof where a is secret but b is public. In that
case, we do not need to commit to b and therefore we can use a Bulletproof version where we
replace the generators H by the identity element in the group, namely setting H = 0.

This lets us prove a dimension-n linear relation using multi-exponentiation of dimension only
(slightly more than) n, which is the same as in Schnorr proofs. One can verify that the soundness
arguments above carry over also to this case, when we drop all the terms corresponding to H from
all the formulas. Below is a complete description of the scheme, including the ZK part and the
implementation using a single multi-exponentiation.

Parameters. A dimension n = 2`, and an order-p group G with n+2 generators B,F,G0, . . . , Gn−1.
Below we denote G = (G0, . . . , Gn−1), G0 = (G0, . . . , Gn

2
−1), and G1 = (Gn

2
, . . . , Gn−1).

Common input. An n-vector of scalars b = (b0, . . . , bn−1) ∈ Znp and a group element C ∈ G.
Below we denote b0 = (b0, . . . , bn

2
−1) and b1 = (bn

2
, . . . , bn−1).

Prover input. The prover claims to know an n-vector of scalars a = (a0, . . . , an−1) ∈ Znp and
another scalar r ∈ Zp such that C = r ·B+ 〈a,b〉 ·F + 〈a,G〉. Below we denote a0 = (a0, . . . , an

2
−1)

and a1 = (an
2
, . . . , an−1).

Base case, n = 1: We just use Schnorr proof in this case.

– The prover chooses at random s, t← Zp and sends to the verifier S := tB + sb0F + sG0.

– The verifier sends a random challenge x← Zp.
– The prover replies with a′ = s+ xa0 and r′ = t+ xr.

– The verifier accepts if S + xC = r′B + a′b0F + a′G0, and rejects otherwise.

For completeness, we have

S + xC = tB + sb0F + sG0 + x(rB + a0b0F + a0G0)

= (t+ xr)B + (s+ xa0)b0F + (s+ xa0)G0.

Soundness and honest-verifier zero-knowledge follows since this is a simple Schnorr proof.

42

Recursive step, n = 2n′: Here we use the lightweight Bulletproof recursion: Recall that both
parties know C and b = (b0|b1) ∈ Znp , and the prover also knows a = (a0|a1) ∈ Znp and r ∈ Zp.

– The prover chooses at random s, t← Zp and sends to the verifier

L := sB + 〈a0,b1〉F + 〈a0,G1〉 and R := tB + 〈a1,b0〉F + 〈a1,G0〉.

– The verifier sends a random challenge x← Zp.
– The two parties continue recursively with an instance of dimension n′, where they both know

C ′ := C + xL+ x−1R and G′ := G0 + xG1, b′ := b0 + xb1.

The prover claims to know a′ ∈ Zn′p and r′ ∈ Zp such that C ′ = r′B+ 〈a′,b′〉F + 〈a′,G′〉, which
the honest prover computes as a′ := a0 + x−1a1 and r′ := r + xs+ x−1t.

Putting it together.

Below we number the recursive rounds in the protocol from ` − 1 (first) to 0 (last), and use the
following notation: For an `-vector x = (x`−1, . . . , x0) ∈ Z`p and an index 0 ≤ i < n = 2`, let
x〈i〉 ∈ Zp be the subset-product of the xj ’s, consisting of all the indexes j corresponding to 1-bits
in the binary representation of i (with 0 being the LSB and `−1 the MSB). For example, x〈0〉 = 1,
x〈1〉 = x0, x〈2〉 = x1, and x〈3〉 = x0x1. Unrolling the recursion, the overall protocol is as follows:

Input: Both(B,F,G0, . . . , G2`−1, C, b0, . . . , b2`−1), Prover(a0, . . . , a2`−1, r):

Run through the ` recursive steps
1. For j = `− 1 down to 0:
2. Set n := 2j # Instance of size 2n at this level
3. Prover chooses sj , tj ← Zp
4. Prover computes Lj := sj ·B + (

∑n−1
i=0 aibi+n) · F +

∑n−1
i=0 ai ·Gi+n

and Rj := tj ·B + (
∑n−1

i=0 ai+nbi) · F +
∑n−1

i=0 ai+n ·Gi
5. Prover sends Lj , Rj to verifier, who chooses xj ← Zp and sends back to prover

6. For i = 0 to n− 1: # Update the first half of the ai, bi, Gi’ss
7. Both prover and verifier set bi := bi + xj · bi+n
8. Prover sets Gi := Gi + xj ·Gi+n and ai := ai + x−1j ai+n
9. Prover sets r := r + xjsj + x−1j tj

Do the final base step
10. Prover chooses s∗, t∗ ← Zp and computes S := t∗B + s∗b0F + s∗G0

11. Prover sends S to verifier, who chooses x∗ ← Zp and sends to prover
12. Prover computes a∗ := s∗ + x∗a0 and r∗ := t∗ + x∗r, and sends both to verifier

Finally, the verifier accepts if and only if

S = r∗ ·B + a∗b0 · F − x∗ ·
(
C +

`−1∑
j=0

x−1j · Lj +
`−1∑
j=0

xj ·Rj
)

+
2`−1∑
i=0

a∗x〈i〉 ·Gi.

The prover in this protocol computes a total of 3 ·2`+ 2`−1 exponentiations (most of them part of
large multi-exponentiations), and the verifier computes a single multi-exponentiation of dimension
2` + 2`+ 3.

43

