
Iterated Inhomogeneous Polynomials

Jiaxin Guan? and Mark Zhandry??

Princeton University and NTT Research, USA

Abstract. Let p be a polynomial, and let p(i)(x) be the result of iterat-
ing the polynomial i times, starting at an input x. The case where p(x) is
the homogeneous polynomial x2 has been extensively studied in cryptog-
raphy. Due to its associated group structure, iterating this polynomial
gives rise to a number of interesting cryptographic applications such as
time-lock puzzles and verifiable delay functions. On the other hand, the
associated group structure leads to quantum attacks on the applications.
In this work, we consider whether inhomogeneous polynomials, such as
2x2 + 3x + 1, can have useful cryptographic applications. We focus on
the case of polynomials mod 2n, due to some useful mathematical prop-
erties. The natural group structure no longer exists, so the quantum
attacks but also applications no longer immediately apply. We neverthe-
less show classical polynomial-time attacks on analogs of hard problems
from the homogeneous setting. We conclude by proposing new compu-
tational assumptions relating to these inhomogeneous polynomials, with
cryptographic applications.

1 Introduction

Much of modern cryptography is built on group-theoretic tools. Diffie-Hellman
uses a group where discrete logarithms—computing a from g, ga—are hard. RSA,
on the other hand, uses groups where computing roots is hard, which necessarily
requires groups of unknown order. Together, Diffie-Hellman and RSA are the
original public key cryptosystems and the backbone of the current public key
infrastructure. Since their introduction in the 1970’s, such tools have become
an indispensable part of a cryptographer’s toolbox, being used for a variety of
applications.

Unfortunately, relatively few suitable cryptographic groups have been stud-
ied. Diffie-Hellman was originally proposed using the multiplicative group Z∗p =
Z/pZ or its subgroups. One can more generally consider multiplicative (sub)groups
of finite fields. Elliptic curve groups are now preferred due to efficiency reasons.
RSA proposed the group Z∗N for a composite N , which has unknown order if the
factorization of N is unknown. For some applications, different groups such as
the class group of an imaginary quadratic field can be used (e.g. [Wes19, Pie19]).
Most other natural groups simply do not have the necessary computational hard-
ness properties needed for cryptography.

? jiaxin@guan.io
?? mzhandry@gmail.com

The problem with this state of affairs is that new attacks could be found
which render these groups insecure. For example, index calculus methods [AD94]
give sub-exponential time algorithms for discrete logs on multiplicative groups
of finite fields. While not a complete break, these attacks mean parameters have
to be set very large to thwart attacks. Such methods also give sub-exponential
time attacks on RSA. While other groups such as elliptic curves do not suffer
from these weaknesses, it is conceivable that novel attacks may be found which
can weaken or completely break security. For that reason, we believe it is impor-
tant to keep searching for alternative groups, or even alternative group-theoretic
structures. In doing so, we can make sure to always have suitable replacements
if some structure is broken.

To make matters worse, quantum computers will render discrete logarithms
and hidden group orders completely broken. Indeed, Shor’s algorithm [Sho94] can
find the order of any group with efficient group operations, as well as solve the
very discrete logarithm on any group in polynomial time on quantum computers.

To remedy this situation, Couveignes [Cou06] and Rostovtsev and Stol-
bunov [RS06] propose using group actions instead of groups. Group actions
break much of the structure of a group, and in particular Shor’s algorithm no
longer necessarily applies. This reduction in structure also comes at the cost of
applications, though Diffie-Hellman key agreement remains possible.

As in the case for groups, few suitable group actions have been studied.
The most prominent example, which was proposed in [Cou06, RS06], is derived
from isogeneies over elliptic curves. Group actions can also be derived from
suitable non-abelian groups. Here, too, the lack of suitable groups is potentially
a problem, as novel attacks may be found. For example, Stickel’s key exchange
protocol [Sti05] based on the non-abelian group of matrices was broken [Shp08].
We therefore believe it is critical to search for alternative group actions.

Motivating Applications. To motivate our study, we will consider two concrete
applications.

– Delay Functions. A delay function are functions that take a long time to
compute, and cannot be parallelized. A verifiable delay function (VDF), orig-
inally proposed by [BBBF18], additionally requires that once computed, it is
possible to also compute a short proof π. A verifier can then quickly verify the
outcome of the computation using π. The most efficient VDFs [Wes19, Pie19]

have the form z 7→ z2
t

, and security requires that z2
t

cannot be computed in
time much faster than t, which matches what is possible by repeated squar-
ing. Note that this problem is only hard if the group order p is unknown,
since otherwise one can compute z2

t

= z2
t mod p in time O(log p) � t. In

particular, these VDFs are not post-quantum secure.
– Post-Quantum Diffie-Hellman. In Diffie-Hellman, Alice and Bob estab-

lish a shared key over a public channel as follows. Alice chooses a ran-
dom a ∈ Zp, and Bob a random b ∈ Zp, where p is the order of a cyclic
group. Alice and Bob then send ga, gb, respectively. The shared key is then
gab = (ga)b = (gb)a.

2

Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06] observe that Diffie-
Hellman can be generalized to group actions. Consider an abelian group G
acting on a set S, and fix some X ∈ S. Alice chooses a random a ∈ G and
Bob a random b ∈ G, and they exchange a ∗X and b ∗X. The shared key is
then (ab) ∗X = b ∗ (a ∗X) = a ∗ (b ∗X). At a minimum, security requires
that it is hard for an eavesdropper to recover a from a ∗X (and equivalently
b from b ∗X).

Iterated Inhomogeneous Polynomials. The value z2
t

in the delay functions/VDFs
discussed above is computed by repeated squaring: iteratively apply the homo-
geneous polynomial x 7→ x2, starting at the point z.

In this work, we ask: what if we replace the homogeneous polynomial x2 with
an inhomogeneous polynomial, say p(x) = 2x2 +3x+1, potentially over a differ-
ent modulus as well. We can similarly iterate p, computing p(i)(z) = p(p(i−1)(z)).
By moving to a different polynomial, and in particular an inhomogeneous one,
we completely change the structure of the problem. For example, whereas x2

corresponds to squaring under a natural group operation (namely multiplica-
tion), there is no obvious group operation corresponding to general polynomials.
This change may help or hurt security, and may result in fewer or more varied
cryptographic applications. The goal of our work is to explore these questions.

Wishlist. For the iterative application of a polynomial to be useful for cryptog-
raphy, we may wish for some of the following features:

1. For applications like delay functions, we would like p(i)(x) to be hard to
“shortcut”; that is, it should take time roughly i to compute p(i)(x). A
necessary requirement for the hardness of shortcutting is:

2. p(i)(x) should have a very large period in i, so that p(i)(x) 6= x for small i.
3. If we want post-quantum security, the polynomial p should not correspond

to squaring in a natural group law. Indeed, iterated squaring in groups of
known order can be shortcutted as discussed above; the group order can
easily be computed post-quantumly [Sho94].

4. At the same time, group-based VDFs exploit the group structure for verifi-
cation. So in the absence of a group structure, we would like some algebraic
structure that can be used to efficiently verify.

5. Finally, if it turns out possible to efficiently shortcut p(i)(x), then this short-
cutting could plausibly give a cryptographic group action. If p has period Q,
then the additive group ZQ acts on elements x as i ∗ x = p(i)(x). Since this
action does not necessarily correspond to group multiplication, there is hope
for resistance to quantum computers. In this case, we want at a minimum
the analog of discrete logarithms to be hard: given x, p(i)(x), it should be
hard to compute i.

Our Setting. We start with the following observation:

Theorem 5. 2x2 + 3x + 1 is a permutation on Z2n , and this permutation is a
cycle of length 2n.

3

Thus, setting p(x) = 2x2 + 3x + 1 and N = 2n, we satisfy Wishlist Item 2.
We also show that p(x) does not correspond to squaring in any natural group,
satisfying Wishlist Item 3.

At first glance, there is no obvious shortcutting attack, potentially giving
hope that shortcutting is actually hard (Wishlist Item 1). If so, this would im-
mediately give us a delay function. Now, because of the lack of group structure,
it is not immediately clear how one would verify, so more work would be needed
to achieve Wishlist Item 4.

On the other hand, if a shortcutting algorithm is found, it may seem plausible
that discrete logarithms are also hard (indeed, this was our initial hope!), giving
us a group action satisfying Wishlist Item 5. Note that our group action has a
smooth order 2n. For groups, having fuch a smooth order invalidates security.
But for group actions, smooth orders are acceptable, and indeed group actions
based on isogenies over elliptic curves have smooth orders.

Our Results. Our main results are to dash these hopes, showing both that short-
cutting and even discrete logarithms can be computed in classical probabilistic
time polynomial in n (Section 4). Along the way, we explore the structure of the
ring of polynomials over Z2n , providing interesting structural results about the
ring (Section 3). We conjecture that, despite our attacks above, there may be
some interesting hard problem in this ring, and we conclude with some specula-
tive cryptographic applications of this ring (Section 5).

2 Preliminaries

2.1 Notations

For a polynomial p and i ∈ N, p(i) denotes iterating the polynomial i times, i.e.
p(i)(x) = p(p(i−1)(x)) for i ≥ 2 and p(1)(x) = p(x). For polynomials p and q, we
use p◦q to denote polynomial composition. We use capital bold letters to denote
a matrix M. Lowercase bold letters denote vectors v.

For k ∈ N, we let Ck denote the number of factors of 2 within k!, i.e. the
largest integer m s.t. 2m|k!. We also denote dk as the smallest positive integer d
s.t. k|d!. Notice that we have Cd2n = n for n ∈ N.

2.2 Cryptographic Background

Here, we recall some basic cryptographic background. For the most part, these
results are used to motivate our study of polynomials over Z2n , and are not
necessary for our results. The only part that will be necessary for our results
is Lemma 1, showing that discrete logarithms are easy in any group of smooth
order.

4

Cryptographic Groups. Consider a group G with an efficient group operation. We
will usually think of G as being abelian. For a group element g, let 〈g〉 ⊆ G be
the cyclic group generated by g. While the group operation will be efficient, other
computational problems may be hard. For cryptographic applications, usually
we want at a minimum that the discrete logarithm problem (DLog) is hard:
given g ∈ G and h ∈ 〈g〉, find a such that h = ga. The canonical application of
a cryptographic group is Diffie-Hellman key agreement:

– Alice and Bob agree on an element g of order p.

– Alice chooses a random a ∈ Zp and sends Bob ga. Bob chooses a random
b ∈ Zp and sends Alice gb.

– Alice and Bob compute the shared key K = gab = (gb)a = (ga)b.

The security of Diffie-Hellman requires discrete logarithms to be hard, but
stronger assumptions are in fact necessary to argue security.

We now recall a necessary (but not sufficient!) property that must be satisfied
for DLog to be hard:

Lemma 1. Let p be the order of g, and suppose that all of the prime factors of
p are at most B. In other words, p is smooth. Then there is an algorithm for
DLog running in time polynomial in log p and B.

Proof. This fact is well known, but we include it here for completeness, since we
will need the result. Throughout, let g, h = ga be a discrete log instance.

Part 1: p ≤ B. First, we consider the case of prime p ≤ B. Then the discrete
logarithm can be computed by a brute-force search: simply try all values of
a = 0, 1, . . . , p− 1 until the correct one is found. Better algorithms are possible,
such as Baby-Step Giant-Step, but this basic algorithm suffices for our purposes.

Part 2: p = qk. Now consider the case of p = qk where q is a prime and
q ≤ B. We compute the discrete logarithm as follows:

– First, compute the discrete logarithm of of the pair (g′ = gq
k−1

, h′ = hq
k−1

).
Notice that (g′)q = 1 and h′ = (g′)a = (g′)a mod q. Therefore, we can use the
algorithm from Part 1 to solve for a′ = a mod q.

– Next, compute g1 = gq, h1 = h×g−a′ . Notice that h1 = ga−a
′

= gq×a1 = ga11 ,
where a1 = (a−a′)/q is an integer. Hence, we can solve for a1 by inductively
applying the discrete log algorithm for Part 2 to the instance (g1, h1) 1.
Given a1, a

′, we can then compute a = qa1 + a′.

Part 3: General smooth p. For the case of general smooth p, we can use the
Chinese Remainder Theorem. Analogous to the first step of the p = qk case, we
can solve for the discrete logarithm mod any prime power dividing p (as long as
the prime is smaller than B). Then we can use Chinese Remaindering to combine
all the discrete logarithms into the discrete logarithm modp. ut
1 It is smaller since g1 has order qk−1, smaller than the order of g.

5

Shor’s Algorithm for Discrete Logarithms. Shor [Sho94] gives a quantum poly-
nomial time algorithm for discrete logarithms in any group.

More generally, Shor’s algorithm can solve the Abelian Hidden Subgroup
Problem. This problem is defined as follows: let G′ be a commutative additive
group, and H an unknown subgroup. Suppose there is an efficiently computable
function f with domain G′ such that f(x) = f(y) if and only if x− y ∈ H. Then
Shor’s algorithm can find H, or more precisely a set of generators for H.

The discrete logarithm problem is a special case of Abelian Hidden Subgroup,
as follows. Given g, h = ga, let G′ = Z2

p and f(α, β) = gαh−β . Then H is exactly
the subgroup generated by (a, 1), and so a can be easily recovered from H or
any set of generators for H.

Group Actions. Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06] ex-
plain how to block Shor’s algorithm by using group actions, while still allowing
for a version of Diffie-Hellman key agreement.

Given an additive group G′′ acting on a set S, the new protocol is:

– Alice and Bob agree on an element X ∈ S
– Alice chooses a random a ∈ G′′ and sends Bob a ∗X. Bob chooses a random
b and sends Alice b ∗X.

– Alice and Bob compute the shared key K = (ab)∗X = a∗(b∗X) = b∗(a∗X).

The analog of the discrete log problem is to compute a from X, a ∗X.

Any group yields a group actions, by setting X = g and a ∗ X = ga, in
which can the group action discrete log corresponds exactly to group discrete
log. However, not every group action gives a group. Importantly, there is no
obvious way to adapt Shor’s algorithm to general group actions. Concretely, this
is because Shor’s algorithm needed to multiply two group elements, computing
gαh−β . In the setting of group actions, this would require combining α ∗X with
β ∗X. In a general group action, there may not be an efficient way to perform
such a combination. In the case of isogenies over elliptic curves, for example,
such combinations appear hard, leading to plausible post-quantum resistance.

Another consequence is that the group order of G′′ can actually be smooth
prime powers, unlike the group case. This is because the discrete log algorithm
in Lemma 1, we had to compute h1 = h× g−a′ in order to reduce from a higher
power to a lower power. As in the case for Shor’s algorithm, this is no longer
possible with group actions. In fact, cryptosystems based on isogenies explicitly
rely on the hardness of discrete logarithms in smooth prime-power group actions.

3 The Polynomial Rings

In this section, we will formalize the rings of polynomials that we work with.

The Ring R. We first define R = Z2n [x], the ring of polynomials over Z2n .

6

3.1 Equivalence Classes

First, we will define the equivalence classes for such polynomials, i.e., which
polynomials are equivalent congruent to 2n. To do so, we start by examining the
polynomials that are equivalent to the zero polynomial (one that is identically
zero) mod 2n.

We first recall the following Lemma on integer-valued polynomials due to
Pólya [Pól15].

Lemma 2 ([Pól15]). Inside the polynomial ring Q[x] of polynomials with ra-
tional number coefficients, the subring of integer-valued polynomials is a free
abelian group with a basis of polynomials

P ′k(x) =
x(x− 1) · · · (x− k + 1)

k!

for k = 0, 1, 2,

Using Lemma 2, we are now able to characterize the polynomials that are
identically zero mod 2n.

Theorem 1. In the polynomial ring R, the subset of polynomials that are equiv-
alent to the zero polynomial modulo 2n is a free abelian group with a basis of
polynomials

Pk(x) = 2max(0,n−Ck)x(x− 1) · · · (x− k + 1)

for k = 0, 1, 2,

Proof. Let p(x) be some polynomial that is equivalent to the zero polynomial
mod 2n. This means that p(x) ≡ 0 (mod 2n) for all x. More specifically, we have

p(x) = kx · 2n

for integer-valued kx’s.
Dividing both sides by 2n yields p(x)/2n = kx for all x, i.e. p(x)/2n is an

integer-valued polynomial with rational coefficients. Thus, by Lemma 2, p(x)/2n

must come from the group with a basis of {P ′k}k. Correspondingly, p(x) is formed
from the basis of polynomials P ′′k (x) = 2nP ′k(x) = (2n/k!)x(x−1) · · · (x−k+1).
But notice that p(x) should have coefficients in Z2n , but the coefficients for Pk(x)
are still rationals. Thus we need to scale Pk to obtain integer coefficients.

Toward that end, consider the leading coefficient (2n/k!) of 2nP ′k. Note that
the GCD of 2n and k! is 2Ck , so the leading coefficient can be reduced as
2n−Ck / (k!/2Ck). Observe that k!/2Ck is odd, and therefore invertible mod
2n. We can therefore scale any polynomial in the basis by k!/2Ck . Therefore,
p(x) is formed from the basis P ′′′k (x) = 2n−Ckx(x− 1) · · · (x− k+ 1). If n ≥ Ck,
this is an integer-valued polynomial, and in particular has coefficients in Z2n . If
n < Ck, then the leading coefficient is divided by a power of 2, which is not a
unit in Z2n . In the n < Ck case, we therefore have to multiply by 2Ck−n to get a
polynomial with coefficients in the ring. The result is the basis of polynomials:

7

Pk(x) = 2max(0,n−Ck)x(x− 1) . . . (x− k + 1).

We can also quickly verify that the polynomials in the group formed by this
basis are indeed equivalent to zero mod 2n. This comes directly from the fact that
Pk(x) ≡ 0 (mod 2n) for all k and x. Notice that since k!|x(x− 1) · · · (x− k+ 1),
x(x−1) . . . (x−k+1) has at least Ck number of factors of 2’s. As a result, Pk(x)
has at least (n− Ck) + Ck = n number of 2’s, and hence a multiple of 2n, i.e. 0
mod 2n. ut

Using these zero polynomials, we further define the equivalence classes.

Corollary 1. For polynomials p(x), q(x) ∈ R, p(x) ≡ q(x) (mod 2n) for all
x ∈ Z2n if and only if p(x)− q(x) is in the free abelian group with {Pk}k as the
basis.

The Reduced Ring R̃. We are now ready to define our reduced ring R̃ as:

R̃ = R/〈{Pk}〉 .

In other words, R̃ is the ring of equivalence classes of R under the polynomials
{Pk}k.

Corollary 1 means that when given a polynomial p(x) with integer coeffi-
cients, we can always reduce it by subtracting out multiples of Pk for all k ≥ d2n ,
where d2n denotes the smallest d s.t. 2n|d!. As a result, we will arrive at a poly-
nomial with degree at most d2n − 1. We can further reduce the coefficient of
each lower degree term (with degree k) to be between [0, 2n−Ck). Notice that by
Corollary 1, such polynomials (ones that have degree at most d2n−1, and where
for all degrees 0 ≤ k ≤ d2n − 1, the coefficient for the degree-k term is between
[0, 2n−Ck)) are all in distinct equivalence classes.

Therefore, we can equivalently define the ring R̃ as in a more operational
manner as vectors of length d2n whose degree-k coefficient is in [0, 2n−Ck). Ad-
dition is component-wise and multiplication is a convolution, but then followed
by a reduction by the polynomials {Pk}k.

3.2 Group of Units

Now that we have defined the overall polynomial ring R and its reduced ring
R̃, we explore the group R̃× of units in the ring. Recall that a unit in R̃ is a
polynomial p ∈ R̃ such that there exists p−1 ∈ R̃ with p(p−1(x)) = p−1(p(x)) = x
for all x ∈ Z2n .

One direct observation is that whether a polynomial is a unit is directly
related to whether it has a collision in Z2n .

Theorem 2. A polynomial p is a unit if and only if p(x) has no collisions in
Z2n , i.e. ∀x1 6= x2 ∈ Z2n , p(x1) 6≡ p(x2) (mod 2n).

8

Proof. First, it’s easy to see that if p(x) has a collision, then p cannot be a unit.
Let x1 6= x2 be such a collision s.t. p(x1) ≡ p(x2). Assume towards contradiction
that p has a compositional inverse p−1. Then we’d have x1 ≡ p−1(p(x1)) ≡
p−1(p(x2)) ≡ x2 as a contradiction.

Next, we show that if p(x) has no collisions, then p is a unit. If p(x) has
no collisions, since the domain and range are finite and have the same size, we
know p(x) is a permutation over Z2n . Therefore, p will consist of one or more
cycles. Let the cycle lengths be `1, `2, Then the compositional inverse p−1

can be simply computed as p(lcm(`1,`2,...)−1) (reduced to R̃). Then we have that
p(p(lcm(`1,`2,...)−1)(x) = p(lcm(`1,`2,...))(x) = x for all x ∈ Z2n . ut

Using this result, we can now specify the group of units R̃× for the ring R̃.

Theorem 3. A polynomial p = c0 + c1x + c2x
2 + · · · ∈ R̃ is a unit if and only

if all of the following holds:

(1) c1 ≡ 1 (mod 2): The linear coefficient is odd.
(2)

∑
i=1 c2i+1 ≡ 0 (mod 2): The sum of coefficients for odd-degree terms other

than the linear term is even.
(3)

∑
i=1 c2i ≡ 0 (mod 2): The sum of coefficients for even-degree terms other

than the constant term is even.

Proof. First, we show that (1), (2), and (3) are necessary conditions.
First, we claim that if p has a collision over Z2n′ for n′ < n, then it must

also have a collision over Z2n . To prove this, it suffices to consider n′ = n − 1,
and then use induction to get smaller n′. Suppose we have a collision in Z2n−1 :
x0 6= x1 ∈ Z2n−1 such that a := p(x0) = p(x1) mod 2n−1. Now consider the four
distinct points xb + c2n−1 mod 2n for b, c ∈ {0, 1}. Note that p(xb + c2n−1) mod
2n ∈ {a, a+ 2n−1}. Therefore, we have 4 distinct points mapping to two values,
meaning there must be a collision amongst them.

We now look specifically at the case n′ = 2, and conclude that if p has
no collisions over Z2n , then p has no collision over Z4. Notice that x4 ≡ x2

(mod 4). Therefore, we can reduce the polynomial p to an equivalent polynomial
with degree at most 3. During the reduction process, all the coefficients for the
odd-degree terms (other than the linear term) will be sum up into the cubic
coefficient, and the coefficients for the even-degree terms (other than the constant
term) will be sum up into the quadratic coefficient.

Therefore, to prove that (1),(2),(3) are necessary, it suffices to prove the the
case n = 2. A simple but tedious search over all 44 = 256 polynomials of degree
at most 3 in Z4[x] confirms the theorem in this case, namely that a polynomial in
Z4[x] is a permutation if and only if it has even cubic and quadratic coefficients,
and an odd linear coefficient.

Next, we show that these conditions are sufficient via induction on n. Suppose
p is a polynomial such that (1), (2), and (3) hold.

For the base case of n = 1, we have x2 ≡ x (mod 2). So any polynomial p
satisfying (1), (2), and (3), can be reduced to either p(x) = x or p(x) = x + 1,
and both of these are indeed units.

9

For the inductive step, assume that p is a unit mod 2n−1. Suppose p is not
a unit mod 2n. Then there is collision x 6= y such that p(x) ≡ p(y) (mod 2n).
Since this in particular means p(x) ≡ p(y) (mod 2n−1), but p is a unit mod
2n−1, we must have y = x+ 2n−1.

Plugging this in, we have

0 ≡ p(x+ 2n−1)− p(x) ≡
∑
i

ci
[
(x+ 2n−1)i − xi

]
(mod 2n)

If we look at the term
[
(x+ 2n−1)i − xi

]
, we see the following:

1. For i = 0, we get 0.
2. For i = 1, we get 2n−1.
3. For i > 1, if we expand the exponential, we get a term i ·2n−1 ·xi−1, together

with other terms that all have a factor of 22(n−1). Notice that these other
terms are simply 0 mod 2n.

For the i > 1 terms, since we are multiplying by 2n−1, we can reduce every-
thing else in the product mod 2. Thus, for i > 1,

[
(x+ 2n−1)i − xi

]
becomes

2n−1 · parity(i) · x. Thus,

p(x+ 2n−1)− p(x) ≡ 2n−1

(
1 + x ·

∑
i>1

ci · parity(i)

)
(mod 2n)

By (2),
∑
i>1 ci ·parity(i) is 0. But then we’d have p(x+2n−1)−p(x) = 2n−1

(mod 2n), contradicting the assumption that x + 2n−1 and x were a collision
over Z2n . So p doesn’t have a collision in Z2n , and is hence a unit. ut

The subring S. Next, we will introduce the subring of polynomials of the form

p(x) =
∑
k>=1

2k−1 · ck · xk + c0

where c0, c1, . . . are all integers. Let us denote this subring as S. Notice that S
is a subring of R where the k-th degree coefficient has a 2k−1 factor in it. We
introduce this subring for two reasons: first, within this subring, we can easily
identify the units that correspond to full-length cycles, which is important for
security. The other reason is for efficiency, as we can store a polynomial in this
subring using less storage.

The Reduced Subring S̃. Using Corollary 1, we can also reduce the subring S.
We claim that the reduced subring S̃ also has the characterization that the k-th
degree coefficient has a 2k−1 factor.

Theorem 4. The reduced subring S̃ consists of polynomials of the form

p(x) =

d2n−1∑
k=1

2k−1 · ck · xk + c0

where c0, c1, . . . are all integers, and 2k−1 ·ck ∈ [0, 2n−Ck) for all k ∈ [1, d2n−1].

10

Proof. To see this, we show that this invariant is preserved throughout the re-
duction process. Recall that the reduction process has two phases. In the first
phase, we repeatedly subtract multiples of Pk(x) from the highest degree k until
we reduce the highest degree to be smaller than d2n . Notice that in this step,
the term we are subtracting out is 2k−1 · ck · Pk(x), which is a multiple of 2k−1.
So in the reduced polynomial, for all the degree-k′ terms with k′ < k, they still
contain a factor of 2k

′−1.
In the second phase, we go from k = d2n−1 all the way to k = 1 and subtract

out multiples of 2n−Ckx(x−1) · · · (x−k+1) so that the coefficient for each degree-
k term is between [0, 2n−Ck). Notice that for degree k, if k− 1 >= n−Ck, then
the original coefficient 2k−1 · ck is a multiple of 2n−Ck . So the term subtracted
will be 2k−1 · ck · x(x − 1) · · · (x − k + 1), a multiple of 2k−1. On the other
hand, if k − 1 < n− Ck, then the term subtracted out will be some multiple of
2n−Ckx(x − 1) · · · (x − k + 1), which again is a multiple of 2k−1. By a similar
argument as in phase one, all the remaining coefficients still have a factor of
2k−1.

ut

Since S̃ is itself a subring of R̃, so the characterization of the group of units
in Theorem 2 also extends. More specifically, (2) and (3) are always true for
polynomials in S̃ due to the 2k−1 factor. So the only characterization here would
be an odd linear coefficient.

Corollary 2. The group of units in the subring S̃, denoted as S̃×, is character-
ized by an odd linear coefficient, i.e. c1 = 2i+ 1 for some integer i.

3.3 Number of Zeros

In this section, we bound the number of zeros of the polynomials mod 2n.

Lemma 3. For any polynomial p ∈ R evaluated over Z2n , it is either identically
zero, or has at least 2n

n non-zeroes.

Proof. For a polynomial p, let fn(p) denote be the fraction of zeros mod 2n. Let
f∗n be the lowest fraction of non-zero entries a not-identically-zero polynomial
can have mod 2n.

Suppose f∗n < f∗n−1. Then let p(x) be a polynomial such that f∗n = fn(p).
Since fn−1(p) ≤ fn(p), we must have that p is identically zero mod 2n−1.

We will need that p(x) is all zeros on odd x, but we will actually prove this
as part of the proof. Instead we will just assume that p has at least one even
non-zero, which is w.l.o.g by replacing p(x) with p(x+ 1) if necessary.

We now factor out just the odd zero. This means we can write p(x) = (x −
z1) · · · (x− zt)q(x), where zi are odd, and q(x) is non-zero on all odds.

We first note that (x − z1) · · · (x − zt) must be zero on all odds. Otherwise,
if there was some non-zero odd zt+1, we could multiply p(x) by (x− zt+1). This
doesn’t change the even zeros (and so the polynomial is still not identically zero)

11

but increases the number of zeros, contradicting the fact that p has the smallest
number of non-zeros.

Now let K(x) be the polynomial of degree roughly n/2 that is monic and zero
on all the evens. Let K ′(x) = K(x)(x− z1) · · · (x− zt), which is identically zero
everywhere. Therefore, we can assume w.l.o.g. that p(x) is reduced mod K ′(x),
which is equivalent to assuming that q(x) is reduced mod K(x). In particular,
we can assume that q(x) has degree at most around n/2.

From what we said before, we know that for all even x, q(x) = 0 mod 2n−1,
since p(x) = 0 mod 2n−1 and (x−z1) · · · (x−zt) is odd when x is even. Therefore,
q(2x) is identically 0 mod 2n−1. Therefore q(2x) must be in the span of our
basis polynomials. But since q(2x) has degree at most n/2, this implies that it is
divisible by 2v, where v ∼ n/2. Note that fn(q(2x)) = 2fn(p), by our assumption
that all the non-zeros of p are even.

So we let p′(x) = q(2x)/2v. Then f∗n−v ≤ fn−v(p
′) = fn(q(2x)) = 2fn(p) =

2f∗n. Thus, we decrease n by a factor of around 2, but at most reduce f∗n by a
factor of 2. This means that f∗n is at least 1/n.

ut

3.4 A Class of Full-Length Cycles

Now we consider iterated polynomials of the form

pk,l,m(x) = 2kx2 + (4l + 2k + 1)x+ (2m+ 1)

over Z2n , where k, l,m take integer values.
First of all, notice that pk,l,m is a unit, and hence it is a permutation over

Z2n .
Next up, we prove an interesting cycling property of such polynomials: when

applied iteratively, the outputs of such a polynomial form a full-length cycle of
all elements in Z2n , i.e. a cycle of length 2n.

Theorem 5. Let the sequence x0, x1, · · · ∈ Z be defined as{
x0 = 0

xi = pk,l,m(xi−1) for i > 0.

Then for any i, the smallest non-zero j s.t. xi ≡ xi+j (mod 2n) is equal to 2n.

Proof. It suffices to prove the case i = 0. Let t ≤ n be an integer. We prove this
via induction on the following two claims:

(1) If the sequence is reduced mod 2t (instead of mod 2n), it will hit all possible
values between 0 and (2t − 1) after 2t steps (and thus we have a cycle).

(2) x2t = d · 2t for an odd integer d.

The base case with t = 1 is easy to verify. We will inductively assume the
two claims hold for t− 1.

12

Now, notice that adding 2t−1 to x has an interesting effect, reduced mod 2t

and 2t+1:

pk,l,m(x+ 2t−1) = 2k(x+ 2t−1)2 + (4l + 2k + 1)(x+ 2t−1) + (2m+ 1)

= 2kx2 + 2t+1kx+ 22t−1k + (4l + 2k + 1)x

+ 2t+1l + 2tk + 2t−1 + (2m+ 1)

=
(
2kx2 + (4l + 2k + 1)x+ (2m+ 1)

)
+ 2t−1

+ 2t(2kx+ 2t−1k + 2l + k)

≡ pk,l,m(x) + 2t−1 (mod 2t) (a)

pk,l,m(x+ 2t−1) = 2kx2 + 2t+1kx+ 22t−1k + (4l + 2k + 1)x

+ 2t+1l + 2tk + 2t−1 + (2m+ 1)

=
(
2kx2 + (4l + 2k + 1)x+ (2m+ 1)

)
+ 2tk + 2t−1

+ 2t+1(kx+ 2t−2k + l)

≡ pk,l,m(x) + (2k + 1) · 2t−1 (mod 2t+1) (b)

Now consider the sequence x0, x1, . . . mod 2t, and go for 2t steps. By part
(2) of the inductive hypothesis, after 2t−1 steps we will get an odd multiple of
2t−1, which reduced mod 2t gives us exactly 2t−1. Thus, after 2t−1 steps, we
have added 2t−1 to the initial value. By equation (a), the remaining 2t−1 steps
are then just the same as the first 2t−1, but with 2t−1 added to them. There
can be no collisions between the two halves of the sequence, since if we were to
reduce by 2t−1, we’d get a cycle whose length isn’t exactly 2t−1.

This proves claim (1) holds for t. Now what’s left is to show claim (2) holds
for t too.

Consider the term x2t−1 . By claim (2) for (t−1), we know that x2t−1 ≡ d·2t−1
(mod 2t+1) where d ≡ 1 or 3 (mod 4). We break into two cases depending on d:

– Case 1, d ≡ 1 (mod 4):
By equation (b) we have

x2t−1+1 ≡ pk,l,m(x2t−1)

≡ pk,l,m(0 + 2t−1)

≡ pk,l,m(0) + (2k + 1) · 2t−1

≡ x1 + (2k + 1) · 2t−1 (mod 2t+1).

Now we apply (b) once again,

x2t−1+2 ≡ pk,l,m(x2t−1+1)

≡ pk,l,m(x1 + (2k + 1) · 2t−1)

≡ x2 + (2k + 1)2 · 2t−1

≡ x2 + 2t−1 (mod 2t+1).

13

Inductively, we’ll have for all even u that x2t−1+u ≡ xu + 2t−1 (mod 2t+1).
Now for all t ≥ 2, we have that x2t ≡ x2t−1 + 2t−1 ≡ 2t (mod 2t+1).

– Case 2, d ≡ 3 (mod 4): It’s analogous to case 1. Using equation (b) we have

x2t−1+1 ≡ x1 + 3 · (2k + 1) · 2t−1 (mod 2t+1).

Applying (b) again yields

x2t−1+2 ≡ x2 + 3 · (2k + 1)2 · 2t−1 ≡ x2 + 3 · 2t−1 (mod 2t+1).

Inductively, we have x2t−1+u ≡ xu + 3 · 2t−1 (mod 2t+1) for all even u. Now
for all t ≥ 2, we have that x2t ≡ x2t−1 + 3 · 2t−1 ≡ 6 · 2t−1 ≡ 2t (mod 2t+1).

In either case, we have x2t = 2t (mod 2t+1), i.e. x2t = d · 2t for some odd d,
as desired. This completes the inductive step for claim (2) and hence the whole
proof. ut

3.5 Characterization of Full-Length Cycles in S̃×

By generalizing the class of polynomials above, we characterize the units in S̃×

would give us full-length cycles.

Theorem 6. A polynomial p ∈ S̃× has a cycle length of 2n when evaluated mod
2n if and only if it has the following form:

p(x) =

d2n−1∑
j=3

2j−1 · cj · xj + 2kx2 + (4l + 2k + 1)x+ (2m+ 1)

where k, l,m, c3, c4, . . . are all integers, and the coefficient for the degree j term
is in [0, 2n−Cj) for all j ∈ [0, d2n − 1].

Proof. The proof that this characterization is a sufficient condition of a full-
length cycle follows the exact same outline as the proof for Theorem 5. In the
proof, the base case is where we reduce mod 2, so the higher degree terms simply
go away. Hence the base case trivially holds. The proof for the inductive step is
based on equations (a) and (b), which still hold here:

14

p(x+ 2t−1)− p(x) =

d2n−1∑
j=3

2j−1 · cj ·
(
(x+ 2t−1)j − xj

)
+ 2k

(
(x+ 2t−1)2 − x2

)
+ (4l + 2k + 1)(x+ 2t−1 − x)

=

d2n−1∑
j=3

2j−1 · cj ·
j∑
r=1

2(t−1)rxj−r + 2t+1kx+ 22t−1k

+ 2t+1l + 2tk + 2t−1

= 2t+1
d2n−1∑
j=3

2j−3 · cj ·
j∑
r=1

2(t−1)(r−1)xj−r + 2t+1kx

+ 22t−1k + 2t+1l + 2tk + 2t−1

≡ (2k + 1) · 2t−1 (mod 2t+1) (b’)

≡ 2t−1 (mod 2t) (a’)

Using (a’) and (b’), the rest of the proof is identical.
Now we argue why this form is a necessary condition. Notice that if p is not

a full-length cycle mod 2t, then it is also not a full-length cycle mod 2t+1. This
is because when we move from mod 2t to mod 2t+1, the cycle length of p can
at most double, so it can never reach a cycle length of 2t+1 if it wasn’t already
full-length mod 2t. The contrapositive of this states that if p is a full-length
cycle mod 2n, then it must also be a full-length cycle mod 2n

′
for all n′ < n.

So it suffices for us to look at polynomials in S̃× mod 4. Notice that since we’re
reducing by mod 4, all the degree-3 terms and beyond don’t matter as they have
a factor of 4 in the coefficient. And we easily brute-force to see which degree-2
polynomials have full-length cycles mod 4. It turns out that the only possibilities
are W = {x+ 1, x+ 3, 2x2 + 3x+ 1, 2x2 + 3x+ 3}. And it’s trivial to see that p
must have the above-mentioned form if p mod 4 ∈W . ut

4 Attacks

4.1 Shortcutting

In this subsection we show how one can compute p(T)(x) efficiently in time
sublinear of T .

Theorem 7. Given a polynomial p ∈ R̃ and an integer T , there exists an algo-
rithm that computes p(T)(x) mod 2n on any input x, and takes time O(n3 log T).

Proof. We start by examining how one can compute p(i+1) given p(i). Let p(i)(x) =
a0+a1x+a2x

2+· · ·+ad2n−1
xd2n−1 = (a0, a1, . . . , ad2n−1)·(1, x, x2, . . . , xd2n−1)>.

15

Notice that the polynomial p(i) can be represented by the vector a = (a0, a1, . . . ,
ad2n−1) which consists of all of its coefficients.

Then we have

p(i+1)(x) = p(i)(p(x))

= (a0, a1, . . . , ad2n−1) · (1, p(x), (p(x))
2
, . . . , (p(x))

d2n−1)>

Now let us examine what the coefficients of p(i+1)(x) are. Let us denote the
coefficients as a vector b = (b0, b1, . . . , b2d2n−2. Kindly notice that here the vector
is of length 2d2n −1, instead of d2n , since this p(i+1)(x) is still in the ring R, not
yet reduced to R̃.

It’s easy to see that we have b0 =
∑d2n−1
j=0 aj . With some effort, we can also

compute b1 =
∑d2n−1
j=0

(
j
1

)
c1aj where c1 is the linear coefficient of the original

p. Similarly, we have b2 =
∑d2n−1
j=0

((
j
1

)
c2 +

(
j
2

)
c21
)
aj , so on and so forth. But

the important thing to notice here is that b0, b1, b2, . . . are all linear transfor-
mations on the vector a. Therefore, we can compute b = a ·M′, where M′ is a
transformation matrix of dimension d2n × (2d2n − 1).

The next thing to do is to reduce this p(i+1) to R̃. Recall the reduction
process from 1. We will start from the highest degree, and repeatedly subtract
out multiples of the falling factorial. Notice that this process is also strictly linear
in terms of the coefficients b. Therefore, after we reduce the polynomial p(i+1)

to R̃, the new reduced coefficient vector b̃ is also a linear transformation on a
and can be computed as

b̃ = a ·M

where M is a transformation matrix of dimension d2n × d2n .

Now notice here that the matrix M is independent of i, T , or x. So we can
pre-compute the matrix M for the given polynomial p (which only takes time
polynomial in n anyway), and then to compute the coefficients for p(T)(x), we
simply compute it as (0, 1, 0, . . .)·MT . And we can expedite the matrix powering
part MT with repeated squaring, which requires only O(log T) squaring of a
square matrix with dimension d2n < 2n = O(n). So the overall runtime is
bounded by O(n3 log T) as desired. ut

4.2 Discrete Log

Unfortunately, discrete logarithms can also be efficiently computed in the ring:

Theorem 8. Suppose p is a full length cycle in R. Then there exists a ran-
domized algorithm running in time polynomial in n, which computes i given
x, y = p(i)(x) ∈ Z2n and the polynomial p.

Proof. The algorithm works in three steps.

16

Step 1: Generate Samples of (α, p(i)(α)). In the first step, we will show how to
generate random α together with p(i)(α), without (yet) knowing i or p(i).

To do so, we choose several random j ∈ Z2n , and compute αj = p(j)(x)
, βj = p(j)(y). Then since p is a full-length cycle polynomial, each αj will be
uniformly random. Moreover, we have that:

βj = p(j)(p(i)(x)) = p(i+j)(x) = p(i)(p(j)(x)) = p(i)(αj).

Step 2: Interpolate p(i). In the second step, we use the samples (α, β) from Step
1 to interpolate p.

Concretely, we generate T = O(n3) evaluation points (αj , βj). We write

p(i)(x) =

d∑
i=0

gix
i

for unknowns gi, where d = d2n − 1 is an upper bound on the degree of polyno-
mials in R̃. Each sample (α, β) then gives us an equation

β =

d∑
i=0

giα
i mod 2n

After collecting many samples, we obtain a system of linear equations on the
gi, which we then solve. Notice that, since the gi are unconstrained, there are
actually multiple gi which correspond to the polynomials equivalent to p(i); let
this space of “correct” gi be C. We just need to find some solution in C, and
then we can reduce in R̃.

So it remains to show that, for a sufficient number of samples, with high
probability the solution space of gi is exactly C. This follows from Lemma 3.
Indeed, consider a q /∈ C. Since q 6= p(i), by Lemma 3, p(α) 6= q(α) for at
least a 1/n fraction of α. Therefore, if we take T samples, the probability that
q remains in the solution space is at most (1 − 1/n)T . A union bound over all

2O(n2) polynomials q shows that the solution space will be exactly C, except
with probability

2O(n2)(1− 1/n)T = 2O(n2)e−O(T/n) = 2−O(n2)

Thus, for an appropriate constant in the T = O(n3) notation, the probability
that C contains an incorrect solution is negligible.

Step 3: Compute Discrete Logarithms In Groups of Smooth Order. Once we
know p(i), we can now compute the discrete logarithm of p(i) relative to p in
the group R̃×. Concretely, since the cyclic subgroup generated by p has smooth
order 2n, we can solve discrete logarithms classically by Lemma 1. ut

17

5 Applications/Open Problems

We conclude by proposing some speculative applications of polynomials mod 2n

to cryptography. All of these applications rely on new untested computational as-
sumptions. However, we find the constructions interesting, and hope that future
work will lead to further confidence.

5.1 Non-abelian Cryptosystems

First, the group of units in the ring R is non-abelian. As such, it can poten-
tially be used as a drop-in replacement for non-abelian groups used in various
cryptographic protocols.

As one example, we can adapt Stickel’s key agreement protocol [Sti05] to our
group. The protocol works as follows:

– Alice and Bob publicly agree on polynomials p1, p2 that are full-length cycles
over Z2n and which do not commute.

– Alice chooses a random a1, a2 ∈ Z2n , and sends the polynomial A = p
(a1)
1 ◦

p
(a2)
2

– Bob chooses a random b1, b2 ∈ Z2n , and sends the polynomial B = p
(b1)
1 ◦

p
(b2)
2 .

– The shared key is K = p
(a1+b1)
1 ◦p(a2+b2)2 = p

(a1)
1 ◦B ◦p(a2)2 = p

(b1)
1 ◦A◦p(b2)2 .

The security of the protocol relies on the following assumption:

Assumption 1. There is no algorithm running in polynomial time in n, which

given A = p
(a1)
1 ◦ p(a2)2 and B = p

(b1)
1 ◦ p(b2)2 for random a1, a2, b1, b2 ∈ Z2n ,

outputs K = p
(a1+b1)
1 ◦ p(a2+b2)2 with non-negligible probability.

Note that, even if discrete logarithms are easy (as in our group), this as-
sumption may be plausible. In particular, the most obvious way to break the
assumption is to compute a1, a2 from A (or equivalently b1, b2 from B). Even
with the ability to solve discrete logarithms such computations may be infeasible.

5.2 A Simple PRG

We now propose a simple PRG based on a very different conjectured hardness
property.

Consider the collection of cyclic subgroups of order 2n. Consider the subset of
subgroups which have as a generator a degree-2 polynomial (or more generally,
degree d for any d � n). We claim that this collection of degree-2-generated

subgroups is sparse. Indeed, the set of cycles of length 2n has size 2Θ(n2), while
there are only 2Θ(nd) degree-2 polynomials which generate cycles of length 2n.

We therefore propose the following computational assumption:

18

Assumption 2. Let U be the uniform distribution over full-length-cycle poly-
nomials p in S̃. Let D be the distribution which selects a random degree-d
full-length-cycle polynomial p0, and then chooses a random odd i ∈ Z2n , and

sets p = p
(i)
0 . Then there is no polynomial time algorithm which distinguishes U

from D with non-negligible probability.

Because discrete logarithms are easy, one can compute i from p and p0. How-
ever, if p0 is not provided (as in the assumption above), then there is no obvious
way to find i or p0. The assumption states that not only is the mapping one-way,
but that the result is pseudorandom amongst the full-length-cycle polynomials.

Note that the distribution D has very low entropy relative to U : O(nd) vs
O(n2). As such, we get a very simple PRG G. The seed is an index i and a

degree-2 full-length cycle polynomial p0, and the output is p
(i)
0 .

5.3 A Candidate Public Key Encryption Scheme

We now give a candidate public key encryption scheme that is very different
from the one based on Stickel’s scheme above.

– Key generation: Choose k ≥ 3 random full-length cycle polynomials p1, . . . ,
pk ∈ S̃×, whose composition is the identity: p1 ◦ · · · ◦ pk = x. Sample such
polynomials by choosing random p1, . . . , pk−1, and setting pk = (p1 ◦ · · · ◦
pk−1)−1. If pk is not a full-length cycle polynomial, then discard everything
and try again. Since full-length cycle polynomials represent a constant frac-
tion of S̃×, only a constant number of iterations will be needed, in expecta-
tion.
Additionally, choose random odd indices i1, . . . , ik ∈ Z2n . The secret key is

{(pj , ij)}j and the public key is {qj = p
(ij)
j }j .

– Encryption: To encrypt a message bit b, do the following.
• If b = 0, choose a random unit r, and compute cj = r ◦ qj ◦ r−1. Output
{cj}j .

• If b = 1, output k random full-length cycle polynomials.
– Decryption: Given {cj}j , compute

d = c
(i−1

1)
1 ◦ · · · ◦ c(i

−1
k)

k

where i−1j is computed in Z2n . If d is the identity polynomial, output 0,
otherwise output 1.
If b = 0, then d = (r◦p1 ◦r−1)◦· · ·◦(r◦pk ◦r−1) = r◦(p1 ◦· · ·◦pk)◦r−1 = x.
If b = 1, then d will essentially be a random polynomial, and is unlikely to
be the identity. Hence the scheme is correct.

The scheme appears hard to crypt-analyze. Finding the secret key given
the public key means trying to solve for the ij ’s, without knowing the base
polynomials. For similar reasons to our PRG, this seems hard. One may also try
to directly attack the scheme by trying to recover the encryption randomness

19

r. The straightforward approach would be to consider the polynomials r, r−1

as polynomials with formal variables for coefficients, and try to solve for the
coefficients. However, the equations in this system will have degree O(n) in the
O(n) variables of r−1. In general, such equations have super-polynomially-many
monomials, so straightforward linearization techniques will be insufficient.

5.4 Homomorphic Trapdoor Functions

Let p be a polynomial. Suppose we encrypt a polynomial q by conjugation with
p: Enc(p, q) = p ◦ q ◦ p−1.

Conjugation commutes with polynomial composition, so this encryption scheme
is homomorphic with respect to ◦.

If we want to obtain a trapdoor permutation, we need a way to encrypt q
without explicitly giving p. There are a couple ways this could plausibly be done:

– Provide as the public key, a collection of pairs (qi, ri = p ◦ qi ◦ p−1). If one
can write q as qi1 ◦ qi2 ◦ ..., then the encryption of q is just ri1 ◦ ri2 ◦
We note that the basis qi cannot be too large, as the pairs (qi, ri) give
polynomial equations on the coefficients of p and p−1. If there are too many
such equations, the coefficients can be solved by linearization techniques.

– If p has constant degree, say degree d = 2, here is another possible way.
Write q =

∑
i αix

i where the αi are formal variables. Then the coefficients
of p◦q◦p−1 are degree-d polynomials in the αi. The public key could contain
this list of polynomials. Then to encrypt q, simply apply the polynomials to
the coefficients.
The security of this last method is questionable, as there are only d+1 degrees
of freedom in the polynomial p, but the public key consists of a list of O(n)
polynomials with O(nd) monomials each. The public key therefore contains
O(nd+1) coefficients derived from p. This massively over-determined system
could potentially be solvable efficiently. However, we did not immediately
see how to do so.

Note that ◦ is non-abelian. It is known that a group homomorphic encryption
scheme which is CPA secure can be compiled into a fully homomorphic encryp-
tion scheme [OS07]. Of course, our trapdoor functions are not CPA-secure, since
in particular they are deterministic. However, an interesting direction for fu-
ture research is to see if there is some way to obtain a CPA-secure variant of our
construction, which can then be compiled to give fully homomorphic encryption.

References

[AD94] Leonard M. Adleman and Jonathan DeMarrais. A subexponential algorithm
for discrete logarithms over all finite fields. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 147–158. Springer, Heidelberg,
August 1994.

20

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757–788. Springer,
Heidelberg, August 2018.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291, 2006. http://eprint.iacr.org/2006/291.

[OS07] Rafail Ostrovsky and William E. Skeith III. Algebraic lower bounds for
computing on encrypted data. Cryptology ePrint Archive, Report 2007/064,
2007. http://eprint.iacr.org/2007/064.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor,
ITCS 2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019.

[Pól15] Georg Pólya. Über ganzwertige ganze funktionen. Rendiconti del Circolo
Matematico di Palermo (1884-1940), 40(1):1–16, 1915.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem
Based On Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006.
http://eprint.iacr.org/2006/145.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994.

[Shp08] Vladimir Shpilrain. Cryptanalysis of stickel’s key exchange scheme. In Ed-
ward A. Hirsch, Alexander A. Razborov, Alexei Semenov, and Anatol Slis-
senko, editors, Computer Science – Theory and Applications, pages 283–288,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[Sti05] E. Stickel. A new method for exchanging secret keys. In Third Interna-
tional Conference on Information Technology and Applications (ICITA’05),
volume 2, pages 426–430, 2005.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478
of LNCS, pages 379–407. Springer, Heidelberg, May 2019.

21

