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Abstract

Internet of Things (IoT) promises a strong connection between dig-
ital and physical environments. Nevertheless, such framework comes
with huge security vulnerabilities, due to the heterogeneous nature
of devices and of the diversity of their provenance. Furthermore,
the resource constraints of weaker devices, such as sensors, require
a lightweight design of security protocols.

In 2018, Liu et al. presented a new system with access control
key updates and direct user revocation, that are beneficial features in
IoT. Access control is done using Ciphertext-Policy Attribute-Based
Encryption where attributes represent roles of devices within their net-
works and time validity ranges. In this paper, we propose an extension
of this system by enabling several authorities to allocate those role at-
tributes, to mitigate the key escrow problem. Moreover, we devise a
novel approach, based on a binary tree, to append the time credentials.
This allows us to find an interesting trade-off between key update fre-
quency and user revocation list length, for stressing time-sensitive data
exchanged in IoT environments. We adapt the security model to fol-
low the multi-authority setting and prove our scheme secure under the
Decisional Bilinear Diffie-Hellman Exponent assumption. Finally, we
implement and evaluate of our solution, in order to confirm that the
latter is fully deployable in IoT networks.
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1 Introduction

New possibilities from the Internet of Things (IoT) technology are explored
every day around the world. Complex combinations of hardware, sensors,
data storage, microprocessors, software and ubiquitous connectivity are now
included, moving beyond mechanical and electrical components. The mech-
anisms and tools for IoT offer better efficiency and productivity, but expand
cyber vulnerabilities and threats along with technical challenges [5]. Devices
forming IoT networks are heterogeneous in their functionality [38], which is
implemented by various manufacturing origins, not always well defined, and
have constrained computing and communication resources [42]. Moreover,
these networks are dynamic, yielding the management even more demand-
ing. 75 billion devices will be in the IoT world by 2025, and 127 new devices
are connected every second to the Internet [37]. All of these characteristics
make IoT dependability, in particular reliability and availability, challenging
[32].

Yet, other concerns come with the purposes of developing IoT, that is
capitalizing fresh precious information. Indeed, IoT devices continuously
collect and exchange a huge amount of data, that is combined and refined
through data analytics, and the resulting information takes on real value1.
Cisco believes that IoT has produced more than 500 zettabytes of data per
year from 2020, and that number grows exponentially2. In addition, to
improve the accuracy of IoT systems, efforts must be made on data shar-
ing. The main drawback is the rise of security and privacy threats [2, 24, 22].

In this paper, we are interested in developing an efficient access control
system for secure data exchanges in IoT networks. Access control with iden-
tity management and authentication ensures that only authorized users are
able to reach data. We aim to design a solution that takes into account
data sharing concerns while overcoming IoT dependability issues. The ex-
tremely large number of IoT devices and the dynamicity of IoT networks
force us to go beyond basic identity assignment techniques as for Public Key
Infrastructure (PKI) [3]. Another issue comes with trivial key management
where each device either receives a public/private key pair or shares a secret
key with another device; in both cases the device should maintain a sub-
stantial number of keys in order to interact with other devices. Moreover,
such techniques imply a centralized architecture, raising single point fail-
ures with unpredictable threats. Due to their ubiquity combined with the
high configuration vulnerability, IoT devices have been involved in many
cyber attacks [36, 23]. Therefore, revocation must be an essential option
when elaborating a system. Then, it has been very important to achieve

1https://blog.equinix.com/blog/2018/02/21/the-rise-of-iot-data-exchanges/
2https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-

internet-report/white-paper-c11-741490.html
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low latency and high reliability for many IoT use cases [41]. Devices collect
time-sensitive data in various situations, where either data batch processing
would produce results too late to be useful or any application where latency
is a concern. For instance, some control decisions in autonomous vehicles
require sub-microsecond response times [33]. Industrial control systems re-
quire response in tens of microseconds to avoid damage and ensure safety.
Temperature sensors must collect data once every few minutes and respond
within a second. Electric metering requires frequent communication, low
latency and high data rate [33]. Hence, an access control system should
consider time as an essential feature to meet the aforementioned require-
ments.

This work introduces a fine grained access control scheme based on
Attribute-Based Encryption (ABE), which remains lightweight and hence
deployable in IoT networks. We design our system with key updates for
access control and device revocation to overcome the aforementioned IoT
security vulnerabilities. First, an access control based on roles permits to
share collected data securely following the dynamicity of IoT networks. De-
vices are seen as users in our system, either encrypting data (owners) or de-
crypting it (requesters). Second, we encourage the participation of multiple
authorities in charge of distributing key material to users based on their roles
within authorities’ environments, averting the key escrow problem. Third,
we enable direct user revocation, thus always protecting sensitive data even
if a user secret key is compromised. Then, we append time credentials in
addition to role credentials, emphasizing the ephemeral value of shared data
while enabling an interesting trade-off between reasonable key update fre-
quency and moderate user revocation list length. Thus, our solution does
not require recurrent communication between users and authorities and dele-
tion of components to expunge existing keys to produce new keys. Having
shorter periods of access allows faster expiration of corrupt device keys and
could avoid the need for creating new key pairs. Moreover, such mechanism
allows to control key corruption in IoT networks where device management
is difficult, similarly to temporary website certificates in PKI. Our approach
efficiently integrates a role and time-based access control scheme with IoT
technologies, such that the outcome is fully implementable in the real world.
We carefully prove the security of our scheme under the Decisional Bilinear
Diffie-Hellman Exponent (BDHE) assumption. Moreover, we observe from
the implementation of our system that the computational and communica-
tion results make it adjustable in IoT environments.

Figure 1 illustrates an example of our access control system in a smart
home. Several temperature sensors are scattered in a house. They collect
temperature data once every few minutes. They encrypt their time-sensitive
data according to an access policy, containing roles and time periods. There
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Figure 1: Our IoT scenario takes place in a smart home, where multiple
temperature sensors are scattered and an actuator adjusts temperature in
response to sensors’ collected data.

is also an actuator (possibly indirectly, via a gateway for example) connected
to these sensors. The actuator has received role and time credentials from
multiple authorities. Since sensors have limited storage capacity, we sup-
pose that they upload their encrypted data to a proxy (e.g. a cloud server).
Within the rest of the paper, we assume that the proxy exists and is inti-
mately linked to sensors, hence we omit to mention it explicitly. This proxy
plays the role of an intermediary between the sensors and actuator. The
actuator sends requests to the proxy for access to sensors’ data every short
time intervals, of the order of minutes. The proxy replies to the actuator’s
requests by forwarding the encrypted collected data. The actuator is able to
recover the data in plain if and only if it has been granted with credentials
satisfying sensors’ assigned access policies. By having the plain data, the
actuator adjusts the temperature accordingly.

1.1 Contributions

We propose an extension of the time-bound direct revocable ABE scheme
presented in [27], with the following features:

1. User access control is made possible using user role attributes as well
as time credentials, as in [27];

2. The participation of multiple role authorities, rather than one unique
authority as in [27], alleviate the key escrow problem in the system;

3. A novel time-based access control using binary trees is used, instead
of 31-ary trees as in [27], to better apply in IoT environments;
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4. A direct approach based on a publicly available list for user revocation
limits damages from compromised user secret keys, as in [27];

5. Asymmetric pairings are preferred, rather than symmetric pairings as
in [27], to increase the system security and efficiency as proved in [20].

Those changes from the solution in [27] were not straightforward. First,
shifting from symmetric pairings to asymmetric pairings incur less versatil-
ity in computing components. Symmetric pairings do not incur any order
on inputs, while such an order appears with asymetric pairings. Therefore,
it is essential to ensure that pairing calculations are still possible, e.g. for
successful decryptions, while the components’ order is correct. Second, al-
lowing multiple authorities to manage the system brings its own challenges.
We must ensure that authorities uniquely identify users based on specific
attributes. Such an identification process guarantees that an unauthorised
user does not get access to some data using an attribute from a role author-
ity that incorrectly matches another attribute from another role authority.
Last, changing the framework from 31-ary trees to 2-ary trees obliges to
carefully define time periods. Indeed, using a 31-ary tree easily determines
time periods, following our Gregorian calendar [15]. However, using a binary
tree obliges us to carefully specify a process for setting time periods.

With such design, we manage to get a better trade-off between key up-
date frequency and revocation list length compared to [27], to follow the
constraints found in IoT, such as network dynamicity, heterogeneous origin
and lack of governance [18, 19]. We adapt the security model in [27] to
follow the multi-authority setting, and prove our scheme secure under the
Decisional Bilinear Diffie-Hellman Exponent assumption (with asymmetric
pairings). We also implement and evaluate our solution based on various pa-
rameters such as the maximum length of the revocation list and the number
of role attributes per device. The observed results prove that our solution
is fully deployable in IoT environments, where computing, communication
and storage resources are highly limited [18, 19].

Since our scheme extends the one from [27], we choose to keep definitions
and mathematical notations as close as possible to the ones found in [27],
to facilitate the reading and comparison of the two schemes.

1.2 Related Work

Attribute-Based Encryption Identity-Based Encryption (IBE) [43, 12,
44] is a public-key cryptographic primitive that uses some unique informa-
tion about the identity of a user (e.g. the email address) as the public key of
that user. The corresponding secret key is generated by a trusted authority,
based on the public key.

Attribute-Based Encryption (ABE) [9, 21, 45] is a variant of IBE (first
called Fuzzy IBE [40]). Now, the secret key of a user and the ciphertext are
dependent upon attributes (e.g. the country of living, the position within
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the company, etc.). The decryption of a ciphertext is possible if and only if
the attributes of the key match the attributes of the ciphertext.

There are two types of ABE schemes, that are closely related. Their
difference comes from the access policy being linked either to the key or
to the ciphertext. In the first one, called Key-Policy ABE (KP-ABE), the
user secret key is linked to an access policy and the ciphertext is associated
with an attribute set, such that the attributes in that set should satisfy the
policy to get successful decryption. On the opposite, in a Ciphertext-Policy
ABE (CP-ABE) scheme, the user secret key is associated with an attribute
set while the ciphertext is linked to the access policy. Decryption works as
above.

Extended Attribute-Based Encryption ABE has been subjected to
many extensions, by including extra features while keeping security. Here,
we review solutions with the features we are interested in, namely user re-
vocation and multiple-authority setting. Yang and Jia [46] present a multi-
authority CP-ABE scheme that embeds a revocation mechanism with for-
ward and backward securities. In this scheme, each authority has its own
attribute universe, and generates keys for users according to their attributes
in that universe. However, one root authority is still required to generate the
secret key material for each attribute authority, hence keeping the scheme
prone to key escrow problem. Revoking a user is made possible by revoking
one attribute granted to that user. Updating existing ciphertexts accord-
ing to newly revoked users is delegated to a cloud server, thus alleviating
the workload on the side of the user who generated them. Nevertheless,
attribute revocation requires to update the secret keys of non-revoked users.
Moreover, user revocation is decided by the authorities rather than the user
who owns and has encrypted the data.

Liu et al. [28] propose to combine ABE and Time-based Proxy Re-
Encryption to enable a fine-grained access control on encrypted data and
scalable user revocation, while the data owner can remain offline. Revoking
users is done by using time attributes. Users are given keys embedding role
attributes as well as time attributes. The data owner encrypts the data
according to an access policy; at this stage, time control is not enabled.
Ciphertexts are uploaded to the cloud server (proxy), which updates the
ciphertexts with the current time when users request data (like in a Proxy
Re-Encryption scheme). If a user is not allowed to retrieve the data at the
time of the request (by lack of adequate time attributes), then decryption
fails. If a user has a key with the time attributes still available when re-
questing the data, then this user successfully decrypts. Unfortunately, the
time control structure is cumbersome and not adaptable with time intervals
but only with discrete timing. In addition, the data owner and cloud server
must share a root secret key. While such key does not help the cloud server
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to obtain information on the data, it permits to re-encrypt ciphertexts with
the current time, implying strong trust assumptions on that cloud server.
Also, the data owner is responsible for generating the secret keys of users,
such that she decides time validity for them. Hence, the data owner should
be fully trusted, while in general, data owners are also users requesting other
data. Therefore, some misconducts can easily happen among colluding ma-
licious users, making the system vulnerable. Practicality also suffers from
such design: in a system with N users, all of them being owners of some
data, each user needs N − 1 keys generated by others. Li et al. [25] present
a CP-ABE scheme with user revocation based on their attributes. How-
ever, such scheme requires the participation of a group manager to revoke
attributes and thus users. Moreover, only one authority is responsible of
allocating attributes to users, thus permitting key escrow to happen.

Liu et al. [27] combine CP-ABE with a direct revocation approach, that
is, the most recent list of revoked users is always included in the ciphertext,
and Hierarchical Identity-Based Encryption for time period control (i.e. a
tree-based mechanism). In the rest of the paper, we refer to the scheme from
[27] as the LYZL scheme. In order to avoid the revocation list growing too
much as time goes by, each user obtains a key with an embedded validity
time range. The users have then keys that expire on a date and one would
only appear in the revocation list if she has been revoked before her key’s
expiration date (e.g. her key has been stolen before expiration). After key
expiration, the name of the revoked user is discarded from the revocation
list and a new user key is generated. Time periods are defined as a trade-off
between a revocation list with reasonable length and a moderate frequency
of key update. The key size depends on the validity time ranges assigned
to users and on the maximum number of revoked users in the list, hence
can dramatically grow. Moreover, there is a unique role authority in charge
of generating user keys, promoting single point of failure and key escrow
to happen. Symmetric pairings from cyclic groups of prime order are used,
making the scheme less efficient and secure than using asymmetric pairings
[20]. Our scheme keeps the positive features of the LYZL scheme, namely
direct revocation with the list embedded into ciphertexts and time access
control with a tree-based mechanism. However, we extend the solution by
appending a robust multi-authority setting and by using asymmetric pair-
ings and a suitable time framework, to improve the security and scalability
of the system.

More recently, two CP-ABE schemes with direct revocation and time
access control have been proposed in the literature [30, 49]. However, the
drawbacks noticed in [27] are also found in [30, 49], namely single-authority
setting and inefficient time-based tree hierarchy. Lastly, Li et al. [26] pro-
pose an ABE scheme managed by multiple authorities, to mitigate the key
escrow problem. In addition to this feature, verifiability of data deletion has
been added. However, this scheme does not consider the variety of users’
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attributes (e.g. time and roles) and user revocation. Zhang et al. [50] pro-
pose a CP-ABE scheme that allows user revocation and prevents the key
escrow problem. While the role authority is not responsible in generating
the entire secret key of a user, there is still a single piont of failure in such
design. Moreover, users’ keys must be updated every time a user is revoked,
by a specific authority. In case of frequent revocation events, this design
may not be adequate.

Attribute-Based Encryption in IoT Yao et al. [47] present a new ABE
scheme based on elliptic curve cryptography and without any pairing opera-
tion. Such features enable to obtain a lightweight and secure access control
protocol in IoT networks. The authors also analyze the communication and
computational costs induced by their solution and observe a significant gain
in terms of practicality and efficiency over original schemes [9, 45]. While
our scheme still requires pairing operations, we choose the asymmetric ones
over elliptic curves (rather than symmetric ones), improving security and
efficiency [20]. Moreover, contrary to us, no multi-authority and revocation
mechanisms are implemented in Yao et al.’s scheme [47].

Oualha and Nguyen [35] propose an access control mechanism based on
CP-ABE by considering the large number of devices in IoT networks and
their constrained resources. Specifically, the authors apply pre-computations
techniques [13] to Bethencourt et al.’s CP-ABE [9] to reduce the computa-
tional costs induced for data encryption, that is performed by IoT devices.
However, the latter require more storage space since they must retain pre-
computed tuples, that do not exist in the original scheme [9]. In addition, an
extra trusted authority is required to generate these pre-computed values,
and a secure channel is needed between this authority and the devices to
transmit them. While encryption is made computationally easier for IoT
devices, nothing is said about the rest of the access control protocol, namely
secret key generation and storage, as well as decryption.

Meanwhile, Ambrosin et al. [6] study the feasibility of Bethencourt et
al.’s CP-ABE [9] on widely used IoT-enabling devices. The authors focus
on the evaluation of encryption and decryption steps, and test these crypto-
graphic operations on four existing IoT platforms. Their results show that
CP-ABE can be adopted in IoT environments without major flaw. The au-
thors also present a successful use case application in smart healthcare using
Bethencourt et al.’s CP-ABE [9]. While Oualha and Nguyen [35] show a
technique to relieve computational workload on devices’ side when imple-
menting Bethencourt et al.’s CP-ABE [9], Ambrosin et al. [6] demonstrate
that this CP-ABE scheme is fully adoptable in its original version. Results
from Ambrosin et al. [6] suggest us that most of existing ABE schemes can
be implemented in IoT systems.

Recently, few ABE-based IoT systems with access control based on time
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and user revocation have been designed. A traceable and revocable time-
based CP-ABE scheme has been proposed for smart cities [48]. Nevertheless,
decryption needs to be outsourced to an external powerful entity in order to
overcome devices’ computational limitations. A time-bound access control
for IoT in fog computing architecture using ABE technology is presented
in [1]. However, only indirect user revocation is made possible. In the two
aforementioned schemes, one unique authority is responsible of users’ keys,
thus the key escrow problem cannot be alleviated.

1.3 Road Map

In the following section, we define the building blocks and tools required for
our solution. In Section 3, we present our CP-ABE scheme with multiple
authority setting, direct revocation and time-based access control mecha-
nism, along with its security. In Section 4, we implement and analyze our
solution. Finally, in Section 5, we conclude the paper.

2 Preliminaries

2.1 Building Blocks

Multiple authorities We propose to enhance the LYZL scheme in [27] by
involving multiple authorities. In [27], one authority, which is fully trusted,
is in charge of setting up the system and generating the key material of users.
Such configuration may be subject to key escrow and single point of failure.
By enabling the generation of the user’s public and secret parameters among
several authorities, we reduce trust assumptions made on these authorities
while enforcing the security of the scheme. More precisely, we only need to
assume that one authority remains honest among all of them. For instance,
if there are N +1 authorities in total, up to N authorities can be corrupted
without breaking our scheme.

Revocation We follow the methodology proposed in [27], where revoca-
tion is done by making the secret key of a user unusable. The term “user”
refers to a device in our system. The reasons can be diverse:

1. The user has left its IoT network, thus the key should no longer be
usable. For instance, the owner of the temperature sensor has disconnected
it from the smart home network.

2. The user has lost its key and been attributed a new one, hence the
old key should no longer be usable. For example, a misuse of the IoT device
by its owner has triggered some complications, such as key loss. When
rebooting the device, a new key has been generated.

3. The user has one of its attributes changed and thus has received a new
key with this new attribute, and the old key should no longer be usable. For
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instance, one of the device’s attributes has been modified from “everyone”
to “adult” when some parental controls have been put in place.
Few approaches for revocation exist, such as key update for non-revoked
users and cloud assistance. However, the former does not allow instant user
revocation while the latter encounters practical issues when the number of
users becomes huge.

A more interesting approach permits to revoke users by appending the
user’s identity in the revocation list. The list is public, instantly updated
and included in each ciphertext in its latest version. Only the users not
in the revocation list and with the attributes satisfying the access policy
are able to decrypt the ciphertext. The main advantage is that key update
is not necessary, avoiding extra communication and computational burdens.
However, the number of users in that list grows with the time. If the number
of users involved in the system is huge as in IoT networks, then this setting
becomes a practical issue. An alternative is to create a non-revocation list
that includes identities of non-revoked users. Hence, the length of this list
will decrease over the time. We claim that the number of non-revoked devices
is much larger than the number of revoked ones in an IoT system, making
the non-revocation list difficult to handle.

The direct revocation mechanism presented in [27] is a trade-off between
two techniques, namely appending the revocation list to ciphertexts and
updating user keys based on time intervals. Users are given keys embedding
their role attributes as well as their time validity ranges. The latter define a
time period with an expiry date from which users are no longer authorized
to access any data. Therefore, user keys are updated after the expiry date,
such that the time interval between two updates should remain reasonable.
Moreover, if a user is revoked before its key expires, then its identity is added
into the revocation list and kept in it until the next key update. Then, a
new key is generated according to role attributes and a new time validity
range. We emphasize that key update is made possible but not mandatory
(e.g. a user may be revoked definitely from the network). In addition, the
generation of a key after its expiration may incur new attributes or discard
used ones (e.g. a temperature sensor system has evolved and includes new
functionalities, hence new attributes). We let the reader to refer to the
exhaustive literature review on revocation in ABE in [27]. We keep this
direct revocation mechanism proposed in [27] for our solution.

Role attributes In the LYZL scheme [27], an attribute universe is asso-
ciated with the single authority, such that attributes are all different. In our
solution, each role authority has its own attribute universe, such that the
union of all the attribute universes forms the whole universe. We assume
that attribute universes are all disjoint by defining attributes as follows:
Let a role be “temperature” and two authorities refer to “Room A” and
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“Room B” respectively. Hence, the two attributes are determined uniquely
as “RoomA||temperature” and “RoomB||tempe- rature” respectively. Such
appellation enables to obtain a whole universe with distinct attributes, as
wished.

In the rest of the paper, we denote Uk the attribute universe associated
with the role authority Ak. Let U = ∪Ak

Uk be the disjoint union of all au-
thorities’ universes. Role attribution management is thus taken by multiple
authorities in our system. They are responsible to define role attributes in
their respective universes, and assign them to users when generating their
keys. Role key updates do not require to be frequent, since roles such as
“temperature” should remain forever for a temperature sensor. Key up-
dates are rather required to refresh the revocation list once it reaches the
maximum number of revoked users.

Time attributes The methodology proposed in [27] determines time in-
tervals as days, months and years. The LYZL scheme supports both contin-
uous and non-continuous time intervals; however, authors suggest that their
method is only interesting in the case of continuous time intervals. The user
encrypting the data defines a decryption time period such that only users
with time credentials completely covering that time period can decrypt. For
instance, if a user has time credential “15 January 2022” while the encryp-
tor has set “January 2022” for decryption, then the user cannot decrypt
since the credential does not completely cover the decryption time period.
On the other side, if a user has time credential “January 2022” while the
encryptor has set “from 01 to 15 January 2022” for decryption, then the for-
mer can successfully decrypt since it completely covers the decryption time
period. Such properties are kept in mind when designing our time-based
access control solution.

Authors in [27] suggest to use the Hierarchical Identity-Based Encryption
scheme from [11] to create time validity control. Such tree-based approach
allows improvement on the efficiency for continuous time intervals (claiming
that user keys and ciphertexts are usually represented as time intervals).
Then, a set cover approach is used to select the minimum number of nodes
that represent all the valid time periods. Each node, except the root one,
accounts for a time period such that leaves are days, leaves’ parents are
months and leaves’ grand-parents are years. The root node is implicitly set
as a starting time. Liu et al. [27] suggest that a 2-year interval between
two key updates is reasonable, and thus the tree is constructed based on
two consecutive years, for instance 2022 and 2023. Therefore, the starting
time is “01 January 2022” and the tree represents time until “31 December
2023”.

Let T be the depth of the tree and each node has z children. The time
is thus represented as a z-ary string {1, 2, · · · , z}T−1 and a time period is
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  Days:

Root with initial time 01/01/2022

1  …...  31

Janv ...… Dec dum ...… dum 

1  …...  31

2022 2023 dum …… dum

Janv ...… Dec dum ...… dum Months:

Years:

Figure 2: Time tree of the related LYZL scheme [27] for 2 years from “01
January 2022” until “31 December 2023” (included). ”dum” denotes the
dummy nodes. Each parent node has 31 child nodes regardless of the actual
amount of children.

denoted with a z-ary element (τ1, τ2, · · · , τη) for some η < T . No numerical
value is given throughout the paper [27]; but we propose to make some as-
sumptions from the reading. As mentioned above, the authors suggest that
a 2-year interval between two key updates is reasonable and time periods
based on year, month and day are enough for their purposes (but can be
extended to minute and second). Moreover, in order to simplify the descrip-
tion of the tree structure, each node is supposed to have z children. From
there, we infer that T = 4, and z is common to all non-leaf nodes and set
to be equal to 31 (there are at most 31 days in a month). The latter as-
sumption implies that the root has z = 31 children, and nodes representing
years have also z = 31 nodes, even if 2-year intervals are examined and 12
months form a year. Such simplification approach causes the tree construc-
tion process to be more cumbersome with 31 − 2 = 29 dummy nodes for
years, 29∗(31−12) = 551 dummy nodes for months and 29∗19∗31 = 17081
dummy nodes for days. Figure 2 illustrates the above 2-year period example
following the LYZL tree methodology.

Few ideas from the tree-based structure will be kept for our system. We
also opt for a tree to represent the time framework with the root implicitly
embedding a starting time and leaf nodes denoting days. We now explore
the differences from the tree-based method in [27] and ours:

• In the LYZL scheme [27], the initialization algorithm solely generates
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the parameters of the system and single authority. Since we involve mul-
tiple authorities, several algorithms are required to generate the common
system parameters and the specific parameters of each authority. In partic-
ular, the authority responsible of time control creates the public and secret
parameters required for the time tree.

• We choose a binary structure rather than a z-ary one (where z = 31
in [27]). Therefore, each node has two children. We hence avoid numerous
dummy nodes from choosing the maximum value among number of years,
number of months and number of days.

• We focus on shorter time periods according to our IoT-based time-
sensitive data scenario. The number of leaf nodes (of the form 2i for some
integer i) defines the time interval between two key updates. Therefore, in
order to keep the tree with a reasonable depth T , that number must be
relatively small.

• Following our binary structure, a path from the root to a node is
denoted as a string in {0, 1}T−1 where 0 denotes the left child and 1 denotes
the right child of a given node.

• To construct a tree, one needs to choose a starting time (defining
the root) and the number of days between two key updates. That number
correspond to the number of leaf nodes. Then, from the bottom level, we
build the tree up to the root.

Figure 3 illustrates a time tree following our methodology. The tree has
depth T = 5, resulting into 16 leaf nodes, one for exactly one day. The root
embeds the starting time “01 January 2022”. Therefore, the time interval
starts on “01 January 2022” and ends on “16 January 2022” (included). In
our tree example, a user receives time key material for a time validity range
of 7 days, starting 4 days after the starting time. This means that the user
has been granted for a period from “04 January 2022” until “10 January
2022” (included). The user is given three key components as illustrated by
blue circles in Figure 3: one for the leaf node representing day 4, one for the
grand-parent of leaf nodes from day 5 until day 8 and for the parent of leaf
nodes for days 9 and 10.

Following the 2-year period example given in [27], our tree would require
730 leaves, thus would have a depth equal to T = 10, making its generation
and storage costs substantial on the system. A complete binary tree of depth
T = 10 has 210 − 1 = 1023 nodes. However, following the tree construction
in [27] as shown in Figure 2, we obtain a tree with 31 ∗ 31 ∗ 31 ∗ 31 = 29791
nodes, thus making the tree generation and storage costs noticeably worse
than ours.

Time management is taken by a dedicated time authority. The latter is
responsible to define time trees for the system and assign time validity ranges
to users when generating their keys. Time key updates are frequent, of the
order of several days, due to our IoT-based time-sensitive data scenario.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Days:

2 2 2 2 2 2 2 2

4 4 4 4

8 8

16
Root with initial time 01/01/2022

Access time period

Figure 3: Time tree from “01 January 2022” until “16 January 2022” (in-
cluded). Access time period is given for 7 days, from “04 January 2022”
until “10 January 2022” (included): three keys corresponding to nodes with
blue-line circles are then generated.

Asymmetric bilinear pairings Let G1, G2 and GT be three multiplica-
tive cyclic groups of prime order p. A pairing e is a map e : G1 ×G2 → GT

which satisfies three properties that are carefully specified in the next sec-
tion. If the same group is used for the first two groups, meaning that
G1 = G2, the pairing is called symmetric and is a mapping from two ele-
ments of one group to an element from a second group. Such setting is used
in [27]. Otherwise, meaning that G1 ̸= G2, the pairing is called asymmet-
ric. In this case, either there is an efficiently computable homomorphism
ϕ : G1 → G2 or there are no efficiently computable homomorphisms be-
tween G1 and G2 [17]. It has been shown that designing a scheme in an
asymmetric bilinear pairing setting rather than a symmetric one enables a
better efficiency as well as an improved security level [20, 10]. Therefore,
our solution extends the LYZL scheme [27], originally set with symmetric
bilinear pairing, to permit an asymmetric pairing setting.

2.2 Miscellaneous.

In this section, we define the mathematical tools required to develop our
Ciphertext-Policy Attribute-Based Encryption scheme for access control in
the Internet of Things.
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Notations For n ∈ N, we define [1, n] = {1, 2, · · · , n}. We use x ∈R S
to denote the process of uniformly sampling an element from set S and
assigning it to variable x.

Vector Let v⃗ = (v1, · · · , vR) be a vector in ZR
p for an integer R. Let

gv⃗1 = (gv11 , · · · , gvR1 )⊤ be a column vector in G1. Given v⃗, w⃗, let the product

⟨v⃗, w⃗⟩ be v⃗⊤w⃗ =
∑R

i=1 viwi and (gv⃗1)
w⃗ be g

⟨v⃗,w⃗⟩
1 .

Bilinear pairing Let G1, G2 and GT be three multiplicative cyclic groups
of prime order p. A pairing e is a map e : G1×G2 → GT which satisfies the
following properties:

• Bilinearity: Given g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp, e(ga1 , g
b
2) =

e(g1, g2)
ab;

• Non-degeneracy: There exist g1 ∈ G1 and g2 ∈ G2 such that e(g1, g2) ̸=
1GT

;
• Computability: There exists an efficient algorithm to compute e(g1, g2)

for all g1 ∈ G1 and g2 ∈ G2.

Bilinear group Given as input a security parameter 1λ, the algorithm
Gen outputs the tuple (p,G1,G2,GT , e) where G1,G2, GT are multiplicative
cyclic groups of prime order p and e : G1 ×G2 → GT is a pairing.

Access structure [8] Let P = {P1, P2, · · · , Pn} be a set of parties. A
collection C ⊆ 2P is said to be monotone if for all A,B, such that A ∈ C
and A ⊆ B then B ∈ C. An access structure is a collection C ⊆ 2P\{∅}. The
sets in (resp. not in) C are said to be authorized (resp. unauthorized). For
our solution, such a structure will be needed for user access based on their
roles. Specifically, attributes will correspond to the roles of the user and
authorized attribute sets will be contained in a monotone access structure
C.

Linear secret sharing scheme [8] A Secret Sharing Scheme (SSS) Π
over a set of parties P is called Linear (and denoted as LSSS) if the following
conditions hold:

• The shares of the parties form a vector over Zp;
• There are a l × ν matrix M and a function ρ that maps the i-th row,

for i ∈ [1, l], to an associated party ρ(i). Let s ∈ Zp be a secret to be shared,
and γ2, · · · , γν be random exponents from Zp. Let v⃗ = (s, γ2, · · · , γν) be a
column vector and Mv⃗ be the vector of l shares of the secret s according to
Π such that the share (Mv⃗)i belongs to party ρ(i).

We now define the linear reconstruction property: Let Π be an LSSS for
an access structure C, S ∈ C be an authorized set and I = {i; ρ(i) ∈ S} ⊂
[1, l]. There exist constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares
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of any secret s according to Π, then
∑

i∈I ωiλi = s. The constants ωi can be
found in time polynomial in the size of M . Moreover, for any unauthorized
set S /∈ C, the secret s should be information theoretically hidden from the
parties in S.

Let the vector (1, 0, 0, · · · , 0) be the target vector for LSSS [45]. Given
an autorized set of rows I in the matrix M , the target vector is in the span
of I. On the other side, given an unauthorized set of rows I, the target
vector is not in the span of the rows of I. There also is a vector w⃗ such that
w⃗(1, 0, 0, · · · , 0) = −1 and w⃗Mi = 0 for all i ∈ I.

In our solution, we will define an user access policy based on an access
structure C [29]. We do not specify any weight for a given access condition.
Rather, we use AND and OR gates to emphasize whether an access condition
is either required or optional. For instance, we consider the following access
policy: A user can access the system if she satisfies both conditions: 1) she
has attribute E; 2) she has at least 2 attributes among A, B, C and D.
Such access policy can be expressed with the following boolean formula:

E ∧ ((A ∧B) ∨ (A ∧ C) ∨ (A ∧D) ∨ (B ∧ C) ∨ (B ∧D) ∨ (C ∧D))

which can be reduced as follows:

E ∧ (((A ∧B) ∨ (C ∧D)) ∨ ((A ∨B) ∧ (C ∨D)))

The represention method with boolean formula intuitively responds to the
relationships of AND and OR.

Access tree Let a tree represent an access structure. Each non-leaf node
of the tree represents a threshold gate, described by its children and a thresh-
old value. Considering the above example of access policy, we can build the
corresponding access tree with AND and OR gates generated from the com-
pressed boolean formula. The tree is depicted in Figure 4. A (t, n)-threshold
gate tree is another kind of access trees. Here, the non-leaf nodes define a
(t, n)-threshold where n is the number of leaves connected to this node and t
is the number of leaves that must be covered to satisfy the access condition.
Again, using the previous example, we build a threshold-gate access tree as
(E, (A,B,C,D, 2), 2).

An access tree is used in [27] to represent a time interval for access. In
order to find the minimum number of nodes representing the time validity
range, a set cover mechanism is used. Let the validity time range be from
“30 November 2022” until “31 December 2023”. Following this range, the
selected nodes from Figure 2 are the node “30” with parent “November”
and grand-parent “2022”, the node “December” with parent “2022”, and
the node “2023”. Let ητ be the number of selected nodes and T be the
depth of the tree such that ητ < T . Then, we define T = (τ1, τ2, · · · , τητ )
as the set cover representing the time validity range. Following the above
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Figure 4: Access tree for E ∧ (((A ∧B) ∨ (C ∧D)) ∨ ((A ∨B) ∧ (C ∨D))).

example, we get ητ = 3 such that τ1 = “30 November 2022“, τ2 = ”December
2022“, and τ3 = ”2023“. Note that in this example, we choose to not
explicitly mention the presence of the dummy nodes to not overload the
understanding. However, they should also be included in the set cover, thus
ητ >> 3. Similarly to [27], we use an access tree to represent time periods for
user access. However, rather than using z-ary strings {1, 2, · · · , z}T−1 with
z = 31, we consider binary strings {0, 1}T−1 such that a node represented
as a bit 0 means going to the left child while as a bit 1 means going to the
right child. Let the validity time range be from “04 January 2022” until “10
January 2022”. The selected nodes are the ones circled in blue in Figure 3.
Here, T = (τ1, τ2, τ3) where τ1 = (0, 0, 1, 1), τ2 = (0, 1) and τ3 = (1, 0, 0).

Decisional q-BDHE assumption The security of our Ciphertext-Policy
Attribute-Based Encryption scheme relies on the Decisional q-BDHE as-
sumption. Given P⃗ = (g1, g

s
1, g

a
1 , · · · , ga

q

1 , ga
q+2

1 , · · · , ga2q1 , g2, g
s
2, g

a
2 , · · · , ga

q

2 ,
ga

q+2

2 , · · · , ga2q2 ) ∈ G2q+1
1 ×G2q+1

2 and Q ∈ GT , where s, a ∈ Zp, g1 ∈ G1 and
g2 ∈ G2, the Decisional q-Bilinear Diffie-Hellman Exponent (BDHE) prob-
lem is defined as to decide whether Q = e(g1, g2)

saq+1
or a random element

in GT .

Indexing and implementing role attributes With a correct index as-
signment, we ensure that one index exactly corresponds to one attribute.
All role attributes are unique since they are defined according to a spe-
cific role authority representing an IoT environment, and determine a role

17



within that environment. Then, we assign the indices for role attributes
as follows: Let N be the number of role authorities and Ak be the role
authority with universe Uk containing Uk attributes, for k ∈ [1, N ]. Then,
indices for attributes in the universe Uk associated with authority Ak are
(
∑k−1

j=1 Uj+1), · · · , (
∑k−1

j=1 Uj+Uk). To simplify the reading with indices, let

k||i = (
∑k−1

j=1 Uj + i) for i ∈ [1, Uk]. In addition, let I = {i; ρ(i) ∈ S} ⊆ [1, l]
be defined as above, and {ωi ∈ Zp}i∈I be the set of constants such that if
the set {λi} contains valid shares of a value s according to the matrix M ,
then

∑
i∈I ωiλi = s. Let A be the set of role authorities whose attributes

are in the access policy (i.e. the access structure). Let π : k → π(i) be
defined as ∃!(Ak ∈ A, j ∈ [1, Uk]) such that ρ(i) = k||j. Such surjective
function exists since each attribute is defined uniquely in the whole universe
U = ∪Ak

Uk. As mentioned above, an attribute in the whole universe U is
uniquely controlled by one authority Ak. In order to explain the functional-
ity of the function π and to make it implementable, let us assume that there
exists a publicly computable function Fπ : U → Ak that maps one attribute
to a specific role authority [39]. From this mapping, let a second labeling of
rows be defined in the access structure ((M,ρ), ρ′) such that it maps rows
to attributes via the function ρ(·) = Fπ(ρ

′(·)).

3 A new Multi-Authority Time-Based Revocable
Ciphertext-Policy Attribute-Based Encryption

3.1 Overview

In Table 1, we provide the notation and definition of the elements in-
volved in the construction of our ABE solution. An overview of our construc-
tion is given in Figure 5. Our solution contains seven algorithms, defining
three phases:

Phase 1. An initialization phase sets up the system. Public parameters
PP are generated and made available to authorities and users. Then, the
role and time authorities, denoted as Ak and B respectively, generate their
public and secret key material. That phase is run only once.

In more details, this phase comprises three algorithms. The first algo-
rithm Setup is run as follows: Setup(1ζ , R) → PP , where 1ζ is the security
parameter, R− 1 is the maximum number of revoked users at any time and
PP are the public parameters. The second algorithm RAKeyGen is run as
follows: RAKeyGen(PP,Uk) → (PKk, SKk), where PP are the public pa-
rameters, Uk is the number of role attributes in the universe Uk associated
with the role authority Ak, and PKk and SKk are the public and secret
keys of the role authority Ak respectively. The third algorithm TAKeyGen
is run as follows: TAKeyGen(PP, T ) → (PK,SK), where PP are the public
parameters, T is the depth of the time binary tree associated with the time
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Notation Definition

1ζ Security parameter
R− 1 Maximum number of revoked users
PP Public parameters
Ak Role authority
Uk Universe associated with Ak

Uk Number of role attributes in Uk

PKk Public key of Ak

SKk Secret key of Ak

B Time authority
T Depth of the time-based binary tree associated with B
{0, 1}T−1 Binary string representing the time
PK Public key of B
SK Secret key of B
ID Identity of the user
SID,k Role attribute set of user with ID and ass. with Ak

RSKID,k Secret key of the user with ID and associated with Ak

TID Time validity range of user with ID and ass. with B
TSKID Secret key of user with ID and associated with B
A Set of role attributes in the access policy
m Message to be encrypted
R Revocation list
(M,ρ) LSSS access structure for the role access policy
Tdec Decryption time period
FR(·) Polynomial defining R
CT Ciphertext from m
SID Disjoint union of all role attribute sets SID,k for user

with ID and ass. with Ak

τdec Binary representation of decryption time period Tdec

T Set cover representing the time validity range TID

Table 1: Notation and definition of parameters.
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authority B (such that the time is represented as a binary string {0, 1}T−1),
and PK and SK are the public and secret keys of the time authority B
respectively.

Phase 2. The authorities create the key material for users. There are
N role authorities Ak (for 1 ≤ k ≤ N), who are responsible of creating keys
based on user roles (defined in role attribute sets) within their respective
environments (i.e. universes Uk). Role key updates for non-revoked users
are run occasionally, say every two years. One time authority B generates
user keys based on time validity ranges, denoted as TID where ID is the
user identity. This authority frequently updates such key material based on
new time validity ranges, e.g. each month.

In more details, this phase comprises two algorithms. The first algorithm
RUKeyGen is run as follows: RUKeyGen(PP, (PKk, SKk), ID, SID,k) →
RSKID,k, where PP are the public parameters PP , PKk and SKk are
the public and secret keys of the role authority Ak, ID is the identity of
the user and SID,k is role attribute set that contains the roles of this user
in Ak’s environment. The output is the secret key RSKID,k of the user
associated with Ak. The second algorithm TUKeyGen is run as follows:
TUKeyGen(PP, (PK,SK), ID, TID) → TSKID, where PP are the public
parameters, PK and SK are the public and secret keys of the time author-
ity B, ID is the identity of the user and TID is the time validity range of
this user specified by B. The output is the secret key TSKID of the user
associated with B.

Phase 3. An encryptor chooses an access policy, denoted as (M,ρ)
where M is a l× ν matrix and the function ρ associates rows of the matrix
M to role attributes. She also selects a decryption time period Tdec. She
then encrypts some data m according to that policy and time period, along
with the current user revocation list R, resulting in a ciphertext CT . A user
which has been granted with role and time credentials satisfying the access
policy and decryption time period can successfully decrypt the ciphertext
CT and recover the data m.

In more details, this phase comprises two algorithms. The first algorithm
Encrypt is run as follows: Encrypt(PP, {PKk}Ak∈A, PK,m,R, (M,ρ), Tdec) →
CT , where PP are the public parameters, PKk are the public keys of the
role authorities Ak belonging to the role authority set A defined by the ac-
cess policy, PK is the public key of the time authority B, m is the data to be
encrypted, R is the current revocation list (with up to R− 1 revoked users
at any time), (M,ρ) is the access policy and Tdec is the allowed decryption
time period. The output is the ciphertext CT of m. The second algorithm
Decrypt is run as follows: Decrypt(PP,CT,R, {RSKID,k}Ak∈A, TSKID) →
m, where PP are the public parameters, CT is the ciphertext, R is the cur-
rent revocation list, RSKID,k is the role secret key of the user with identity
ID and associated with Ak ∈ A, and TSKID is the time secret key of this
user associated with B. If the user has the required credentials, in terms
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of role attributes and time validity range, and her identity ID is not in the
revocation list R, then this user should be able to get the output as the
message m. If the user fails to get the required credentials and/or has been
revoked, then she gets a null sign ⊥.

Phase Algorithm Role Authority Time Authority User (sensor) User (actuator)

1
Setup PP PP PP PP

RAKeyGen PKk, SKk

TAKeyGen PK,SK

2
RUKeyGen

RSKID,k−−−−−−−−−−−−−−−−−−−−−−−−→
TUKeyGen

TSKID−−−−−−−−−−−−→

3
Encrypt

CT−−−−−−−−−→
Decrypt m

Figure 5: Overview of our proposed solution. The column ’Algorithm’ in-
dicates which algorithm is run to obtain the output mentioned on the same
row, under the corresponding recipient. Arrows link, from left to right,
a source entity which runs the algorithm, and a destination entity which
receives the output.

3.2 Construction

The Multi-Authority Time-Based Revocable Ciphertext-Po- licy Attribute-
Based Encryption construction is as follows:

Phase 1.
• Setup(1ζ , R). The algorithm Setup generates the public parameters

made available to all participating entities, namely authorities and users.
Let R − 1 be the maximum number of revoked users. On inputs the

security parameter 1ζ and R, the algorithm Setup outputs the public pa-
rameters PP . First, run the algorithm Gen and obtain two bilinear groups
G1,G2 of prime order p with generators g1 and g2 respectively, along with
a third group GT of prime order p and a pairing e : G1 × G2 → GT .
Pick at random δ, α1, · · · , αR ∈R Zp Set α⃗ = (α1, · · · , αR)

⊤ and F⃗ =
gα⃗1 = (gα1

1 , · · · , gαR
1 )⊤ = (f1, · · · , fR)⊤. The public parameters are PP =

(p,G1,G2,GT , e, g1, g
δ
1, g2, F⃗ ).

• RAKeyGen(PP,Uk). The algorithm RAKeyGen generates the public
and secret keys of the role authority.

Let Uk be the number of role attributes in the universe Uk associated
with role authority Ak. On inputs the public parameters PP and Uk, the
algorithm RAKeyGen outputs the public key PKk and the secret key SKk of
the role authority Ak. Pick at random κk ∈R Zp and hk||1, · · · , hk||Uk

∈R G1
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(these elements hk||i will be used for role access control with relation to the
authority Ak). The public key is PKk = (e(g1, g2)

κk , hk||1, · · · , hk||Uk
) and

the secret key is SKk = κk.
• TAKeyGen(PP, T ). The algorithm TAKeyGen generates the public and

secret keys of the time authority.
Let T be the depth of the time binary tree associated with time authority

B. The time is represented as a binary string {0, 1}T−1. On inputs the pub-
lic parameters PP and T , the algorithm TAKeyGen outputs the public key
PK and the secret key SK of the time authority B. Pick at random σ ∈R Zp

and V0, V1, · · · , VT ∈R G1 (the elements Vj will be used for time access con-
trol w.r.t. the time authority B). The public key is PK = (e(g1, g2)

σ, V0, V1,
· · · , VT ) and the secret key is SK = σ.

Phase 2.
• RUKeyGen(PP, (PKk, SKk), ID, SID,k). The algorithm

RUKeyGen generates the secret key of the user w.r.t. her roles.
Let SID,k be the role attribute set of a user with identity ID and associ-

ated with role authority Ak. Let k||x ∈ SID,k denote the attribute uniquely
defined in the whole universe U = ∪Ak

Uk by determining the associated au-
thority Ak and the role x within Uk. On inputs the public parameters PP ,
the public and secret keys PKk and SKk of the role authority Ak, ID and
SID,k, the algorithm RUKeyGen outputs the secret key RSKID,k of the user
with identity ID, role attribute set SID,k and associated with authority Ak.
First, pick at random uk, tk ∈R Zp. Then, compute the following:

Dk,0 = gtk2
D′

k,0 = guk
2

Dk,1 = gκk
1 gδtk1 fuk

1 = gκk
1 gδtk1 gα1uk

1

Kk,x = htkk||x for k||x ∈ SID,k

Fk,i = (f−IDi−1

1 fi)
uk for i ∈ [2, R]

The secret key is RSKID,k = (Dk,0, D
′
k,0, Dk,1, {Kk,x}k||x∈SID,k

,
{Fk,i}i∈[2,R]) and includes a description of SID,k.

• TUKeyGen(PP, (PK,SK), ID, TID). The algorithm TUKeyGen gener-
ates the secret key of the user w.r.t. her access time period.

Let TID be the time validity range of the user with identity ID and
associated with time authority B. On inputs the public parameters PP ,
the public and secret keys PK and SK of the time authority B, ID and
TID, the algorithm TUKeyGen outputs the secret key TSKID of the user
with identity ID, time validity range TID and associated with authority B.
Let T be the set cover representing TID which consists of time elements
τ = (τ1, · · · , τητ ) ∈ {0, 1}ητ where ητ < T for any τ ∈ T. First, pick at
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random β, vτ ∈R Zp for τ ∈ T. Then, compute the following:

D0,τ = gvτ2 for τ ∈ T

D1,τ = gσ1 f
β
1 (V0

ητ∏
j=1

V
τj
j )vτ for τ ∈ T

D2 = gβ2
Lj,τ = V vτ

j for j ∈ [ητ + 1, T ] and τ ∈ T

Ei = (f−IDi−1

1 fi)
β for i ∈ [2, R]

The secret key is TSKID = ({D0,τ , D1,τ}τ∈T, D2, {Lj,τ}j∈[ητ+1,T ], τ∈T, {Ei}i∈[2,R])
and includes a description of TID.

Phase 3.
• Encrypt(PP, {PKk}Ak∈A, PK,m,R, (M,ρ), Tdec). The algorithm En-

crypt generates a ciphertext of the message m.
Let A be the set of role authorities whose role attributes are in the access

policy. Let m be the message to be encrypted. Let R = (ID1, · · · , IDr)
be the revocation list containing r < R revoked users. Let (M,ρ) be an
LSSS access structure, defining the role access policy, where M is a l × ν
matrix and the function ρ associates rows of the matrix M to role attributes.
Let Tdec be the decryption time period of the ciphertext. On inputs the
public parameters PP , the public keys PKk of the role authorities Ak ∈ A,
the public key PK of the time authority B, m, R, (M,ρ) and Tdec, the
algorithm Encrypt outputs a ciphertext CT . Let τdec = (τ1, · · · , τηdec) ∈
{0, 1}ηdec be the binary representation of Tdec, where ηdec < T . First, choose
a secret s from Zp and pick at random γ2, · · · , γν ∈R Zp. Set the vector
v⃗ = (s, γ2, · · · , γν). Then, for i ∈ [1, l], compute λi = ⟨v⃗,Mi⟩, where Mi is
the i-th row of M . Let FR(Z) = (Z − ID1) · (Z − ID2) · · · (Z − IDr) =
y1 + y2Z + · · · + yrZ

r−1 + yr+1Z
r be a polynomial defining the revocation

list. If r + 1 < R, then set the coefficients yr+2, · · · , yR equal to 0. Then,
compute the following:

C0 = m · e(g1, g2)σs ·
∏

Ak∈A
e(g1, g2)

κks

C ′
0 = gs2

C ′′
0 = (fy1

1 · · · fyR
R )s

C ′′′
0 = (V0

ηdec∏
j=1

V
τj
j )s

Ci = gδλi
1 h−s

ρ(i) for i ∈ [1, l]

The ciphertext is CT = (C0, C
′
0, C

′′
0 , C

′′′
0 , {Ci}i∈[1,l], (M,ρ)) and includes de-

scriptions of Tdec and A.
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• Decrypt(PP,CT,R, {RSKID,k}Ak∈A, TSKID). The algorithm Decrypt
attempts to recover the message m from the ciphertext using appropriate
secret parameters. On inputs the public parameters PP , the ciphertext CT ,
the revocation list R, the role secret keys RSKID,k of user with identity ID
and associated with Ak ∈ A and the time secret key TSKID of user with
identity ID and associated with B, the algorithm Decrypt outputs either
the message m or a null sign ⊥.

Let X⃗ = (1, ID, · · · , IDR−1) for the identity ID and Y⃗ = (y1, · · · , yR),
where the exponents yi have been defined during the encryption phase.
Hence, ⟨X⃗, Y⃗ ⟩ = y1 + y2ID + · · · + yrID

r−1 + yr+1ID
r = FR(ID). If

r + 1 < R, then the coefficients yr+2, · · · , yR are equal to 0. Let SID =
∪Ak∈ASID,k be the disjoint union of all the role attribute sets SID,k of the
user with identity ID and associated with Ak ∈ A. Let τdec be the bi-
nary representation for the decryption time period Tdec and T be the set
cover representing the time validity range TID. Let us define the following
conditions:

• Insufficient roles attributes: SID does not satisfy the access structure
(M,ρ);

• Revoked user: ID ∈ R, that is ⟨X⃗, Y⃗ ⟩ = FR(ID) = 0;
• Invalid access time period: Tdec is not completely covered in TID, that

is τdec and all its prefixes are not in T.
If any of the above conditions occurs, then output ⊥ and abort. Other-

wise, since ⟨X⃗, Y⃗ ⟩ ≠ 0, compute the following:

Fk =

R∏
i=2

F yi
k,i = (f

−⟨X⃗,Y⃗ ⟩
1

R∏
i=1

fyi
i )uk

ξk,1 =

(
e(Fk, C

′
0)

e(C ′′
0 , D

′
k,0)

) −1

⟨X⃗,Y⃗ ⟩

= e(g1, g2)
α1suk

E =
R∏
i=2

Eyi
i = (f

−⟨X⃗,Y⃗ ⟩
1

R∏
i=1

fyi
i )β

ξ′1 =

(
e(E,C ′

0)

e(C ′′
0 , D2)

) −1

⟨X⃗,Y⃗ ⟩
= e(g1, g2)

α1sβ

Let I ⊆ [1, l] be defined as {i; ρ(i) ∈ SID} and {ωi ∈ Zp}i∈I be the
set of constants such that if the set {λi} contains valid shares of a value
s according to the matrix M , then

∑
i∈I ωiλi = s. In addition, there is a

surjective function from I to A determined as follows: Let π : k → π(i) be
defined as ∃!(Ak ∈ A, j ∈ [1, Uk]) such that ρ(i) = k||j. Such function exists
since each attribute is defined uniquely in the whole universe U = ∪Ak

Uk.
Then, compute:

ξ2 =
∏
i∈I

(
e(Ci, Dπ(i),0) · e(Kρ(i), C

′
0)
)ωi =

∏
Ak∈A

e(g1, g2)
δstk
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If τdec = (τ1, · · · , τηdec) ∈ T, then D1,τdec should be one component of the se-
cret key TSKID. Otherwise, let τ ′dec = (τ1, · · · , τη′dec) denote the prefix such
that η′dec < ηdec and τ ′dec ∈ T. Then, derive a key component D1,τdec from
TSKID with respect to τ ′dec by calculating D1,τdec = D1,τ ′dec

∏ηdec
j=η′dec+1

L
τj
j,τ ′dec

and set τdec = τ ′dec. Finally, recover the message m as follows:

m = C0 · ξ2 ·
e(D0,τdec , C

′′′
0 ) · ξ′1

e(D1,τdec , C
′
0)

·
∏

Ak∈A

ξk,1
e(Dk,1, C

′
0)

Correctness We first calculate the element Fk that is needed for calcu-
lating ξk,1. Implicitly, the user must not have been revoked in order to get
a correct result for Fk and proceed for successful decryption.

Fk =
R∏
i=2

F yi
k,i

=
R∏
i=2

(f−IDi−1

1 fi)
yiuk = (f

−(IDy2+ID2y3+···+IDR−1yR)
1

·g
∑R

i=2 αiyi
1 )uk

= (f
−⟨X⃗,Y⃗ ⟩+y1
1

R∏
i=2

fyi
i )uk = (f

−⟨X⃗,Y⃗ ⟩
1

R∏
i=1

fyi
i )uk

Using the result from calculating Fk, we can now calculate the element ξk,1
that participates in checking the role credentials of the user, associated with
the role authority Ak, against the access policy. Note that if the user has
been revoked, then we would not be able to calculate such element (we need
⟨X⃗, Y⃗ ⟩ ≠ 0).

ξk,1 =

(
e(Fk, C

′
0)

e(C ′′
0 , D

′
k,0)

) −1

⟨X⃗,Y⃗ ⟩

=

e((f
−⟨X⃗,Y⃗ ⟩
1

∏R
i=1 f

yi
i )uk , gs2)

e((fy1
1 · · · fyR

R )s, guk
2 )

 −1

⟨X⃗,Y⃗ ⟩

= e(g1, g2)
α1suk

We then calculate the element E that takes again into account the revocation
status of the user.

E =

R∏
i=2

Eyi
i =

R∏
i=2

(f−IDi−1

1 fi)
yiβ

= (f
−(IDy2+ID2y3+···+IDR−1yR)
1 · g

∑R
i=2 αiyi

1 )β

= (f
−⟨X⃗,Y⃗ ⟩+y1
1

R∏
i=2

fyi
i )β = (f

−⟨X⃗,Y⃗ ⟩
1

R∏
i=1

fyi
i )β
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Using the result from calculating E, we can now calculate the element ξ′1
that participates in checking the time credentials of the user, associated with
the time authority B, against the access time period. Note that if the user
has been revoked, then we would not be able to calculate such element (we
need ⟨X⃗, Y⃗ ⟩ ≠ 0).

ξ′1 =

(
e(E,C ′

0)

e(C ′′
0 , D2)

) −1

⟨X⃗,Y⃗ ⟩

=

e((f
−⟨X⃗,Y⃗ ⟩
1

∏R
i=1 f

yi
i )β, gs2)

e((fy1
1 · · · fyR

R )s, gβ2 )

 −1

⟨X⃗,Y⃗ ⟩

= e(g1, g2)
α1sβ

We then calculate ξ2 that involves the linear reconstruction property of the
LSSS access structure, meaning that user role credentials are prepared for
verification.

ξ2 =
∏
i∈I

(
e(Ci, Dπ(i),0) · e(Kρ(i), C

′
0)
)ωi

=
∏
i∈I

(
e(gδλi

1 h−s
ρ(i), g

tπ(i)

2 ) · e(htπ(i)

ρ(i) , g
s
2)
)ωi

=
∏
i∈I

(
e(gδλi

1 , g
tπ(i)

2 ) · e(h−s
ρ(i), g

tπ(i)

2 ) · e(htπ(i)

ρ(i) , g
s
2)
)ωi

=
∏
i∈I

e(g1, g2)
tπ(i)δ(λiωi) =

∏
Ak∈A

e(g1, g2)
stkδ

Finally, we recover the message m as follows:

C0 · ξ2 ·
e(D0,τdec , C

′′′
0 ) · ξ′1

e(D1,τdec , C
′
0)

·
∏

Ak∈A

ξk,1
e(Dk,1, C

′
k,0)

=

m · e(g1, g2)σs ·
∏

Ak∈A
e(g1, g2)

κks

 ·
∏

Ak∈A
e(g1, g2)

stkδ

·
e((V0

∏ηdec
j=1 V

τj
j )s, g

vτdec
2 ) · e(g1, g2)α1sβ

e(gσ1 g
α1β
1 (V0

∏ηdec
j=1 V

τj
j )vτdec , gs2)

·
∏

Ak∈A

e(g1, g2)
α1suk

e(gκk
1 gδtk1 gα1uk

1 , gs2)

= m · e(g1, g2)σs ·
1

e(g1, g2)σs

·

 ∏
Ak∈A

e(g1, g2)
κks · 1

e(g1, g2)κks


= m
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where the role attributes of the user cancel out with the ones embedded in
the access policy (based on the linear reconstruction property of the LSSS
access structure), while the time validity range of the user fits in the de-
cryption time period (based on the set cover mechanism and binary tree
representation).

User collusion The user may have multiple role secret keys RSKID,k,
issued by different role authorities Ak, along with a time secret key TSKID,
issued by B. Each key RSKID,k embeds her identity ID in the component
Fk,i for authority Ak ∈ A, and the key TSKID contains ID in the component
Ei, for index i ∈ [2, R]. These elements are required to check whether the
user belongs to the revoked list R. If so, then some decrypting elements do
not cancel out, and then decryption fails.

Moreover, the elements Fk,i and Ei avoid user collusion. Let us suppose
that a user with identity ID has the appropriate role attributes to fulfill
the decryption requirements, but does not have the suitable time validity
range TID. Hence, this user should not be able to successfully decrypt the
ciphertext. We now assume that this user with identity ID colludes with
the user with identity ID′, that has the suitable time validity range TID′ .
Thus, the user with identity ID attempts to decrypt the ciphertext using
her own role keys RSKID,k and the time key TSKID′ from the user with
identity ID′. We observe that the identity ID is required to generate the
vector X⃗, while the element E contains the identity ID′, thus the element
ξ′1 is not correctly calculated (some factors are not correctly deleted), and
the user with identity ID fails decrypting.

Revocation list In the current version, the revocation list R is given
in plain in the ciphertext CT , following [27]. However, we could improve
the efficiency and security by providing the hash value of R in CT . The
revocation list R is then stored in plain on a publicly accessible server from
which the decryptor retrieves the list R and verifies its integrity with the
hash value given in CT .

3.3 Security

In order to prove our scheme secure, we suppose that either there is at
least one honest role authority whose some attributes are included in the
access policy or the time authority is honest. Indeed, if all the (role and
time) authorities are malicious and collude, then the key generation may be
altered to the advantage of these authorities. Our Multi-Authority Time-
Based Revocable Ciphertext-Policy Attribute-Based Encryption scheme is
selectively secure as long as the Decisional q-BDHE assumption holds in
(G1,G2) [27].
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3.3.1 Security Model

Similarly to Identity-Based Encryption (IBE) schemes, the adversary E is
allowed to query users’ secret keys such that they cannot be used to decrypt
the challenged ciphertext CT ∗ [45]. Moreover, from the ABE framework,
access structures identify the ciphertexts and attributes identify users’ secret
keys. Hence, the adversary E commits to be challenged on an encryption to
an access structure (M∗, ρ∗) along with a revocation listR∗ and a decryption
time period T ∗

dec. The adversary E is allowed to request any user’s secret
key with attribute set SID,k as long as the authority Ak remains honest
and SID,k does not satisfy (M∗, ρ∗), i.e. the user with identity ID has not
enough attributes from this authority Ak to decrypt [14].

As in [27], we consider a selective security model for our solution where
the adversary commits to the challenged access structure (M∗, ρ∗) before
setup. The following game between a challenger C and an adversary E
describes the selective security model. In that game, E first submits a chal-
lenged access structure (M∗, ρ∗), a challenged revocation list R∗, a chal-
lenged set A∗ of role authorities whose attributes are in the challenged access
policy (i.e. the access structure) and a challenged decryption time period
T ∗
dec to C and then receives the public parameters and authorities’ public

keys. The adversary is permitted to query users’ secret keys that cannot
be used to decrypt the challenged ciphertext CT ∗. In addition, following
[14, 31], E selects an honest authority Ak∗ ∈ A∗ for some index k∗. There-
fore, the adversary is allowed to request secret keys for a given user with
identity ID and attribute set SID as long as there remains one honest au-
thority Ak∗ ∈ A∗ such that the user has insufficient attributes from this
authority to decrypt. Note that we focus on the case where the honest
authority is a role authority; similarly, one can design the proof with the
honest authority being the time authority.

Initialization. The adversary submits the challenged access structure
(M∗, ρ∗), challenged revocation list R∗ and challenged decryption time pe-
riod T ∗

dec to the challenger. It must also provide the challenged set A∗ of
role authorities whose attributes are in the challenged access policy and at
least one honest authority Ak∗ ∈ A∗.

Setup. C runs the Setup, RAKeyGen and TAKeyGen algorithms and
gives to E the public parameters PP , the public keys PKk for all Ak and
the public key PK for B.

Query Phase 1. The adversary can make secret key queries correspond-
ing to the user with identity ID and secret keys RSKID,k and TSKID such
that:

• The secret keys RSKID,k of the user with identity ID and associated
with Ak result from the role attribute sets SID,k.

• The secret key TSKID results from the range TID.
Then, at least one of the following conditions must hold:
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• Let SID = ∪Ak∈A∗SID,k be the disjoint union of all the role attribute
sets SID,k of the user with identity ID and associated with Ak ∈ A∗. SID

does not satisfy (M∗, ρ∗), meaning that for each user with identity ID, there
must be at least one honest authority A∗

k ∈ A∗ from which the adversary
never requests enough attributes to decrypt the challenged ciphertext. The
honest authority Ak∗ replies such that the corresponding role attribute set
SID,k∗ does not satisfy (M∗, ρ∗), meaning that the access structure (M∗, ρ∗)
cannot only contain attributes from Ak∗ . In addition, the adversary never
queries the same authority twice with the same identity ID [14].

• ID ∈ R∗, meaning that the user has been revoked.
• T ∗

dec is not completely covered in TID, meaning that τ∗dec and all its
prefixes are not in T, the set cover of T .

Challenge. The adversary submits two messages m0 and m1 of equal
length. C picks a random bit b ∈ {0, 1} and encrypts mb using the challenged
access structure (M∗, ρ∗), challenged revocation list R∗, challenged decryp-
tion time period T ∗

dec and challenged authority Ak∗ ∈ A∗. The resulting
challenged ciphertext CT ∗ is given to E .

Query Phase 2. This phase is similar to the first one.
Guess. The adversary outputs a bit b′ ∈ {0, 1} and wins if b′ = b.
The advantage of the adversary in the game is defined as AdvE = Pr[b′ =

b] − 1/2. The revocable CP-ABE scheme is said to be secure if no proba-
bilistic polynomial-time adversary has non-negligible advantage in the above
game.

3.3.2 Security Proof

We give the security proof of our construction in full details below. We define
a reduction as follows: if one can break our scheme, then one can break
the Decisional q-BDHE assumption. When proving our solution secure,
we need the reduction to program the challenged ciphertext CT ∗ into the
public parameters PP [45]. An attribute may be associated with multiple
rows in the challenged matrix M∗, meaning that the function ρ∗ is not
injective. This is similar to a value appearing in different leaves in a tree.
For instance, let ρ∗(i) = z for fz based on the i-th row of the matrix M∗. In
the reduction, we must program the parameters accordingly. Nevertheless,
if z = ρ∗(i) = ρ∗(j) for some i, j such that i ̸= j, then this is a problem since
we have to program both rows i and j. This implies that there may be a
conflict in how we program the parameters. In the reduction, this conflict
is solved by using different elements in the Decisional q-BDHE assumption.
We can thus program different rows of the matrix M∗ into one element
corresponding to an attribute.

Assuming that the Decisional q-BDHE assumption holds, then there is
no probabilistic polynomial-time adversary that can selectively break our
Multi-Authority Time-Based Revocable Ciphertext-Policy Attribute-Based
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Encryption scheme with a challenged matrix M∗ of size l∗×ν∗ for l∗, ν∗ < q,
a challenged revocation list R∗ for |R∗| < q − 2 and a challenged de-
cryption time period T ∗

dec with binary representation τ∗dec ∈ {0, 1}η∗dec for
η∗dec < T < q, along with a set A∗ of role authorities whose attributes are
in the challenged access structure and an authority Ak∗ ∈ A∗. Let E be an
adversary with non-negligible advantage against our solution. Let C be a
challenger that interacts with E and solves the Decisional q-BDHE problem
with non-negligible probability.

Initialization. The challenger is given the tuple P⃗ = (g1, g
s
1, g

a
1 , · · · , ga

q

1 ,
ga

q+2

1 , · · · , ga2q1 , g2, g
s
2, g

a
2 , · · · , ga

q

2 , ga
q+2

2 , · · · , ga2q2 ) ∈ G2q+1
1 ×G2q+1

2 and Q ∈
GT , and should decide whether Q = e(g1, g2)

saq+1
by interacting with the ad-

versary. The latter first submits the challenged access structure (M∗, ρ∗), re-
vocation list R∗ and decryption time period T ∗

dec, a challenged set A∗ of role
authorities whose attributes are in (M∗, ρ∗) and a challenged honest author-
ity Ak∗ ∈ A∗ to the challenger, such that the matrix M∗ has ν∗ ≤ q columns,
the time period has binary representation τ∗dec = (τ∗1 , · · · , τ∗η∗dec) ∈ {0, 1}η∗dec
for η∗dec < TID < q and |R∗| < q − 2, meaning that the maximum number
of revoked users R− 1 is set to q − 2.

Setup. The challenger chooses random exponents θ0, ϑ0, ϑ1, · · · , ϑT ∈
Zp, κ

′
k∗ ∈ Zp for Ak∗ ∈ A∗, and κk ∈ Zp for Ak ̸= Ak∗ . Let gδ1 = ga1 . It

implicitly sets κk∗ = κ′k∗ + θ0a
q+1 by letting:

e(g1, g2)
κk∗ = e(g1, g2)

κ′
k∗e(ga1 , g

aq

2 )θ0

Given an authority Ak, for k||x ∈ [1, Uk], pick at random zk||x ∈ Zp. Let
I be the set of indices i such that ρ∗(i) = k||x (and where k is such that
Ak ∈ A∗). The challenger computes hk||x as follows:

hk||x = g
zk||x
1 · g

aM∗
i,1

1 · g
a2M∗

i,2

1 · · · g
aν

∗
M∗

i,ν∗
1

We observe that if I = ∅ then hk||x = g
zk||x
1 . All the parameters are randomly

distributed thanks to the value g
zk||x
1 .

Let |R∗| = r ≤ q−2. Let X⃗1, · · · , X⃗r be the corresponding vectors for the
revoked list R = (ID1, · · · , IDr), meaning that X⃗i = (1, IDi, · · · , IDq−2

i )
for i ∈ [1, r]. Then, for each i ∈ [1, r], let the matrix be:

MX⃗i
=

(
−IDi · · · −IDq−2

i

Iq−2

)
where the Iq−2 is the (q − 2) × (q − 2) identity matrix. Then, C chooses

B⃗i ∈ Zq−1
p such that B⃗i·MX⃗i

= 0⃗. The vector B⃗i = (1, IDi, · · · , IDq−2
i ) = X⃗i

is the simplest candidate. In addition, for i ∈ [r+1, q− 1], let B⃗i = 0⃗. Now,
let B = (B⃗1| · · · B⃗r |⃗0| · · · |⃗0) be a (q − 1) × (q − 1) matrix where the i-th
column consists of B⃗i for i ∈ [1, r] and of 0⃗ for i ∈ [r + 1, q − 1]. Note
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that the vector (1, IDi, · · · , IDq−2
i ) has q − 1 elements. Therefore, we must

define an (q − 2)× (q − 1) matrix MX⃗i
so that (1, IDi, · · · , IDq−2

i )MX⃗i
= 0⃗

as required.

The challenger also defines Vj = g
ϑja

q−j+1

1 for j ∈ [1, T ] and V0 =∏η∗

j=1 V
−τ∗j
j gϑ0

1 . It then defines the vector ϖ⃗ = (ϖ1, · · · , ϖq−1)
⊤ = (aq, · · · , a2)⊤

where ϖi = aq+1−i and sets gϖ⃗1 = (gϖ1
1 , · · · , gϖq−1

1 )⊤. It implicitly sets

α⃗ = B · ϖ⃗ + θ⃗ by randomly choosing θ⃗ = (θ1, · · · , θq−1)
⊤ ∈ Zq−1

p . The

challenger finally sets F⃗ = gB·ϖ⃗
1 · gθ⃗ = (gα1

1 , · · · , gαR
1 )⊤ = (f1, · · · , fR)⊤.

Query Phase 1. Let SID = ∪Ak∈A∗SID,k be the disjoint union of all
the role attribute sets SID,k of the user with identity ID and associated
with Ak ∈ A∗. We observe that one could define SID = ∪Ak

SID,k for all Ak

(and not necessarily in A∗); however, sets SID,k for Ak /∈ A∗ do not satisfy
(M∗, ρ∗) by design.

The adversary makes secret key queries for the user with identity ID
and secret keys RSKID,k, TSKID such that:

• The secret keys RSKID,k result from the role attribute sets SID,k.
• The secret key TSKID results from the range TID.
Then, at least one of the following conditions must hold:
• SID does not satisfy (M∗, ρ∗) (Case 1).
• ID ∈ R∗ (Case 2).
• T ∗

dec is not completely covered in TID (Case 3).
Case 1: SID does not satisfy (M∗, ρ∗). The challenger randomly picks

φ ∈ Zp and finds a vector w⃗ = (w1, · · · , wν∗) ∈ Zν∗
p such that w1 = −1 and

for all i where ρ∗(i) ∈ SID, w⃗ ·M∗
i = 0 [27]. By the definition of an LSSS,

such a vector must exist since SID does not satisfy the access structure
(M∗, ρ∗).

Then, C implicitly sets tk∗ = φ+ θ0(w1a
q + w2a

q−1 + · · ·+ wν∗a
q−ν∗+1)

and picks at random tk ∈ Zp for Ak ̸= Ak∗ . The challenger also chooses uk
at random for Ak.

It first computes D′
k,0 = guk

2 for all Ak. It also calculates Dk,0 = gtk2 and

Dk,1 = gκk
1 gδtk1 gα1uk

1 for Ak ̸= Ak∗ , and Dk∗,0 = gφ2
∏ν∗

i=1(g
aq+1−i

2 )wiθ0 = g
tk∗
2
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along with:

Dk∗,1 = g
κ′
k∗

1 g
aφk∗
1

ν∗∏
i=2

(ga
q+2−i

1 )wiθ0g
α1uk∗
1

= g
κ′
k∗

1 gθ0a
q+1

1 g
aφk∗
1 g−θ0aq+1

1

ν∗∏
i=2

(ga
q+2−i

1 )wiθ0g
α1uk∗
1

= g
κk∗
1 g

aφk∗
1 gw1θ0aq+1

1

ν∗∏
i=2

(ga
q+2−i

1 )wiθ0g
α1uk∗
1

where w1 = −1

= g
κk∗
1 g

aφk∗
1

ν∗∏
i=1

(ga
q+2−i

1 )wiθ0g
α1uk∗
1

= g
κk∗
1

(
g
φk∗
1

ν∗∏
i=1

(ga
q+1−i

1 )wiθ0
)a

g
α1uk∗
1

= g
κk∗
1 g

atk∗
1 g

α1uk∗
1 = g

κk∗
1 g

δtk∗
1 g

α1uk∗
1

For all τ = (τ1, · · · , τητ ) ∈ T, it randomly picks β, vτ ∈ Zp and sets D2 = gβ2 ,

D0,τ = gvτ and D1,τ = gσ1 g
α1β
1 (V0

∏ητ
j=1 V

τj
j )vτ .

If k||x ∈ SID,k for which there is no index i such that ρ∗(i) = k||x (and

where k is such that Ak /∈ A∗), then the challenger sets Kk||x = D
zk||x
k,0 .

Otherwise (i.e. k||x ∈ SID,k for which there is an index i such that ρ∗(i) =
k||x and where k is such that Ak ∈ A∗) [45], then C computes:

Kk||x = D
zk||x
k,0 ·

ν∗∏
j=1

ga
jφk

1

( ν∗∏
l=1,l ̸=j

(ga
q+1+j−l

)wlθ0
)M∗

i,j

Finally, C sets Fk,i = (f−IDi−1

1 · fi)uk and Ei = (f−IDi−1

1 · fi)β for all Ak and
i ∈ [2, R], and Lj,τ = V vτ

j for j ∈ [ητ + 1, T ] and τ ∈ T.
Case 2: ID ∈ R∗. For j ∈ [1, r], let IDj ∈ R∗ be the identity of

the secret key that the adversary queries [27, 7]. The challenger defines
β̃j = βj−θ0a

j and ũk∗,j = uk∗,j−θ0a
j for a random exponent βj , uk∗,j ∈ Zp.

It also chooses at random uk,j ∈ Zp for Ak ̸= Ak∗ . From the equation

α⃗ = B · ϖ⃗ + θ⃗, the first coordinate of the vector α⃗ is the following:

α1 =

r∑
i=1

ϖi + θ1 =

r∑
i=1

aq+1−i + θ1

Then, the challenger computesD2 = g
βj

2 (ga
j

2 )−θ0 = g
β̃j

2 ,D′
k∗,0 = g

uk∗,j
2 (ga

j

2 )−θ0 =
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g
ũk∗,j
2 and D′

k,0 = g
uk,j

2 for Ak ̸= Ak∗ . For all τ = (τ1, · · · , tητ ) ∈ T, it ran-
domly chooses vτ ∈ Zp, and computes D0,τ = gvτ2 along with:

D1,τ = gσ1 g
α1βj−α1θ0aj

1 (V0

ητ∏
j=1

V
τj
j )vτ = gσ1 g

α1β̃j

1 (V0

ητ∏
j=1

V
τj
j )vτ

In addition, it picks at random tk ∈ Zp for all Ak, and calculates Dk,1 =

gκk
1 gδtk1 g

α1uk,j

1 for Ak ̸= Ak∗ , along with:

Dk∗,1 = g
κ′
k∗

1 f
uk∗,j
1 (ga

jθ1
1

r∏
i=1,i ̸=j

ga
q+1−i+j

1 )−θ0g
atk∗
1

= g
κ′
k∗

1 g
α1uk∗,j
1 gθ0a

q+1

1 (gθ11

r∏
i=1

ga
q+1−i

1 )−θ0ajg
δtk∗
1

= g
κk∗
1 g

δtk∗
1 g

α1uk∗,j
1 (gα1

1 )−θ0aj

= g
κk∗
1 g

δtk∗
1 g

α1uk∗,j−α1θ0aj

1 = g
κk∗
1 g

δtk∗
1 g

α1ũk∗,j
1

Let Fk,j = (F2, · · · , FR)
⊤ be the secret key component for the identity

IDj . We recall that ϖ⃗ = (ϖ1, · · · , ϖq−1)
⊤ = (aq, · · · , a2)⊤ with ϖi =

aq+1−i and gϖ⃗1 = (gϖ1
1 , · · · , gϖq−1

1 )⊤. First, we observe that C can compute

g
ajM⊤

X⃗j
Bϖ⃗

1 because the j-th column of M⊤
X⃗j

B is equal to 0⃗. The challenger

computes Fk,j = g
uk,jM

⊤
X⃗j

α⃗

1 for Ak ̸= Ak∗ , as well as:

Fk∗,j = g
uk∗,jM

⊤
X⃗j

α⃗

1 · g
−θ0ajM⊤

X⃗j
Bϖ⃗

1 · g
−θ0ajM⊤

X⃗j
θ⃗

1

= g
uk∗,jM

⊤
X⃗j

α⃗

1 · g
−θ0ajM⊤

X⃗j
α⃗

1

= g
(uk∗,j−θ0aj)M⊤

X⃗j
α⃗

1 = g
ũk∗,jM

⊤
X⃗j

α⃗

1

It also calculates Ej as follows:

Ej = g
βjM

⊤
X⃗j

α⃗

1 · g
−θ0ajM⊤

X⃗j
Bϖ⃗

1 · g
−θ0ajM⊤

X⃗j
θ⃗

1

= g
βjM

⊤
X⃗j

α⃗

1 · g
−θ0ajM⊤

X⃗j
α⃗

1

= g
(βj−θ0aj)M⊤

X⃗j
α⃗

1 = g
β̃jM

⊤
X⃗j

α⃗

1

We recall that R = q − 1 and we denote M⊤
X⃗j ,i−1

as the (i − 1)-th row of

M⊤
X⃗j

, then for i ∈ [2, R], we have Fk,i = (f
−IDi−1

j

1 · fi)uk,j for Ak ̸= Ak∗ , and
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the following:

Fk∗,i = g
ũk∗,jM

⊤
X⃗j ,i−1

α⃗

1 = g
ũk∗,j(−IDi−1

j α1+αi)

1 = (f
−IDi−1

j

1 · fi)ũk∗,j

Ei = g
β̃jM

⊤
X⃗j ,i−1

α⃗

1 = g
β̃j(−IDi−1

j α1+αi)

1 = (f
−IDi−1

j

1 · fi)β̃j

Finally, the challenger computes Kk||x = htkk||x for k||x ∈ SID,k and Lj,τ =

V vτ
j for j ∈ [ητ + 1, T ] and τ ∈ T.
Case 3: τ∗dec and all its prefixes are not in T. For all τ = (τ1, · · · , τητ ) ∈

T, let τητ+1, · · · , τq = 0 and τ∗η∗dec+1, · · · , τ∗q = 0. Let η′ ≤ η∗dec be the smallest

index such that τη′ ̸= τ∗η′ .
C randomly chooses tk, uk ∈ Zp for Ak ̸= Ak∗ along with tk∗ , uk∗ ∈ Zp,

and sets uk∗ = u′k∗ −
θ0
α1
aη

′
. It then computes Dk,0 = gtk2 for all Ak. It also

calculates D′
k∗,0 = g

u′
k∗−

θ0
α1

aη
′

2 = g
uk∗
2 and:

Dk∗,1 = g
κ′
k∗

1 gθ0a
q+1−η′

1 g
δtk∗
1 g

α1u′
k∗

1

= g
κ′
k∗

1 gθ0a
q+1

1 g
δtk∗
1 g

α1u′
k∗

1 g−θ0aη
′

1 = g
κk∗
1 g

δtk∗
1 g

α1uk∗
1

It sets D′
k,0 = guk

2 and Dk,1 = gκk
1 gδtk1 gα1uk

1 for Ak ∈ A\ {Ak∗}. In addition,

the challenger picks at random β, vτ ∈ Zp and calculates D2 = gβ2 and
D0,τ = gvτ2 .

We recall that Vj = g
ϑja

q−j+1

1 for j ∈ [1, T ] and V0 =
∏η∗

j=1 V
−τ∗j
j gϑ0

1 .
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For all τ , it sets:

D1,τ = gσ1 g
α1β
1 gϑ0vτ

1 g
ϑη′a

q−η′+1(τη′−τ∗
η′ ))vτ

1

ητ+1∏
j=η′+1

g
ϑja

q−j+1τ∗j vτ
1

= gσ1 g
α1β
1 g

(ϑ0+ϑη′a
q−η′+1(τη′−τ∗

η′ ))vτ

1

η′−1∏
j=1

V
−τ∗j vτ
j

η′−1∏
j=1

V
τjvτ
j

ητ+1∏
j=η′+1

g
ϑja

q−j+1τ∗j vτ
1 since τj = τ∗j if j < η′

= gσ1 g
α1β
1 (

η′∏
j=1

V
−τ∗j
j gϑ0

1 )vτ
η′∏
j=1

V
τjvτ
j

ητ+1∏
j=η′+1

g
ϑja

q−j+1τ∗j vτ
1

= gσ1 g
α1β
1 (V0

η′∏
j=1

V
τj
j )vτ

ητ+1∏
j=η′+1

V
τjvτ
j

= gσ1 g
α1β
1 (V0

ητ+1∏
j=1

V
τj
j )vτ

= gσ1 g
α1β
1 (V0

ητ∏
j=1

V
τj
j )vτ since τητ+1 = 0

The challenger also sets Kk||x = htkk||x for k||x ∈ SID,k. For i ∈ [2, R],

it computes Ei = (f−IDi−1

1 · fi)β, Fk∗,i = (f−IDi−1

1 · fi)uk∗ = (f−IDi−1

1 ·

fi)
u′
k∗−

θ0
α1

aη
′

and Fk,i = (f−IDi−1

1 · fi)uk for Ak ̸= Ak∗ . For j ∈ [ητ + 1, T ]

and τ ∈ T, the challenger computes Lj,τ = g
ϑja

q−j+1vτ
1 = V vτ

j .
Challenge. The adversary submits two messages m0 and m1 of equal

length. C picks a random bit b ∈ {0, 1} and encrypts mb under the access
structure (M∗, ρ∗), the revocation list R∗, the authority set A∗, the author-
ity Ak∗ ∈ A∗ and decryption time period T ∗

dec with binary representation τ∗

as follows. The challenger first computes C ′
0 = gs2 along with:

C0 = mb ·Qθ0 · e(gs1, g
κ′
k∗

2 ) · e(gs1, gσ2 ) ·
∏

Ak∈A∗\{Ak∗}

e(gs1, g
κk
2 )

It then creates C ′′
0 as follows [7]. Let R∗ = (ID1, · · · , IDr) and FR∗(Z) =

(Z−ID1) · · · (Z−IDr) = y1+y2Z+· · ·+yrZ
r−1+yr+1Z

r. If r+1 < R, then
the coefficients yr+2, · · · , yR are set to be equal to 0. Let Y⃗ = (y1, · · · , yR)⊤
satisfy ⟨X⃗j , Y⃗ ⟩ = 0 for j ∈ [1, r]. We claim that Y⃗ ⊤ ·B · ϖ⃗ = 0 [27]. Hence,

we obtain that ⟨Y⃗ , α⃗⟩ = ⟨Y⃗ , θ⃗⟩. It then sets C ′′
0 = (gs1)

⟨Y⃗ ,θ⃗⟩.

We also observe that the terms ga
i
in Vi are canceled out since the

challenged time is τ∗ = (τ∗1 , · · · , τ∗η∗). The challenger computes C ′′′
0 = (gs1)

ϑ0 .
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The terms Ci are computed as follows [45]. Since the terms hsρ∗(i) con-

tain terms of the form ga
is that cannot be simulated, the secret splitting

technique is thus required, and the latter terms can be canceled out. The
challenger chooses exponents γ′2, · · · , γ′ν∗ ∈ Zp and then shares the secret s
using the vector:

v⃗∗ = (s, sa+ γ′2, · · · , saν
∗−1 + γ′ν∗) ∈ Zν∗

p

This permits the terms hs−ρ∗(i) cancel out with the terms gaλi
1 . Then, for

i ∈ [1, ν∗], the challenger computes Ci = (gs1)
−zρ∗(i) ·

∏ν∗

j=2(g
a)M

∗
i,jγ

′
j . In order

to see the correct simulation of the terms Ci, we first define:

λ∗
i = ⟨v⃗∗, M⃗∗

i ⟩ = sM∗
i,1 + (sa+ γ′2)M

∗
i,2 + · · ·+ (saν

∗−1 + γ′ν∗)M
∗
i,ν∗

Thus, the correct distribution of Ci should be as follows:

Ci = g
aλ∗

i
1 h−s

ρ∗(i)

= g
a(sM∗

i,1+(sa+γ′
2)M

∗
i,2+···+(saν

∗−1+γ′
ν∗ )M

∗
i,ν∗ )

1 · g−szρ∗(i)
1

·g
−(saM∗

i,1+···+saν
∗
M∗

i,ν∗ )

1

= (gs1)
−zρ∗(i) · g

aM∗
i,2+···+aM∗

i,ν∗
1 = (gs1)

−zρ∗(i) ·
ν∗∏
j=2

(ga)M
∗
i,jγ

′
j

Query Phase 2. The same as in Phase 1.
Guess. The adversary outputs a guess b′ ∈ {0, 1} for b. If b = b′, then

the challenger outputs 0 to guess that Q = e(g1, g2)
saq+1

. Otherwise, C
outputs 1 to guess that Q is a random element of the group GT .

When Q is equal to e(g1, g2)
saq+1

, then C gives a perfect simulation,
and its advantage is the same as the adversary’s one. When Q is a ran-
dom element of GT , then the message mb is completely hidden from E , and
thus Pr[C(P⃗ , Q ∈R GT ) = 0] = 1/2. Hence, the challenger can solve the
Decisional q-BDHE problem with non-negligible advantage.

From selective security to static security We have proved our scheme
selectively secure in the standard model, meaning that the adversary submits
at the really beginning of the game a challenged access structure (M∗, ρ∗), a
challenged authority set A∗, a challenged honest authority Ak∗ ∈ A∗, a chal-
lenged revocation list R∗ and a challenged decryption time period T ∗

dec to C,
before receiving the public parameters and authorities’ public keys from the
challenger. A possible improvement is to consider static security, where all
challenged items and queries submitted by E are sent to the challenger di-
rectly after seeing the public parameters. Such improvement would be done
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following Rouselakis and Waters’ technique [39]. Their technique enables
the challenger of the security reduction to separate an unauthorized set of
the matrix rows and pass over this set for the remaining of the reduction. C
then ignores the contributions of these rows even in the construction of the
challenged ciphertext.

4 Evaluation

Since we have extended the solution in [27] to obtain our solution, we choose
to compare both of them. The advantage is that we can check what our ex-
tension has gained and/or lost compared to the original solution, from a
technical perspective. However, shifting from one authority to multiple au-
thorities brings substantial overheads. Hence, the multi-authority aspect
cannot be compared with the original scheme accurately. Instead, we com-
pare our solution with the Multi-Authority ABE scheme proposed in [39] to
evaluate our multi-authority setting.

4.1 Theoretical Analysis

Scheme LYZL [27] Ours

Public key (U +R+ T + 3)G (U +R+ T + 3)G1

material +GT +G2 + (N + 1)GT

User secret (R+ 1 + S (N(R+ 1) + S
key material +1

2T (T + 3))G +1
2T (T + 3))G1

+2(N + 1)G2

Ciphertext (l + 3)G+GT (l + 2)G1

+G2 +GT

Decryption time 4 + 2l 3N + 2l
(# of pairings) +2

Table 2: Size of keys and ciphertexts, and number of pairing operations
during decryption.

Table 2 compares the efficiency of our scheme and of the LYZL scheme [27].
Let N+1 be the number of authorities in our system (i.e. N role authorities
and 1 time authority). Let R− 1 be the maximum number of revoked users
and T be the depth of the tree. Let U be the number of attributes in the
whole universe U , and S be the total number of role attributes of the user.
Let l denote the number of attributes used in the decryption. The public key
material contains the public parameters along with the authorities’ public
keys. The user secret key material contains the user keys issues by all the
involved authorities.

37



At first sight, the scheme in [27] seems to be more efficient than ours. We
easily observe that extra elements in our case are due to the multi-authority
setting. We recall that a single authority is responsible of generating user
key material in [27], while N +1 authorities are involved in our system. By
setting N = 1, the performance of our system is equivalent to the one of the
LYZL scheme. Hence, our attempt to reduce the key escrow problem is at
the expense of practicality.

Yet, the tree storage costs do not appear in Table 2. We recall that
Liu et al. [27] suggest one common value z as the number of children per
node. By setting z = 31, many dummy nodes are created, and storage
costs get cumbersome. Let us compare the two tree-based methods with an
IoT-related example. Suppose that an actuator is granted to request data
from its connected sensors on a period of 7 days, starting on “04 January
2022”. In both schemes, we suppose that the starting time (root of the tree)
is “01 January 2022”. Following the tree-based method used in [27] with
leaf nodes as days (and T = 4 representing year, month and day levels), the
actuator obtains 7 keys, one for each day. Following our method with a time
interval of 16 days as in Figure 3 (i.e. T = 5), the actuator receives 3 keys.
Therefore, our technique is more efficient when dealing with data valuable
over short time periods, say on a daily basis. Moreover, our solution is not
limited to 16-day time periods; we can define longer periods as long as the
tree size remains reasonable.

While the LYZL solution [27] is interesting in some cases, e.g. within
a company where the system is setup in a narrow, private environment
and time periods are of the order of months or years, it does not fit our
IoT scenario which involves time-sensitive data and numerous heterogeneous
devices. On the other hand, our solution is attractive in IoT environments,
with a profitable framework for short time periods and an advantageous
security level meeting IoT requirements.

4.2 Implementation and Practical Analysis

In this section, we aim to check the practicality of the scheme in an IoT
environment while considering the limited capacities of such framework, in
terms of computation, communication and storage. We examine timing at
setup, encryption and decryption phases. More precisely, we are interested
in verifying the practicality of our Multi-Authority Time-Based Revocable
Ciphertext-Policy Attribute-Based Encryption scheme by testing various el-
liptic curves, and varying the revocation list length, role attribute sets’ size
and binary tree depth.

Testing environment We test our solution on Intel(R) Core(TM) i7-4790
CPU@3.60GHz with 2GB RAM. The operating system is 64-bit Ubuntu
18.04 and the programming language is Python3.6. We use the Python-
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based Charm Crypto library [4], an open source framework developed for
rapid prototyping of cryptographic systems. For all our benchmarks, we ex-
ecute 1, 000 tests and calculate the average time out of those 1, 000 outputs.
Time metric is millisecond.

Parameter selection In an IoT environment, access policies contain up
to 30 attributes, and devices are allocated around 10 attributes [6, 47]. Roles
can be related to the devices’ functionalities, locations and permissions to
specific operations such as Read and Write. For example, let the number
of roles authorities be N = 3. Therefore, given a role authority Ak, we set
its universe Uk = 10 and the user attribute set SID,k = 4. We consider the

number l of attributes used in the decryption be equal to ⌈Sk
2 ⌉, that is 2.

Our evaluation considers a short period of time, that aims to represent a
realistic feature in IoT networks as illustrated in Figure 3. Of course, longer
periods of time are possible.

We assume that role authorities’ algorithms RAKeyGen and RUKeyGen
will be run in parallel. W.l.o.g., we only consider one authority when testing
our solution. Unless specified, we consider the following parameters for our
testing:

• The role authority Ak has 4 attributes.
• The user has 2 attributes w.r.t. the role authority Ak.
• The time period consists of 16 days, which means that the depth of

the binary tree is T = 5.
• There are 4 attributes in the access policy when encrypting a message,

which means that the matrix M has 4 rows.
• There are 2 attributes from the user’s attribute set that are needed for

successful decryption, which means that 2 rows will be used in M .
We choose to not test bigger numbers of attributes for two reasons: first,

we aim to implement our solution in a realistic context, hence following the
aforementioned numerical suggestions from the literature [6, 47]; second,
we believe that the efficiency of our solution will fail with large attribute
numbers since many components (such as key material, ciphertext and de-
cryption process) depend on those numbers.

Elliptic curve selection Implementing our solution requires to generate
cyclic groups of prime orders built from an elliptic curve. The Charm Crypto
library [4] proposes several elliptic curves, offering different levels of security.

We run the algorithms of our Multi-Authority Time-Based Revocable
Ciphertext-Policy Attribute-Based Encryption scheme based on the follow-
ing elliptic curves: SS512 and SS1024 with 512-bit and 1024-bit base fields
respectively [16]; MNT curves with 159-bit, 201-bit and 224-bit base fields
respectively [34]. The results are shown in Tables 4 and 5. We also provide
the security level offered by each tested elliptic curve in Table 3.
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Curve Security level

SS512 80

SS1024 112

MNT159 70

MNT201 90

MNT224 100

Table 3: Security levels (in bits) of the tested elliptic curves [39].

Curve/Algo. Setup RAKeyGen TAKeyGen RUKeyGen

SS512 8.1 4.0 9.4 21.3
SS1024 92.7 4.3 5.8 240.6
MNT159 7.5 2.3 3.5 12.9
MNT201 10.1 3.0 3.9 16.6
MNT224 13.0 3.8 5.0 21.5

Table 4: Average running times (in milliseconds) of algorithms Setup,
RAKeyGen, TAKeyGen and RUKeyGen with different elliptic curves.

Curve/Algo. TUKeyGen Encrypt Decrypt

SS512 31.7 26.8 18.7

SS1024 387.9 193.7 300.4

MNT159 21.8 21.0 37.8

MNT201 27.9 23.5 41.9

MNT224 36.7 28.1 61.2

Table 5: Average running times (in milliseconds) of algorithms TUKeyGen,
Encrypt and Decrypt with different elliptic curves.
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Curve Global Auth KeyGen Encrypt Decrypt
/Algo. Setup Setup

SS512 2.7 1.2 15.5 25.5 10.1

MNT159 5.4 1.1 47.9 44.5 30.0

MNT201 7.0 1.4 56.4 68.7 37.3

MNT224 8.8 1.8 74.1 102.7 52.4

Table 6: Average running times (in milliseconds) of all algorithms of the
RW scheme [39] with different elliptic curves.

Algorithms RAKeyGen and TAKeyGen have similar time results for all
elliptic curves. Except with SS1024, algorithm Setup and Encrypt also get
comparable time outputs. While SS1024 offers the highest security level
among all the elliptic curves, it noticeably impacts the running times of
most of the algorithms, namely Setup, RUKeyGen, TUKeyGen, Encrypt and
Decrypt. Decryption with curves MNT159 and MNT201 requires around
twice the time needed for decryption with the curve SS512, for a similar
security level. While MNT224 guarantees a higher security level than SS512,
the decrypting algorithm takes three times longer for the former.

For a realistic trade-off between efficiency and security, the curve SS512 is
the most appropriate choice. Therefore, for subsequent testings, the curve
SS512 is used to build our cyclic groups of prime order during the setup
phase.

Scheme comparison based on elliptic curves Rouselakis and Waters
(RW) scheme [39] is a Multi-Authority ABE scheme similar to ours. Indeed,
the authors proposed a CP-ABE scheme where users’ keys are generated by
several authorities, based on their attributes. However, we note that the
time-based tree framework is missing in [39]: authorities only deliver role
attributes to users, and no time-related parameters are used. Therefore,
w.l.o.g., we only compare our solution with RW scheme based on role au-
thorities’ algorithms, and omit time authorities’ algorithms, namely TAKey-
Gen and TUKeyGen. We choose to evaluate RW scheme based on the same
elliptic curves that we tested for our solution. However, we excluded SS1024
since running times were high and thus such curve is not realistic for an IoT
application.

Results for the RW scheme are given in Table 6. We compare those
results with the ones given in Tables 4 and 5. RW algorithm GlobalSetup
corresponds to our algorithm Setup, AuthSetup to RAKeyGen and KeyGen
to RUKeyGen. Our algorithms Setup and RAKeyGen are slightly slower than
RW algorithms GlobalSetup and AuthSetup respectively, based on the curve
SS512. Nevertheless, this time difference does not impact much the applica-
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R Setup RUKeyGen TUKeyGen Encrypt Decrypt

5 8.1 21.3 31.7 26.8 18.7

10 13.0 49.0 57.7 26.8 18.0

15 17.3 80.1 91.2 27.0 17.6

20 22.8 129.5 135.9 26.8 17.8

25 26.7 176.3 187.2 27.2 17.8

30 31.0 238.9 243.6 27.5 18.2

Table 7: Average running times (in milliseconds) of algorithms Setup,
RUKeyGen, TUKeyGen, Encrypt and Decrypt with different values for R.

bility of our scheme in an IoT environment since those algorithm are likely
run by powerful entities and only once. Encryption process times are similar
in both schemes. RW decryption process is slightly faster than ours. Nev-
ertheless, as above, we argue that this process is likely managed by a more
powerful entity, such as a gateway connected to the actuator.

Our Multi-Authority CP-ABE scheme outperforms RW scheme built on
MNT curves, regarding key generation, encryption and decryption. Using
those MNT curves allows our solution to be faster and more efficient, such
that those qualifying adjectives are important in IoT environments. Hence,
selecting those elliptic curves for our scheme is still a reasonable choice for
IoT applications.

Revocation list Let R − 1 be the maximum number of revoked users.
Let R = (ID1, · · · , IDr) be the revocation list containing r < R revoked
users at a given time. We are interested in observing how those parameters
R and r affect the execution time of our algorithms. We text all algorithms
except RAKeyGen and TAKeyGen since they do not take as input R or r. We
conduct a first experiment with R ∈ {5, 10, 15, 20, 25, 30}. Result are shown
in Table 7 and Figure 6.

We observe that the value for R has low impact on the encryption and
decryption processes as expected. Indeed, those processes rather depend on
the value given to r that is fixed in this experiment. The running time of the
algorithm Setup depends on R, with a light increase with larger R values.
The running times of the algorithms RUKeyGen and TUKeyGen are linear
with R, such that those key generation processes are noticeably affected
by the value given to the parameter R. As we suggested, the maximum
length R of the revocation list R must remain reasonable to permit an
interesting trade-off between key update frequency and user revocation list
length. We suggest that R can be set up to 15 in order to keep the running
time of the algorithm RUKeyGen below 100 milliseconds A larger value would
negatively impact the applicability of our solution in IoT environments by
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Figure 6: Average running times (in milliseconds) of algorithms Setup,
RUKeyGen, TUKeyGen, Encrypt and Decrypt with different values for R.

noticeably slowing down the management of the keys of numerous devices
in the network.

We then prepare a second experiment with R = 10 and r ∈ [1, 9]. The
revocation list R, and thus the parameter r are inputs of the algorithms
Encrypt and Decrypt only. We are interested in seeing how those two algo-
rithms are affected by the number r of revoked users in R. Let R = 10, thus
the maximum number of revoked users is 9. We run the algorithms Encrypt
and Decrypt by varying the number r of revoked users from 1 for 9. The
results are shown in Figure 7. Encryption and decryption timings linearly
increase with the number of revoked users in R. The effect is stronger for
encryption than for decryption. Indeed, the value FR(Z) based on R must
be computed and a set of its coefficients y must be defined, requiring more
computing resources with the number of revoked users being larger.

Role authorities’ attribute set The number of attributes controlled by
a role authority Ak has an influence on the time needed to generate the keys
PKk and SKk of this role authority Ak. Let this number vary between 1
and 20. The results are shown in Figure 8. Each attribute adds around 1
millisecond in computing the key.

By having multiple authorities, we manage to dispatch the role attributes
among them such that each role authority has only a small subset of them,
enabling a faster key generation while mitigating key escrow and single point
of failure.
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Figure 7: Average running times (in milliseconds) of algorithms Encrypt and
Decrypt based on the number of revoked users in the revocation list R such
that R = 10.

Users’ role attribute set The number of users’ role attributes has an
impact of the time required to generate the keys RSKID,k of those users.
Let the number of attributes controlled by a role authority Ak be 15. Let
the number of role attributes given to a user vary between 2 and 15. The
results are shown in Figure 9. We observe that the time needed to generate
the user key RSKID,k is linear in the number of role attributes given to the
user, reaching around 34ms for 15 attributes. Each attribute adds around 1
millisecond in computing the key.

Therefore, by having several role authorities, we manage to share the
computing resources needed to compute the users’ keys, enabling a faster
key generation. Moreover, we mitigate the key escrow problem that one-
authority systems may suffer.

Time binary tree In Section 2, we presented a binary tree of depth
T = 5, with 16 leaves. In this experiment, we compare such depth value
with higher depth values, i.e. up to T = 12. Both the algorithms TAKeyGen
and TUKeyGen depend on the parameter T . More precisely, those algorithms
should require a noticeable amount of time to construct the tree and to run
the set cover process that finds the minimum number of nodes to represent
the time period. The results are shown in Table 8. When the value of the
depth T is set between 5 and 8, the time required to build the binary tree
and to find the minimum cover set is strictly less than 1 millisecond. When
T = 9 and above, the time increases exponentially. Indeed, the number of
leaves scales with 2T .
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Figure 8: Average running times (in milliseconds) of algorithm RAKeyGen
based on the number of role attributes.

T 5 6 7 8 9 10 11 12

Time < 1 < 1 < 1 < 1 1 2 3 6

Table 8: Average running times (in milliseconds) of combined algorithms
TAKeyGen and TUKeyGen based on different values T .

In an IoT context, it is important to keep the time required to build the
binary tree below 1 millisecond. For instance, temperature sensors collect
data once every few minutes, thus may require very short access time periods
such as few days, and may not need big trees to represent those short periods.
In addition, defining trees of reasonable depth moderates storage costs of
the system. Hence, setting a depth T = 5 is a judicious choice considering
our IoT context.

Access policy during encryption The access policy is represented by
the LSSS matrix M and the function ρ. The number of rows in M has
an effect on the running time of the algorithm Encrypt. We recall that the
number of rows in M is exactly the number of attributes in the access policy.
In this experiment, let the number of attributes in the access policy vary
from 1 to 12. We are interested in evaluating the algorithm Encrypt based
on the number of attributes in the access policy, and thus based on the
number of rows in M . The results are shown in Table 4.2. The running
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Figure 9: Average running times (in milliseconds) of algorithm RUKeyGen
based on the number of role attributes.

time of Encrypt is linear in the number of attributes in the access policy,
being slightly larger than 40ms for 12 attributes/rows. 2 extra milliseconds
are added for each extra attribute/row.

We previously suggested that there could be up to 30 attributes in the
access policy [6, 47]. Given such number, we could expect a message being
encrypted in 76ms, that is a reasonable time for most IoT applications.

Access policy during decryption The algorithm Decrypt depends on
the number of matrix rows utilized in order to recover the message success-
fully. We assume AND operations in the access policy only. In this experi-
ment, we vary the number of attributes required for a successful decryption,
and thus the number of rows, between 1 and 12. We are interested in evalu-
ating the algorithm Decrypt based on the number of attributes in the access
policy needed to recover the message in its entirety, and thus based on the
number of rows in M that are used for decryption. The results are shown in
Table 4.2. The running time of Decrypt is linear in the number of attributes
in the access policy that are required for successful decryption, being almost
35ms for 12 attributes/rows. 1.5 extra milliseconds are added for each extra
attribute/row.

We suggested that there are up to 10 attributes needed to decrypt a
ciphertext [6, 47]. Hence, considering such number, the time required to
decrypt a message would be around 30ms, that is acceptable in IoT envi-
ronments.
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Figure 10: Average running times (in milliseconds) of algorithm Encrypt
based on different numbers of attributes in the access policy/of rows in the
LSSS matrix.

Figure 11: Average running times (in milliseconds) of algorithm Decrypt
based on different numbers of attributes in the access policy/of rows in the
LSSS matrix that are needed for successful decryption.
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Summary Timing for encryption and decryption must stay low since the
latter are executed by resource-constrained devices, while timing for system
setup and key generation can be significantly higher since they are conducted
by powerful entities.

Implementation and evaluation show that our scheme can be realistically
deployed in an IoT environment. Indeed, each algorithm is run below 100
milliseconds in most cases.

While setup and key generation algorithms take a longer time, the ap-
plicability of our scheme is not impacted since those algorithms are run by
powerful entities and only once. On the other side, timings for encryption
and decryption reach low results, that is important since their algorithms
are supposed to be run frequently by constrained-resource devices.

5 Conclusion

In this paper, we designed an IoT system with access control key updates
and direct user revocation, which are beneficial features in IoT. Access con-
trol is done using Ciphertext-Policy Attribute-Based Encryption where at-
tributes represent roles of devices within their networks and time validity
ranges. We allowed the participation of multiple role authorities to allevi-
ate the key escrow problem. Moreover, we devised a novel approach, based
on a binary tree, to append time credentials. This allows us to find an
interesting trade-off between key update frequency and user revocation list
length, for stressing time-sensitive data exchanged in IoT environments. We
adapted the security model to follow the multi-authority setting and proved
our scheme secure under the Decisional Bilinear Diffie-Hellman Exponent
assumption. The implementation and evaluation results showed that our
solution is fully deployable in IoT networks.
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