
Three Input Exclusive-OR Gate Support For Boyar-Peralta’s
Algorithm

(Extended Version)

Anubhab Baksi1, Vishnu Asutosh Dasu2, Banashri Karmakar3,
Anupam Chattopadhyay1, and Takanori Isobe4

1 Nanyang Technological University, Singapore

2 TCS Research and Innovation, Bangalore, India

3 Indian Institute of Technology, Bhilai, India

4 University of Hyogo, Kobe, Japan

anubhab001@e.ntu.edu.sg, vishnu.dasu1@tcs.com, banashrik@iitbhilai.ac.in,
anupam@ntu.edu.sg, takanori.isobe@ai.u-hyogo.ac.jp

Abstract. The linear layer, which is basically a binary non-singular matrix, is an integral part of
cipher construction in a lot of private key ciphers. As a result, optimising the linear layer for device
implementation has been an important research direction for about two decades. The Boyar-Peralta’s
algorithm (SEA’10) is one such common algorithm, which offers significant improvement compared to
the straightforward implementation. This algorithm only returns implementation with XOR2 gates,
and is deterministic. Over the last couple of years, some improvements over this algorithm has been
proposed, so as to make support for XOR3 gates as well as make it randomised. In this work, we take
an already existing improvement (Tan and Peyrin, TCHES’20) that allows randomised execution and
extend it to support three input XOR gates. This complements the other work done in this direction
(Banik et al., IWSEC’19) that also supports XOR3 gates with randomised execution. Further, noting
from another work (Maximov, Eprint’19), we include one additional tie-breaker condition in the
original Boyar-Peralta’s algorithm. Our work thus collates and extends the state-of-the-art, at the
same time offers a simpler interface. We show several results that improve from the lastly best-known
results.

Keywords: implementation · block cipher · linear layer

1 Introduction

With the rapid growth of lightweight cryptography in recent times, it becomes essential to reduce
the cost of the cipher components. The linear layer is responsible for spreading the diffusion to the
entire state in a lot of modern ciphers, thus constituting an integral part in cipher construction.
Indeed, together with an SBox, it constitutes the unkeyed permutation of a cipher, which is then
analysed against the common classical attacks (like differential, linear, algebraic etc.). Without
loss of generality, a linear layer can be expressed as a binary non-singular matrix (e.g., AES
MixColumn can be expressed as a 32× 32 binary non-singular matrix), it can be implemented
using assignment operations (software) or wiring (hardware) with XOR gates only.

While finding the näıve XOR implementation (the so-called d-XOR representation, see
Definition 1), finding an optimal implementation using XOR gates is a complex problem. The
Boyar-Peralta’s algorithm [12] is an important step in this direction, which aims at finding
efficient implementation of a given linear layer by using XOR2 gates only. The original version is

This paper combines and extends from [4, 5, 9], and the primary version with the same title is accepted in
Indocrypt 2021. The first author would like to thank Sylvain Guilley (Télécom-Paris; Secure-IC) for providing the
gate costs in the STM 130nm (ASIC4) library.

https://indocrypt2021.lnmiit.ac.in/


presented over a decade ago, but there is a renewed interest as can be seen from a number of
recent follow-ups [9, 20,23].

The main motivation for this work comes from an observation made in [9] that using higher
input XOR gates may lead to reduced area in certain ASIC libraries. In particular, the authors in [9]
make a randomised variation to the original Boyar-Peralta’s algorithm and do a post-processing
to the output to fit XOR3 gates.

Continuing in this line, we show a dynamic higher input XOR support to a randomised
variation atop the original Boyar-Peralta’s algorithm (this variation is taken from [23] and is
referred to as RNBP). This allows us for native support for XOR3, XOR4 etc. gates, while taking
care of the individual costs for each gate. This extends from the XOR3 support in [9] as this
modification does not take into consideration the costs for the XOR3 and XOR2 gates, meaning
it will return the same implementation no matter the costs of the XOR2 and XOR3 gates.

Contribution

In a nutshell, we present the first open-source1 work to support higher input XOR gates that
allows for efficient implementation for the linear layer. As far we know, this is the first and so-far
only available project (other open-source projects like [19, 23, 24]) only consider XOR2 operation;
and the source-code for [9] is not public).

Several considerations and design choices are made in our implementation. The following
major changes mark our contribution:

1. We take into account all the patches/updates made to the Boyar-Peralta’s algorithm [12],
namely [9, 20, 23]. We implement our version of the algorithm on top of taking ideas from all
of those.

(a) It is reported in [20] that, a tie-breaker inside the original Boyar-Peralta’s algorithm [12]
picks only that case which maximises certain condition (see Section 3 for more details),
does not (always) result in the lowest cost. It is suggested to use that case which minimises
certain condition instead in [20]. We use both the maximisation and minimisation variants.

(b) In the original Boyar-Peralta’s algorithm, the tie cases are broken based on lexicography.
It results in a deterministic execution, meaning the exact same representation is returned
all the time. Two randomised variations are presented, in [23] and in [9]. We use the
fastest implementation, called RNBP, from [23] (as the source code is public) and use the
randomisation described in [9] on top of it (the corresponding source code is not public).

2. We adopt the XOR3 support in Boyar-Peralta’s algorithm in [9] and provide a native interface
for it in our implementation2. In addition, we propose a support for higher input XOR gates
(which can directly work with XOR3, XOR4 etc.). The new higher input XOR support that
we present is dynamic in the sense that it takes into account the exact cost for each gates.
This is not the case for [9], where the same XOR3 implementation is given disregarding the
cost for XOR3 gates.

With our implementation, we present several results that improve the state-of-the-art bounds
with {XOR2, XOR3} gates. In total, we show the costs for five libraries, namely gate count (GC),
STM 90nm (ASIC1), STM 65nm (ASIC2), TSMC 65nm (ASIC3) and STM 130nm (ASIC4), see
Section 2.4 for the respective costs for the gates in the library. More details on the results can be

1Available at https://bitbucket.org/vdasu_edu/boyar-peralta-xor3/.
2The algorithm in [9], with the kind permission from the authors, is available within our implementation (the

relevant source-code is written by us).

2

https://bitbucket.org/vdasu_edu/boyar-peralta-xor3/


found in Section 5, here we mention a few which set the new state-of-the-art. For AES MixColumn,
we get the least cost in b2 (see Definition 6) for GC (59 with depth 4, down from 67 with depth
6) and for ASIC4 (258.98 GE). For the TWOFISH [21] and JOLTIK-BC [15] linear layers, we either
touch or improve the benchmarks for all the five libraries.

2 Background and Prerequisite

2.1 Notions of XOR Count

Three notions for XOR count are mentioned in the literature; namely d-XOR, s-XOR, and
g-XOR [16,17,18,24]. Those names are shorthand notations for ‘direct XOR’, ‘sequential XOR’,
and ‘general XOR’, respectively. As our aim is to support higher input XOR gates, we need to
generalise the definitions.

In order to do that, first we present the respective definitions in Definitions 1, 2 and 3. Then
we extend the definitions of by an additional parameter ε. Instead of the term general XOR
(introduced in [24]), we use the term branch XOR (b-XOR for short) instead. Since we are
generalising the pre-existing definitions, we argue it sounds better to call ‘generalised branch
XOR’ than ‘generalised general XOR’. The term ‘branch’ indicates that there can be branches
(i.e., feed-forward paths) in this implementation.

Definition 1 (d-XOR Count). The d-XOR count of the binary matrix Mm×n is defined as
d(M) = HW(M)−m, where HW(·) denotes the Hamming weight. The corresponding implemen-
tation is referred to as the d-XOR representation.

Definition 2 (s-XOR Count). A binary non-singular matrix Mn×n, can be implemented by a
sequence of in-place XOR operations of the form: xi ← xi ⊕ xj for 0 ≤ i, j ≤ n− 1. The s-XOR
count is defined as the minimum number of XOR operations of this form. Any representation
that conforms to this implementation is referred to a s-XOR representation.

Definition 3 (g-XOR Count). A given binary Mm×n matrix can be implemented as a sequence
of equations either of the form: ai ← bi ⊕ ci (1 XOR operation is needed), or ai ← bi (no XOR
operation is needed). The representation is called a g-XOR representation and the minimum
number of XOR operations needed is referred to as the g-XOR count of M .

The definitions for s-XOR (to sε-XOR) and g-XOR (to bε-XOR) are given subsequently in
Definitions 5 and 6. To facilitate the definition for sε-XOR, we define the ‘ε-addition matrix’
in Definition 4. Note that the case for ε = 1 is referred to as the ‘addition matrix’ in the
literature [18].

Definition 4 (ε-addition Matrix). Let In×n be the identity matrix and En×ni,j be null matrix
except for E[i, j] = 1 for some i, j over F2. Then Aε = I + Ei,j1 + · · · + Ei,jε for distinct
{i, j1, . . . , jε}, is defined an ε-addition matrix where ε ≥ 1.

Definition 5 (sε-XOR Count). Given a cost vector c = [c0, c1, . . . , cε] where ε ≥ 1 and
ci ≥ 0 ∀i, the sε-XOR count, of the non-singular matrix Mn×n over F2, is defined as

min (c0 + c1e1 + · · ·+ cεeε),

provided M can be expressed as a product of the factor matrices from the multi-set (with the given
multiplicity) in any order:

[P,A1, . . . , A1︸ ︷︷ ︸
e1 times

, . . . , Aε, . . . , Aε︸ ︷︷ ︸
eε times

],

3



where An×nε ’s are ε-addition matrices, and Pn×n is a permutation matrix. Here c0 is the cost for
P , and equals to 0 if P is identity.

The sε-XOR notion coincides with s-XOR when ε = 1 and the cost vector is [0, 1]. Since this
is the most common cost vector, it is assumed intrinsically unless mentioned otherwise. The
permutation matrix P can be implemented as a wire in hardware, which effectively takes zero
area, but it can take few clock cycles in software. Thus to generalize, we consider a non-negative
cost for P .

Definition 6 (bε-XOR Count). Given a cost vector c = [c0, c1, . . . , cε] where ε ≥ 1 and
ci ≥ 0 ∀i, the bε-XOR count of the matrix Mm×n over F2 is defined as

min (c0e0 + c1e1 + · · ·+ cεeε),

given M can be expressed by using equations of the following types (with the frequency for each
type as mentioned) in any order:

ti = tj0 } e0 times,

ti = tj0 ⊕ tj1 } e1 times,

...

ti = tj0 ⊕ tj1 ⊕ tj2 ⊕ · · · ⊕ tjε } eε times.

The notion of bε-XOR coincides with that of general XOR or the g-XOR for short [24] when
ε = 1. Similar to the case of sε, the cost for the assignment operation can be taken as zero in
hardware, but it is likely not zero in software.

Example 1. Consider the binary matrix, M5×5 =


1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1

 .

With the modelling in [6, Section 3], we confirm that the s1-XOR count of M is 5 with one
addition matrix having multiplicity of 2. Here, d(M) = 6, s1(M) = 5 and b1(M) = 4 (obtained
using the Boyar-Peralta’s algorithm [23]. Hence for this case, b1(M) < s1(M) < d(M).

It may be noted that the notion of bε covers that of d-XOR as well as sε, thus bε(M) ≤
min(d(M), sε(M)). Moreover, sε is undefined if the matrix is singular or rectangular. While we
are not aware of use of a singular matrix, rectangular matrices are used in coding theory, which
has application to cryptography.

On the other hand, sε allows to implement in-place [24]. Also, the best known result on the
AES MixColumn takes 92 XOR2 gates (a b1 representation by [20]), but one s1 representation is
also available at the same cost, thanks to [24]. Later, the authors of [19] manage to reduce the
cost to 91 with a b1 representation.

Further, implementations that follow the sε representation will be useful in the context of
reversible computing (this includes quantum computing). There have been a few research works
regarding reversible (including quantum) implementation of symmetric key ciphers recently,
like [3, 14].

As for the application of the d-XOR count, one may note that this is the simplest among all
the notions and the fastest to compute. Ergo, it may be useful when finding the cost for a large
number of linear layers with an automated tool.

4



Results on AES MixColumn. With regard to the state-of-the-art progress on the AES linear layer
(i.e., MixColumn), it can be stated that the Boyar-Peralta’s algorithm [12] and its variants such
as [9, 20, 23] attempt to find b1 (i.e., returns a solution in the b1 representation). The FSE’20
paper [24] attempts to find an s1 representation (best known result in this category); and the
CT-RSA’21 paper [19] uses a b1 representation to get a cost of 91 (also the best known result
in this category). Additionally, the authors of [9] implement the AES MixColumn using XOR2
and XOR3 gates, which falls into the realm of b2 representation with the associated cost vectors
[0, 2, 3.25] for STM 90nm and [0, 1.981, 3.715] for STM 65nm CMOS libraries, respectively (these
libraries are indicated as ASIC1 and ASIC2 respectively in this work). An overview of notable
works in recent times that implement AES MixColumn, including our own results, can be found in
Table 1.

Table 1: Summary of recent AES MixColumn implementations
Representation # XOR2 # XOR3 Depth GC

Banik, Funabiki, Isobe [9]
(Available within this work)

b1 95 – 6 95
b2 39 28 6 67

Tan, Peyrin [23] b1 94 – 9 94

Maximov [20] b1 92 – 6 92

Xiang, Zeng, Lin, Bao, Zhang [24] s1 92 – 6 92

Lin, Xiang, Zeng, Zhang [19] b1 91 – 7 91

Exclusively in this work b2 12 47 4 59

2.2 Straight Line Program (SLP)

The implementation of the linear circuits is generally shown as a sequence of operations where
every step is of the form: u←

⊕ε
i=1 λivi where λi ∈ {0, 1} ∀i are constants and rest are variables.

Note that, it inherently captures multi-input XOR gates. This definition is captured from [12] (it
introduces the Boyar-Peralta’s algorithm). Note that it coincides with the g-XOR representation
given ε = 1 (Definition 3), or with the bε-XOR representation (Definition 6).

Not clear why, but an agreed-upon terminology appears to be non-existent. The original paper
that presents the Boyar-Peralta’s algorithm [12] uses the term, ‘linear straight line program’;
the IWSEC’19 paper [9] uses the term, ‘shortest linear program’; the TCHES’20 paper [23] uses
the term ‘short linear program’ in the title. We use the term ‘straight line program’ (adopting
from [12]) and ‘SLP’ as its abbreviation.

2.3 Depth

The depth of a logical circuit can be defined as the number of combinational logic gates along
the longest path of the circuit. The input variables are at depth 0; and for an SLP, depth can be
computed as the maximum of depths for the variables in RHS plus 1.

For example, our b2 implementation of Figure 2 of AES MixColumn has the depth of 4. The
variables at equal depth are shown column-wise from left to right, the left-most column has depth
of 0. The variables y25, y1, y15, y31, y30, y14 (see Section 5 for the interpretation/details) are at
depth 4, making the entire implementation of depth 4.

5



2.4 Logic Libraries

A total of five logic libraries are used in this paper for benchmarking the implementations. Shown
in Table 2, the libraries contain XOR2 and XOR3 gates.

The gate count library simply counts the number of gates. The first two ASIC libraries are
adopted from [9]. The third ASIC library is the same as the one used in [7]. The fourth ASIC
library is the 130nm process from STMicroelectronics, HCMOS9GP.

Table 2: Logic libraries with gates and corresponding cost

Gate
Library Gate Count

(GC)
STM 90nm

(ASIC1)
STM 65nm

(ASIC2)
TSMC 65nm

(ASIC3)
STM 130nm

(ASIC4)

XOR2 1 2.00 GE 1.981 GE 2.50 GE 3.33 GE

XOR3 1 3.25 GE 3.715 GE 4.20 GE 4.66 GE

3 Boyar-Peralta’s Algorithm and Its Variants

Before proceeding further, we describe the basic work-flow of the Boyar-Peralta’s algorithm [12]
(Section 3.1). Over the years, multiple variants of this algorithm are proposed, a summary of
which is given thereafter (Section 3.2).

3.1 Basic Work-flow of Boyar-Peralta’s Algorithm

The original Boyar-Peralta’s algorithm [12] attempts to implement b1 with the cost vector [0, 1] for
the binary matrix Mm×n. The algorithm works as follows. Initially, two vectors called the Base
vector of size n and Dist vector of size m are created. The Dist vector is initially assigned one
less than the Hamming weight of each row and the Base vector contains all the input variables,
i.e, x1, x2, . . . , xn. At any given point, the Dist vector for a given row represents the number of
elements from the Base vector that need to be combined to generate the implementation of that
particular row and the Base vector contains the implementations that have been generated so
far. The following steps are then performed until the sum of all elements of the Dist vector are 0.

1. Generate all
(
n
2

)
combinations of the Base vector elements and compute their sum. Create a

copy of the Dist vector for each combination. This will be called DistC for each combination.
2. For each combination, determine whether it is possible to reduce DistC[i] by 1, where
i ∈ [1,m]. To put it explicitly, determine whether it is possible to implement the sum of the
ith row of M and the combination using DistC[i] − 1 elements of the Base vector. If it is
possible to do so, set DistC[i] to DistC[i]− 1. If it is not possible, leave DistC[i] as is.

3. Determine the most suitable combination (based on a defined heuristic) to be added to the
Base vector. Set the Dist vector with the DistC vector of the selected combination.

4. If any element Dist[i] = 1, this means that the ith row of M can be implemented by adding
two elements of the Base vector. Check every pair of elements in the Base vector to determine
which pair when summed will be equal to the ith row of M . Once this pair has been found,
set Dist[i] to 0.

5. Repeat until Dist[i] = 0 for all i.

The steps of Boyar-Peralta’s algorithm can be illustrated as given in the flowchart of Figure 1.

6



Start

Initialize Base vector with n inputs and
Dist vector with HW− 1 for each row

• Generate
(
n
2

)
combinations of Base

vector and compute the sum
• Create copy of Dist vector called DistC

for each combination

For each combination,
check if possible to
implement ith row
using DistC[i]− 1

Base elements if the
combination is added

to the Base vector

DistC[i] = DistC[i] − 1

• Determine the most suitable
combination to be inserted into Base

• Update Dist with corresponding DistC

• Find all Dist[i] = 1 and determine the
pair of elements in Base that sum to
the ith row of M

• Set Dist[i] = 0

Check if all
Dist[i] = 0 Finish

Yes

No

YesNo

Fig. 1: Basic work-flow of Boyar-Peralta’s algorithm

Remark 1. Dist[i] + 1 at each step of the Boyar-Peralta’s algorithm contains the number of
elements of the Base vector which need to be summed to equal to the ith row of M .

Example 2 (Working example of Boyar-Peralta’s algorithm). Consider the same 5 × 5 binary
matrix from Example 1. The step-by-step execution of the Boyar-Peralta’s algorithm with the
RNBP [23] heuristic used in step 3 of the algorithm is as follows. The most suitable candidate to
be added to the Base vector is chosen based on the L1 and squared L2 norm of the corresponding

7



DistC vector. Specifically, the L1 norm is minimized and ties are broken by maximizing the
squared L2 norm. If multiple candidates pass the initial filter, one of them is randomly chosen.

1. Initial situation:

• Base = [x0, x1, x2, x3, x4]
• Dist = [0, 0, 2, 2, 2]
• SLP:

 y0 = x0

 y1 = x1

2. Iteration 1:

• Pick all
(
n
2

)
combinations of Base vector and compute the corresponding DistC vectors.

• Ideal candidate: t0 = x0 ⊕ x1
• Base = [x0, x1, x2, x3, x4, x0 ⊕ x1]
• Dist = [0, 0, 1, 1, 1]
• SLP:

 y0 = x0

 y1 = x1

 t0 = x0 + x1

3. Iteration 2:

• Since Dist[2] = 1, y2 is implemented
• Base = [x0, x1, x2, x3, x4, x0 ⊕ x1, x0 ⊕ x1 ⊕ x2]
• Dist = [0, 0, 0, 1, 1]
• SLP:

 y0 = x0

 y1 = x1

 t0 = x0 + x1

 y2 = x2 + t0

4. Iteration 3:

• Since Dist[3] = 1, y3 is implemented
• Base = [x0, x1, x2, x3, x4, x0 ⊕ x1, x0 ⊕ x1 ⊕ x2, x0 ⊕ x1 ⊕ x3]
• Dist = [0, 0, 0, 0, 1]
• SLP:

 y0 = x0

 y1 = x1

 t0 = x0 + x1

 y2 = x2 + t0

 y3 = x3 + t0

5. Iteration 4:

• Since Dist[4] = 1, y4 is implemented
• Base = [x0, x1, x2, x3, x4, x0 ⊕ x1, x0 ⊕ x1 ⊕ x2, x0 ⊕ x1 ⊕ x3, x0 ⊕ x1 ⊕ x4]
• Dist = [0, 0, 0, 0, 0], so the algorithm terminates after this step
• SLP:

 y0 = x0

 y1 = x1

 t0 = x0 + x1

 y2 = x2 + t0

 y3 = x3 + t0

 y4 = x4 + t0

8



Table 3: Exemplary execution of Boyar-Peralta’s algorithm

Candidate Base Elements DistC ‖DistC‖1 ‖DistC‖22
t0 = x0 ⊕ x1 [0, 0, 1, 1, 1] 3 3

t1 = x0 ⊕ x2 [0, 0, 1, 2, 2] 5 9

t2 = x0 ⊕ x3 [0, 0, 2, 1, 2] 5 9

t3 = x0 ⊕ x4 [0, 0, 2, 2, 1] 5 9

t4 = x1 ⊕ x2 [0, 0, 1, 2, 2] 5 9

t5 = x1 ⊕ x3 [0, 0, 2, 1, 2] 5 9

t6 = x1 ⊕ x4 [0, 0, 2, 2, 1] 5 9

t7 = x2 ⊕ x3 [0, 0, 2, 2, 2] 6 12

t8 = x2 ⊕ x4 [0, 0, 2, 2, 2] 6 12

t9 = x3 ⊕ x4 [0, 0, 2, 2, 2] 6 12

Choice of Heuristic. In Step 3 of Boyar-Peralta’s algorithm, a heuristic is to be chosen to
break the tie among multiple candidates which give the equal cost reduction. In the original
Boyar-Peralta’s algorithm [12], maximisation of Euclidean norm on Dist vector is taken (we skip
the justification given in [12] for brevity). Therefore, for multiple Dist vectors which equal sum,
the algorithm picks that one which maximises the Euclidean norm.

This maximisation heuristic is followed as-is in [9, 23]. However, it is argued in [20] that the
minimisation of the same will work just fine. Following this, we run both the maximisation and
minimisation variants in our algorithm independently of one another.

Role of reachable() Function. The existing literature [9, 12, 23] tend to overly explain the
initial part of the Boyar-Peralta’s algorithm (upto the maximisation of Euclidean norm), whereas
the later part that contains the reachable() function seems to be overlooked in the textual
description. The concept of reachable() is arguably more difficult. So, we present a short
description here for the sake of completeness and better understanding of the algorithm.

The reachable() function of the Boyar-Peralta’s algorithm determines whether its possible
to implement the ith row of a binary matrix with a new pair of Base vector elements using
Dist[i]− 1 XOR2 operations. For example, consider the following from the first row of the AES

MixColumn matrix (following the encoding used in, e.g., [9]): y0 ← x7 ⊕ x8 ⊕ x15 ⊕ x16 ⊕ x24 The
initial Base vector contains 32 elements, i.e, x0, . . . , x31; and the distance of the first row is 4
since it can be trivially implemented using 4 XOR2 gates. Given a new pair t0 ← x7 ⊕ x8 of
the Base vector, the reachable() function returns true since the first row can be implemented
with three XOR2 gates: y0 ← t0 ⊕ x15 ⊕ x16 ⊕ x24. However, the reachable() returns false for
the pair t1 ← x1 ⊕ x3 since the number of XOR2 gates required to implement the row does not
reduce if this pair is chosen. Once the new distance corresponding to all possible

(
n
2

)
pairs of the

initial Base vector is computed, the optimal candidates that are to be added to the augmented
Base vector is determined using the chosen heuristic (like RNBP [23]).

3.2 Variants of Boyar-Peralta’s Algorithm

In the last couple of years, three variants of the original Boyar-Peralta’s algorithm are proposed
in the literature [9, 20,23]. The authors of [9] use random row and column permutations of the
target matrix before feeding to the original Boyar-Peralta’s algorithm. They report a b1 cost
of 95. In another direction, the authors of [23] proposed three types of randomisation, all are

9



internal to the algorithm and the least b1 cost reported is 943. The best implementation using
the Boyar-Peralta’s algorithm family is reported in [20] with a b1 cost of 92.

4 XOR3 (b2) Support for Boyar-Peralta’s Algorithm

To the best of our knowledge, the only attempt on b2 is reported in [9], where the authors
use a post processing on the output of the algorithm that returns XOR2 implementation. This
algorithm (see Section 4.1 for a concise description), with some amendments is implemented in
the overall open-source package we deliver.

4.1 Modelling for XOR3 (Adopted)

The basic idea of XOR3 support in the IWSEC’19 paper by Banik, Funabiki, Isobe [9] can be
thought of as a post-processing to the original Boyar-Peralta’s algorithm. It can be concisely
described as follows.

Start with the sequence of SLPs returned by the original Boyar-Peralta’s algorithm (the
matrix is fed to the algorithm after the rows and columns are given random permutations). Then
look for an instance where a t variable has the fan-out of 1. For example, assume a snippet of a
sequence of SLPs looks like this:

 t4 = x0 + x6 // t4 has fan-out of 1

 t20 = x1 + t4 // t20 is the only variable that uses t4

Then, it can be rewritten by introducing an XOR3 operation as:

 // t4 = x0 + x6 (omitted)

 t20 = x1 + x0 + x6 // t4 is substituted, t20 uses an XOR3 operation

Therefore, one SLP is omitted where the LHS variable has fan-out of 1. The other variable
which uses the variable is now substituted with the RHS of the omitted SLP, thereby introducing
an XOR3 operation. In this way, multiple (if not all) such variables with 1 fan-out can be
substituted. As it can be seen, it does not take into account the cost vector for XOR2, XOR3.
Thus, it is going to give the same implementation no matter the costs for XOR2 and XOR3.

One thing to note, it may not be always possible to substitute SLPs just like that. For instance,
consider the following snippet:

 t84 = t0 + t13 // t84 has fan-out of 1

 t85 = x13 + t10 // t85 has fan-out of 1

 y7 = t84 + t85 // Either t84 or t85 (but not both) can be substituted

Here, either of the t variables can be substituted, but not both (substituting both would lead to
an XOR4 operation). Either of the implementation will result in equal cost, but the depth may
vary. In our source-code that implements this algorithm, we explore both cases and pick the one
with the least depth (tie is broken arbitrarily).

3It may be stated that, we are unable to reduce the cost of AES MixColumn from 95 XOR2 gates by using the
source-code for all the three variants (RNBP, A1, A2) presented in [23], despite dedicated efforts. Apparently, the
case of 94 XOR2 gates reported in [23] happens with a low probability.

10



4.2 Modelling for XOR3 (New)

Suppose a cost vector with costs for XOR2 and XOR3 is given. Initialization of the Base vector
and Dist vector is identical to the original algorithm (described in Section 3.1). The following
steps highlight the changes made:

1. Generate all
(
n
2

)
pairs and

(
n
3

)
triplets of the Base vector elements and compute the XOR.

The pairs represent XOR2 combinations and the triplets represent XOR3 combinations. For
each combination, assign the corresponding cost from the cost vector.

2. For each of the XOR2 combinations, determine whether it is possible to reduce DistC[i] by
1. Similarly, for each of the XOR3 combinations, first check it is possible to reduce DistC[i]
by 2; if it is not, then check if DistC[i] can be reduced by 1. If DistC[i] cannot be changed,
leave it as-is.

3. Based on the defined heuristic, determine the most suitable combination to be included to
the Base vector. Unlike the original Boyar-Peralta’s algorithm, the heuristic would account
for the distance vector, DistC; and the cost of the combination.

4. If Dist[i] = 1 or Dist[i] = 2, then the ith row of M can be implemented by adding two or
three elements of the Base vector respectively, i.e., either XOR2 or XOR3 operations. Check
every pair/triplet of the Base vector to determine the elements which sum to M [i]. Once
these elements have been found, set Dist[i] to 0, and include M [i] to the Base vector.

5. Repeat until Dist[i] = 0 for all i.

Remark 2. The Boyar-Peralta’s algorithm assumes that the cost of XOR2 gates is 1. Therefore,
to incorporate XOR3 support, XOR3 cost needs to be taken relative to XOR2 (so that the cost
for XOR2 remains at 1).

Remark 3. Because of the way the EasyMove() function in Boyar-Peralta’s algorithm is imple-
mented, an additional hard check (that allows any XOR3 gate only if its cost is less than or equal
to 2× XOR2 gate) would possibly be required. Otherwise, if the Hamming weight of a row is 2,
the algorithm would always pick an XOR3 gate even if it costs more than 2× XOR2 gate. In our
current implementation, a warning is given if XOR3 is greater than 2× XOR2.

Remark 4. In a similar way, it is possible to extend the support for XOR4 (and even higher
input XOR gates). This is an interesting research direction, but we skip it here for brevity. Also,
support for higher input XOR gates would make the program taking considerably longer time.

As the source code for [23] is available online4, we decide to implement our approach (which
is described in Section 4.2) on top of it. We choose the RNBP variant due to its efficiency over
the other variants proposed in [23].

4.3 Other Aspects Considered

In addition to the incorporation of two types of XOR3 support, the following amendments are
incorporated in our source-code:

• We make continuous numbering for the temporary variables. This appears not to be the case
for the previous works [9, 12,23].

4At https://github.com/thomaspeyrin/XORreduce.

11

https://github.com/thomaspeyrin/XORreduce


• Due to the way the Boyar-Peralta’s algorithm is implemented, it skips the rows of the given
matrix if the Hamming weight is 1 (as the XOR2 implementation is trivial in this case). While
the justification is correct, it leads to a wrong SLP sequence in this case. We fix this issue.

• As already noted, we make the following enhancements:
◦ Make use of the randomisation inside the algorithm (namely, RNBP) which is proposed

in [23], as well as the row-column permutation of the matrix before feeding it to the
algorithm which is proposed in [9].
◦ Instead of only the tie-breaker based on maximisation of the Euclidean norm (which is

the case for [9, 12, 23]); we also implement the same but with minimisation, following [20].
◦ XOR3 support which is proposed in [9] is available as a native interface (with our

implementation of the algorithm, as the source-code for [9] is not publicly available). Aside
from that, we implement the minimisation tie-breaker. Also we check for depth for all
possible implementations with the same cost (see Section 4.1 for more details).

• We provide an easy-to-use Python interface to generate SLPs and the entire package is
available as an open-source project. The user is notified when a least cost is obtained and all
the relevant results are stored in separate files. The maximum and minimum tie-breakers are
internally supported with two threads in the program.

5 Results

In this part, we present a summary of the experimental results. Here x’s and y’s are the Boolean
variables which respectively indicate the input variables and the output variables. An arbitrary
number of temporary variables, t’s, are created on-the-fly (those are required since this is not an
in-place algorithm) to produce the SLP. So, the RHS can contain all variables while the LHS can
only have the t and y variables. Given the binary matrix Mm×n, Xn×1 = vector of x’s, Y m×1 =
vector of y’s, then it holds that Y = MX. In all the examples that follow, we only take square
matrices, i.e., m = n. Least costs with respect to the five libraries (described in Section 2.4) and
depth (described in Section 2.3) are given hereafter.

5.1 16 × 16 Matrices

In general, the execution for the binary 16×16 matrices is quite fast in our implementation. Table
4 shows consolidated results for few well-known ciphers. All the results reported can be obtained
by our implementation, though some are already reported in [9]. The highlighted entries mark
the least cost in the respective category, which are reported for the first time in the literature.

Table 4: Implementations of few 16× 16 matrices in b2
Matrix GC ASIC1 ASIC2 ASIC3 ASIC4

JOLTIK-BC [15] 28 (6, 22) 83.0 (9, 20) 91.14 (16, 16) 106.5 (9, 20) 122.50 (6, 22)

MIDORI [8] 16 (0, 16) 45.0 (16, 4) 46.56 (16, 4) 56.8 (16, 4) 71.92 (16, 4)

PRINCE M0, M1 [11] 16 (0, 16) 45.0 (16, 4) 46.56 (16, 4) 56.8 (16, 4) 71.92 (16, 4)

PRIDE L0 – L3 [1] 16 (0, 16) 45.0 (16, 4) 46.56 (16, 4) 56.8 (16, 4) 71.92 (16, 4)

QARMA-64 [2] 16 (0, 16) 45.0 (16, 4) 46.56 (16, 4) 56.8 (16, 4) 71.92 (16, 4)

SMALLSCALE-AES [13] 24 (0, 24) 78.0 (0, 24) 85.93 (19, 13) 100.8 (0, 24) 111.84 (0, 24)

Number of (XOR2, XOR3) gates are given within parenthesis

The algorithm for XOR3 support in [9] (Section 4.1) only allows for a fixed implementation
disregarding the costs for XOR2 and XOR3 gates. In contrast, the new idea we present here takes

12



into account the relative costs and returns various implementations. One such example is given,
which is the case of the JOLTIK-BC linear layer in Codes 1.1 and 1.2 each as a sequence of SLPs
(both are indicated in Table 4). The former implementation has the least cost so far for ASIC1
(83.0 GE, with 9 XOR2 and 20 XOR3), and has the depth of 5; the latter gives the least cost so
far for GC (28) and ASIC4 (122.50 GE, with 6 XOR2 and 22 XOR3), and has the depth of 7.

Code 1.1: JOLTIK-BC linear layer in b2 (83.0 GE in ASIC1) in SLP format

 t0 = x8 + x13 + x12

 y3 = x5 + x3 + t0

 t2 = x0 + x4 + x1

 y15 = x9 + x15 + t2

 t4 = x9 + t0

 t5 = x14 + x2 + t0

 y5 = x11 + y3 + t5

 t7 = x5 + t2

 t8 = x2 + x10 + x12

 y12 = t7 + t8

 t10 = x4 + x2 + t4

 y4 = x10 + t10

 t12 = x7 + t4

 y7 = x13 + x1 + t12

 y9 = x15 + t5 + t12

 t15 = x6 + x13 + x10

 y13 = x3 + x11 + t15

 y8 = t5 + y12 + t15

 t18 = x14 + x0 + t4

 y0 = x6 + t18

 t20 = x11 + t12

 y2 = x12 + t10 + t20

 y11 = t7 + y7 + t20

 y14 = x8 + t18 + t20

 t24 = y3 + y12 + t10

 y10 = y15 + t24

 t26 = x15 + t4 + t15

 y6 = x1 + t24 + t26

 y1 = y7 + t26

Code 1.2: JOLTIK-BC linear layer in b2 (28 GC, 122.50 GE in ASIC4) in SLP format

 t0 = x5 + x4 + x0

 y11 = x13 + x11 + t0

 t2 = x8 + x9 + x12

 y7 = x1 + x7 + t2

 t4 = x1 + t0

 t5 = x13 + t2

 t6 = x10 + x6 + t0

 y13 = x3 + y11 + t6

 t8 = x5 + x9

 y15 = x15 + t4 + t8

 y3 = x3 + t5 + t8

 t11 = x14 + x9 + x2

 y9 = x15 + x7 + t11

 t13 = x14 + x6

 y0 = x0 + t5 + t13

 y8 = x8 + t4 + t13

 t16 = x14 + y0 + y8

 y14 = y11 + y7 + t16

 t18 = t0 + t2 + t11

 y12 = t6 + y8 + t18

 y5 = y11 + y3 + t18

 y2 = x5 + y14 + t18

 t22 = y15 + t13 + t16

 y6 = y3 + t22

 t24 = t6 + t8

 y1 = x7 + y15 + t24

 y10 = t2 + y6 + t24

 y4 = t11 + y0 + t24

5.2 32 × 32 Matrices

Similar to the 16 × 16 matrices, we now show the summarised results for the 32 × 32 binary
matrices in Table 5, while the results reported for the first time are highlighted (the rest are the
state-of-the-art results and reported in [9]). It is to be noted that, we achieve improvement for
GC for all the matrices we experiment with.

In terms of the AES MixColumn matrix (with encoding compatible to that of [23]), our best
result is of 59 GC (12 XOR2 and 47 XOR3 gates), depth 4; which is given in Code 1.3. This
improves from the 67 GC, depth 6 implementation of [9] (all the implementations obtained have a
depth of 6). Note that the same implementation also gives the least known cost for ASIC4 (258.98
GE, which is an improvement from [9]). A graphical representation for this implementation
grouping variables at same depth in the same column is given in Figure 2. Further, an improved

13



Table 5: Implementations of few 32× 32 matrices in b2
Matrix GC ASIC1 ASIC2 ASIC3 ASIC4

AES 59 (12, 47) 169.0 (39, 28) 181.28 (39, 28) 215.1 (39, 28) 258.98 (12, 47)

ANUBIS [10] 62 (11, 51) 185.0 (60, 20) 193.16 (60, 20) 234.0 (60, 20) 274.29 (11, 51)

CLEFIA M0 [22] 62 (13, 49) 185.0 (60, 20) 193.16 (60, 20) 234.0 (60, 20) 271.63 (13, 49)

CLEFIA M1 [22] 65 (3, 62) 193.0 (38, 36) 209.00 (38, 36) 246.2 (38, 36) 294.30 (38, 36)

TWOFISH [21] 73 (17, 56) 215.5 (20, 54) 240.23 (20, 54) 276.8 (20, 54) 317.57 (17, 56)

Number of (XOR2, XOR3) gates are given within parenthesis

implementation of TWOFISH [21] linear layer is given in Code 1.4; which incurs a GC cost of 73,
ASIC4 cost of 317.57 GE, and depth of 9.

Code 1.3: AES MixColumn in b2 with 59 GC/depth 4 in SLP format

 t0 = x8 + x16

 t1 = x24 + x0

 t2 = x28 + x24 + x16

 t3 = x12 + x8 + x0

 t4 = x22 + x14 + x7

 t5 = x23 + x6 + x30

 t6 = x20 + x27 + x3

 y19 = x11 + t2 + t6

 t8 = x11 + x4 + x19

 y3 = x27 + t3 + t8

 t10 = x13 + x20 + x28

 y4 = x5 + t3 + t10

 t12 = x12 + x4 + x29

 y20 = x21 + t2 + t12

 t14 = x18 + x26 + x11

 y2 = x10 + x3 + t14

 y10 = x2 + x19 + t14

 t17 = x18 + x10 + x27

 y18 = x11 + y10 + t17

 y26 = x3 + x2 + t17

 t20 = x22 + x5 + x29

 y21 = x13 + x30 + t20

 y13 = x14 + x21 + t20

 t23 = x18 + x1 + x25

 y9 = x10 + x17 + t23

 y17 = x9 + x26 + t23

 t26 = x6 + x21 + x29

 y29 = x22 + y21 + t26

 y5 = x13 + x14 + t26

 t29 = x24 + x16 + x31

 y23 = x7 + x15 + t29

 y22 = x14 + t5 + t29

 t32 = x2 + y9 + y17

 y25 = x10 + x1 + t32

 y1 = x26 + x25 + t32

 t35 = x8 + x15 + x0

 y6 = x30 + t4 + t35

 y7 = x23 + x31 + t35

 t38 = x23 + t1 + y23

 y15 = t35 + t38

 y31 = t29 + t38

 t41 = x17 + x16 + t1

 y16 = x25 + t0 + t41

 y8 = x9 + t41

 t44 = x1 + x0 + t0

 y0 = x9 + t1 + t44

 y24 = x25 + t44

 t47 = t1 + y6 + y7

 y30 = t5 + t47

 t49 = x4 + x21 + t10

 y12 = t0 + t49

 t51 = x19 + t0 + t6

 y11 = x12 + t51

 t53 = x20 + x5 + t1

 y28 = t12 + t53

 t55 = x28 + x3 + t1

 y27 = t8 + t55

 t57 = t0 + y23 + y22

 y14 = t4 + t57

6 Conclusion

With the renewed interest in the Boyar-Peralta’s algorithm [12] in the last couple of years, our
work combines existing ideas about the algorithm atop our own idea of incorporating XOR3
support in it. We take an open-source implementation of the algorithm (provided by the authors
of [23]), make several changes to reflect the state-of-the-art observations [9,20], and finally deliver a
complete package as an easy-to-use and versatile open-source project (that contains our algorithm
for XOR3 support).

Our work achieves the best known results in terms of a logic library comprising of {XOR2,
XOR3} gates, several of which are reported for the first time (the rest results that are reported
here are tied with [9]). For instance, we present an implementation of the AES MixColumn matrix
with 59 gate count/4 depth/258.98 GE in STM 130nm process (ASIC4). We are optimistic, these
results can be improved further with more runs of our implementation.

14



x8

x16

t0

x24

x0

t1

x28

t2

x12

t3

x22

x14

x7

t4

x23

x6

x30

t5

x20

x27

x3

t6

x11

y19

x4

x19

t8

y3

x13

t10

x5

y4

x29

t12

x21

y20

x18

x26

t14

x10

y2

x2

y10

t17

y18

y26

t20

y21

y13

x1

x25

t23

x17

y9

x9

y17

t26

y29

y5

x31

t29

x15

y23

y22

t32

y25

y1

t35

y6

y7

t38

y15

y31

t41

y16

y8

t44

y0

y24

t47 y30

t49

y12

t51

y11

t53

y28

t55

y27

t57

y14

Fig. 2: AES linear layer (MixColumn) in b2 with 59 GC/depth 4 in graphical form

In the future scope, a number of works can be undertaken. First, we may consider the XNOR
gates in the library. Higher input XOR gates (XOR4 and beyond) can be incorporated. It may
be of interest to optimise the depth for the implementation, as far we know there is no dedicated
work in the literature for studying this metric. The cost for inverse of the matrices for the given
libraries may be an interesting direction to study as well. One may also be interested in finding a
reversible implementation together with XOR3 support.

References

1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçin, T.: Block ciphers - focus on
the linear layer (feat. PRIDE). In: Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I. pp. 57–76 (2014), https:
//doi.org/10.1007/978-3-662-44371-2_4 12

2. Avanzi, R.: The QARMA block cipher family. almost MDS matrices over rings with zero divisors, nearly
symmetric even-mansour constructions with non-involutory central rounds, and search heuristics for low-latency
s-boxes. IACR Trans. Symmetric Cryptol. 2017(1), 4–44 (2017), https://doi.org/10.13154/tosc.v2017.i1.
4-44 12

3. Baksi, A., Jang, K., Song, G., Seo, H., Xiang, Z.: Quantum implementation and resource estimates for rectangle
and knot. Cryptology ePrint Archive, Report 2021/982 (2021), https://ia.cr/2021/982 4

4. Baksi, A., Karmakar, B., Dasu, V.A.: Poster: Optimizing device implementation of linear layers with automated
tools. In: Zhou, J., Ahmed, C.M., Batina, L., Chattopadhyay, S., Gadyatskaya, O., Jin, C., Lin, J., Losiouk, E.,

15

https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://ia.cr/2021/982


Code 1.4: TWOFISH linear layer in b2 (73 GC, 317.57 GE in ASIC4) in SLP format

 t0 = x8 + x9 + x17

 t1 = x0 + x25 + x1

 t2 = x24 + x8 + x16

 t3 = x19 + x27 + t2

 t4 = x31 + x23 + x15

 t5 = x26 + x2 + t1

 y16 = x10 + t2 + t5

 t7 = x12 + x20 + x0

 t8 = x18 + x17 + y16

 y24 = x25 + x10 + t8

 t10 = x30 + x14 + t2

 t11 = x13 + x29 + x21

 t12 = x22 + x6 + t10

 y6 = x15 + t12

 t14 = x28 + x4 + x16

 t15 = x16 + x7 + t4

 y31 = x17 + t1 + t15

 y15 = x1 + t0 + t15

 y23 = t0 + t2 + y31

 t19 = x9 + x1 + t8

 y8 = x26 + x25 + t19

 t21 = x11 + t3 + t11

 y3 = x12 + x3 + t21

 t23 = x24 + t7 + t14

 t24 = x5 + y3 + t23

 t25 = x9 + t12 + t23

 t26 = x0 + x23 + y6

 y22 = t15 + t26

 y14 = x24 + t26

 t29 = x5 + t11

 t30 = x27 + t8 + t14

 t31 = x25 + t0 + t4

 y5 = x14 + t29 + t31

 y7 = x7 + t31

 t34 = x11 + t19 + t23

 y2 = x4 + t34

 t36 = x5 + t1 + t25

 y20 = x22 + x29 + t36

 t38 = x13 + y15 + t25

 y4 = x6 + y23 + t38

 t40 = x3 + t0 + t5

 t41 = x27 + x11 + t40

 y17 = x24 + t41

 t43 = x26 + x18 + t3

 y25 = t40 + t43

 t45 = x22 + x31 + y5

 y13 = y15 + t31 + t45

 t47 = x3 + t30

 y26 = x20 + t3 + t47

 y18 = x12 + t0 + t47

 t50 = y6 + y31

 y29 = t10 + t29 + t50

 y21 = x25 + t45 + t50

 t53 = t5 + y8

 y0 = x17 + t1 + t53

 t55 = x24 + x21

 y19 = x20 + t24 + t55

 t57 = x11 + t43 + t53

 y1 = t2 + t57

 t59 = x13 + t2 + t24

 y27 = x28 + t59

 t61 = x8 + x15 + t26

 y30 = x7 + t61

 t63 = x29 + t14 + t24

 y11 = x12 + t63

 t65 = t0 + t36 + t55

 y28 = x14 + t65

 t67 = x12 + y16 + t34

 y9 = y24 + y26 + t67

 t69 = x19 + t1 + y2

 y10 = x0 + t14 + t69

 t71 = x30 + x21 + t38

 y12 = x9 + t15 + t71

Luo, B., Majumdar, S., Maniatakos, M., Mashima, D., Meng, W., Picek, S., Shimaoka, M., Su, C., Wang, C.
(eds.) Applied Cryptography and Network Security Workshops. pp. 500–504. Springer International Publishing,
Cham (2021) 1

5. Baksi, A., Karmakar, B., Dasu, V.A., Saha, D., Chattopadhyay, A.: Further insights on implementation of the
linear layer. In: SILC Workshop-Security and Implementation of Lightweight Cryptography (2021) 1

6. Baksi, A., Karmakar, B., Dasu, V.A., Saha, D., Chattopadhyay, A.: Further insights on implementation of the
linear layer. SILC Workshop – Security and Implementation of Lightweight Cryptography (2021), https://www.
esat.kuleuven.be/cosic/events/silc2020/wp-content/uploads/sites/4/2020/10/Submission1.pdf 4

7. Baksi, A., Pudi, V., Mandal, S., Chattopadhyay, A.: Lightweight ASIC implementation of AEGIS-128 pp.
251–256 (2018), https://doi.org/10.1109/ISVLSI.2018.00054 6

8. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regazzoni, F.: Midori: A
block cipher for low energy (extended version). Cryptology ePrint Archive, Report 2015/1142 (2015), https:
//eprint.iacr.org/2015/1142 12

9. Banik, S., Funabiki, Y., Isobe, T.: More results on shortest linear programs. Cryptology ePrint Archive, Report
2019/856 (2019), https://eprint.iacr.org/2019/856 1, 2, 5, 6, 9, 10, 11, 12, 13, 14

10. Barreto, P.S.L.M., Rijmen, V.: The anubis block cipher (2000), Submission to NESSIE project. Available at
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/anubis.zip 14

11. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V.,
Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - A low-latency block cipher for
pervasive computing applications - extended abstract. In: Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings. pp. 208–225 (2012), https://doi.org/10.1007/978-3-642-34961-4_14 12

12. Boyar, J., Peralta, R.: A new combinational logic minimization technique with applications to cryptology. In:
Experimental Algorithms, 9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22,
2010. Proceedings. pp. 178–189 (2010), https://doi.org/10.1007/978-3-642-13193-6_16 1, 2, 5, 6, 9, 11,
12, 14

13. Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the AES. In: Gilbert, H., Handschuh, H.
(eds.) Fast Software Encryption: 12th International Workshop, FSE 2005, Paris, France, February 21-23,

16

https://www.esat.kuleuven.be/cosic/events/silc2020/wp-content/uploads/sites/4/2020/10/Submission1.pdf
https://www.esat.kuleuven.be/cosic/events/silc2020/wp-content/uploads/sites/4/2020/10/Submission1.pdf
https://doi.org/10.1109/ISVLSI.2018.00054
https://eprint.iacr.org/2015/1142
https://eprint.iacr.org/2015/1142
https://eprint.iacr.org/2019/856
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/anubis.zip
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-13193-6_16


2005, Revised Selected Papers. Lecture Notes in Computer Science, vol. 3557, pp. 145–162. Springer (2005),
https://doi.org/10.1007/11502760_10 12

14. Dasu, V.A., Baksi, A., Sarkar, S., Chattopadhyay, A.: LIGHTER-R: optimized reversible circuit implementation
for sboxes. In: 32nd IEEE International System-on-Chip Conference, SOCC 2019, Singapore, September 3-6,
2019. pp. 260–265 (2019), https://doi.org/10.1109/SOCC46988.2019.1570548320 4

15. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1.3 (2015), Submission to the CAESAR competition, http://www1.
spms.ntu.edu.sg/~syllab/Joltik 3, 12

16. Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of lightweight building blocks. IACR
Trans. Symmetric Cryptol. 2017(4), 130–168 (2017), https://doi.org/10.13154/tosc.v2017.i4.130-168 3

17. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-optimal SPN structures
and components with a fair comparison. In: Cryptographic Hardware and Embedded Systems - CHES 2014 -
16th International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings. pp. 433–450 (2014),
https://doi.org/10.1007/978-3-662-44709-3_24 3

18. Kölsch, L.: Xor-counts and lightweight multiplication with fixed elements in binary finite fields. In: Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I. pp. 285–312 (2019),
https://doi.org/10.1007/978-3-030-17653-2_10 3

19. Lin, D., Xiang, Z., Zeng, X., Zhang, S.: A framework to optimize implementations of matrices. In: Paterson,
K.G. (ed.) Topics in Cryptology - CT-RSA 2021 - Cryptographers’ Track at the RSA Conference 2021, Virtual
Event, May 17-20, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12704, pp. 609–632. Springer
(2021), https://doi.org/10.1007/978-3-030-75539-3_25 2, 4, 5

20. Maximov, A.: Aes mixcolumn with 92 xor gates. Cryptology ePrint Archive, Report 2019/833 (2019), https:
//eprint.iacr.org/2019/833 2, 4, 5, 9, 10, 12, 14

21. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Twofish: A 128-bit block cipher
(1998), https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf 3, 14

22. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher clefia (extended abstract).
In: Biryukov, A. (ed.) Fast Software Encryption. pp. 181–195. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007) 14

23. Tan, Q.Q., Peyrin, T.: Improved heuristics for short linear programs. Cryptology ePrint Archive, Report
2019/847 (2019), https://eprint.iacr.org/2019/847 2, 4, 5, 7, 9, 10, 11, 12, 13, 14

24. Xiang, Z., Zeng, X., Lin, D., Bao, Z., Zhang, S.: Optimizing implementations of linear layers. Cryptology
ePrint Archive, Report 2020/903 (2020), https://eprint.iacr.org/2020/903 2, 3, 4, 5

17

https://doi.org/10.1007/11502760_10
https://doi.org/10.1109/SOCC46988.2019.1570548320
http://www1.spms.ntu.edu.sg/~syllab/Joltik
http://www1.spms.ntu.edu.sg/~syllab/Joltik
https://doi.org/10.13154/tosc.v2017.i4.130-168
https://doi.org/10.1007/978-3-662-44709-3_24
https://doi.org/10.1007/978-3-030-17653-2_10
https://doi.org/10.1007/978-3-030-75539-3_25
https://eprint.iacr.org/2019/833
https://eprint.iacr.org/2019/833
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
https://eprint.iacr.org/2019/847
https://eprint.iacr.org/2020/903

	Three Input Exclusive-OR Gate Support For Boyar-Peralta's Algorithm

