
Guide to
Fully Homomorphic Encryption

over the [Discretized] Torus

Marc Joye

Zama, France
https://zama.ai

Version 2.6
October 14, 2021

https://zama.ai

Abstract

First posed as a challenge in 1978 by Rivest et al. [RAD78], fully homomor-
phic encryption—the ability to evaluate any function over encrypted data—
was only solved in 2009 in a breakthrough result by Gentry [Gen09, Gen10].
After a decade of intense research, practical solutions have emerged and are
being pushed for standardization.

This guide is intended to practitioners. It explains the inner-workings
of TFHE [CGGI20], a torus-based fully homomorphic encryption scheme.
More exactly, it describes its implementation on a discretized version of
the torus. It also explains in detail the technique of the programmable
bootstrapping.

Contents
1 Definitions 4

1.1 Torus and Torus Polynomials . 4
1.2 Discretized Torus . 5
1.3 Notation . 6
1.4 Complexity Assumptions . 7

2 TLWE Encryption 8
2.1 Description . 8
2.2 Encoding/Decoding . 11
2.3 Implementation Notes . 12

3 TGLWE Encryption 13
3.1 Description . 13
3.2 Encoding/Decoding . 14
3.3 Implementation Notes . 14

4 Working over Encrypted Data 16
4.1 TLWE Ciphertexts . 16

4.1.1 Addition of ciphertexts . 16
4.1.2 Multiplication by a known constant 16
4.1.3 Multiplication of ciphertexts . 17

4.2 TGLWE Ciphertexts . 21
4.2.1 Addition of ciphertexts . 21
4.2.2 Multiplication by a known polynomial 21
4.2.3 Multiplication of ciphertexts . 22

4.3 Implementation Notes . 24

5 Programmable Bootstrapping 24
5.1 Gentry’s Recryption . 24
5.2 Bootstrapping . 25

5.2.1 Blind rotation . 27
5.2.2 Sample extraction . 29
5.2.3 Key switching . 30
5.2.4 Putting it all together . 31

5.3 Programmable Bootstrapping . 31

A From Private Key to Public Key 34

B Pseudo-Code 37

C Index to Notations 39

3

1 Definitions

1.1 Torus and Torus Polynomials

The letter ‘T’ in TFHE [CGGI20] refers to the real torus T = R/Z. Basically,
T is the set [0, 1) of real numbers modulo 1.

Any two elements of T can be added modulo 1: (T,+) forms an abelian
group. But it is important to observe that T is not a ring as the internal
product × of torus elements is not defined.

!
Torus T is not a ring. If T were a ring, one would have (a+ b)× c = a× c+ b× c

and a × (b + c) = a × b + a × c, where + and × are defined over the torus (i.e.,
where + and × respectively stand for the addition and the multiplication over the
real numbers modulo 1).

Example 1. Take for example a = 2
5
, b = 4

5
and c = 1

3
. Over T, we get (a+ b)× c =

1
5
× 1

3
= 1

15
and a× c+ b× c = 2

15
+ 4

15
= 6

15
, a contradiction.

The problem stems from the fact that 0 and 1 are equivalent as elements
of T. But viewing 0, 1 ∈ T, for any t ∈ T, we have 0× t = 0 while 1× t = t.

External product The external product • between integers and torus el-
ements is however well defined. Let k ∈ Z and t ∈ T. If k ⩾ 0, we
define

k • t = t+ · · ·+ t (k times) .

If k < 0, we define k • t = (−k) • (−t). Hence, for 0, 1 ∈ Z and t ∈ T, we have
0 •t = 0 ∈ T and 1 •t = t ∈ T. Mathematically, T is endowed with a Z-module
structure. For any k, l ∈ Z and a, b ∈ T, we have (k+ l) • a = k • a+ l • a

and k • (a+b) = k • a+k • b. Further, the external product is homogeneous:
for any k, l ∈ Z and t ∈ T, we have k • (l • t) = (kl) • t.

Example 2. Take k = 2, l = 3, a = 2
5

and b = 4
5
. We get (k + l) • a = 5 • 2

5
= 0

and k • a + l • a = 4
5
+ 1

5
= 0, as expected. We also get k • (a + b) = 2 • 1

5
= 2

5
and

k • a + k • b = 4
5
+ 3

5
= 2

5
. Finally, taking t = a = 2

5
, we get k • (l • t) = 2 • 1

5
= 2

5
and

(kl) • t = 6 • 2
5
= 2

5
, as expected.

Torus polynomials We can as well define polynomials over the torus. Let
Φ(X) denote the M-th cyclotomic polynomial (i.e., the unique irreducible
polynomial with integer coefficients that divides XM − 1 but not Xk − 1 for
any k < M) and let N denote its degree. For performance reasons, M is
chosen as a power of 2, in which case we have N = M/2 and Φ(X) = XN+1.

4

Considering the polynomial rings RN[X] := R[X]/(XN + 1) and ZN[X] :=

Z[X]/(XN + 1), this defines the ZN[X]-module

TN[X] := RN[X]/ZN[X] = T[X]/(XN + 1) .

Elements of TN[X] can therefore be seen as polynomials modulo XN+1 with
coefficients in T. Being a ZN[X]-module, elements in TN[X] can be added
together and externally multiplied by polynomials of ZN[X].

Example 3. If M = 4 (and so N = 2) then Φ(X) = X2 + 1 and, in turn, T2[X] =
T[X]/(X2 + 1) =

{
p(X) = p1X + p0

∣∣ p0, p1 ∈ T
}
. Take for example p(X) = 2

5
X + 1

3
,

q(X) = 4
5
X + 1

2
, and r(X) = 2X + 7. Then (p+ q)(X) = 1

5
X + 5

6
and (r • p)(X) =

4
5
X2+ 7

15
X+ 1

3
= −4

5
+ 7

15
X+ 1

3
= 7

15
X+ 8

15
. Recall that polynomials are defined modulo

X2 + 1 (and thus X2 ≡ −1).

1.2 Discretized Torus

Let B be an integer ⩾ 2. Any torus element t ∈ T can be written as
an infinite sequence of radix-B digits (t1, t2, . . .)B with tj ∈ {0, . . . , B − 1}

corresponding to the expansion t =
∑∞

j=1 tj •B
−j. In practice, torus elements

are not represented with an infinite number of digits. Elements are expanded
up to some finite precision. With a fixed-point approach, a torus element t

is written as

t =

w∑
j=1

tj • B−j with tj ∈ {0, . . . , B− 1}

for some w ⩾ 1. This representation limits the torus to the subset
B−wZ/Z ⊂ T with representatives in

{
0, 1

Bw ,
2
Bw , . . . ,

Bw−1
Bw

}
.

Example 4. Suppose B = 10. We have
√
2 mod 1 = 0.4142 . . . = 4 • 10−1 + 1 • 10−2 + 4 •

10−3 + 2 • 10−4 + · · · . With w = 3 digits,
√
2 mod 1 ≈ 414

103 is approximated by the torus
element 4 • 10−1 + 1 • 10−2 + 4 • 10−3.

Remark 1. In radix 2, letting w = Ω, we have t =
∑Ω

j=1 tj • 2−j. Param-
eter Ω is called the bit precision. Furthermore, the leading bit (i.e., t1)
is sometimes called the sign bit. Indeed, elements of T are real numbers
modulo 1. They can be viewed as unsigned real numbers in the range [0, 1)

or as signed real numbers in the range [−1
2
, 1
2
) = [−1

2
, 0) ∪ [0, 1

2
). Hence, if

the leading bit is set, the corresponding torus element can be interpreted as
a negative number; i.e., as a number in [−1

2
, 0).

Modern architectures typically have a bit precision of 32 or 64 bits;
i.e., Ω = 32 or 64. On such architectures, torus elements are restricted to
elements of the form

∑Ω
i=1 ti • 2−i (mod 1) with ti ∈ {0, 1}. Essentially, the

5

effect of working with a finite precision boils down to replacing T with the
submodule

Tq := q−1Z/Z ⊂ T where q = 2Ω .

The representatives of Tq are the set of fractions
{

i
q

mod 1
∣∣ i ∈ Z

}
=

{
i
q

∣∣
i ∈ Z/qZ

}
=

{
0, 1

q
, . . . , q−1

q

}
. Note that the discretization modulo q of the

torus is indicated by the subscript q in Tq. The submodule Tq ⊂ T forms
what is called a discretized torus.

!

For practical reasons, torus elements are not implemented with fractions, but rather
as elements modulo q by identifying Tq = 1

q
Z/Z with Z/qZ. In more details, given

two torus elements t = a
q
, u = b

q
∈ Tq, if v := t+u = c

q
∈ Tq then c ≡ a+b (mod q).

Likewise, for a torus element t = a
q
∈ Tq and a scalar k ∈ Z, if w := k • t = d

q
∈ Tq

then d ≡ ka (mod q). Computations over Tq can therefore be carried out entirely
with arithmetic modulo q, taking only the numerator into account.

Likewise, on the discretized torus Tq, we similarly define

TN,q[X] := Tq[X]/(X
N + 1) .

We also define ZN,q[X] := Zq[X]/(X
N+1) with Zq = Z/qZ. Viewing 1

q
as an

element in TN,q[X], any polynomial p ∈ TN,q[X] can be written as p= p • 1
q

for some polynomial p ∈ ZN,q[X]. Addition and external multiplication in
TN,q[X] are respectively denoted with ‘+’ and ‘•’.

1.3 Notation

It is useful to introduce some notation. If S is a set, a $← S indicates that a
is sampled uniformly at random in S. If D is a probability distribution,
a ← D indicates that a is sampled according to D. For a real number x,
⌊x⌋ denotes the largest integer ⩽ x, ⌈x⌉ denotes the smallest integer ⩾ x,
and ⌊x⌉ denotes the nearest integer to x.

Vectors are viewed as row matrices and are denoted with bold letters.
Elements in Z or T (resp. in Zq or Tq) are denoted with roman letters while
polynomials are denoted with calligraphic letters. B is the integer subset
{0, 1} and, for N a power of 2, BN[X] is the subset of polynomials in ZN[X]

with coefficients in B.

! Vectors are viewed as row matrices.
Further notations used throughout this document are listed in Appendix C.

6

Example 5. The vector v = (3, 4) ∈ Z2 is regarded as the row matrix (3 4) ∈ Z1×2, and
if A =

(
1 2
0 1

)
then vA = (3 10) = (3, 10).

1.4 Complexity Assumptions

In 2005, Regev [Reg05, Reg09] introduced the learning with errors problem
(LWE). Generalizations and extensions to ring structures were subsequently
proposed in [SSTX09, LPR10]. As originally stated in [CGGI20], the secu-
rity of TFHE relies on the hardness of torus-based problems [BLP+13, CS15]:
the LWE assumption and the GLWE assumption [BGV14, LS15] over the
torus.

We consider below similar definitions, but over the discretized torus.

Definition 1 (LWE problem over the discretized torus). Let q, n ∈ N and
let s = (s1, . . . , sn)

$← Bn. Let also χ̂ be an error distribution over q−1Z.
The learning with errors (LWE) over the discretized torus problem is
to distinguish the following distributions:

D0 =
{
(a, r) | a

$← Tq
n, r

$← Tq

}
and

D1 =
{
(a, r) | a = (a1, . . . , an)

$← Tq
n, r =

∑n
j=1 sj • aj + e, e← χ̂

}
.

Definition 2 (GLWE problem over the discretized torus). Let N,q, k ∈ N
with N a power of 2 and let s = (s1, . . . ,sk)

$← BN[X]
k. Let also χ̂ be an

error distribution over q−1ZN[X]; namely, over polynomials of q−1ZN[X]

with coefficients drawn according to χ̂. The general learning with errors
(GLWE) over the discretized torus problem is to distinguish the following
distributions:

D0 =
{
(a, r) | a

$← TN,q[X]
k, r

$← TN,q[X]
}

and

D1 =
{
(a, r) | a= (a1, . . . ,ak)

$← TN,q[X]
k,

r =
∑k

j=1 sj • aj + e, e← χ̂
}

.

The decisional LWE assumption (resp. the decisional GLWE as-
sumption) asserts that solving the LWE problem (resp. GLWE problem) is
infeasible for some security parameter λ, where q := q(λ), n := n(λ), and
χ̂ := χ̂(λ) (resp. N := N(λ), q := q(λ), k = k(λ), and χ̂ := χ̂(λ)).

!
Interestingly, identifying Tq with Zq = Z/qZ (resp. TN,q[X] with ZN,q[X]), it turns
out that the decisional LWE (resp. GLWE) assumption over the discretized torus is
equivalent to the standard decisional LWE (resp. GLWE) assumption.

7

Cryptographic parameters Table 1 lists typical cryptographic parameters to
be used for secure instances for the LWE and GLWE assumptions. The
error distribution χ̂ is induced by the normal distribution N(0, σ2), centered
in 0 and with variance σ2 (σ represents the standard deviation).

Table 1: Typical parameter sets for LWE and GLWE

LWE n = 630 N(0, σ2) with σ = 2−15

GLWE (N, k) = (1024, 1) N(0, σ2) with σ = 2−25

We recommend the reader to check the lwe-estimator script1 to find
concrete parameters for a given security level [APS15].

For an equivalent security level, a smaller value for parameter n (resp.
for (N, k)) should be compensated with a larger value for σ (i.e., less
concentrated noise).

2 TLWE Encryption

2.1 Description

Intuition The LWE assumption over the discretized torus essentially says
that a torus element r ∈ Tq constructed as r =

∑n
j=1 sj • aj + e cannot

be distinguished from a random torus element r ∈ Tq, even if the torus
vector (a1, . . . , an) ∈ Tq

n is known. Torus element r =
∑n

j=1 sj • aj + e can
therefore be used as a kind of one-time pad to conceal a “plaintext message”
µ ∈ Tq so as to form a ciphertext c = (a1, . . . , an, r + µ) ∈ Tq

n+1, where
s = (s1, . . . , sn) ∈ Bn plays the role of the private encryption key. The
reason why secret key s is chosen as a vector of bits is to have an efficient
implementation for the bootstrapping; see Section 5.

Only part of the torus is used to input plaintext messages. The plaintext
space is chosen as a proper additive subgroup P ⊂ Tq; specifically,

P =
{
0, 1

p
, . . . , p−1

p

}
for some integer p dividing q, p ⩾ 2. This allows for unique decryption,
provided that the noise present in the ciphertext is not too large. In
particular, with the above choice for P, if c = (a1, . . . , an, b) with b =

1https://bitbucket.org/malb/lwe-estimator/

8

https://bitbucket.org/malb/lwe-estimator/

∑n
j=1 sj • aj + µ+ e is an encryption of a plaintext µ ∈ P, plaintext µ can

be recovered in two steps as:

• compute µ∗ = b−
∑n

j=1 sj • aj (in Tq);

• return the closest plaintext in P.

TLWE encryption scheme Given the discretized torus Tq, the plaintext space
is set as an additive subgroup of Tq; i.e., P := p−1Z/Z = Tp ⊂ Tq for some
p dividing q. The discretized distribution χ̂ over q−1Z is induced by an
error distribution χ over R: a noise error e ← χ̂ is defined as e = e

q
with

e = round(qe0) ∈ Z for some e0 ← χ. The mask (a1, . . . , an) ∈ Tq
n of

a ciphertext is formed by drawing aj
$← Z/qZ and letting aj =

aj

q
, for

1 ⩽ j ⩽ n; the corresponding body b is given by b =
∑n

j=1 sj • aj + µ + e

where e← χ̂. The TLWE encryption of µ ∈ P is the vector (a1, . . . , an, b).

! A private-key encryption scheme is symmetric: the same key is used for both
encryption and decryption. Public-key variants are presented in Appendix A.

Formally, we get the following private-key encryption scheme.

TLWE Encryption

KeyGen(1λ) On input security parameter λ, define a positive inte-
ger n, select positive integers p and q such that p | q, and
define a discretized error distribution χ̂ over q−1Z induced by a
normal distribution χ = N(0, σ2) over R. Sample uniformly at
random a vector s = (s1, . . . , sn)

$← Bn. The plaintext space is
P = Tp ⊂ Tq. The public parameters are pp = {n, σ, p, q} and
the private key is sk = s.

Encryptsk(µ) The encryption of µ ∈ P is given by

c← TLWEs(µ) = (a1, . . . , an, b) ∈ Tq
n+1

with {
µ∗ = µ+ e

b =
∑n

j=1 sj • aj + µ∗

for a random vector (a1, . . . , an)
$← Tq

n and a “small” noise
e← χ̂.

9

Decryptsk(c) To decrypt c = (a1, . . . , an, b), use private key s =

(s1, . . . , sn), compute (in Tq)

µ∗ = b−
∑n

j=1 sj • aj

and return

µ =

⌊
pµ∗⌉ mod p

p
,

that is, the closest plaintext µ ∈ P, as the decryption of c.

!
To ease the notation, for an integer k and a torus element t ∈ Tq ⊂ T, ⌊k t⌉ denotes
the nearest integer to the product of k by t viewed as a real number. Rigorously,
one should write ⌊k lift(t)⌉ where function lift lifts elements of T to R (i.e., views
elements of T as elements in R).

It is easily verified that decryption succeeds in recovering plaintext µ if
the noise error e satisfies |e| < 1

2p
.

Proof. For plaintext µ ∈ P =
{
0, 1

p
, . . . , p−1

p

}
, we let c ← TLWEs(µ) =

(a1, . . . , an, b) where (a1, . . . , an)
$← Tq

n and b =
∑n

j=1 sj • aj + µ+ e with
e← χ̂. Since µ ∈ P, there exists a unique integer m ∈ [0, p) such that µ = m

p
.

An application of Decryptsk(c) outputs ⌊pµ∗⌉ mod p

p
with µ∗ := (µ+e) ∈ Tq ⊂

T. We have ⌊pµ∗⌉ = ⌊p((µ+e) mod 1)⌉ = ⌊p(µ+e+δ)⌉ = ⌊p(µ+e)⌉+δp

for some δ ∈ Z. We also have ⌊p(µ + e)⌉ =
⌊
p(m

p
+ e)

⌉
= ⌊m + pe⌉ =

m+ ⌊pe⌉ = m if we assume that |e| < 1/(2p). In this case, it thus follows
that ⌊pµ∗⌉ mod p = ⌊p(µ+e)⌉ mod p = m and so ⌊pµ∗⌉ mod p

p
= m

p
= µ.

Example 6. Suppose p = 4 and q = 64 (= 26). The plaintext space is P = {0, 1
4
, 2
4
, 3
4
}.

p = 4 / q = 64

1
2

3
4

5
6

7
8

9
10

11
12

1314151617181920
21

22
23

24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39

40

41
42

43
44 45 46 47 48 49 50 51

52
53

54
55

56

57
58

59
60

61
62

63
640

16

32

48

0

1

2

3

The outer wheel depicts the discretized
torus Tq = {0, 1

64
, . . . , 63

64
}. It can be ob-

served that if the noise error e satisfies
|e| < 1

2p
= 1

8
, that is, e ∈ {− 7

64
, . . . , 7

64
},

then any noisy value µ∗ := µ + e corre-
sponds unequivocally to a plaintext µ ∈
P = {0, 16

64
, 32
64
, 48
64
}. The closest plaintext

to µ∗ ∈ {57
64
, . . . , 63

64
, 0
64
, . . . , 7

64
} is µ = 0

(note that 57
64

and − 7
64

are equivalent as
elements of Tq); the closest plaintext to
µ∗ ∈ { 9

64
, . . . , 23

64
} is µ = 16

64
= 1

4
;the

closest plaintext to µ∗ ∈ {25
64
, . . . , 39

64
} is

µ = 32
64

= 1
2
; and the closest plaintext to

µ∗ ∈ {41
64
, . . . , 55

64
} is µ = 48

64
= 3

4
.

10

2.2 Encoding/Decoding

The encryption algorithm takes (discretized) torus elements—or, more
exactly, elements in P—on input. Encoding and decoding aim at supporting
further input formats.

Let M be an arbitrary finite message space of cardinality #M = p

with p = 2ν. The plaintext space is P = Tp ⊂ Tq with q = 2Ω. The
encoding function, Encode : M→ P, maps a message m ∈M to an element
µ ∈ P; the encoding is applied before encryption. The decoding function,
Decode : P→M, is applied after decryption.

We discuss below the cases of message spaces consisting of bits, of integers
modulo p (with p dividing q), and of fixed-precision torus elements.

Bits The message space is M = {0, 1}.

For a bit b ∈ {0, 1}, we define Encode(b) = b/2. Hence, bit 0 is encoded
as torus element 0 = 0

q
∈ Tq and bit 1 as torus element 1

2
= q/2

q
∈ Tq.

The reverse operation is defined as Decode(µ) = ⌊2µ⌉ mod 2, and
thus if µ ∈ {0, 1

2
} then Decode(µ) ∈ {0, 1}.

Integers modulo p This generalizes the previous case (bits can be seen as
integers modulo p = 2). We have M = {i mod p | i ∈ Z} = Z/pZ.

Let ∆ = q/p ∈ Z. The encoding and decoding are then respectively
given by

Encode(i) =
i mod p

p

(
= (i mod p)∆

q

)
and

Decode(µ) = ⌊pµ⌉ mod p .

Fixed-precision torus elements Let p ⩾ 2 with p | q. This case is similar to
the case of integers modulo p and considers torus elements of the form
t = i

p
with i ∈ Z/pZ. These elements form a subset of fixed-precision

torus elements. For x ∈ Tp = p−1Z/Z and µ ∈ Tq, we define

Encode(x) = x

and

Decode(µ) =
⌊pµ⌉ mod p

p
.

Remark 2. The second encoding obviously applies to unsigned integers
smaller than p; i.e., to integers in {0, . . . , p− 1}. It may also apply to signed

11

integers. In the latter case, the “mod p” returns the signed representative
in

{
−p

2
, . . . , p

2
− 1

}
.

Example 7. Suppose p = 4 and q = 64. If µ = 48
64

then Decode(µ) = ⌊pµ⌉ mod p ≡
3 ≡ −1 (mod 4), which represents the unsigned integer 3 or the signed integer −1.

Likewise, the third encoding applies to unsigned (fixed-precision) num-
bers in Tp ∩ [0, 1), or to signed (fixed-precision) numbers in Tp ∩ [−1

2
, 1
2
).

2.3 Implementation Notes

Batching ciphertexts When a set of m plaintexts (torus elements) need
to be encrypted, randomness can be re-used if they are all encrypted
under different keys. Specifically, for µ1, . . . , µm ∈ P, we set C = (a1, . . . ,

an, b1, . . . , bm) ∈ Tq
n+m as their encryption with bi =

∑n
j=1 si,j •aj+µi+ei

for 1 ⩽ i ⩽ m, where (a1, . . . , an)
$← Tq

n, si = (si,1, . . . , si,n)
$← Bn and

noise error ei.
The security of this variant follows from [BBS03]. Since the randomness

is given explicitly in a TLWE ciphertext (namely, the aj’s), it is readily
verified that the “reproducibility” criterion [BBKS07, Definition 9.3] is
satisfied.

Ciphertext compression TLWE ciphertexts are torus vectors with n + 1

components. With the parameter set of Table 1, if we suppose that torus
elements are represented with 64 bits, a TLWE ciphertext typically requires
631× 64 = 40384 bits (or about 5 kilobytes) for its representation.

Instead of representing a ciphertext c as c = (a1, . . . , an, b), a much
more compact way is to define c as c = (θ, b) where θ

$← {0, 1}λ is a random
λ-bit string for security parameter λ. The value of θ is used as a seed to
a cryptographically secure pseudo-random number generator (PRNG) to
derive the random vector (a1, . . . , an):

(a1, . . . , an)← PRNG(θ) .

With the above parameter set (which corresponds to a desired bit-security
of 128 bits), the same ciphertext only needs 128 + 64 = 192 bits for its
representation.

Key storage The same trick applies to private key s. Instead of plainly
storing s as a n-bit string, we can store it as a λ-bit random seed that is used
to generate s through a cryptographic pseudo-random number generator.

12

3 TGLWE Encryption

3.1 Description

TLWE encryption readily extends to torus polynomials in TN,q[X]. Opera-
tions on the torus Tq are simply replaced with operations on polynomials
modulo XN + 1 (and modulo q). Given two polynomials a, b ∈ TN,q[X],
a + b refers to the addition of a and b modulo (XN + 1, q) and, for
a ∈ ZN,q[X] and b ∈ TN,q[X], a • b refers to the external product of a and
b modulo (XN + 1, q)—remember that the internal product is not defined.

The plaintext space is the subset of polynomials

PN[X] := P[X]/(XN + 1) = TN,p[X] ⊂ TN,q[X]

with P = Tp = p−1Z/Z for some p dividing q. Note that this latter
condition imposes that PN[X] forms an additive subgroup of TN,q[X].

This leads to the TGLWE private-key encryption scheme.

TGLWE Encryption

KeyGen(1λ) On input security parameter λ, define a pair of inte-
gers (N, k) with N a power of 2 and k ⩾ 1. Select positive
integers p and q such that p | q. Define also a discretized
error distribution χ̂ over q−1ZN[X] induced by a normal dis-
tribution χ = N(0, σ2) over RN[X]. Sample uniformly at ran-
dom a vector s = (s1, . . . ,sk)

$← BN[X]
k. The plaintext space

is PN[X] = TN,p[X] ⊂ TN,q[X]. The public parameters are
pp = {k,N, σ, p, q} and the private key is sk = s.

Encryptsk(µ) The encryption of µ ∈ PN[X] is given by

c← TGLWEs(µ) = (a1, . . . ,ak, b) ∈ TN,q[X]
k+1

with {
µ∗ = µ + e

b =
∑k

j=1 sj • aj + µ∗

for a random vector (a1, . . . ,ak)
$← TN,q[X]

k and a “small”
noise e← χ̂.

Decryptsk(c) To decrypt c = (a1, . . . ,ak, b), use private key s =

(s1, . . . ,sk), compute (in TN,q[X])

µ∗ = b−
∑k

j=1 sj • aj

13

and return the closest plaintext µ ∈ PN[X] as the decryption
of c.

Remark 3. Since TN,q[X] = Tq when N = 1, it turns out that the TLWE
encryption (Section 2.1) can be seen as a special instantiation of the TGLWE
encryption with parameters (k,N) = (n, 1).

At this point, the reader may wonder why there are two versions
for the encryption: one over Tq and one over TN,q[X]. For the
encryption of a single torus element µ ∈ P, TLWE should be
preferred to TGLWE because the resulting ciphertext is shorter.
For the encryption of multiple torus elements, TGLWE can be a

better option; see next section. But the main reason of having two different
schemes is for the implementation of the programmable bootstrapping where
both TLWE and TGLWE are needed; see Section 5.

3.2 Encoding/Decoding

The TGLWE encryption scheme supports the encryption of an arbitrary
polynomial µ ∈ PN[X]. In many applications, µ is restricted to a polynomial
of degree 0 and can therefore be seen as an element in P. In this case, the
encoding and decoding functions presented in Section 2.2 equally apply.

When up to N torus elements µ0, . . . , µN−1 ∈ P need to be encrypted,
they can each be represented as a coefficient of polynomial µ(X) = µ0+µ1X+

· · · + µN−1X
N−1 ∈ PN[X]. Such an optimization is known as coefficient

packing.

3.3 Implementation Notes

The (external) product of two polynomials is a demanding operation. The
special form of cyclotomic polynomial Φ(X) = XN + 1 makes however
computations slightly easier.

Example 8. Let N = 4 and thus Φ(X) = X4 + 1. Let also q = 8. Suppose we want
to externally multiply p ∈ ZN,q[X] and q ∈ TN,q[X] with p(X) = 2X3 + 5X + 3 and
q(X) = 1

4
X3 + 1

8
. Then the product r := p • q ∈ TN,q[X] verifies

p(X) • q(X) ≡ (2X3 + 5X+ 3) • (1
4
X3 + 1

8
)

≡ 1
2
X6 + 1

4
X3 + 5

4
X4 + 5

8
X+ 3

4
X3 + 3

8

≡ 1
2
X6 + 1

4
X4 + X3 + 5

8
X+ 3

8

≡ (X4 + 1) • (1
2
X2 + 1

4
) + X3 + 5

8
X+ 3

8
− 1

2
X2 − 1

4

14

≡ X3 + 1
2
X2 + 5

8
X+ 1

8
(mod (X4 + 1, 8)) .

Hence, r(X) = X3 + 1
2
X2 + 5

8
X+ 1

8
∈ TN,q[X].

In the general case, for Φ(X) = XN+1, let p ∈ ZN,q[X] and q ∈ TN,q[X]

given by p(X) = p0 + p1X+ · · ·+ pN−1X
N−1 and q(X) = q0 + q1X+ · · ·+

qN−1X
N−1. Using the relation XN+i ≡ −Xi (mod XN + 1), their product

satisfies

p(X) • q(X) = (p0 + p1X+ · · ·+ pN−1X
N−1) •

(q0 + q1X+ · · ·+ qN−1X
N−1)

= p0 • q0 − p1 • qN−1 − · · ·− pN−1 • q1

+ (p0 • q1 + p1 • q0 − · · ·− pN−1 • q2)X

+ . . .

+ (p0 • qN−1 + p1 • qN−2 + · · ·+ pN−1 • q0)X
N−1 .

This requires N2 external torus products for evaluating pi • qj with 0 ⩽
i, j ⩽ N− 1. For large values of N, an alternative way is to rely on the fast
Fourier transform (FFT) [vzGG13, Chapter 8].

When p(X) is the monomial Xj for some j ∈ {0, . . . ,N− 1}, the previous
product formula simplifies into

Xj • q(X)

=


q0 + q1X+ q2X

2 + · · ·+ qN−2X
N−2 + qN−1X

N−1 j = 0

−qN−1 + q0X+ q1X
2 + · · ·+ qN−3X

N−2 + qN−2X
N−1 j = 1

...
...

−q1 − q2X− q3X
2 − · · ·− qN−1X

N−2 + q0X
N−1 j = N− 1

or, more concisely,

Xj • q(X) =

j−1∑
i=0

−qi+N−jX
i +

N−1∑
i=j

qi−jX
i

and XN+j • q(X) = −Xj • q(X). This relation is known as the negacyclic
property.
Example 9. To better exhibit the negacyclic property, we represent polynomials by their
vectors of coefficients. Take N = 4 and consider the polynomial q(X) = q0 + q1X +

q2X
2 + q3X

3. Then

q(X) = [q0, q1, q2, q3] X4q(X) = [−q0,−q1,−q2,−q3]

X • q(X) = [−q3, q0, q1, q2] X5 • q(X) = [q3,−q0,−q1,−q2]

15

X2 • q(X) = [−q2,−q3, q0, q1] X6 • q(X) = [q2, q3,−q0,−q1]

X3 • q(X) = [−q1,−q2,−q3, q0] X7 • q(X) = [q1, q2, q3,−q0]

X8 • q(X) = [q0, q1, q2, q3] = q(X), and so on. At each multiplication by X, it turns out
that the polynomial coefficients are circularly shifted one position to the right and the
entering coefficient is negated.

4 Working over Encrypted Data

Clearly, TLWE encryption and TGLWE encryption are additively homo-
morphic.

The approach of Gentry–Sahai–Waters [GSW13] using matrix product is
employed to turn these encryption schemes into somewhat homomorphic
encryption schemes—that is, schemes supporting a limited number of
multiplications.

4.1 TLWE Ciphertexts

4.1.1 Addition of ciphertexts

Let c1 ← TLWEs(µ1) and c2 ← TLWEs(µ2) (in Tq
n+1) be respective

TLWE encryptions of µ1 and µ2 (in P):

c1 = (a1, . . . , an, b) and c2 = (a′
1, . . . , a

′
n, b

′)

with (a1, . . . , an)
$← Tq

n and b =
∑n

j=1 sj • aj+µ1+e1, (a′
1, . . . , a

′
n)

$← Tq
n

and b ′ =
∑n

j=1 sj • a′
j + µ2 + e2, and e1, e2 “small”. Then c3 := c1 + c2 (in

Tq
n+1) is a valid encryption of µ3 := µ1 + µ2 (in P); i.e.,

c3 = (a′′
1, . . . , a

′′
n, b

′′) with

{
a′′
j = aj + a′

j (1 ⩽ j ⩽ n)

b ′′ = b+ b ′

provided that the additive noise e3 := e1 + e2 keeps “small”.

!
Addition of ciphertexts explains why P was chosen as an additive subgroup of Tq in
the definition of TLWE encryption. Doing so implies that if µ1, µ2 ∈ P then so does
µ3 = µ1 + µ2.

4.1.2 Multiplication by a known constant

Multiplying by a constant can be obtained as a series of additions. As a
result, given the TLWE ciphertext c← TLWEs(µ) with µ ∈ P, the TLWE

16

encryption of K • µ for some known (small) integer K ̸= 0 can be obtained as

K • c = c+ · · ·+ c︸ ︷︷ ︸
K times

if K > 0, and K • c = (−K) • (−c) if K < 0. This boils down to multiplying
every vector component of c by K; namely, if c = (a1, . . . , an, b) ∈ Tq

n+1

then
K • c = (K • a1, . . . , K • an, K • b) .

Again, K • c (in Tq
n+1) is a valid encryption of K • µ (in P), provided

that the resulting noise keeps “small”.

4.1.3 Multiplication of ciphertexts

The main challenge in working over encrypted data resides in multiplying
ciphertexts. In order to make the Gentry–Sahai–Waters’ approach work,
ciphertexts in TLWE encryption need to be expressed as matrices.

Gadget matrix Flattening is a method that modifies vectors without affect-
ing dot products [BGV14, Bra12]. As will become apparent, this technique
helps controlling the noise.

We present the “gadget decomposition” technique over the discretized
torus Tq = q−1Z/Z for a general integer q (i.e., not necessarily a power of
2). For a radix B and some integer ℓ ⩾ 1 such that Bℓ | q, we consider the
so-called gadget matrix G ∈ Tq

(n+1)×(n+1)ℓ given by

G
⊺
= In+1 ⊗ g

⊺
= diag(g⊺

, . . . ,g
⊺︸ ︷︷ ︸

n+1

) =



1/B

...
1/Bℓ

1/B

...
1/Bℓ

...
1/B

...
1/Bℓ


with g = (1/B, . . . , 1/Bℓ) ∈ Tq

ℓ, so that for an input vector u ∈ Z(n+1)ℓ the
product u • G

⊺ yields a vector in Tq
n+1. We also consider the associated

inverse transformation G−1 : Tq
n+1 → Z(n+1)ℓ such that for any vector

v ∈ Tq
n+1, we have

G−1(v) • G
⊺ ≈ v and G−1(v) is “small” .

17

This inverse transformation replaces each entry of a vector by its signed
radix-B expansion. Explicitly, if v = (v1, . . . , vn+1) ∈ Tq

n+1 with vi ∈
[−1

2
, 1
2
), we set vi = ⌊Bℓvi⌉ and write

vi ≡
ℓ∑

j=1

ui,j B
ℓ−j (mod Bℓ) where ui,j ∈ [−⌊B/2⌋, ⌈B/2⌉) .

We define g−1(vi) :=
(
ui,1, . . . , ui,ℓ

)
∈ Zℓ. Then

G−1(v) :=
(
g−1(v1), g

−1(v2), . . . , g
−1(vn+1)

)
=
(
u1,1, . . . , u1,ℓ, . . . , u2,1, . . . , u2,ℓ, . . . ,

un+1,1, . . . , un+1,ℓ

)
∈ Z(n+1)ℓ .

Note that when Bℓ = q, all the components vi ∈ [−1
2
, 1
2
) of v satisfy

vi = Bℓvi. It then follows that, over Tq, G−1(v) • G
⊺
= v holds exactly.

Example 10. Take n = 1, ℓ = 2, B = 4, and q = 64 (and so Tq = 1
64
Z/Z). Hence,

G
⊺
=

(
1/4 0

1/16 0

0 1/4

0 1/16

)
∈ Tq4×2 .

Suppose that v = (41
64
, 26
64
) ≡ (−23

64
, 26
64
) (mod 1). We get v1 = ⌊42 (−23

64
)⌉ = −6 and

v2 = ⌊42 26
64
⌉ = 7. We have −6 = −1·41−2 and 7 = 1·42−2·41−1 ≡ −2·41−1 (mod 42),

and so G−1(v) = (−1,−2,−2,−1). We can verify that G−1(v) • G
⊺
= (−24

64
,−36

64
) ≡

(40
64
, 28
64
) ≈ v.

Now with the same parameters but with ℓ = 3 (and thus Bℓ = q), we have

G
⊺
=


1/4 0

1/16 0

1/64 0

0 1/4

0 1/16

0 1/64

 ∈ Tq6×2 .

We have v1 = −23 and v2 = 26. We obtain G−1(v) = (−1,−2, 1,−2,−1,−2) and
G−1(v) • G

⊺
= (−23

64
,−38

64
) ≡ (41

64
, 26
64
) = v.

Remark 4. The inverse transformation G−1 naturally extends to matrices.
For a matrix M ∈ Tq

m×(n+1), G−1(M) ∈ Zm×(n+1)ℓ is defined as the
m× (n+ 1)ℓ matrix whose row #i is G−1(mi) where mi is row #i of M.
It satisfies G−1(M) • G ≈M.

TGSW encryption The gadget matrix gives rise to a torus-based variant of
the Gentry–Sahai–Waters (GSW) encryption scheme.

Let an integer p | q where q = 2Ω. The gadget decomposition over Tq

supposes integers B and ℓ such that Bℓ | q. Actually, since all its elements

18

are 0 or of the form B−j with 1 ⩽ j ⩽ ℓ, the gadget matrix G is actually
defined over B−ℓZ/Z ⊆ Tq. We assume that p = Bℓ. In this case, G is
defined over Tp = p−1Z/Z.

The private key is s = (s1, . . . , sn) ∈ Bn and the plaintext space is
P := Z/pZ. The TGSW encryption of m ∈ P under key s is defined as

TGSWs(m) = Z+m • G
⊺

(∈ Tq
(n+1)ℓ×(n+1))

where

Z←


TLWEs(0)

TLWEs(0)
...

TLWEs(0)


 (n+ 1)ℓ rows .

! The last row of TGSWs(m) ∈ Tq(n+1)ℓ×(n+1) contains TLWEs(0) + m • (0, . . . , 0,
1
Bℓ) ∈ Tqn+1, that is, a TLWE encryption of µ := m

Bℓ ∈ P where P = Tp.

Being defined over the ring P = Z/pZ, TGSW plaintexts can be
multiplied. For m1,m2 ∈ P, given their respective ciphertexts C1 ←
TGSWs(m1) and C2 ← TGSWs(m2), we let C3 = C1⊠C2 := G−1(C2) •C1.
This is known as the [internal] product of ciphertexts [GSW13, AP14, DM15].
It can be verified that C3 = C1⊠C2 is a TGSW of m3 = m1×m2 (mod p),
up to rounding error and multiplicative noise.

Proof. From the definition, we have C3 = C1 ⊠ C2 = G−1(C2) • C1 =

G−1(C2) • (Z1 + m1 • G
⊺
) = G−1(C2) • Z1 + (G−1(C2)m1) • G

⊺, letting
C1 = Z1 +m1 • G

⊺ where Z1 ← TGSWs(0).
Let ϵ2 := G−1(C2) • G

⊺
−C2 denote the rounding error matrix. We so

get C3 = G−1(C2) •Z1+m1 • (C2+ϵ2) = G−1(C2) •Z1+m1 •Z2+(m1m2) •

G
⊺
+m1 • ϵ2, letting C2 = Z2+m2 •G

⊺ where Z2 ← TGSWs(0). Assuming
the error resulting from the rounding (i.e, m1 • ϵ2) keeps “small” and that
the multiplicative noise keeps “small”, we can write C3 = Z3 + (m1m2) • G

⊺

for some Z3 ← TGSWs(0).

!
If Z ∈ Tq(n+1)×(n+1) is a matrix whose rows are TLWE encryptions of 0 then, for
any (small) matrix A ∈ Zm×(n+1), Z ′ = A · Z ∈ Tqm×(n+1) is a matrix whose rows
are TLWE encryptions of 0 (up to the noise).

19

Example 11. To see it, suppose m = n = 2. Letting

A = (α1,1 α1,2 α1,3
α2,1 α2,2 α2,3

) and Z =

(
a1,1 a1,2 b1

a2,1 a2,2 b2

a3,1 a3,2 b3

)
with bi =

∑2
j=1 sj • ai,j + ei

we get Z ′ = A • Z :=
(

a′
1,1 a′

1,2 b′
1

a′
2,1 a′

2,2 b′
2

)
=
(∑3

i=1 α1,i •ai,1

∑3
i=1 α1,i •ai,2

∑3
i=1 α1,i •bi∑3

i=1 α2,i •ai,1

∑3
i=1 α2,i •ai,2

∑3
i=1 α2,i •bi

)
.

Remark that b ′
1 =

∑3
i=1 α1,i • bi =

∑3
i=1 α1,i • (

∑2
j=1 sj • ai,j + ei) =

∑3
i=1

∑2
j=1 α1,i •

(sj •ai,j)+
∑3

i=1 α1,i •ei =
∑2

j=1 sj • (
∑3

i=1 α1,i •ai,j)+
∑3

i=1 α1,i •ei =
∑2

j=1 sj •a
′
1,j+e ′

1

with e ′
1 :=

∑3
i=1 α1,i • ei; and similarly b ′

2 =
∑2

j=1 sj • a
′
2,j+ e ′

2 with e ′
2 :=

∑3
i=1 α2,i • ei.

Inspecting the proof shows that the resulting error term present in Z3

comprises three components: (i) one coming from the noise present in Z1,
which is amplified by G−1(C2); (ii) one coming from the noise present in Z2,
which is amplified by m1; and (iii) one coming from the rounding error ϵ2,
which is also amplified by m1. The multiplicative noise can grow quickly.
The use of the gadget matrix leads however to a favorable situation since by
construction ∥G−1(C2)∥∞ ⩽ B/2. Furthermore, the two other components
can be contained if plaintext m1 keeps small (for example, if m1 is restricted
to elements in {0, 1}).

External product of ciphertexts TLWE ciphertexts are [much] shorter than
TGSW ciphertexts and should therefore be preferred. The best we can do
for TLWE is to consider the external product of plaintexts: m1 • µ2 for some
integer m1 ∈ P and a plaintext µ2 ∈ P ⊂ Tq. Corresponding to m1 • µ2 is
the external product of ciphertexts. The ⊡ operation enables the external
multiplication of ciphertexts. It is given by

⊡ : TGSW×TLWE→ TLWE, (C1, c2) 7→ C1 ⊡ c2 = G−1(c2) • C1

where C1 ← TGSWs(m1) with m1 ∈ P and where c2 ← TLWEs(µ2) with
µ2 ∈ P. In more detail, we have:

C1 = Z1 +m1 • G
⊺ ∈ Tq

(n+1)ℓ×(n+1) and c2 ∈ Tq
n+1

where

Z1 =


a1,1 . . . a1,n b1

a2,1 . . . a2,n b2

...
...

...
a(n+1)ℓ,1 . . . a(n+1)ℓ,n b(n+1)ℓ


with {

(ai,1, . . . , ai,n)
$← Tq

n

bi =
∑n

j=1 sj • ai,j + (e1)i

20

and

c2 = (a′
1, . . . , a

′
n, b

′) with

{
(a′

1, . . . , a
′
n)

$← Tq
n

b ′ =
∑n

j=1 sj • aj + µ2 + e2
,

and where (e1)i for 1 ⩽ i ⩽ (n+ 1)ℓ and e2 are “small”. Then

c3 := C1 ⊡ c2 = G−1(c2) • C1 = G−1(c2) • (Z1 +m1 • G
⊺
)

= G−1(c2) • Z1︸ ︷︷ ︸
=TLWEs(0)

+m1 • (G−1(c2) • G
⊺︸ ︷︷ ︸

≈c2

)

= TLWEs(0) +m1 • c2

= TLWEs(0) +m1 • TLWEs(µ2) = TLWEs(m1 • µ2)

is a valid TLWE encryption of µ3 := m1 • µ2 (in P), provided that

1. the rounding error ∥G−1(c2) • G
⊺
− c2∥∞ keeps “small”;

2. the multiplicative noise e3 := G−1(c2) • e
⊺

1 + m1 • e2 keeps “small”,
where e1 = ((e1)1, . . . , (e1)(n+1)ℓ).

4.2 TGLWE Ciphertexts

Again, the operations and underlying techniques developed for TLWE and
TGSW extend to polynomials. Torus elements are replaced with torus
polynomials. Addition and external multiplication are performed modulo
XN + 1. The same trick using a gadget matrix (over TN,q[X]) is used to
control the noise growth.

4.2.1 Addition of ciphertexts

Let µ1,µ2 ∈ PN[X]and the corresponding ciphertexts c1 ← TGLWEs(µ1) =

(a1, . . . ,ak, b) ∈ TN,q[X]
k+1 and c2 ← TGLWEs(µ2) = (a′

1, . . . ,a
′
k, b

′) ∈
TN,q[X]

k+1. If e1 and e2 are the respective noise present in c1 and c2

then c3 := c1 + c2 = (a1 + a′
1, . . . ,ak + a′

k, b+ b′) ∈ TN,q[X]
k+1 is a

valid TGLWE encryption of µ3 := µ1 + µ2 (in PN[X]), provided that the
additive noise e3 := e1 + e2 keeps “small”.

4.2.2 Multiplication by a known polynomial

Let µ ∈ PN[X] and let K ∈ Z ⊂ ZN[X] (i.e., viewed as a degree 0 polynomial
in ZN[X]). Given the ciphertext c← TGLWEs(µ),

c′ := K • c

21

is a valid ciphertext of µ ′ = K • µ (in PN[X]), provided that the resulting
noise keeps “small”. More generally, for a (small) polynomial k ∈ ZN[X],
c′ = k • c is a valid ciphertext of µ ′ = k • µ (in PN[X]), provided that the
resulting noise keeps “small”.

4.2.3 Multiplication of ciphertexts

Gadget matrix The “gadget vector” g = (1/B, . . . , 1/Bℓ) ∈ Tq
ℓ that we used

for TLWE/TGSW encryption can be seen as an element in TN,q[X]
ℓ. It

therefore applies to the polynomial setting too.
Adapting the dimension, we define the gadget matrix G over TN,q[X],

G ∈ TN,q[X]
(k+1)×(k+1)ℓ, as

G
⊺
= Ik+1 ⊗ g

⊺
=



1/B

...
1/Bℓ

1/B

...
1/Bℓ

...
1/B

...
1/Bℓ


.

The associated inverse transformation G−1(·) flattens a vector of (k+ 1)

polynomials of TN,q[X] into a vector of (k + 1)ℓ polynomials of ZN[X]

with small coefficients (i.e., in the range [−⌊B/2⌋, ⌈B/2⌉)). The definition
of G−1(·) is similar to the one of Section 4.1.3 where vectors in Tn+1

q

are replaced by vectors in TN,q[X]
k+1. Also, for any polynomial vector

p ∈ TN,q[X]
k+1, it holds that G−1(p) • G

⊺ ≈ p and G−1(p) is “small”.
Example 12. Take k = 1, N = 2, ℓ = 3, B = 4, and q = 256. Hence,

G
⊺
=


1/4 0

1/16 0

1/64 0

0 1/4

0 1/16

0 1/64

 .

If p = (41
256

+ 26
256

X, 231
256

+ 35
256

X) ≡ (41
256

+ 26
256

X,− 25
256

+ 35
256

X) (mod (X2 + 1, 1)) then

p1 = ⌊43 41
256
⌉+ ⌊43 26

256
⌉X = 10+ 7X

= (1 · 42 − 1 · 41 − 2) + (1 · 42 − 2 · 41 − 1)X

= (1+ X) · 42 + (−1− 2X) · 41 + (−2− X)

and
p2 = ⌊43 (−25

64
)⌉+ ⌊43 35

64
⌉X = −6+ 9X

= (0 · 42 − 1 · 41 − 2) + (1 · 42 − 2 · 41 + 1)X

= X · 42 + (−1− 2X) · 41 + (−2+ X)

and so G−1(p) = (1+ X,−1− 2X,−2− X,X,−1− 2X,−2+ X).

22

TGGSW ciphertexts Again, it is worth noting that a TGLWE ciphertext
can be seen as TGLWEs(µ) ≡ TGLWEs(0) + (0, . . . , 0, 1) • µ.

Let p = Bℓ and such that p | q. Let also s= (s1, . . . ,sk) ∈ BN[X]
k. The

TGGSW encryption of m ∈ PN[X] under private key s is defined as

TGGSWs(m) = Z+ m • G
⊺

(∈ TN,q[X]
(k+1)ℓ×(k+1))

where

Z←


TGLWEs(0)

TGLWEs(0)
...

TGLWEs(0)


 (k+ 1)ℓ rows .

External product of ciphertexts Let m1 ∈ PN[X] and µ2 ∈ PN[X] and their
respective ciphertexts C1 ← TGGSWs(m1) (∈ TN,q[X]

(k+1)ℓ×(k+1)) and
c2 ← TGLWEs(µ2) (∈ TN,q[X]

k+1). The external product ⊡ of a TGGSW
ciphertext by a TGLWE ciphertext is defined as

⊡ : TGGSW×TGLWE→ TGLWE,

(C1,c2) 7→ C1 ⊡ c2 = G−1(c2) • C1 .

The resulting ciphertext c3 := C1 ⊡ c2 (∈ TN,q[X]
k+1) is a valid

encryption of µ3 := m1 • µ2 (∈ PN[X]), provided that the rounding error
resulting from G−1(·) and the multiplicative noise keep “small”.

CMUX The main application of the external product in TFHE is the
“controlled” multiplexer, or CMUX in short. Given two TGLWE ciphertexts
c0 ← TGLWEs(µ0) and c1 ← TGLWEs(µ1), the CMux operator acts as a
selector to choose between c0 and c1 according to a TGGSW encryption
Cb ← TGGSWs(b) of a control bit b ∈ {0, 1}. This can be computed
through an external product as

CMux(Cb,c0,c1)← Cb ⊡ (c1 − c0) + c0

← TGGSWs(b)⊡ TGLWEs(µ1 − µ0)

+ TGLWEs(µ0)

← TGLWEs

(
b(µ1 − µ0) + µ0

)
← TGLWEs(µb) .

The output is a TGLWE encryption of µb.

23

4.3 Implementation Notes

The encoding for integers modulo p (including bits when p = 2) presented
in Section 2.2 respects the addition. In more details, for any i1, i2 ∈ Z/pZ,
letting i3 = i1 + i2 mod p, we have Encode(i3) = Encode(i1) + Encode(i2)
(in Tp). The encoding also respects the external product: for any i ∈ Z/pZ
and any integer k, letting ik = k · i mod p, we have Encode(ik) = k •

Encode(i) (in Tp). In other words, the encoding is homomorphic and so
complies with the homomorphic structure of the encryption.

The same holds true for the encoding for fixed-precision torus elements
presented in Section 2.2.

5 Programmable Bootstrapping

As aforementioned, both TLWE and TGLWE encryptions are needed for
implementing certain operations. We will see in this section that their
combination is central to refreshing noisy TLWE ciphertexts. Such an
operation is referred to as bootstrapping. Furthermore, this operation can
be programmed to evaluate at the same time a selected function.

5.1 Gentry’s Recryption

For a (symmetric) fully homomorphic encryption algorithm Encrypt, given
the encryption of x under private key sk, the homomorphic evaluation of a
univariate function f yields the encryption of f(x). This is illustrated in the
next figure.

Figure 1: Homomorphic evaluation

f(·)Encryptsk(x) Encryptsk(f(x))

Gentry’s key idea to reduce the noise present in a ciphertext is to homomorphically
evaluate the decryption of the ciphertext using a homomorphic encryption of its
own decryption key [Gen10]. The encryption of the decryption key (matching
the encryption key used to produce the ciphertext) forms what is called the
bootstrapping key.

Specifically, let c← Encryptsk1(m) denote a noisy ciphertext encrypting
a plaintext m and let bsk ← Encryptsk2(sk1) denote the bootstrapping

24

key. Assume that function f in the above figure is the decryption function
dedicated to ciphertext c, viewed as the univariate function Decrypt(·, c).
Then, letting x = sk1, the homomorphic evaluation of f yields

Encryptsk2(f(x)) = Encryptsk2(Decrypt(sk1, c))

= Encryptsk2(m) .

The procedure is detailed in Fig. 2.

Figure 2: Recryption

Decrypt(·, c)Encryptsk2(sk1)
[bootstrapping key]

with c← Encryptsk1(m)

Encryptsk2(m)

Starting with the noisy ciphertext c← Encryptsk1
(m), the recryption process ends

up with a new ciphertext Encryptsk2
(m), encrypting the same plaintext m. Note

that the encryption keys are different. The encryption algorithms Encrypt and
Encrypt may be distinct or not. In the latter case, the resulting ciphertext can
be reverted back into a ciphertext under the initial key sk1 thanks to a standard
key-switching technique.

5.2 Bootstrapping

General description Let s = (s1, . . . , sn) ∈ Bn. Consider a TLWE encryption
of µ ∈ P: we have c← TLWEs(µ) = (a1, . . . , an, b) ∈ Tq

n+1 where aj
$← Tq

and b =
∑n

j=1 sj • aj + µ∗ with µ∗ = µ + e for some “small” noise error e.
The goal of the bootstrapping procedure is to produce a TLWE ciphertext
of the same plaintext but with a reduced amount of noise e ′ < e. So far, the
only known way to bootstrap a ciphertext is Gentry’s recryption technique.
In the case of TFHE, using the previous notations, its application involves
two steps:

1. obtaining the noisy plaintext µ∗ as µ∗ = b−
∑n

j=1 sj • aj ∈ Tq;

2. recovering the plaintext µ by rounding µ∗ to the closest plaintext as
µ = ⌊pµ∗⌉ mod p

p
∈ P.

These two steps have to be performed over encrypted data. The first step
being linear is easy given an encryption of the sj’s. The second step (i.e.,
the rounding) is more problematic. This is where polynomials come to the
rescue.

25

Rounding with polynomials Consider polynomial v(X) = v0 + v1 X + · · · +
vN−1 X

N−1 ∈ TN,p[X] = Tp[X]/(X
N + 1). The formula of the external

multiplication in TN,p[X] by a monomial (cf. Section 3.3) teaches that

X−j • v(X) = X2N−j • v(X) =

{
vj + . . . for 0 ⩽ j < N

−vj + . . . for N ⩽ j < 2N
.

In other words, when 0 ⩽ j < N, the constant term of polynomial X−j • v(X)

is vj. As we will see, this simple observation provides a way to round a
torus element µ∗ ∈ Tq as an element of µ ∈ Tp, where p | q.

Since µ∗ ∈ Tq, we can write µ∗ = µ∗/q where µ∗ := ⌊qµ∗⌉ mod q with
0 ⩽ µ∗ < q. If we suppose for a moment that N ⩾ q, we have 0 ⩽ µ∗ < N.
It also means that polynomial v has more coefficients than the number
of possible values for µ∗. We can therefore assign a chosen value for vj,
for any 0 ⩽ j < q, and an application of X−j • v(X) will yield vj + . . .

In particular, if we select vj :=
⌊(pj)/q⌉ mod p

p
∈ Tp plugging j = µ∗ in the

relation X−j • v(X) = vj + . . . yields

X−µ∗
• v(X) = ⌊(pµ∗)/q⌉ mod p

p
+ . . .

= ⌊pµ∗⌉ mod p

p
+ . . .

= µ+ . . .

namely, a polynomial whose constant term is the rounded value µ ∈ Tp.
Example 13. As an illustration, suppose we wish to round 5-bit precision torus elements
µ∗ to 2-bit precision torus elements µ, for 0 ⩽ µ∗ ⩽ 25/32; rounding by convention
downwards in the case of a tie. This setting corresponds to q = 32 and p = 4 (that is,
Tq = 1

32
Z/Z and Tp = 1

4
Z/Z).

µ∗ µ

0
32
→ 0

4...
...

4
32
→ 0

4
5
32
→ 1

4...
...

12
32
→ 1

4
13
32
→ 2

4...
...

20
32
→ 2

4
21
32
→ 3

4...
...

25
32
→ 3

4

Since there are 26 possible values for µ∗, we set N = 32 (i.e., as
the smallest power of 2 that is ⩾ 26). We set polynomial v as

v(X) = 0
4
+ 0

4
X+ 0

4
X2 + 0

4
X3 + 0

4
X4

+ 1
4
X5 + 1

4
X6 + 1

4
X7 + 1

4
X8 + 1

4
X9

+ 1
4
X10 + 1

4
X11 + 1

4
X12 + 2

4
X13 + 2

4
X14

+ 2
4
X15 ++2

4
X16 + 2

4
X17 + 2

4
X18 + 2

4
X19

+ 2
4
X20 + 3

4
X21 + 3

4
X22 + 3

4
X23 + 3

4
X24 + 3

4
X25 .

It can be checked that any 5-bit precision element µ∗ ∈
[
0, 25

32

]
⊂ Tq

verifies
X−⌊32µ∗⌉ · v(X) = µ+ . . .

where µ ∈ Tp denotes the matching rounded value.

26

5.2.1 Blind rotation

As above, let µ∗ = ⌊qµ∗⌉ mod q. Let also aj = ⌊qaj⌉ mod q and b =

⌊qb⌉ mod q. In order to bootstrap, one way to look at the decryption
(without the rounding) is to see that

−µ∗ = −b+
∑n

j=1 sj aj (mod q) .

This value can then be put at the exponent of X to get the monomial X−µ∗ ,
which leads to plaintext µ from the evaluation of X−µ∗

• v(X). There are
a couple of complications in implementing this idea as it supposes q < N,
which is not verified in practical settings. Typical cryptographic parameters
mandate N ∈ {210, 211, 212} and q ∈ {232, 264}.

First, the relation X−µ∗
• v(X) being defined modulo XN + 1, this means

that, as a multiplicative element of ZN[X], X is of order 2N (i.e., X2N = 1)
and thus exponent −µ∗ in X−µ∗

• v(X) is defined modulo 2N. The value of
µ∗ needs therefore to be rescaled modulo 2N. As a consequence, instead of
starting with the relation −µ∗ = −b+

∑n
j=1 sj aj (mod q), we rely on the

approximation

−µ̃∗ = −b̃+
∑n

j=1 sj ãj (mod 2N) ,

where b̃ = ⌊2Nb⌉ mod 2N and ãj = ⌊2Naj⌉ mod 2N. This approximation
may generate a small additional error that adds to the noise.

! The additional error introduced by the discretization modulo 2N is called drift. Its
impact on the result can be dealt with by a careful choice of the parameters.

Second, because polynomial v lies in TN,p[X] and thus has N coefficients,
at most N values for µ̃∗ can be encoded. This is addressed by ensuring that
the most significant bit of µ̃∗ is set to 0. In this case, µ̃∗ can take at most
N possible values.

From the above considerations, the so-called test polynomial v is formed
as

v := v(X) =

N−1∑
j=0

vj X
j with vj =

⌊ pj
2N⌉ mod p

p
∈ P

and the relation

X−b̃+
∑n

j=1 sj ãj • v(X) = X−µ̃∗
• v(X) = µ+ . . .

holds, provided that the drift is contained and that 0 ⩽ (µ̃∗ mod 2N) < N.
For conciseness, we let qj := X−b̃+

∑j
i=1 si ãi • v. The external product being

27

homogeneous, it follows that

qj =
(
X−b̃+

∑j−1
i=1 si ãi Xsj ãj

)
• v = Xsj ãj •

(
X−b̃+

∑j−1
i=1 si ãi • v

)
= Xsj ãj • qj−1

=

{
qj−1 if sj = 0

Xãj • qj−1 if sj = 1
.

This provides an iterative method to get qn = X−b̃+
∑n

i=1 si ãi • v, starting
at q0 = X−b̃ • v and then iterating on j from 1 to n.

Gentry’s recryption does the same but over encrypted data. As the
rounding method involves polynomials, we rely on TGLWE encryption.
Let s′ ∈ BN[X]

k+1. We assume that we are given the bootstrapping keys
bsk[j]← TGGSWs′(sj) ∈ TN,q[X]

(k+1)ℓ×(k+1), for 1 ⩽ j ⩽ n. We have:

in the clear over encrypted data

q0 ← X−b̃ • v

for j = 1 to n do

qj ←

{
qj−1 if sj = 0

Xãj • qj−1 if sj = 1

end for
return qn

c′
0 ← X−b̃ • TGLWEs′(v)

for j = 1 to n do

c′
j ← CMux(bsk[j],c′

j−1, X
ãj • c′

j−1)

end for
return c′

n

Clearly, the output ciphertext c′ := c′
n is a TGLWE encryption

of qn = X−b̃+
∑n

j=1 sj ãj • v; i.e., c′
n ← TGLWEs′

(
X−b̃+

∑n
j=1 sj ãj • v

)
=

TGLWEs′
(
X−µ̃∗

• v
)
. Finally, we remark that (0, . . . , 0, v) ∈ TN,q[X]

k+1 is a
valid TGLWE encryption for v; we can thus take c′

0 ← X−b̃ • (0, . . . , 0, v).
Summing up, given a TLWE ciphertext c ← TLWEs(µ) ∈ Tq

n+1 un-
der the key s = (s1, . . . , sn) ∈ Bn and the matching bootstrapping-key
vector bsk = (bsk[1], . . . ,bsk[n]) with bsk[j] ← TGGSWs′(sj) and s′ =

(s′1, . . . ,s
′
k) ∈ BN[X]

k, we get a TGLWE ciphertext c′ ← TGLWEs′(X
−µ̃∗

•

v) = TGLWEs′(µ+ . . .) ∈ TN,q[X]
k+1 under the key s′ for the predefined

polynomial v(X) =
∑N−1

j=0
⌊pj/(2N)⌉ mod p

p
Xj ∈ PN[X], in two steps as:

1. define c := (0, . . . , 0, v) and c̃ := (ã1, . . . , ãn, b̃)← ⌊c 2N⌉ mod 2N;

2. do {
c′

0 ← X−b̃ • c

c′
j ← CMux(bsk[j],c′

j−1, X
ãj • c′

j−1) for 1 ⩽ j ⩽ n

and set c′ := c′
n.

We write c′ ← BlindRotatebsk(c, c̃) where bsk = (bsk[1], . . . ,bsk[n]).

! Algorithms in pseudo-code are provided in Appendix B.

28

5.2.2 Sample extraction

The previous conversion step turns the TLWE encryption of a plaintext
µ ∈ P into a TGLWE encryption of a polynomial plaintext µ(X) := X−µ̃∗

•v ∈
PN[X] whose constant term is µ. The constant-term component is then
extracted to give rise to a refreshed TLWE encryption of µ, but under
a different key. This is referred to as sample extraction. We note that,
although it is applied to the constant term, the technique readily adapts to
extract other components of µ.

In more detail, on input a TLWE ciphertext c ← TLWEs(µ) ∈ Tq
n+1,

the previous step yields at the end of the blind rotation a TGLWE ciphertext
c′ ← TGLWEs′(X

−µ̃∗
• v) = TGLWEs′(µ+ . . .) ∈ TN,q[X]

k+1.
Let s′ = (s′1, . . . ,s

′
k) ∈ BN[X]

k and c′ = (a′
1, . . . ,a

′
k, b

′) ∈ TN[X]
k+1

where, for 1 ⩽ j ⩽ k, s′j := s′j(X) = (s′j)0 + (s′j)1X + · · · + (s′j)N−1X
N−1

and a′
j := a′

j(X) = (a′
j)0 + (a′

j)1X + · · · + (a′
j)N−1X

N−1. Let also µ =

X−µ̃∗
• v = µ + · · · . By definition of a TLWE ciphertext, there exists

e := e(X) = e0 + e1X+ · · ·+ eN−1X
N−1 such that b′ =

∑k
j=1 s

′
j • a

′
j +µ+ e.

Expanding polynomial b′, we get

b′ := b′(X) = b′
0 + b′

1X+ · · ·+ b′
N−1X

N−1

=

k∑
j=1

(
(s′j)0 + · · ·+ (s′j)N−1X

N−1
)
•
(
(a′

j)0 + · · ·+ (a′
j)N−1X

N−1
)

+ µ + e .

Now, if we take a close look at the constant term b′
0 ∈ Tq of polynomial b′,

we see that it satisfies

b′
0 =

k∑
j=1

[
(s′j)0 • (a′

j)0 − (s′j)1 • (a′
j)N−1 − · · ·− (s′j)N−1 • (a′

j)1
]
+ µ+ e0

=
(
(s′1)0, (s

′
1)1, . . . , (s

′
1)N−1, . . . , . . . , (s

′
k)0, (s

′
k)1, . . . , (s

′
k)N−1

)
•(

(a′
1)0,−(a′

1)N−1, . . . ,−(a′
1)1, . . . , . . . , (a

′
k)0,−(a′

k)N−1, . . . ,

− (a′
k)1
)
+ µ+ e0 .

As a result, defining s′ :=
(
(s′1)0, (s

′
1)1, . . . , (s

′
k)N−1

)
∈ BkN and ȧ′ :=(

(a′
1)0,−(a′

1)N−1, . . . ,−(a′
k)1
)
∈ Tq

kN, the vector c′ := (ȧ′, b′
0) ∈ Tq

kN+1

can be viewed as a TLWE encryption of µ under key s′.

We write s′ ← Recode(s′) and c′ ← SampleExtract(c′).

29

5.2.3 Key switching

The loop is almost closed. With the above procedure, ciphertexts c and c′ ←
SampleExtract(BlindRotatebsk(c, c̃)) both encrypt plaintext µ but they
feature a different set of parameters: c ← TLWEs(µ) ∈ Tq

n+1 and c′ ←
TLWEs′(µ) ∈ Tq

kN+1. The key switching algorithm converts a ciphertext
under a key into a ciphertext under another key. Its implementation requires
key-switching keys, i.e., TLWE encryptions of the key bits of s′ with respect
to the original key s. The procedure may seem conceptually very similar
to the bootstrapping, but there is a fundamental difference between the
two techniques: bootstrapping reduces the noise (and is computationally
demanding) whereas the key switching makes the noise increase (but is
cheaper to evaluate).

Assume we are given the key-switching keys

ksk[i, j]← TLWEs(s
′
i • B−j) (1 ⩽ i ⩽ kN and 1 ⩽ j ⩽ ℓ)

for some parameters B and ℓ defining a gadget decomposition (see Sec-
tion 4.1.3). On input ciphertext c′ ← TLWEs′(µ) = (a′

1, . . . , a
′
kN, b

′) ∈
Tq

kN+1 under the key s′ = (s′1, . . . , s
′
kN) ∈ BkN, the ciphertext

c′′ := (0, . . . , 0, b ′) −

kN∑
i=1

ℓ∑
j=1

(a′
i)j • ksk[i, j]

where (
(a′

i)1, . . . , (a
′
i)ℓ
)
= g−1(a′

i) with (a′
i)j ∈ [−⌊B/2⌋, ⌈B/2⌉)

is a TLWE encryption of µ under the key s ∈ Bn, provided that the resulting
noise error remains contained.

We write c′′ ← KeySwitchksk(c
′) with ksk = (ksk[i, j])1⩽i⩽kN

1⩽j⩽ℓ
.

Proof. The gadget decomposition leads to g−1(a′
i) • g

⊺
=

∑ℓ
j=1(a

′
i)j • B

−j =

a′
i + ϵi where ϵi denotes the rounding error. Hence,

∑ℓ
j=1(a

′
i)j • ksk[i, j] =∑ℓ

j=1(a
′
i)j •TLWEs(s

′
i •B

−j) = TLWEs(s
′
i •(a

′
i+ϵi)). Moreover, (0, . . . , 0, b ′)

is a valid TLWE encryption for b ′. Letting e ′ the noise present in c′, we
therefore see that c′′ ← TLWEs

(
b ′ −

∑kN
i=1 s

′
i • (a′

i + ϵi)
)
= TLWEs

(
µ +

e ′+
∑kN

i=1 s
′
i ϵi

)
, which decrypts to µ if the error e ′′ := e ′+

∑kN
i=1 s

′
i ϵi keeps

small.

30

5.2.4 Putting it all together

To sum up, the bootstrapping of a TLWE ciphertext c ← TLWEs(µ) ∈
Tq

n+1 with s = (s1, . . . , sn) ∈ Bn proceeds as a series of 3 steps.

1. c′ ← BlindRotatebsk(c, c̃) (∈ TN,q[X]
k+1), where

• c= (0, . . . , 0, v) ∈ TN,q[X]
k+1

with v := v(X) =
∑N−1

j=0
⌊pj/(2N)⌉ mod p

p
Xj ∈ PN[X]⊂ TN,q[X];

• c̃ = ⌈c2N⌋ ∈ (Z/2NZ)n+1 ;

• bsk = (bsk[j])1⩽j⩽n

with

{
bsk[j]← TGGSWs′(sj) ∈ TN,q[X]

(k+1)ℓ×(k+1)

s′ = (s′1, . . . ,s
′
k) ∈ BN[X]

k ;

2. c′ ← SampleExtract(c′) (∈ Tq
kN+1) ;

3. c′′ ← KeySwitchksk(c
′) (∈ Tq

n+1), where

• ksk = (ksk[i, j])1⩽i⩽kN
1⩽j⩽ℓ

with

{
ksk[i, j]← TLWEs(s

′
i • B−j) ∈ Tq

n+1

s′ = (s′1, . . . , s
′
kN)← Recode(s′) ∈ BkN .

5.3 Programmable Bootstrapping

The (regular) bootstrapping essentially relies on the observation that X−j •

v(X) = vj + . . . , for any 0 ⩽ j < N. In the above section, test polynomial
v ∈ TN[X] was defined as v(X) =

∑N−1
j=0

⌊pj/(2N)⌉ mod p

p
Xj.

Now, given a function f : Tp → Tp, if we instead define test polynomial v
as

v(X) =

N−1∑
j=0

f
(⌊pj/(2N)⌉ mod p

p

)
Xj ,

we remark that the resulting polynomial X−µ̃∗
• v(X) has for constant

term f
(⌊p µ̃∗/(2N)⌉ mod p

p

)
= f(µ), assuming the absence of drift impact and

0 ⩽ (µ̃∗ mod 2N) < N. Under these conditions, on input a (noisy) TLWE
ciphertext c← TLWEs(µ), the above procedure (cf. Section 5.2.4) outputs
a TLWE ciphertext c′ ← TLWEs(f(µ)) featuring a small amount of noise.
Observe that the regular bootstrapping corresponds to the identity function
for f.

We note that the range restriction on µ̃∗ can be suppressed when func-
tion f is negacyclic (i.e., if f(µ+ 1

2
) = −f(µ), ∀µ ∈ Tp). The “sign” function

over the torus is an example of negacyclic function.

31

References
[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with

polynomial error. In J. A. Garay and R. Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture
Notes in Computer Science, pages 297–314. Springer, 2014. doi:
10.1007/978-3-662-44371-2_17.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015. doi:10.1515/jmc-2015-0016.

[BBKS07] Mihir Bellare, Alexandra Boldyreva, Kaoru Kurosawa, and Jessica
Staddon. Multi-recipient encryption schemes: How to save on bandwidth
and computation without sacrificing security. IEEE Transactions on
Information Theory, 53(11):3927–3943, 2007. doi:10.1109/TIT.2007.
907471.

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness
re-use in multi-recipient encryption schemes. In Y. Desmedt, editor,
Public Key Cryptography (PKC 2003), volume 2567 of Lecture Notes
in Computer Science, pages 85–99. Springer, 2003. doi:10.1007/
3-540-36288-6_7.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Lev-
eled) fully homomorphic encryption without bootstrapping. ACM
Transactions on Computation Theory, 6(3):13:1–13:36, 2014. doi:
10.1145/2633600.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. Classical hardness of learning with errors. In D. Boneh,
T. Roughgarden, and J. Feigenbaum, editors, 45th Annual ACM Sym-
posium on Theory of Computing, pages 575–584. ACM Press, 2013.
doi:10.1145/2488608.2488680.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In R. Safavi-Naini and R. Canetti,
editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of
Lecture Notes in Computer Science, pages 868–886. Springer, 2012.
doi:10.1007/978-3-642-32009-5_50.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of
Cryptology, 33(1):34–91, 2020. doi:10.1007/s00145-019-09319-x.

[CS15] Jung Hee Cheon and Damien Stehlé. Fully homomophic encryption
over the integers revisited. In E. Oswald and M. Fischlin, editors,

32

https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1109/TIT.2007.907471
https://doi.org/10.1109/TIT.2007.907471
https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/s00145-019-09319-x

Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056
of Lecture Notes in Computer Science, pages 513–536. Springer, 2015.
doi:10.1007/978-3-662-46800-5_20.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic
encryption in less than a second. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056
of Lecture Notes in Computer Science, pages 617–640. Springer, 2015.
doi:10.1007/978-3-662-46800-5_24.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
M. Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of
Computing, pages 169–178. ACM Press, 2009. doi:10.1145/1536414.
1536440.

[Gen10] Craig Gentry. Computing arbitrary functions of encrypted data. Com-
munications of the ACM, 53(3):97–105, 2010. doi:10.1145/1666420.
1666444.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In R. Canetti and J. A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes
in Computer Science, pages 75–92. Springer, 2013. doi:10.1007/
978-3-642-40041-4_5.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In H. Gilbert, editor, Advances
in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes
in Computer Science, pages 1–23. Springer, 2010. doi:10.1007/
978-3-642-13190-5_1.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case re-
ductions for module lattices. Designs, Codes and Cryptography,
75(3):565–599, 2015. doi:10.1007/s10623-014-9938-4.

[RAD78] Ronald L. Rivest, Len Adleman, and Michael L. Detouzos. On data
banks and privacy homomorphisms. In R. A. DeMillo et al., edi-
tors, Foundations of Secure Computation, pages 165–179. Academic
Press, 1978. Available at https://people.csail.mit.edu/rivest/
pubs.html#RAD78.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In H. N. Gabow and R. Fagin, editors, 37th Annual
ACM Symposium on Theory of Computing, pages 84–93. ACM Press,
2005. doi:10.1145/1060590.1060603.

33

https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/s10623-014-9938-4
https://people.csail.mit.edu/rivest/pubs.html#RAD78
https://people.csail.mit.edu/rivest/pubs.html#RAD78
https://doi.org/10.1145/1060590.1060603

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. Journal of the ACM, 56(6):34:1–34:40, 2009. doi:
10.1145/1568318.1568324.

[Rot11] Ron Rothblum. Homomorphic encryption: From private-key to public-
key. In Y. Ishai, editor, Theory of Cryptography (TCC 2011), volume
6597 of Lecture Notes in Computer Science, pages 219–234. Springer,
2011. doi:10.1007/978-3-642-19571-6_14.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa.
Efficient public key encryption based on ideal lattices. In M. Matsui,
editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912
of Lecture Notes in Computer Science, pages 617–635. Springer, 2009.
doi:10.1007/978-3-642-10366-7_36.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer
Algebra. Cambridge University Press, 3rd edition, 2013. doi:10.1017/
CBO9781139856065.

A From Private Key to Public Key

As described in Sections 2 and 3, TLWE and TGLWE are private-key
encryption schemes. This is not a restriction because, as demonstrated
in [Rot11], any additively homomorphic private-key encryption scheme can
be converted into a public-key encryption scheme. In this appendix, we
expand on how to extend TLWE and TGLWE to the public-key setting.

Let µ ∈ P. We noticed in Section 4.1.3 that the encryption of µ using
the private-key TLWE encryption scheme (Section 2.1) can be put under
the form

TLWEs(µ)← TLWEs(0) + (0, . . . , 0, µ) .

Only the first part—i.e., TLWEs(0)—involves the private key s.
Now consider m private-key TLWE encryptions of ‘0’. TLWE encryption

being additively homomorphic, any linear combination of these encryptions
of ‘0’ is also a private-key TLWE encryption of ‘0’ (provided that the
resulting noise keeps “small”). This leads to a [public-key] version of TLWE
encryption. The public key is pk = Z, a m× (n+ 1) matrix whose rows are
private-key TLWE encryptions of 0. The [public-key] encryption of µ ∈ P

is then obtained by adding together a random subset of the encryptions of
0 present in the public key Z and adding to it (0, . . . , 0, µ). Specifically, the
public-key encryption of µ is given by TLWEpk(µ) = r • Z + (0, . . . , 0, µ)

where r
$← Bm.

34

https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1007/978-3-642-19571-6_14
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1017/CBO9781139856065

More formally:

Public-key TLWE Encryption

KeyGen(1λ) On input security parameter λ, define two positive in-
tegers m,n, select positive integers p and q such p | q, and
define a discretized error distribution χ̂ over q−1Z induced by a
normal distribution χ = N(0, σ2) over R. Sample uniformly at
random a vector s = (s1, . . . , sn)

$← Bn. The plaintext space is
P = Tp ⊂ Tq where Tq = q−1Z/Z. Using s, randomly generate
m [private-key] TLWE encryptions of 0 (see Section 2.1), and
form the corresponding matrix

Z←

TLWEs(0)
...

TLWEs(0)

 (∈ Tq
m×(n+1)) .

The public parameters are pp = {m,n, σ, p, q}, the public key is
pk = Z, and the private key is sk = s.

Encryptpk(µ) The [public-key] encryption of µ ∈ P is given by

c = r • Z+ (0, . . . , 0, µ) ∈ Tq
n+1

for a random vector r
$← Bm.

Decryptsk(c) To decrypt c = (a1, . . . , an, b), using secret decryption
key s = (s1, . . . , sn), compute (in Tq)

µ∗ = b−
∑n

j=1 sj • aj

and return closest plaintext µ ∈ P as the decryption of c.

The public-key variant of private-key TGLWE encryption (see Sec-
tion 3.1) is obtained analogously. We present it below for completeness.
The key observations are that (i) for µ ∈ PN[X] we have TGLWEs(µ) ≡
TGLWEs(0) + (0, . . . , 0,µ)—see Section 4.2.3, and (ii) private-key TGLWE
encryption is additively homomorphic.

35

Public-key TGLWE Encryption

KeyGen(1λ) On input security parameter λ, define integers N, k,m

with N a power of 2 and m,k ⩾ 1. Select positive integers p and
q such p | q. Define also a discretized error distribution χ̂ over
q−1ZN[X] induced by a normal distribution χ = N(0, σ2) over
RN[X]. Sample uniformly at random a vector s= (s1, . . . ,sk)

$←
BN[X]

k. Using s, randomly generate m [private-key] TGLWE
encryptions of 0 (see Section 3.1), and form the corresponding
matrix

Z←

TGLWEs(0)
...

TGLWEs(0)

 (∈ TN,q[X]
m×(k+1)) .

The plaintext space is PN[X] ⊂ TN,q[X] where Tq = q−1Z/Z.
The public parameters are pp = {m,k,N, σ, p, q}, the public key
is pk = Z, and the private key is sk = s.

Encryptpk(µ) The [public-key] encryption of µ ∈ PN[X] is given by

c= r • Z+ (0, . . . , 0,µ) ∈ TN,q[X]
k+1

for a random vector r
$← BN[X]

m.

Decryptsk(c) To decrypt c= (a1, . . . ,an, b), using secret decryption
key s= (s1, . . . ,sn), compute (in TN,q[X])

µ∗ = b−
∑k

j=1 sj • aj

and return the closest plaintext µ ∈ PN[X] as the decryption
of c.

36

B Pseudo-Code

CMux

Input: 1) c0,c1 ∈ TN,q[X]
k+1

2) K∈ TN,q[X]
(k+1)ℓ×(k+1) where K← TGGSWs(b)

with b ∈ {0, 1} and s ∈ BN[X]
k

Output: c′ ← CMux(K,c0,c1) ∈ TN,q[X]
k+1

c′ ←K⊡ (c1 − c0) + c0

return c′

BlindRotate

Input: 1) c← TGLWEs(µ) ∈ TN,q[X]
k+1

2) c̃ = (ã1, . . . , ãn, b̃) ∈ (Z/2NZ)n+1

3) bsk = (bsk[1], . . . ,bsk[n]) ∈ (TN,q[X]
(k+1)ℓ×(k+1))

n

where bsk[j]← TGGSWs(sj) with s ∈ BN[X]
k

and s = (s1, . . . , sn) ∈ Bn

Output: c′ ← BlindRotatebsk(c, c̃) ∈ TN,q[X]
k+1

c′ ← X−b̃ • c

for j = 1 to n do
c′ ← CMux(bsk[j],c′, Xãj • c′)

end for

return c′

SampleExtract

Input: c← TGLWEs(µ) = (a1, . . . ,ak, b) ∈ TN,q[X]
k+1 with

aj(X) = (aj)0 + (aj)1X+ · · ·+ (aj)N−1X
N−1 for 1 ⩽ j ⩽ k

and b(X) = b0 + b1X+ · · ·+ bN−1X
N−1, and where

µ(X) = µ0 + · · ·+ µN−1X
N−1 ∈ PN[X]

Output: c′ ← SampleExtract(c) ∈ Tq
kN+1

a′ ←
(
(a1)0,−(a1)N−1, . . . ,−(a1)1,

. . . , . . . , (ak)0,−(ak)N−1, . . . ,−(ak)1
)

c′ ← (a′, b0)

return c′

37

Recode

Input: s= (s1, . . . ,sk) ∈ BN,q[X]
k with

sj(X) = (sj)0 + (sj)1X+ · · ·+ (sj)N−1X
N−1 for 1 ⩽ j ⩽ k

Output: s′ ← Recode(s) ∈ BkN

s′ ←
(
(s1)0, (s1)1, . . . , (s1)N−1,

. . . , . . . , (sk)0, (sk)1, . . . , (sk)N−1

)
return s′

KeySwitch

Input: 1) c← TLWEs(µ) = (a1, . . . , an, b) ∈ Tq
n+1

with s = (s1, . . . , sn) ∈ Bn

2) ksk = (ksk[i, j])1⩽i⩽n
1⩽j⩽ℓ

with ksk[i, j] ∈ Tq
n ′+1

where ksk[i, j]← TLWEs ′(si • B−j) with s′ ∈ Bn ′

Output: c′ ← KeySwitchksk(c) ∈ Tq
n ′+1

c′ ← (0, . . . , 0, b)

for i = 1 to n do
((a)1, . . . , (a)ℓ)← g−1(ai)

d′ ← (a)1 • ksk[i, 1]
for j = 2 to ℓ do d′ ← d′ + (a)j • ksk[i, j]
c′ ← c′ − d′

end for

return c′

38

C Index to Notations

In the following notations, letters have the following significance:

N a power of two;
q ciphertext modulus, q = 2Ω where Ω

is the bit-precision for the representation;
p plaintext modulus such that p | q.

Formal
Meaning

Section
symbolism reference

B B = {0, 1} Section 1.3
BN[X] BN[X] = B[X]/(XN + 1) Section 1.3

P P = Tp (plaintext space) Section 2.1
P P = Z/pZ Section 4.1.3

PN[X] PN[X] = P[X]/(XN + 1) Section 3.1
PN[X] PN[X] = P[X]/(XN + 1) Section 4.2.3
RN[X] RN[X] = R[X]/(XN + 1) Section 1.1

T T = R/Z (real torus) Section 1.1
Tq Tq = 1

q
Z/Z (discretized torus) Section 2.1

TN[X] TN[X] = T[X]/(XN + 1) Section 1.1
TN,q[X] TN,q[X] = Tq[X]/(X

N + 1) Section 3.1
ZN[X] ZN[X] = Z[X]/(XN + 1) Section 1.1

39

	Definitions
	Torus and Torus Polynomials
	Discretized Torus
	Notation
	Complexity Assumptions

	TLWE Encryption
	Description
	Encoding/Decoding
	Implementation Notes

	TGLWE Encryption
	Description
	Encoding/Decoding
	Implementation Notes

	Working over Encrypted Data
	TLWE Ciphertexts
	Addition of ciphertexts
	Multiplication by a known constant
	Multiplication of ciphertexts

	TGLWE Ciphertexts
	Addition of ciphertexts
	Multiplication by a known polynomial
	Multiplication of ciphertexts

	Implementation Notes

	Programmable Bootstrapping
	Gentry's Recryption
	Bootstrapping
	Blind rotation
	Sample extraction
	Key switching
	Putting it all together

	Programmable Bootstrapping

	From Private Key to Public Key
	Pseudo-Code
	Index to Notations

