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Abstract. In this paper, we propose any-out-of-many proofs, a logarith-
mic zero-knowledge scheme for proving knowledge of an arbitrary number
of secrets out of a public list. Unlike existing k-out-of-N proofs [S&P’21,
CRYPTO’21], our approach also hides the exact amount of secrets k,
which can be used to achieve a higher anonymity level. Furthermore, we
enhance the efficiency of our scheme through a transformation that can
adopt the improved inner product argument in Bulletproofs [S&P’18],
only 2 · dlog2(N)e + 13 elements need to be sent in a non-interactive
proof.
We further use our proof scheme to implement both multiple ring sig-
nature schemes and RingCT protocols. For multiple ring signatures, we
need to add a boundary constraint for the number k to avoid the proof
of an empty secret set. Thus, an improved version, a bounded any-out-
of-many proof, is presented, which preserves all nice features of the orig-
inal protocol such as high anonymity and logarithmic size. As for the
RingCT, both the original and bounded proofs can be used safely. The
result of the performance evaluation indicates that our RingCT protocol
is more efficient and secure than others. We also believe our techniques
are applicable in other privacy-preserving occasions.

Keywords: zero-knowledge, k-out-of-N proof, ring signature, confiden-
tial transaction

1 Introduction

Blockchain-based cryptocurrencies verify and record each transaction through
a decentralized network. Specifically, a distributed ledger of all legal transac-
tions is maintained by every user in the network, hence the correctness and
immutability of the whole system will be guaranteed in an honest-majority situ-
ation. To allow easy verification of all transactions, some cryptocurrencies adopt
a public approach that records all transaction details in plaintext. For example,
the balance and address of each account are accessible to anyone in the Bitcoin
network [?]. Unfortunately, the public property hinders the original blockchain
scheme from private applications. As a result, this deficiency has impelled the
development of private cryptocurrencies [?], [?]. Providing confidentiality and
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anonymity to a cryptocurrency system while allowing public verifications has
been a hotspot in this field.

Existing private cryptocurrencies use ring confidential transaction (RingCT)
protocols [?], [?], [?], [?] to solve the privacy issue in two aspects: (1) confiden-
tiality, which hides the amounts of money in a transaction; and (2) anonymity,
which hides the identities of users in a transaction. For confidentiality, existing
solutions adopt a balance proof to ensure the sums of inputs and outputs are
equal, and a range proof to ensure each amount (account balance) lying in the
valid range [?]. For the anonymity property, Groth et al. propose a logarithmic
size one-out-of-many proof [?], which enables the prover to prove a statement
about one message among a list of commitments, and requiring only logarithmic
number of commitments in transmission. This proof system can be used to con-
struct a ring signature scheme which provides anonymity by hiding the identity
of the signer. However, due to several deficiencies of this system, the efficiency
and security of the initial protocol are far from satisfactory. For example, the
Pedersen vector commitment is not used in [?], resulting in large communication
cost. Even worse, one-out-of-many proofs can only open 1 out of N public com-
mitments to zero, which contributes to incompatibilities in the case of multiple
inputs accounts. As the first deficiency has been overcome in [?] through using
Pedersen vector commitments, we will focus on the second one.

As one-out-of-many proofs only allow one valid user in a proof, while extra
N − 1 public accounts are needed as the anonymous set, this mechanism will
lead to the inefficiency in the case of multiple inputs accounts, since one-out-of-
many proofs should be conducted for every input account respectively. To solve
this problem, one of the mainstream methods is leaking multiple secrets among
one public list However, current proposals for multiple secrets proofs have either
been prohibitively complex or undermined the anonymity. Neither meets our
satisfaction. Although these two methods above can leak multiple secrets from
one ring set and reduce the proof size to a logarithmic scale [?], [?], there are
also some limitations of them. First, the many-out-of-many proof protocol only
works for permutations with orbits of equal size [?], which is not a general k-
out-of-N proof. Moreover, the verification cost of a partial knowledge proof [?] is
very high, and the cyclic group operations are less efficient when using bilinear
mapping. Besides, the anonymity of the protocol also needs to be considered. In
previous work, accounts in the anonymous set are not independent. This incurs a
problem that when an account is de-anonymized, some other accounts will also be
excluded from the anonymous set. For example, in many-out-of-many proofs [?],
the leakage of one secret will contribute to leaking the whole secret group since
their positions in the anonymous set are relevant due to the permutation. Thus,
it is important to make accounts (secrets) distribute randomly (independent) in
the set. We will give a further discussion of these problems in Section 4.3. In this
work, our goal is to propose a more efficient proof scheme for leaking multiple
secrets meanwhile with better anonymity for RingCT.
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1.1 Our Contributions

We conclude our contributions as follows:

Bulletproofs compression for general relations. Inspired by previous work [?], [?],
we show how to adopt the improved inner-product argument in Bulletproofs for
general relations. We first show an approach to convert a quadratic relation into
an inner-product form and then discuss how to transform multiple inner-product
relations into one. With the help of the improved inner-product argument [?],
logarithmic size proofs can be easily achieved. In Section 3, we will describe
the general model of transforming relations into inner-product forms, and futher
compressing them.

Any-out-of-many proofs. We propose any-out-of-many proofs, a new technique
to prove the knowledge of arbitrarily number of secrets among a public list. Dif-
ferent from the previous multiple secrets proofs, our scheme doesn’t reveal the
specific number of secrets. We use our general model to transform these relations
into an inner-product and reduce the proof size. By applying the Fiat-Shamir
heuristic [?], we obtain short non-interactive any-out-of-many proofs. Among all
state-of-the-art approaches, our any-out-of-many proof has the smallest asymp-
totic proof size and the highest anonymity.

An efficient multiple ring signature scheme. As our original non-interactive any-
out-of-many proofs allow to have zero secret (k = 0), directly applying our
technique to (multiple) ring signatures is insecure. Hence we improve our proof
scheme with a range proof to ensure the number k is positive. This new bounded
any-out-of-many proofs can also be transformed and compressed by applying
our general model.

RingCT protocol with a higher degree of anonymity. Based on our origin any-
out-of-many proofs and bounded any-out-of-many proofs, we construct RingCT
protocols. The bounded RingCT Protocol can be directly applied to current
anonymous cryptocurrency systems, while we prove the other one is also secure
and applicable. Moreover, we can batch the any-out-of-many proof with range
proofs in RingCT to further reduce the transcript size. Overall, our RingCT
protocols are more efficient and secure compared with existing approaches.

1.2 Related Work

As introduced by Cramer et al. in [?], a general method is proposed to prove the
knowledge of at least k out of N solutions without revealing which k instances are
involved with linear communication complexity. We define these proof schemes as
k-out-of-N proofs uniformly, where k ∈ [0, N ]. Based on this work, lots of novel
Σ-protocols have been proposed, such as the group signature scheme presented
in [?], [?], membership proofs in [?], [?] and also the ring signature schemes. Ring
signatures were first introduced by Rivest et al. in [?], which enable a signer to



4 Tianyu Zheng, Shang Gao, Bin Xiao, and Yubo Song

sign a message as a user in an ad-hoc group without revealing its identity. In
the follow-up works such as [?], [?], improved ring signature scheme are con-
structed based on non-interactive zero-knowledge proofs. With the popularity
of blockchain technology, people find ring signature schemes can be applied to
provide anonymity in private cryptocurrencies. Thus, ring signatures once again
arouse research interests and are widely applied such as in CryptoNote [?] and
Ring Coin [?]. In Monero [?], such an application of ring signature is defined as
a part of the process called RingCT. And later, Sun et al. formalize the syntax
of RingCT protocol and present several formal security definitions. Since then,
RingCT protocol has become an important and direct application of k-out-of-
N proofs [?]. In [?], Groth introduces the one-out-of-many proof, an enhanced
Σ-protocol with logarithmic communication complexity, with this scheme, the
proof size of ring signatures can be improved from sublinear to logarithmic.
Groth uses this scheme to instantiate both ring signature and zerocoin, and it
is also applied in following research e.g. Zether [?] and Monero [?].

Although one-out-of-many proofs [?] and the improved versions [?], [?] have
been proved to be efficient and practical, there are still some unsatisfactory prop-
erties of this scheme. As mentioned above, one-out-of-many proofs can only open
1 out of N public commitments to zero, which will contribute to incompatibili-
ties when there are multiple inputs accounts in a RingCT scenario. To guarantee
anonymity for multiple users with logarithmic cost, existing mainstream solu-
tions can be grossly divided into two groups. First solution is to batch mulitple
one-out-of-many proofs into one during the construction of RingCT protocol.
These methods have already been implemented in RingCT 2.0 and RingCT 3.0
[?,?] while excessive size of anonymous set and loss of generality makes them
less desirable, we will give more discussions about these in Section 5. The other
solution is designing a new logarithmic proof scheme which can reveal multiple
secrets at once, as proposed in [?], [?]. One major challenge in realizing scheme is
to reduce the proof size, as the optimization method of using Kronecker product
[?] can not be directly applied in the multi-secret situation. To solve this, Dia-
mond proposes many-out-of-many proofs [?] to map multiple secrets in one based
on permutations and linear mapping, as a result the task can be transformed as
an one-out-of-many question. Attema et al. introduce novel partial knowledge
proofs [?] to convert the index information to a polynomial function and prove
the coefficients of the function to avoid binary proofs. Bulletproofs compression
[?] can be further applied on these non-binary coefficients directly to reduce the
proof size. Our scheme of any-out-of-many proofs also follows the idea of second
solution. Finally, We give a brief overview of some typical k-out-of-N proofs as
follows:

1.3 Comparison with Other Approaches

The first wildly applied approach without a trusted setup is one-out-of-many
proofs [?] as mentioned above. One intriguing prosperity of this approach is it
uses Kronecker’s delta vector to achieve a logarithmic size proof. Specifically,
instead of running a Σ-protocol on the index of the secret (an N -size binary
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Table 1. Overview of some typical k-out-of-N proofs

Proof type Typical shcemes Range of k

Single secret proofs [?], [?] 1

Multiple secret proofs [?], [?] [1, N ]

Any secret proofs Our method [0, N ]

vector) directly, the prover proves the knowledge of each bit of the secret index,
which is only 2log(N) length. Some following-up schemes further improve the
efficiency such as Bootle et al. use Perdesen vector commitment to reduce the
proof size [?] to 3 · dlog2(N)e + 7, and Jivanyan and Mamikonyan propose a
hierarchical approach to improve the prover complexity of the one-out-of-many
proofs [?].

In comparison, in our protocol, we allow the prover to prove any number of
secrets. When proving one secret, our approach also outperforms [?] and [?] with
the proof size of 2 · dlog2(N)e+ 13, especially for a large set.

Hence, perhaps surprisingly, our simple protocols are comparable to dedi-
cated solutions for the special case k = 1. (Compared with 1/N)

To handle a multi-secret circumstance, S&P’21[?] proposes a generalization
form of one-out-of-many proofs, many-out-of-many proofs. Based on a public
permutation of the indexes and a linear mapping, a prover can map one index to
many secrets, which can further prove the knowledge of this index for the knowl-
edge of multiple secrets. Unfortunately, the protocol only works for permutations
with orbits of equal size, which is not a general proof scheme for multi-secret.
Furthermore, as the permutation is public, anyone can compute the index of all
secrets when only one secret index is leaked.

The first general multi-secret proof is the novel partial knowledge proof pro-
posed in Crypto’21 [?]. Instead of directly proving the knowledge of a Kronecker’s
delta vector (secret index vector), this proof scheme plants the 0 elements of the
vector into a function and prove the knowledge of the coefficients of the function
to avoid binary proofs. Furthermore, the function is transformed into a homo-
morphisms form which is Bulletproofs compression-friendly to achieve logarith-
mic size. Though this approach is the most general multi-secret proof, the proof
size is the largest. Though the authors argue that the size of partial-knowledge
proofs can be reduced to 2 · dlog2(2 ·N − k + 1)e + 3, pairing-friendly elliptic
curves are needed in order to reduce the communication cost. As a result, both
the efficiency and security level will be downgraded due to the pairing-friendly
groups. Besides, the verification cost is also high as it requires checking a relation
on each public commitment.

Different from many-out-of-many and novel partial knowledge proofs, our
proof scheme allows arbitrarily number of secrets to be hidden in a public set.
Besides, our approach has the best performance under a large ring set size of N .
We give a brief review and comparison with other approaches [?], [?], which is
presented in Table (2). In which we consider a situation of proving knowledge of
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k secrets in a ring set consists of N public elements. The result shows that the
proof size of our approach has the smallest coefficient of 2. Though the proof
size of the pairing method in [?] seems to be smaller, it is based on a bilinear
pairing that needs a larger group domain in implementation. For example, when
we set the order q of the group to 128, in order to achieve the same security level
with the others, the pairing method in [?] has to use a larger group with the
order of 256, which almost doubles the proof size. Even worse, the verification
complexity of the novel partial knowledge proof is very high. The last column
in the table gives the value of anonymity space, we define it as the space of
possible combinations of the secrets in the ring set, which reflects the level of
anonymity of the k-out-of-N proofs above. Obviously, the anonymity space of
our approach is the highest among them, we also note that our anonymity level
does not depend on the number k, this excellent property gives our approach
the ability to prove arbitrarily number of secrets in a public set.

Table 2. Comparison of the proof size and anonymity between our proofs and other
k-out-of-N approaches

Proof size Anonymity space

Many-out-of-many proofs [?] 3 · dlog2(N)e+ 7 N

Novel partial knowledge proofs [?] 4 · dlog2(2 ·N − k + 1)e − 1
(
N
k

)
Novel partial knowledge proofs (pairing) [?] 2 · dlog2(2 ·N − k + 1)e+ 3

(
N
k

)
Our any-out-of-many proofs 2 · dlog2(N)e+ 13 2N

1.4 Organization of the Paper

The remaining paper is organized as follows. We review some fundamental defi-
nitions and building blocks that are used in this paper in Section 2. In Section
3, we show how to apply the inner-product argument in Bulletproofs to prove
more general relations. Based on our general model, we further propose the any-
out-of-many proof in Section 4 and discuss its applicabilities. Two applications
of our any-out-of-many proofs, multiple ring signatures and RingCT protocols
are presented in Section 5 and Section 6 respectively. Finally, in Section 7, we
evaluate the performance and efficiency of our proposed approaches.

2 Preliminaries

In this section, we give a brief review of some fundamental definitions and build-
ing blocks which will be used in the following sections.
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2.1 Notation.

Let λ be a security parameter. The setup algorithm generating a commitment key
ck is written as, ck ← Setup(1λ), which indicates a cyclic group G is determined
by ck. Let g, h, u, v be generators of G, where all of them conform to the discrete-
log assumption. Zq denotes the ring of integers modulo q and Z∗q denotes Zq\{0}.
Let Gn and Znq be vector spaces of dimension n over G and Zq respectively x←Z∗q
denotes sampling x from Z∗q uniformly.

We use bold-type lower-case letters to denote vectors, such as a ∈ Fn is
a vector with elements a1, ..., an ∈ F. Bold-type upper-case letters are used to
denote matrices, such as A ∈ Fn×m is a matrix with n rows and m columns,
where each elements ai,j ∈ F (i ∈ [1, n], j ∈ [1,m]). Let c · a =

∑n
i=1 c · ai

denotes a scalar product of scalar c and vector a; 〈a, b〉 =
∑n
i=1 ai · bi denotes

the inner product of vectors a and b; a ◦ b = (a1 · b1, ..., an · bn) ∈ Fn denotes
the Hadamard product of vectors a and b; and ab =

∏n
i=1 ai

bi ∈ F denotes
the multi-exponentiation of two vectors. For k ∈ Zq, we define kn as kn =
(1, k, k2, ..., kn−1) ∈ Znq . The Hamming weight of a vector b is defined as HW (b).

2.2 Commitment Scheme

A non-interactive commitment scheme (over a commitment key ck) can output a
commitment c← G with inputs secret message m← Zq and randomness r ← Zq
in the commitment stage. Then in the opening stage, m, r are revealed to allow
anyone to verify that c is indeed a commitment to m. We use Comck to denote a
commitment and require that a commitment scheme satisfies hiding and binding
properties as follows.

Definition 1. (Hiding Property). For all PPT (probabilistic polynomial time)
adversaries A,

Pr

[
ck ← Setup

(
1λ
)

; (m0,m1)← A(ck);
b← {0, 1}; c← Comck (mb) : A(c) = b

]
≈ 1

2
. (1)

Definition 2. (Binding Property). For all PPT adversaries A,

Pr

[
ck ← Setup

(
1λ
)

; (m0, r0,m1, r1)← A(ck) :
m0 6= m1 ∧ Comck (m0, r0) = Comck (m1, r1)

]
≈ 0. (2)

The Pedersen commitment [?] and Pedersen vector commitment [?] are two
natural examples of homomorphic commitment schemes which are perfectly hid-
ing and computationally binding under the discrete-log assumption.

Definition 3. (Pedersen Commitment). With a cyclic group G determined by
ck, we can use generator g, h← G, randomness r ← Zq to commit to a message
m as follows:

Comck(m, r) = gm · hr ∈ G. (3)
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Definition 4. (Pedersen Vector Commitment). The prover commits to an n-
dimensional vector m ∈ Znq to the verifier with n + 1 different generators in
G

Comck(m, r) = gm · hr = (

n∏
i=1

gmii ) · hr ∈ G. (4)

2.3 Bulletproofs Compression

Bulletproofs protocol is an interactive approach to compress n-size vectors to
scalars with log(n) times of iterations [?]. This scheme is mainly based on the
inner product argument[?], which aims to prove that the prover knows the open-
ings of two binding Pedersen vector commitments that satisfy an inner-product
relation, which can be described as follows:

Definition 5. (Inner-Product Argument). Given a commitment scheme with
commitment key ck, with cyclic group G determined by ck and g, h, u ← G,
the prover outputs a commitment C to the secret vectors a, b and their inner
product result 〈a, b〉.

R1 =
{

(g,h ∈ Gn, C ∈ G;a, b ∈ Znq ) : C = ga · hb · u〈a,b〉
}
. (5)

To verify the commitment, the prover needs to send vectors a and b to the
verifier, totally 2n elements as the proof size. In order to reduce this size from
linear to logarithmic, an elegant compression mechanism is given in [?]. Assume
that n is an even number and n′ = n/2, we define the slices of vectors:

aL = (a0, ..., an′−1) ∈ Fn
′
, aR = (an′ , ..., an−1) ∈ Fn

′
, (6)

so do bL, bR, gL, gR,hL,hR. Therefore we can compute compressed vectors a′, b′

and corresponding group vectors g′,h′ with a random value x ∈ Zq as follows:

a′ = x · aL + aR, b′ = bL + x · bR
g′ = gL · gxR, h′ = hL · hxR, (7)

which indicates the following relation holds:

C ′ = (g′)a
′
· (h′)b

′
· u〈a

′,b′〉

= gaRL · h
bR
L · u

〈aR,bL〉 · (ga · hb · u〈a,b〉)x · (gaLR · h
bL
R · u

〈aL,bR〉)x
2

= L · Cx ·Rx
2

, (8)

where L = gaRL · hbRL · u〈aR,bL〉 and R = gaLR · hbLR · u〈aL,bR〉. As shown in
the equations above, we can send shorter vectors a′ and b′ instead of a, b,
with two extra elements L and R. Meanwhile, the new relation in Equation (8)
indicates the original relation in Equation (5) still holds on the new elements
a′, b′, g′,h′, L,R. Therefore, only half length of the origin vectors and extra two
group elements need to be sent after engaging this method, and the origin vector
of length n will be compressed to 1 after dlog2(n)e rounds of iterations.
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3 A General Compression Model for ZKP of Vectors

Bulletproofs protocol converts range proof relations into an inner-product form
[?], and then compresses the vectors through the inner-product argument [?],
[?]. However, as Bulletproofs protocol only focuses on range proof relations,
the application of this transformation is limited, which may not be feasible to
transform other relations into an eligible form.

Motivated by previous work, we present how to conduct this inner-product
transformation for multiple quadratic relations, which is compatible with the
inner-product argument to reduce the proof size. We start from a quadratic
relation and further extend multiple quadratic relations.

Quadratic Relation. We consider the problem of proving the knowledge of a
secret vector b ∈ Znq with the following relation:

R =
{

(g ∈ Gn, B ∈ G; b ∈ Znp ) : B = gb, f(b) = 0n
}
, (9)

where f(·) is a quadratic relation, f(b) = b ◦ (α ◦ b + β) + γ, and α,β,γ
are public coefficients. A linear relation can be regarded as a special case of
a quadratic relation where α = 0n. When considering hiding, we can simply
regard b′ = (b||r) and g′ = (g||h) in Pedersen vector commitment.

To ensure that f(b) = 0n holds, it is equivalent to show the following equa-
tions hold by writing b as b0 and α ◦ b0 + β as b1:

b0 ◦ b1 = −γ ∧ b1 = α ◦ b0 + β. (10)

With a challenge y ∈ Zq, equation (10) can be further transformed into inner-
product forms:

〈yn, b0 ◦ b1〉 = −〈yn,γ〉 ∧ 〈yn,α ◦ b0 + β − b1〉 = 0. (11)

We can further aggregate these two equations with another challenge z ∈ Zq and
convert into one inner-product form:

〈yn, b0 ◦ b1〉+ z · 〈yn,α ◦ b0 + β − b1〉 = −〈yn,γ〉
⇐⇒ 〈b0 ◦ yn, b1〉+ 〈b0 ◦ yn, z ·α〉+ 〈yn, z · β〉 − 〈yn, z · b1〉 = −〈yn,γ〉
⇐⇒ 〈b0 − z · 1n, (z ·α+ b1) ◦ yn〉+

〈
yn, z2 ·α+ z · β

〉
= −〈yn,γ〉

⇐⇒ 〈ζ(b0), η(b1)〉 = δ (12)

where ζ(b0) = b0 − z · 1n, η(b1) = (z · α + b1) ◦ yn, and δ = −〈yn, z2 · α + z ·
β〉 − 〈yn,γ〉.

In a Σ-protocol, instead of sending ζ(b0) and η(b1) directly, a prover will
response with l = (b0 − z · 1n) + x · s0 and r = (z ·α+ b1 + x · s1) ◦ yn with a
challenge x and some masking values s0 and s1. Thus, Equation (12) becomes
〈l, r〉 = 〈ζ(b0), η(b1)〉+ x ·

(
〈s0, η(b1)〉+ 〈ζ(b0), s1 ◦ yn〉

)
+ x2 · 〈s0, s1 ◦ yn〉. As

ζ(·) is a linear function, we can compute B0 = gl based on B in Equation (9)
and the commitment of s0, S0 = gs0 (so does B1 = gr based on gb1 and gs1 for
the linear function η(·)) and further apply the Bulletproofs compression directly
on 〈l, r〉. According to the derivation process above, we can get the Lemma:
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Lemma 1. Any quadratic relation of a vector b which satisfies the form of
f(b) = b ◦ (α ◦ b+ β) + γ can be transformed into a compression-friendly form
containing one inner-product.

Multiple Inner-Product Relations. We further consider the following relation
with k-many inner-product equations:

R =

{
(g ∈ Gn, B0, B1 ∈ G; b0, b1 ∈ Znp ) : B0 = gb0 , B1 = gb1 ,
〈ζ0(b0), η0(b1)〉 = δ0, ..., 〈ζk−1(b0), ηk−1(b1)〉 = δk−1

}
, (13)

where ζi(b0) = ζi ◦ b0 + µi and ηi(b1) = ηi ◦ b1 + νi are linear relations. Note
that B0 and B1 can also be commitment in one commitment under different G
elements, B = gb0hb1

We first consider two equations, 〈ζ0(b0), η0(b1)〉 = δ0 and 〈ζ1(b0), η1(b1)〉 =
δ1. Taking a challenge z, we can rewrite the two inner-products as:

〈ζ0(b0), η0(b1)〉+ z · 〈ζ1(b0), η1(b1)〉 = δ0 + z · δ1. (14)

The right-hand side of Equation (14) can be rewritten as one inner-product
relation:

〈ζ0(b0), η0(b1)〉+ z · 〈ζ1(b0), η1(b1)〉
= 〈b0, η0(b1) ◦ ζ0〉+ 〈µ0, η0(b1)〉+ 〈b0, z · η1(b1) ◦ ζ1〉+ 〈z · µ1, η1(b1)〉
= 〈b0, η0(b1) ◦ ζ0 + z · η1(b1) ◦ ζ1〉+ 〈µ0 ◦ η0, b1〉+ 〈µ0,ν0〉

+〈z · µ1 ◦ η1, b1〉+ 〈z · µ1,ν1〉
= 〈b0, η0(b1) ◦ ζ0 + z · η1(b1) ◦ ζ1〉+ 〈µ0 ◦ η0 + z · µ1 ◦ η1, b1〉

+〈µ0,ν0〉+ 〈z · µ1,ν1〉. (15)

As η0(·) and η1(·) are linear functions, η0(b1) ◦ ζ0 + z · η1(b1) ◦ ζ1 is also linear.
Let η0(b1) ◦ ζ0 + z · η1(b1) ◦ ζ1 = τ ◦ b1 + ω, κ0 = µ0 ◦ η0 + z · µ1 ◦ η1 and
κ1 = 〈µ0,ν0〉+ 〈z · µ1,ν1〉. We can rewrite Equation (15) as:

〈b0, τ ◦ b1 + ω〉+ 〈κ0, b1〉+ κ1

= 〈τ ◦ b0, b1 + τ−1 ◦ ω〉+ 〈κ0, b1 + τ−1 ◦ ω〉 − 〈κ0, τ
−1 ◦ ω〉+ κ1

= 〈τ ◦ b0 + κ0, b1 + τ−1 ◦ ω〉 − 〈κ0, τ
−1 ◦ ω〉+ κ1, (16)

where τ−1 is to inverse each element of τ (i.e., τ−1i ). Thus, it is important to
ensure τi 6= 0 for the above transformation (which is true for most real-world
applications). Taking Equation (15) and (16), we have one inner-product relation

〈τ(b0), ω(b1)〉 = δ, (17)

where τ(b0) = τ ◦ b0 + κ0, ω(b1) = b1 + τ−1 ◦ ω, and δ = δ0 + z · δ1 − κ1 +
〈κ0, τ

−1 ◦ ω〉.
We can further iteratively conduct the above transformation to rewrite Equa-

tion (16) and 〈ζ2(b0), η2(b1)〉 = δ2 to a single inner-product form, and finally
convert k-many inner-product relations into one.
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When dealing multiple quadratic relations, fi(b) = αi ◦b+βi = 0n, we need
an additional step as the b1’s in Equation (10) can be different due to αi’s and
βi’s, i.e., b1,i = αi◦b0+βi. Nevertheless, we have b1,i = αi◦α−11 ◦(b1,1−β1)+βi,
which indicates a linear relation between b1,i and b1,1. Therefore, we can set
b1 = b1,0 and convert 〈ζi(b0), ηi(b1,i)〉 = δ0 to 〈ζi(b0), ρi(b1)〉 = δ0 for all 0 ≤
i < n, where ρi(·) is a linear function. By adopting the multiple inner-product
transformation, we can rewrite them into one inner-product form.

Another special case is dealing with multiple secrets, (a0,a1) and (b0, b1)
such that 〈a0,a1〉 = δa and 〈b0, b1〉 = δb (e.g., after adopting the transformation
of Equation (12) for f1(a) = 0n and f2(b) = 0m). This can be simply converted
into an inner-product form 〈a0||(z · b0),a1||(z · b1)〉 = δa + z · δb.

For one inner-product relation, the prover can use a similar process in the
quadratic relation to encode τ(b0) and ω(b1) to l and r respectively. Finally, we
can use the Bulletproofs compression [?], [?] directly to reduce the proof size.

Thus, we get another lemma as follows:

Lemma 2. For any number of quadratic relations, each has its own vector bi,
all of them can be transformed into a compression-friendly form containing one
inner-product.

4 Any-out-of-Many Proofs

In this section, we present our any-out-of-many proofs. Based on the prior dis-
cussions, it’s clear that our first challenge is to design an elegant logarithmic
zero-knowledge proof without sacrificing the efficiency and generality. Motivated
by the our transformation of general relations in Section 3, we can convert the k-
out-of-N relation into an inner-product form based on our transformation model
for general relations in Section 3. The relation of a k-out-of-N proof is given as
follows:

Definition 6. (k-out-of-N relation). The following defines the k-out-of-N rela-
tion, which proves the knowledge of k openings s′ = (sl0 , ..., slk−1

) in a public
set P = (P0, ..., PN−1):

Rk/N =

{
(ck ,P ; (b, s′)) :

b ∈ {0, 1}N ∧HW (b) = k ∧ P b =
∏k−1
j=0 Comck (0; s′j)

}
. (18)

Since we can regard the multi-exponentiation P b as a commitment of vector
b, b ∈ {0, 1}N as a quadratic relation b ◦ (1N − b) = 0N , and HW (b) = k as
an inner-product relation 〈b,1N 〉 = k, it is feasible to transform the k-out-of-
N relation into compression-friendly forms according to Lemma 1 presented in
Section 3.

The second challenge is anonymity. As we have shown that the distribution
of secrets is critical to the anonymity and security, designing an approach of
which secrets are independently distributed in the anonymous set is important.
This property is similar to the concept of “anonymity against insider attacks”
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defined by Yuen et al. in RingCT 3.0 [?], which is used to highlight the irrele-
vance between the different spenders among the anonymous set (we give a more
detailed discussion in Section 5.2). Here we can simply apply this property as
an indicator of measuring the anonymity of k-out-of-N proofs. Thus, we say the
anonymity of the partial knowledge proof [?] is higher than many-out-of-many
proofs [?] as the indexes of all secrets can be predicted when the permutation
method and any one of indexes is leaked. Furthermore, we find that openning the
number of secrets k, will also leak some information. This may cause some seri-
ous problems especially when k ≈ N , because the outsider can randomly choose
an account from the ring set, and has a large possibility to believe it is a true
spender. Due to this reason, a large ring set and relatively small size of secrets
should be set for real-world applications, which may cause an inefficiency. So we
can observe that if there exists any method which does not open the exact value
of k, the efficiency and anonymity of the scheme would be enhanced significantly.
Thankfully, this goal can be achieved by removing the relation of HW (b) = k
directly. This is simply because the range of HW (b) can be inferred from the

binary proof (b ∈ {0, 1}N =⇒ HW (b) ∈ [0, N ]). So the value of HW (b) will
always be valid (The occassion of HW (b) = 0 will be discussed in Section 5).
We name this novel scheme as any-out-of-many proof and present its relation as
follows:

Definition 7. (Any-out-of-Many Relation). The following defines the any-out-
of-many relation, which proves the knowledge of arbitrarily many openings s′ =
(sl0 , ..., slk−1

) (including k = 0 case) in a public set P = (P0, ..., PN−1):

R∗/N =

{
(ck ,P ; (b, s′)) :

b ∈ {0, 1}N ∧ P b =
∏k−1
j=0 Comck (0; s′j)

}
(19)

Next, we present the construction of our logarithmic-size any-out-of-many proofs.

4.1 Any-out-of-Many Proofs with Logarithmic Size

We give some definitions first to explain our protocol clearly. Let P = (P0, ..., PN−1)
represents a public list consists of N elements (N ≥ 1), and the element Pi in
the public list can be deemed as a commitment to 0, Pi = Comck (0; si), with the
given security parameter λ1 and ck ← Setup(1λ1). As the commitment scheme
in the public key generation and the ZKP process may be different, here we use
another security parameter to distinguish these two proceeds. The commitment
scheme used in the ZKP process is described as gk ← Setup(1λ2). and ZNq ,Zq,G
we used in the protocol are determined by gk . The Prover needs to demonstrate
that she knows k secret keys to the corresponding elements in the public list. For
convenience, we define the subset of secret keys that the Prover knows as a vector
s′ = (sl0 , ..., slk−1

). And the commitment to the vector r is P ′ = (Pl0 , ..., Plk−1
),

where the vector l = (l0, ..., lk−1) represents the index of the commitments in
public list, li ∈ [0, N), We can use a binary vector b to describe the relation



Title Suppressed Due to Excessive Length 13

between P ′ and P , where ‖L′‖1 =
∏k−1
j=0 Plj =

∏N−1
i=0 P bii = P b, and vector b

satisfies:

b = (b0, ..., bN−1), bi =

{
0 (i ∈ l)
1 (i /∈ l) (20)

According to our general transformation model, we can transform relations
given in Definition 4.2 into an inner-product form. The multi-exponentiation
P b can be regarded as a commitment. And we can prove a quadratic relation
b ◦ (1N − b) instead of proving b ∈ {0, 1}N . According to the transformation
steps for quadratic relaion given in Section 3. The relation can be rewritten as:

f(b0, b1) = 0n

⇐⇒
〈
yN , b0 ◦ b1

〉
+ z ·

〈
yN , b0 − 1N − b1

〉
= 0

⇐⇒
〈
b0 − z · 1N , (z · 1N + b1) ◦ yN

〉
+
〈
yN , z2 · 1N − z · 1N

〉
= 0

⇐⇒ 〈ζ0,η0〉+ δ(y, z) = 0 (21)

where b0 = b, b1 = b0 − 1N , y, z ∈ Zq are challenge values.
Based on the inner product form relation in equation (21), we can con-

struct any-out-of-many proofs as shown in Protocol 1. We use ck for gener-
ating public keys P with g, and gk for the zero knowledge proofs of Relation
4.2. Group elements h, u, v are determined by gk . The h′ in Protocol 1 is h′ =

(h1, h
(y−1)
2 , h

(y−2)
3 , ..., h

(y−N+1)
N ), which is for concise expression. Different from

Bulletproofs, in this protocol we commit to blinding values b0, b1 separately with
two challenge values c, d ∈ Zq, in order to check that P b =

∏k−1
j=0 Comck (0; s′j)

holds. Thus, the openings ζ(c), η(c) of the two vectors ζ0,η0 in the inner product
above are written as,

ζ(c) = b0 − z · 1N + s0 · c (22)

η(c) = (z · 1N + d · b1 + s1 · c) ◦ yN (23)

δ(y, z) =
〈
yN , z2 · 1N − z · 1N

〉
(24)

t(c) = 〈ζ(c), η(c)〉
= δ(y, z) + t1 · c+ t2 · c2 (25)

Theorem 1. The Protocol 1 for proving knowledge of multiple secrets out of
N commitments opening to 0 is perfectly complete. It is perfect (n + 1)-special
sound if the commitment scheme is perfectly binding. It is perfect special honest
verifier zero-knowledge if the commitment scheme is perfectly hiding.

we give the proof of the above theorem in Appendix A.
In the protocol, several tricks are used to apply the compression method to

the relations smoothly and securely. First, we pad the secret vector s′ with zeros
to extend it to a vector s of length N, with the equation P b =

∑N−1
i=0 Comck (0; si)

still holds. The purpose of this trick is to keep the blinding vectors of b and s′ in
the same length, so that they can be compressed simultaneously. What’s more,

according to RingCT 3.0[?], we use Yi = Pi · ghash(P )
i to replace the public keys
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Protocol 1 Any-out-of-Many Proof

P(g,h, u, v,Y , (b; s)) V(g,h, u, v,Y )

α, β, γ ← Zq
rs, s0, s1 ← ZNq

b0 = b, b1 = b0 − 1N

A = Y b0 · uα
B = hb1 · uβ

C = Y s0 · hs1 · uγ
D = (g · 1N )rs · urα

A,B,C,D−−−−−−−−−−−−−→
y, z ← Zq

y,z←−−−−−−−−−−−−−
τ1, τ2 ← Zq
T1 = vt1 · uτ1
T2 = vt2 · uτ2

T1,T2−−−−−−−−−−−−−→
c, d← Zq

c,d←−−−−−−−−−−−−−
ζ = ζ(c)
η = η(c)
t̂ = 〈ζ,η〉

τc = τ2 · c2 + τ1 · c
µ = α+ β · d+ γ · c
fs = s+ rs · c
fα = α+ rα · c

ζ,η,t̂,τc,µ,fs,fα−−−−−−−−−−−−−→

(1) vt̂ · uτc ?
= vδ(y,z) · T c1 · T c

2

2

(2) Y ζ · (h′)η · uµ ?
=

A ·Bd · Cc · Y −z·1
N

· hz·1
N

(3) (g · 1N )
fs · ufα ?

= Ax ·D
(4) t̂

?
= 〈ζ,η〉
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for hiding the DL relations between different public elements, where hash(P )
denotes the hash value of the public key vector P .

Notably, the verifier needs to check equation (1) in Protocol 1 that the com-
mitment of the result t̂ is correct, check equation (2) that the commitments of
vectors ζ,η are correct, check equation (3) that P b0 is a commitment to zero.
and check equation (4) that the inner product relation of vectors ζ,η holds.

Now we can compress the vectors ζ,η with the improved inner-product ar-
gument in Bulletproofs[?]. Note that vector fs can also be compressed, since
the equation (3) is independent of the inner product relation, we can directly
multiply them together into one E as follows:

E = vt̂ · uτc · Y ζ · (h′)η · uµ · (g · 1N )
fs · ufα (26)

Then we can give the compression form of the vectors in one recursion using
definitions in Section 2.4.

ζ′ = c · ζ0 + ζ1 (27)

η′ = η0 + c · η1 (28)

f ′s = fs,0 + c · fs,1 (29)

And the computing result indicates that a batch method can be applied. Thus,
for each recursion of compression, we can reduce the length of vectors above by
half with only two extra group elements to be transferred. The detailed process
of this part is given in Appendix A. Finally, we can reduce the proof size from
linear to logarithmic totally with 2 · dlog2(N)e + 6 group elements and 7 field
elements.

What’s more, the protocol above can also be converted based on into a non-
interactive one based on a standard Fiat-Shamir transform [?], of which chal-
lenges are generated by hashes of the transcript of the interaction up to that
point. The Fiat-Shamir transformation can also be applied in other interactive
protocols in this paper.

4.2 Extension and Discussion

Based on the definition of any-out-of-many proofs in Definition , we can observe
that our proofs will hold for any binary vector b, even when b = 0n. This is not
a defect in our approach as the goal of our any-out-of-many proof is to prove
arbitrary number of elements in a set, undoubtedly an empty set also belongs
to it. However, in some applications, proving an empty set is unacceptable. For
instance, in (multiple) ring signatures, since the signature is used to authenticate
the effectiveness of the message, it has to be generated by at least one valid user.
If the number k is allowed to be zero, then anyone can generate a valid signature
on behalf of a group of users, no matter whether he/she holds the secret key (we
give more details of multiple ring signature application in Section 5.1). To solve
this problem, the range of k should be restricted in some occassions, specifically,
a range proof needs to be added to the relations of origin any-out-of-many proofs
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to ensure k is non-zero. We set a new vector a ∈ Zlog(N)
q which is the binary

representation of k − 1, then we make a range proof of a to ensure 〈a,2n〉 lies
in range [0, N − 1], which indicates k ∈ [1, N ]. Note that vectors a and b can
be aggregated into one vector (a ‖ b) based on Lemma 2. And the result vector
satisfies the following relations, we call it a bounded any-out-of-many proof.

Definition 8. (Bounded Any-out-of-Many Relation). The following defines the
relation of bounded any-out-of-many proof, which proves the knowledge of at
least one opening s′ = (s′0, ..., s

′
k−1) (k ≥ 1) in a public set P = (P0, ..., PN−1):

R+/N =


(ck , gk , A,P ); (a, b, r, s)) :

P b =
∏N−1
i=0 Comck (0; si) ∧A = Comgk (a; r)

∧(a ‖ b) ∈ {0, 1}log(N)+N ∧ 〈(a ‖ b), (−2log(N) ‖ 1N )〉 = 1

 (30)

Although we increase the length of vectors, the compression mechanism will
eliminate its impact and finally the proof size of the logarithmic bounded any-
out-of-many proof are 2 · dlog2(N + log2(N))e + 7 group elements and 7 field
elements. We present more details of the bounded any-out-of-many proof in
Appendix B.

For RingCT protocols, the original any-out-of-many proof can be applied to
it securely. This is because in the verification stage, the signature is checked
along with the balance proof using the same vector b, the simplified process can
be expressed as follows:

N−1∏
i=0

(Pi ·Ain,i)bi =

k−1∏
j=0

Comck (0; sj) ·
m−1∏
l=0

Aout,l (31)

where Pi denotes the public key of an input account, and Ain,i, Aout,i denote
the non-negative transaction amounts (balances) of an input account and output
account respectively. Notably, if the number k is zero, which also means b = 0N ,
we can find that there are no accounts that truly participate in this transaction.
Although this transaction message can be signed by none of the group users, the
output amounts must be zero. Therefore, users can only generate accounts with
0 balance and cannot illegally mint coins by themselves. Also, as the transac-
tion fee is still needed when this “zero-to-zero” transaction is issued, it is not
attractive for an adversary to launch Denial-of-Service attacks by utilizing this
characteristic. In fact, the existing RingCT protocol also allows “zero-to-zero”
transactions. The only difference is that users must own some input account with
0 balance to generate “zero-to-zero” transactions in existing approaches, while
our approach allows users to generate “zero-to-zero” transactions even without
owning any input account.

5 Applications

5.1 Application 1: Multiple Ring Signature

As mentioned above, our bounded any-out-of-many proofs in Protocol 2 can be
used to construct an efficient multiple ring signature scheme. This scheme con-
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sists of a quadruple of PPT algorithmsΠ = (MSetup,MKeygen,MSign,MVerify),
and the multiple ring signature scheme is designed as follows:

– MSetup(1λ): Generate commitment keys ck ,gk and a hash function H :
0, 1∗ → C. Return pp = (ck , gk , H).

– MKeygen(pp):Sample (sl0 , ..., slk−1
) ← Zkq as sk′, and compute pk′li =

Comck (0; sli). Return (pk′, sk′).
– MSign(M,pk, pp, sk): Sign on the message M on behalf of a group repre-

sented by public keys pk = (pk0, pk1, ..., pk2N−1) and pk′ ⊂ pk, as well as
the corresponding secret binary vecstor b. Proceeds as follows:
1. Run the first stage in Protocol 2 as P(ck , gk ,pk, (b; sk′)) and ouput the

initial commitment CMT1 = (A1, A2, B,C,D).
2. Compute y = H(ck,M,pk, CMT1) and z = H(gk,M,pk, CMT1).
3. With the generated y and z, compute CMT2 = (T1, T2) according to

Protocol 2.
4. Compute c = H(ck,M,pk, CMT2),d = H(gk,M,pk, CMT2),
d = H(ck, gk,M,pk, CMT2).

5. Compute the RSP = (τc, µ, t̂, fα, fs,log2(2N), ζlog2(2N), ηlog2(2N), P, L1, R1...,
Llog2(2N), Rlog2(2N)).

6. Return the signature π = (B,S, T2, x, y, z, RSP ).
– MVerify(M,pk, π, pp): Verify the signature with pk = (pk0, pk1, ..., pk2N−1)

and signature π = (B,C,D, T2, y, z, c, d, e, RSP ). Proceeds as follows:
1. Compute Commitment A1, A2 and T1 based on the equations in verifi-

cation part of Protocol 2 and set CMT1 = (A1, A2, B,C,D), CMT2 =
(T1, T2).

2. Return 0 if there is at least one challenge in (y, z, c, d, e) conflicts with
the hash value.

3. Return the output of V(ck ,pk, gk) with (CMT1, CMT2, y, z, c, d, e, RSP ).

The correctness and anonymity of our multiple ring signature can be derived
directly from the completeness and SHVZK of Protocol 1. The unforgeability of
the multiple ring signature is formally described as follows:

Theorem 2. The scheme Π is a ring signature scheme with perfect correctness.
It has perfect anonymity if the commitment scheme is perfectly hiding. It is
unforgeable in the random oracle model if the commitment scheme is perfectly
hiding and computationally binding.

Note that the signature π = (B,C,D, T2, y, z, c, d, e, τc, µ, t̂, fα, fs,log2(2N),
ζlog2(2N), ηlog2(2N), P, L1, R1..., Llog2(2N), Rlog2(2N)) includes 2 · dlog2(2N)e + 5
elements in G and 12 elements in Zq.

5.2 Application 2: RingCT

In this part, we present a new RingCT protocol based on our any-out-of-many
proofs. In previous RingCT protocols based on one-out-of-many proofs, for ex-
ample,[?], a k × n matrix is used to represent k anonymity groups of input ac-
counts(public keys), and each group consists of n accounts, in which we assume
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the s-th account is the true spender. As a result, a transaction needs to contain
N = k · n public keys to hide the true spender by one-out-of-many proofs. To
reduce the size of the transaction, RingCT 2.0 [?] uses an extra group element u
to accumulate the public keys in the same row into one value. This method has
reduced the account numbers in a transaction from k · n to n, while to achieve
this, the index of the true spender’s account in each group has to be the same.
This limitation undoubtfully undermines the anonymity of the RingCT proto-
col, for that if one spender’s identity in an anonymity group is leaked, then the
identity of spenders in other anonymity groups will also leak, simply because
they are in the same row of the matrix.

So the level of anonymity of RingCT 2.0 is low. Specifically, we let σ denote
the size of the anonymous space, and compute it as the sum of possible permuta-
tion results for k spenders in N accounts. Then we say that anonymous space σ
for RingCT 2.0 is n, which means that there are only n different ways to hide k
spenders. Although in RingCT 3.0[?], Yuen et al. propose a method to break the
distribution of real signers, as their method is based on one-out-of-many proofs,
which restricts that each row in a matrix can contain only one account, there is
still room for improvements.

With any-out-of-many proofs, we can increase the number of true spenders in
one anonymous ring to an arbitrary unknown k, which will significantly enhance
the level of anonymity of the protocol, because one spender’s identity is no more
relevant to another, and the leakage of one will not lead to further leakage of
the other. So the anonymity level of the RingCT based on any-out-of-many
proofs is σ = 1/2N for k spenders hidden in N accounts, which is a significant
improvement.

Next, we will give a description of the novel RingCT Protocol constructed
with our any-out-of-many proofs, we give the definitions of parameters first.
Without loss of generality, we denote a group of N input accounts by A =
{(pkin,i, cnin,i)}, (i ∈ [0, N − 1]) where pkin,i is the i − th account address and
cnin,i is the coin with respect to this account.As = {(pks,j , cns,j)}, (j ∈ [0, k−1])
is the subset of A, including k true spenders’ accounts in total, the definition of
index l is given in Section 4.1. Instead of arranging the accounts into a matrix,
we directly arrange all N accounts into a vector as follows,(

pks,0, pks,1, ..., pks,N−1
)

(32)

and the accounts of true spenders’ pks,l = (pks,l0 , ..., pks,lk−1
) are independently

distributed in this vector.

Protocol Description According to the discussion above, we can construct our
new RingCT Protocol with a quintuple Φ=(Setup,KeyGen,Mint,Spend,Verify),
and the protocol is designed as follows:
Setup(1λ). Generate commitment keys ck ,gk and a hash function H : 0, 1∗ → C.
Return pp = (ck , gk , H).
KeyGen(pp). on input pp, the algorithm samples (sks,l0 , ..., sks,lk−1

) ← Zkq as
sks, and compute pks,j = Comck (0; sks,j). Return (pks, sks).
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Mint(pks,as). For each input account address pks,j and its corresponding bal-
ance amount as,j , the algorithm chooses a blinding value rs,j ← Zq and com-
putes commitment cs,j = Comck(as,j , rs,j) to mint a coin for each account. Let
cns = (cs,0, .., cs,k−1) denote the public vector of account balance, and cks =
((rs,0, as,0), .., (rs,k−1, as,k−1)) denote the secret key vector to the public balance
vector. Return spender accounts vector As = {(pks,j , cns,j)}, (j ∈ [0, k − 1]),
and the corresponding secret keys vector Ask = {(sks,j , cks,j)}, (j ∈ [0, k − 1]).
Spend(M,As,Ask,pkout). With input accounts As, the algorithm constructs
an arbitrary account group A which contains As and other N − k accounts,
A = {(pkin,i, cnin,i)}, (i ∈ [0, N−1]), the relation betweenA andAs can be rep-

resented by a binary vector b which satisfies Ab = As. M is the transaction mes-
sage and pkout denotes the m output accounts, pkout = pkout,0, ..., pkout,m−1
This algorithm will output a transaction tx as well as several proofs by following
steps:

1. Output coins generation: Set balance vector aout for all output accounts
in pkout, such that the input and output balances satisfy

∑k
j=1 as,j =∑m

l=1 aout,l, then choose a blinding value rout,l ← Zq and computes commit-
ment cout,l = Comck(aout,l, rout,l) to mint a coin for each account, cnout =
(cout,0, .., cout,m−1) and ckout = ((rout,0, aout,0), .., (rout,m−1, a

m−1
out )) Thus

we have R = (pkout, cnout).

2. Range proof generation: According to the method in the [?], the algorithm
generates a range proof φrange to ensure that every balance amounts of ain
and aout is within the valid range.

3. Balance proof generation: Generate a proof φbalance to prove that the
sum of input accounts equals to the sum of output accounts,

∑k
j=1 as,j =∑m

l=1 aout,l, which can be also expressed as (cnin)b =
∏m−1
l=0 cnout ·

Comck(0;
∏k−1
j=0 rs,j −

∏m−1
l=0 rout,l).

4. Signature generation: Generate a proof φSig to prove that the transac-
tion is signed by a group of accounts, which can be written as (pkin)b =∑k−1
j=0 Comck(0; sks,j).

5. Serial number generation: Compute sj = H(pks,j)
sks,j (j ∈ [0, k − 1]) as

the serial number of account pks,j , which can be used to prevent double-
spending. Return the vector of serial numbers S = (s0, ..., sk−1).

We can observe that the 3 proofs above are all based on the compression
methods in improved inner-product argument, thus we can aggregate them into
one proof. First, step (3),(4) both prove the relation of the binary vector b, and
we can simply combine the two public vectors cnin and pkin into one vector
P = cnin◦pkin, which is the same as the public list defined in our k-out-of-many
proofs. Next, inspired by the multiple range proof proposed in [?], we find it is
feasible to combine our proof of binary vector b with the binary vector of balances
in step (2). For simplicity, we assume the amounts of all balances in ain and
aout lie in the range [0, 2o − 1], and we use vectors bin,i and bout,l to represent

the binary forms of ain,i, aout,l, finally we get a vector bL ∈ Zo·m+(o+1)·N
q as
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follows:

bL = (b ‖ bin,0 ‖ ... ‖ bin,N−1 ‖ bout,0 ‖ ... ‖ bout,m−1) (33)

The algorithm only needs to generate one proof φ that prove the above 3
relation in a zero-knowledge way, as well as the tx (containing M , A and R)
and serial number S.
MVerify(tx, φ, S, pp). With a transaction tx containing M , A and R, the proof
φ for tx, serial number vector S and the security parameter pp, the verifier can
check whether a set of accounts of spenders from the account group A was spent
for a transaction tx towards output address group R in a correct way.

1. The verifier first checks whether the serial numbers in S exists in the past
transactions, return −1 if exists, since it indicates that this account has been
already spent.

2. The verifier checks the proof φ based on the given tx,S and pp to ensure that
the commitments to the relations in steps (2)(3)(4) and the serial number
in S are correct.

Finally, we can compute the size of the aggregated proof, including signature and
range proof, is 2 · dlog2(N · (o+ 1) +m · o)e+ 8 elements in G and 16 elements
in Zq.

Theorem 3. Our RingCT scheme is unforgeable if the DL assumption holds
in G in the random oracle model. Our RingCT scheme is anonymous against
recipients if the q-DDHI (q-Decision Diffie-Hellman Inversion) assumption holds
in G in the ROM, where q is the number of Spend oracle query. Our RingCT
scheme is anonymous against ring insiders if the q-DDHI assumption holds in
G in the ROM and RP is a secure zero-knowledge range proof. Our RingCT
scheme is non-slanderable w.r.t. insider corruption if the DL assumption holds
in G in the random oracle model.

Detailed discussion and relevant definitions are given in Appendix C.

6 Evaluation

6.1 Efficiency of Any-out-of-Many Proofs

As shown in Table (2), our any-out-of-many proofs can achieve a logarithmic
proof size as well as the highest level of anonymity. In this section, simulations
have been done to quantitatively evaluate the performance of the efficiency.
In our simulations, we implement our proofs scheme using the elliptic curve
secp128r1, of which the security parameter λ = 128. Meanwhile, to achieve the
same security level, a bilinear mapping curve with the order of 256 needs to be
used when implementing the partial knowledge proofs. Here we choose the curve
bn256, and Fig.1 presents the growth of proof size with the ring size increasing of
three different ZKP schemes. We can observe that when the public set number
is small, the proof size of our approach is not optimal, however, as the size
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Fig. 1. Proof size comparison of any-out-of-many proofs, partial knowledge proofs and
many-out-of-many proofs with different size of public set

of the public set increases, the proof size of our method becomes smaller than
others. Moreover, as we use Bulletproofs compression mechanism in our proofs,
Both of the prover and verifier complexities are O(n) for our approach, which is
computed in Section 4.1. Thus, we say that our approach is more efficient than
many-out-of-many proofs, which has O(n · log(n)2) prover complexity.

6.2 Efficiency of RingCT

We mainly evaluate the performance between our protocol and RingCT 3.0 [?]
in table 2. In the table above, we define a transaction, with N input accounts,
k true spenders among them, m output accounts, and the valid range [0, 2o) for
each input and output amount. The proof size in Table 2 consists of the size of
signatures and range proofs.+ As the RingCT 3.0 only aggregate the k signa-
tures, its proof size is O(log(N ·m)). Relatively, our RingCT scheme aggregates
the signature with range proofs, which leads to lower size of O(log(N +m)). We
can spot this difference intuitively in the following figure, where the proof size
of our RingCT protocol is far less than RingCT3.0.
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Table 3. Comparison of the proof size and anonymity between our proofs and other
k-out-of-N approaches

G elements Zq elements Anonymity space

RingCT 3.0 [?] 2 ·
⌈
log2(N2 · o + N ·m · o)

⌉
+ 11 12 (N/k)k

Our RingCT 2 · dlog2(N · (o + 1) + m · o)e+ 8 16 2N
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Appendix A

Here we give the technical details and security proofs of our any-out-of-many
proofs.

Compression Process for Protocol 1

As described in Section 4.1, the any-out-of-many proof can be verified by check-
ing the commitment C that

C = vt̂ · uτc · P ζ · (h′)η · uµ · (g · 1n)
fs · ufα (34)

and we compressed the compute the compressed vectors and the corresponding
group elments with a challenge x as:

ζ′ = x · ζL + ζR

η′ = ηL + x · ηR
f ′s = x · fs,L + fs,R

P ′ = PL ◦ P x
R

h′′ = h′
x
L ◦ h

′
R

Further we can compute

(P ′)ζ
′

= PL
ζR · P ζ·x · PR

ζL·x
2

= L1 · P ζ·x ·R1
x2

(h′′)η
′

= h′R
ηL · h′η·x · h′L

ηR·x
2

= L2 · h′
η·x ·R2

x2

(g · 1n
′
· gx · 1n

′
)
f ′s

= (g · 1n
′
)
fs,R · (g · 1n)

fs(g · 1n
′
)x

2·fs,L

= L3 · (g · 1n)
fs ·R3

x2

〈
ζ′,η′

〉
= 〈ζR,ηL〉+ 〈ζ,η〉+ x2 · 〈ζL,ηR〉
= L4 + 〈ζ,η〉+ x2 ·R4

Therefore, we can compute the new C ′ as:

C ′ = vt̂
′
· uτc · P ′ζ

′
· (h′′)η

′
· uµ · (g · 1n

′
· gx · 1n

′
)
f ′s · ufα

= (L1 · L2 · L3 · L4) · C · (R1 ·R2 ·R3 ·R4)x
2

= L · C ·Rx
2

As a result, the prover compresses vectors ζ,η,fs to half of their length, and
only with two extra group element L,R, the verifier can check the commitments



26 Tianyu Zheng, Shang Gao, Bin Xiao, and Yubo Song

with the new compressed vectors. We give descriptions of the compression steps
below:

Compression Process:

if n = 1 :

P → V : τx, µ, t̂, f, l, r

V checks if :

C = vt̂ · uτc · P ζ · (h′)η · uµ · (g · 1n)
fs · ufα

t̂ = 〈ζ, η〉
else (n > 1) :

P Computes :

n′ = n/2

L = PL
ζR · h′R

ηL · (g · 1n
′
)fs,R · v〈ζR,ηL〉

R = PR
ζL · h′L

ηR · (g · 1n
′
)fs,L · v〈ζL,ηR〉

P → V : L,R

V Computes :

x← Zq
V → P : x

P and V Computes :

P ′ = PL ◦ P x
R

h′′ = h′
x
L ◦ h

′
R

C ′ = L · Cx ·Rx
2

P Computes :

ζ′ = x · ζL + ζR

η′ = ηL + x · ηR
f ′s = x · fs,L + fs,R

Proof of Theorem 4

Before giving the security proofs, we review the security property of the Zero-
knowledge proofs first.

Σ-Protocol Σ-protocol is a type of 3-move interactive proof systems between
two parties, a prover P and a verifier V. With the setup algorithm mentioned
above, prover can convince verifier that a statement is true. Specifically, we define
R as a polynomial time decidable ternary relation, with a commitment key ck
generated by the algorithm Setup(1λ), a statement c and the corresponding
witness r, where (ck, c, r) ∈ R
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First, prover generates an initial message m according to the given parameter
(ck, c, r) ∈ R. After receiving the message m, verifier choose a challenge value
x←Z∗q and send it to prover. prover computes the response message z according
to the challenge x. Finally, verifier will check the proof with (ck, c,m, x, z), and
returns 1 if accepting. We call the triple (Setup,P,V) a Σ-Protocol if it satisfies
the following three properties.

Definition 9. (Perfect Completeness)
(Setup,P,V) is perfectly complete if for all probabilistic polynomial time adver-
saries A

Pr

[
V(ck, c,m, x, z) = 1

ck ← Setup(1λ); (c, r)← A(ck);
m← P(ck, c, r);x←Z∗q ; z ← P(x)

]
= 1 (35)

Definition 10. (n-Special Soundness) (Setup,P,V) is n-special sound if there
exists an efficient PPT extractor E that can extract the witness r given n ac-
cepting transcripts with the same m.

Pr

 (ck, c, r) ∈ R

ck ← Setup
(
1λ
)

;
(c,m, x1, z1, ..., xn, zn)← A(ck);
V(ck, c,m, xi, zi) = 1,∀i ∈ [1, n];
r ← E(ck, c,m, x1, z1, ..., xn, zn)

 = 1− µ(λ) (36)

where the function µ(λ) is negligible, and we say that the protocol is n-special
sound.

Definition 11. (Honest Verifier Zero-Knowledge) (Setup,P,V) is special hon-
est verifier zero knowledge if there exists a probabilistic polynomial time sim-
ulator S such that for all interactive probabilistic polynomial time adversaries
A

∣∣∣∣∣∣∣∣∣∣
Pr

[
A(m, z) = 1

ck ← Setup
(
1λ
)

; (c, r, x)← A(ck);
a← P(ck, c, r); z ← P(x);

]
−

Pr

[
A(m, z) = 1

ck ← Setup
(
1λ
)

; (c, r, x)← A(ck);
(m, z)← S(ck, c, r);

]
∣∣∣∣∣∣∣∣∣∣
6 µ(λ) (37)
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Completeness. With correct transcripts from prover, the verifier can verify
the following equations:

vt̂ · uτc = vδ(y,z)+t1·c+t2·c
2

= vδ(y,z) · vt1·c · vt2·c
2

= vδ(y,z) · T c1 · T c
2

2

P ζ · (h′)η · uµ = P b0−z·R
n+s0·c · (h′)(z·R

n+d·b1+sR·c)◦yn

· uα+β·d+γ·c

= (P b0 · uα) · (hbR · uβ)d · (P s0 · hsR · uγ)c · P−z·R
n

· hz·R
n

= A ·Bd · Cc · P−z·R
n

· hz·R
n

(g ·Rn)
fs · ufα = (g ·Rn)

s+rs·c · uα+rα·c

= Ax ·D

t̂ = 〈ζ,η〉

Special-HVZK. With randomly chosen elements (A,C, T2, τc, µ, fα,fs, ζ,η),
and the challenge values (x, y, c, d) from their corresponding domains, the simu-
lator can compute:

t̂ = 〈ζ,η〉
T1 = v−δ(y,z)/c · T−c2

B = (P ζ · (h′)η · uµ)1/d · (A · Cc · P−z·R
n

· hz·R
n

)−1/d

D = (g ·Rn)
fs · ufα ·A−x

Thus, a honest verifier can not distinguish the transcripts generated above from
the transcripts in true convesations, if the Pederson commitment is perfectly
hiding. The Protocol 1 is said to be perfect special honest verifier zero-knowledge.

n+ 1-Special Soundness. Suppose the adversary can return the transcript of
the same witness as the extractor rewinds with different challenges. we use the
subscript i to denote the elements in the return transcript of i− th rewind. The
adversary returns two transcripts for rewinding with 2 different challenge c1, c2,
which can be verified as:{

A ·Bd · CcR · P−z·R
n

· hz·R
n

= P ζR · (h′)ηR · uµ1
A ·Bd · Cc2 · P−z·R

n

· hz·R
n

= P ζ2 · (h′)η2 · uµ2

and the extractor can extract A ·Bd as:

A ·Bd = uα
′
· P b

′
0 · hb

′
1



Title Suppressed Due to Excessive Length 29

and extract C as:
C = P s

′
0 · hs

′
1 · uγ

′

With A·Bd and C known, the extractor can substitute the following equation
as:

P ζ · (h′)η · uµ = A ·Bd · Cc · P−z·R
n

· hz·R
n

= (uα
′
· P b

′
0 · hb

′
1) · (P s

′
0 · hs

′
1 · uγ

′
)c · P−z·R

n

· hz·R
n

thus the vectors ζ,η can be extracted as:

ζ = b′0 − z ·R
n + s′0 · c

η = (z ·Rn + d · b′1 + s′1 · c) ◦ yn

Elements T1, T2 can also be extracted with other 3 challenges c3, c4, c5 and
the rewinding transcripts:

vt̂3 · uτc,3 = vδ(y,z) · T c31 · T
c3

2

2

vt̂4 · uτc,4 = vδ(y,z) · T c41 · T
c4

2

2

vt̂5 · uτc,5 = vδ(y,z) · T c51 · T
c5

2

2

we can compute T1, T2:

T1 = vt
′
1 · uτ

′
1

T2 = vt
′
2 · uτ

′
2

vt̂ · uτc = vδ(y,z) · T c1 · T c
2

2

= vδ(y,z) · (vt
′
1 · uτ

′
1)c · (vt

′
2 · uτ

′
2)c

2

t̂ = δ(y, z) + t′1 · c+ t′2 · c2

Also we can compute t̂ in another equation as:

t̂ = 〈ζ(c), η(c)〉
= 〈b0 − z ·Rn + s0 · c, (z ·Rn + d · b1 + s1 · c) ◦ yn〉
= 〈yn, b0 ◦ b1〉+ z · 〈yn, b0 −Rn − b1〉+ t′′1 · c+ t′′2 · c2

compared with the two expressions of t̂, which will always hold for all challenges
x, y, c, d, we can get the relations of: b0 = b, b1 = b0 − 1n

What’s more, by knowing A · Bd = uα
′ · P b

′
0 · hb

′
1 holds for all challenge d,

we can deduce that A = uα
′ · P b

′
0 = (g ·Rn)

x′
sk · uα′ .

Similarly, by knowing rewinding transcripts for different challenge c6, c7 as{
(g ·Rn)

fs,6 · ufα,6 = Ax ·D
(g ·Rn)

fs,7 · ufα,7 = Ax ·D

we can get another equation of A = (g ·Rn)
sk′
· uα′ , Finally, we can extract

x′sk = sk′ if the Pederson commitment is perfectly binding. Thus, the Protocol
1 is (n+ 1)-special sound.
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Appendix B

In this appendix, a full-version Bounded any-out-of-many proofs is presented.
Based on the relations of bounded any-out-of-many proofs in definition 8, we can
get the inner-product form with polynomials ζ(c), η(c) as

ζ(c) = (a0 ‖ e · b0)− z · 1N+log(N) + s0 · c
η(c) = (z · 1N+log(N) + d · (a1 ‖ b1) + s1 · c) ◦ yN+log(N)

−z2 · (2log(N) ‖ 0N ) + z3 · (0log(N) ‖ 1N )

δ(y, z, c, d, e) = z · d ·
〈
1log(N),ylog(N)

〉
+ z · d · e ·

〈
1N ,yN

〉
−z2 ·

〈
1N+log(N),yN+log(N)

〉
− z3 ·

〈
1log(N),2log(N)

〉
+ z4 ·

〈
1N ,1N

〉
t(c) = 〈ζ(c), η(c)〉 = z3 · e · v − z2 · (v − 1) + δ(y, z, c, d, e) + t1 · c+ t2 · c2

where y, z, c, d, e are challenges.
Now we can compress the vectors ζ,η in the same way as Bulletproofs. Note

that vector fs can also be compressed, since the equation (3) is independent of
the inner product relation, we can multiply their commitments together into one
as follows:

C = vt̂ · uτc · Y ζ · (h′)η · uµ · (g · 1N )
fs · ufα (38)

And we give the compression form of the vectors in one recursion using to defi-
nitions in Section 2.4.

ζ′ = c · ζ0 + ζ1 (39)

η′ = η0 + c · η1 (40)

f ′s = fs,0 + c · fs,1 (41)

And the computing result indicates that a batch method can be applied. Thus,
for each recursion of compression, we can reduce the length of vectors above by
half with only two extra group elements to be transferred.

Theorem 4. The Protocol 2 for knowledge of bounded number k of secrets out
of N commitments opening to 0 is perfectly complete. It is perfect (n+1)-special
sound if the commitment scheme is perfectly binding. It is perfect special honest
verifier zero-knowledge if the commitment scheme is perfectly hiding.

The proofs of this theorem is similar to the any-out-of-many proofs, thus we
do not give a further description here. We present the protocol based on these
relations as follows:
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Protocol 2 Bounded Any-out-of-Many Proof

P(g,h, u, v,P , ((a ‖ b); s)) V(g,h, u, v,P )

α1, α2, β, γ ← Zq
rs, s0, s1 ← ZN+log(N)

q

a0 = a,a1 = a0 − 1log(N)

b0 = b, b1 = b0 − 1N

A1 = P a0

L · uα1

A2 = P b0R · uα2

B = h(a1‖b1) · uβ
C = P s0 · hs1 · uγ

D = (g · 1N+log(N))rs · urα
A1,A2,B,C,D−−−−−−−−−−−−−→

y, z ← Zq
y,z←−−−−−−−−−−−−−

τ1, τ2 ← Zq
T1 = vt1 · uτ1
T2 = vt2 · uτ2

T1,T2−−−−−−−−−−−−−→
c, d, e← Zq

c,d,e←−−−−−−−−−−−−−
ζ = ζ(c)
η = η(c)
t̂ = 〈ζ,η〉

τc = τ2 · c2 + τ1 · c
µ = α1 + α2 · e+ β · d+ γ · c

fs = s+ rs · c
fα = α1 + rα · c

ζ,η,t̂,τc,µ,fs,fα−−−−−−−−−−−−−→

vt̂ · uτc ?
= vδ(y,z) · T c1 · T c

2

2

P ζ · (h′)η · uµ ?
= A1 ·Ae2 ·Bd · Cc·

P−z·1
2N

· h′z·1
2N−z2·(2N‖0N )+z3·(0N‖2N )

(g · 1n)
fs · ufα ?

= Ac1 ·D
t̂

?
= 〈ζ,η〉
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Appendix C

In this section we give the strong security model defined in RingCT 3.0, and the
security proofs will be given in the full-version article.

Perfect Correctness. The perfect correctness property requires that a user can
spend any group of her accounts w.r.t. an arbitrary set of groups of input ac-
counts, each group containing the same number of accounts as the group she
intends to spend.

Anonymity against Insider Attacks. The anonymity against recipients property
requires that without the knowledge of any input account secret key and input
amount (which are within a valid Range: from 0 to a maximum value), the
spender’s accounts are successfully hidden among all the honestly generated
accounts, even when the output accounts and the output amounts are known.

Anonymity against Insider Attacks. The anonymity against ring insiders prop-
erty requires that without the knowledge of output account secret key and output
amount (which are within a valid Range), the spender’s accounts are successfully
hidden among all uncorrupted accounts.

Perfect Correctness. The balance property requires that any malicious user can-
not (1) spend any account of an honest user, (2) spend her own accounts with the
sum of input amount being different from that of output amount, and (3) double
spend any of her accounts. Therefore, the balance property can be modeled by
three security models: unforgeability, equivalence and linkability.

Non-slanderability. The non-slanderability property requires that a malicious
user cannot prevent any honest user from spending. It is infeasible for any ma-
licious user to produce a valid spending that shares at least one serial number
with a honestly generated spending.


