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Abstract. In this paper, we formally prove the non-slanderability prop-
erty of the first linkable ring signature paper in ACISP 2004 (in which
the notion was called linkable spontaneous anonymous group signature
(LSAG)). The rigorous security analysis will give confidence to any fu-
ture construction of Ring Confidential Transaction (RingCT) protocol
for blockchain systems which may use this signature scheme as the basis.

1 Linkable Ring Signature and Non-Slanderability

The concept of Linkable Ring Signature was first proposed in Liu et al. [2] as
the notion of Linkable Spontaneous Anonymous Group Signature (LSAG) which
was later renamed as Linkable Ring Signature in [3]. Different from a normal
ring signature, a linkable ring signature allows any verifier to detect if two sig-
natures are generated by the same signer or not. But the anonymity remains
preserved either computationally or unconditionally. It is found useful in the
constrcution of Ring Confidential Transaction (RingCT) [4] protocol that pro-
vides user privacy for blockchain transactions: no one knows who are the sender
and the receiver of the transaction, and the transaction amount is also hidden.
RingCT is used in Monero, which is the largest privacy-preserving blockchain
cryptocurrency in terms of market capitalization.

In the first appearance of linkable ring signature (under the name of LSAG) in
[2], only three security notions were considered: Unforgeability, Anonymity and
Linkability. Unforgeability and anonymity were defined as the same as normal
ring signature scheme, while linkability means no one can generate two signatures
being unlinked.

Later on another notion called Non-Slanderability has also been considered
in linkable ring signature. Non-slanderability means no one can slander another
honest user for being linked. In other words, no one can generate a signa-
ture which is linked to another signature generated by a different signer. Non-
Slanderability first appeared in [3]. The same security requirement falls under
the notion of linkability as a sub-requirement in [8].

Non-Slanderability is considered as a necessary security requirement for link-
able ring signature if it is deployed in RingCT construction [5,7,1,6,9]. However,
the non-slanderability property is never proven for the first construction of link-
able ring signature (LSAG) in [2]. In this paper, we formally give a security proof



of the Non-Slanderability for [2]. This provides confidence for future construction
of RingCT if they choose to use [2] as the basis.

2 LSAG Signature [Liu et al. ACISP2004 [2]]

2.1 Signature Scheme

Key Generation. Let G =< g > be a group of prime order q such that the
underlying discrete logarithm problem is intractable. Let H1 : {0, 1}∗ → Zq
and H2 : {0, 1}∗ → G be some statistically independent cryptographic hash
functions. For i = 1, . . . , n, each user i has a distinct public key yi and a private
key xi such that yi = gxi . Let L = {y1, . . . , yn} be the list of n public keys.

Signature generation. Given message m ∈ {0, 1}∗, list of public keys L =
{y1, . . . , yn}, private key xπ corresponding to yπ, 1 ≤ π ≤ n, the following algo-
rithm generates a LSAG signature.

1. Compute h = H2(L) and ỹ = hxπ .

2. Pick u ∈R Zq, and compute cπ+1 = H1(L, ỹ,m, gu, hu).

3. For i = π + 1, . . . , n, 1, . . . , π − 1, pick si ∈R Zq and compute ci+1 =
H1(L, ỹ,m, gsi , ycii , h

si ỹci).

4. Compute sπ = u− xπcπ mod q.

The signature is σL(m) = (c1, s1, . . . , sn, ỹ). Remarks: Other methods of gener-
ating h can be used, provided it is computable by the public verifier and that it
does not damage security. We shall see examples in some of our applications.

Signature Verification. A public verifier checks a signature σL(m) = (c1, s1, . . . ,
sn, ỹ) on a message m and a list of public keys L as follows.

1. Compute h = H2(L) and for i = 1, . . . , n, compute z′ = gsiyci , z′′ = hsi ỹci

and then ci+1 = H1(L, ỹ,m, z′i, z
′′
i ) if i 6= n.

2. Check whether c1
?
= H1(L, ỹ,m, z′n, z

′′
n). If yes, accept. Otherwise, reject.

Linkability. For a fixed list of public keys L, given two signatures associating
with L, namely σ′L(m′) = (c′, s′, . . . , s′, ỹ′) and σ′′L(m′′) = (c′′, s′′, . . . , s′′, ỹ′′),
where m′ and m′′ are some messages, a public verifier after verifying the signa-
tures to be valid, checks if ỹ′ = ỹ′′. If the congruence holds, the verifier concludes
that the signatures are created by the same signer. Otherwise, the verifier con-
cludes that the signatures are generated by two different signers.

For a valid signature σL(m) = (c1, s1, . . . , sn, ỹ) on some message m and
some list of public keys L, an investigator subpoenas a private key xi from user
i.If xi is the private key of some yi ∈ L (that is, yi = gxi) and ỹ = H2(L)xi , then
the investigator conducts that the authorship of the signature belongs to user i.



2.2 Nonslanderability Definition

Security of LRS schemes has four aspects: unforgeability, anonymity, linkability,
and nonslanderability. Before giving their definition, we consider the following
oracles which together model the ability of the adversaries in breaking the secu-
rity of the schemes:

– pki ← JO(⊥). The Joining Oracle, on request, adds a new user to the
system. It returns the public key pk ∈ PK of the new user.

– ski ← CO(pki). The Corruption Oracle, on input a public key pki ∈ PK that
is a query output of JO, returns the corresponding private key ski ∈ SK.

– σ′ ← SO(n,L, pkπ,m). The Signing Oracle, on input a group size n, a set
L of n public keys, the public key of the signer pkπ ∈ L, and a message m,
returns a valid signature σ′.

If the scheme is proven in the random oracle model, a random oracle is simulated.

Nonslanderability. Nonslanderability ensures that no signer can generate a
signature which is determined to be linked by the Linkability algorithm with an-
other signature which is not generated by the signer. In other words, it prevents
adversaries from framing honest users. Nonslanderability for LSAG schemes is
defined in the following game between the Simulator S and the Adversary A in
which A is given access to oracles JO, CO,SO and the random oracle:

1. S generates and gives A the system parameters param.
2. A may query the oracles according to any adaptive strategy.
3. A gives S a group size n, a message m, a set of n public keys L, the public

key of an insider pkπ ∈ L such that pkπ has not been queried to CO or
has not been included as the insider public key of any query to SO. S uses
the private key skπ corresponding to pkπ to run the signature algorithm on
input n,L, skπ,m and to produce a signatures σ′ given to A.

4. A queries oracles with arbitrary interleaving. Except pkπ cannot be queried
to CO, or included as the insider public key of any query to SO. In particular,
A is allowed to query any public key which is not pkπ to CO.

5. A delivers group size n∗, a set of n∗ public keys L∗, a message m∗ and a
signature σ∗ 6= σ′.

A wins the game if:

– Verification algorithm on input n∗,m∗, σ∗ outputs ”accept”.
– All of the public keys in L∗ are query outputs of JO.
– pkπ has not been queried to CO.
– The output of the Linking algorithm on input σ∗, σ is ”linked”.

The advantage probability of adversary A

AdvNSA (λ) = Pr[A wins the game].



2.3 Proof of Nonslanderability

Theorem 1. The LSAG is nonslanderable in the random oracle model, if the
DL problem is hard.

Proof. Let A be an adversary attacking the nonslanderability property of our
LSAG scheme and S be a simulator of A. It is assumed that S is an adversary
against the hardness of the underlying discrete log problem. In this proof we
show that breaking the nonslanderability property is as hard as breaking the
DLG assumption. A submits queries to the given oracles JO, CO,SO with the
restriction that it cannot query the corruption oracle CO on the public key pkπ.
A generates a list of public keys L which also includes the challenge public

key pkπ and queries it’s corrupt oracle on input pkπ together with the list L and
a message m. The simulator S simulates this query as follows:

– If piπ has been queried to CO, S runs the signing algorithm on input
L, skπ,m, where the secret key skπ is the output of the corruption oracle
corresponding to pkπ and returns a signature σ to A.

– IF ππ has not been queried to CO, S runs the key generation algorithm on
input 1λ and obtains a list of public keys L = {y1, . . . , yn}, where yi = gxi

and xi is the corresponding secret key for all i ∈ [1, n]. S computesH2(L) = h
and ỹ = hxπ . It picks a random u ∈R Zq and for all i ∈ [1, n] \ {π} and
computes cπ+1 = H1(L, ỹ,m, gu, hu) and ci+1 = H1(L, ỹ,m, gsi , ycii , h

si ỹci).
Finally S computes sπ = u − xπcπ and returns the signature σL(m) =
(c1, s1, . . . , sn, ỹ) to A.

– Hash-function H1, H2 are programmed as random oracles. For all input
which have been registered, S will return the corresponding output. Oth-
erwise it will pick random values h1, h2. All queries to the random oracles
are recorded in the corresponding lists by the simulator S.

In the challenge step, A outputs a list of public keys L′, a message m and a
public key pk′π ∈ L′ which has not been queried to the corrupt oracle CO nor to
the signing oracle SO. S computes a signature on this message m and outputs
σ′L(m). A issues further queries except that it is not allowed to query the corrupt
oracle on pk′π.
A outputs a list of public keys L∗ and a signature σ∗L(m∗) on a message

m∗ which passes the Verification algorithm and the Linking algorithm links the
signatures σ′L(m), σ∗L(m∗) for the lists L′ and L∗. As showed above the simulator
uses sk′π to generate a signature σ′L. If the Linking algorithm outputs ”linked”,
then the public keys pk∗π and pk′π must be equal, i.e. the adversary A must know
sk∗π. Since pk∗π = pk′π = gx

∗
π and the adversary is not allowed to query CO on

pk′π, A can not know sk∗π, except it can break the discrete log assumption, which
is a contradiction to the hardness of the underlying DL problem. ut
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