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Abstract. Time-stamping services produce time-stamp tokens as evidences
to prove that digital data existed at given points in time. Time-stamp tokens
contain verifiable cryptographic bindings between data and time, which are
produced using cryptographic algorithms. In the ANSI, ISO/IEC and IETF
standards for time-stamping services, cryptographic algorithms are addressed
in two aspects: (i) Client-side hash functions used to hash data into digests for
nondisclosure. (ii) Server-side algorithms used to bind the time and digests
of data. These algorithms are associated with limited lifespans due to their
operational life cycles and increasing computational powers of attackers. After
the algorithms are compromised, time-stamp tokens using the algorithms are
no longer trusted. The ANSI and ISO/IEC standards provide renewal mecha-
nisms for time-stamp tokens. However, the renewal mechanisms for client-side
hash functions are specified ambiguously, that may lead to the failure of im-
plementations. Besides, in existing papers, the security analyses of long-term
time-stamping schemes only cover the server-side renewal, and the client-side
renewal is missing. In this paper, we analyse the necessity of client-side renewal,
and propose a comprehensive long-term time-stamping scheme that addresses
both client-side renewal and server-side renewal mechanisms. After that, we
formally analyse and evaluate the client-side security of our proposed scheme.

1 Introduction

Digital data is ubiquitous in our modern world. To prove the existence time of digital
data, a time-stamping service produces verifiable cryptographic bindings between
digital data and time to form time-stamp tokens. Such cryptographic bindings could
be digital signatures, hash values, message authentication codes etc. Most of the
bindings are generated through cryptographic algorithms. Therefore, time-stamp
tokens are valid only when the underlying cryptographic algorithms remain secure.

For time-stamping services specified in the ANSI [1], IETF [2] and ISO/IEC [3–6]
standards, the cryptographic algorithms used to generate time-stamp tokens could be
categorized into two sides: (i) Client-side hash functions used to hash data into digests
for nondisclosure; (ii) Server-side algorithms used to bind digests of a data item and
a given point in time. These algorithms are time-restricted due to their limited opera-
tional life cycles and the increasing computational power of attackers [7]. For instance,
the upcoming quantum computers are considered to break some broadly-used signa-
ture algorithms [8] and to increase the speed of attacking hash functions [9]. Once the
algorithms are compromised, the corresponding time-stamp tokens are no longer valid.
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However, for many types of digital data, the validity of time-stamp tokens need
to be maintained for a long time. For example, the identity information of citizens
should be kept permanently; the health records of people follow their lifetimes; mp3
files produced by musicians may last for decades etc. In these cases, the validity
periods of time-stamp tokens need to be longer than any individual cryptographic
algorithm’s lifetime. For the purpose of this paper, if a time-stamping service (or
scheme) is able to prove the existence of data at given points in time through valid
and secure time-stamp tokens in a long period of time, which is not bounded with
the lifetimes of underlying cryptographic algorithms, we say it is a Long-Term Time-
Stamping (LTTS) service (or scheme). Clearly, for a long-term time-stamping service,
time-stamp tokens should be constantly renewed.

The ANSI [1] and ISO/IEC [3–6] standards provide time-stamp renewal mech-
anisms for both client-side and server-side algorithms. For server-side renewal, the
standards clearly say that a requester sends a time-stamp request with inputting a
new server-side algorithm identifier, hash value(s) of a data item, and a previous time-
stamp token on this data item to a Time-Stamping Authority (TSA), the TSA then
produces a new time-stamp token on the input content using the indicated algorithm.

However, the client-side renewal mechanisms in both standards are specified
ambiguously. In the ISO/IEC standard, the renewal of client-side hash functions is
not mentioned as a motivation for time-stamp renewal, and how to implement the
client-side renewal is not explicitly specified. In the ANSI standard, a list of reasons
for time-stamp renewal includes that a requester needs to replace the hash value using
a stronger hash function, but when a requester “needs” to replace the hash value is
not specified in detail. These ambiguities may cause the failure of client-side renewal
implementations and therefore the failure of long-term time-stamping services.

In the existing papers [10] and [11], long-term time-stamping schemes based on sig-
natures and hash functions have been formally analysed respectively (the details will be
introduced in Section 2). Nevertheless, the analyses are only related to renewal mecha-
nisms of server-side algorithms, the client-side renewal is not covered. Specifically, in the
security model of [10], the client-side renewal is not discussed, and client-side hash func-
tions are treated as random oracles. This security notion does not truly model the case
of practical implementations. In [11], the client-side hash functions are not considered.

The motivation of this work is based on the following observation. The security of
client-side is as significant as server-side, since the time-stamp tokens are generated
on the hash values of data items. If the client-side hash functions are broken and the
client-side renewal mechanism is not performed effectively, the time-stamp tokens are
no longer valid regardless whether the server-side is secure or not. Even if a client-side
renewal mechanism is clearly specified, a formal security analysis of the mechanism
is necessary and it does not exist in the literature.

In this paper, we provide following contributions:

– We firstly analyse several possible failures of client-side renewal implementations
by complying with the ANSI and ISO/IEC standards, and discuss the importance
of a well-specified client-side renewal mechanism.

– We then propose a comprehensive long-term time-stamping scheme that addresses
both client-side and server-side renewal mechanisms.

2



– After that, we formally analyse the client-side security of our proposed long-term
time-stamping scheme, and provide a quantified evaluation to the client-side
security level.

2 Related works

In 1990 [12], Haber and Stornetta introduced the first concept of digital time-stamping
with two techniques: linear linking and random witness. In this paper, they also
proposed a solution for time-stamp renewal, in which a time-stamp token could
be renewed by time-stamping the token with a new implementation before the old
implementation is compromised.

In 1993 [13], Bayer, Haber and Stornetta proposed another time-stamping tech-
nique: publish linked trees into a widely visible medium (e.g., newspapers). Besides,
they spotted that the renewal idea in the 1990 paper [12] is insufficient to time-stamp
a digital certificate alone (without the original data being certified). They proposed
a corrected renewal solution: time-stamping a (data, signature) pair or a (data,
time-stamp) pair to extend the signature or time-stamp’s lifetime.

In further years, the ideas of [12,13] have been polished and recorded into various
standards: The NIST standard specified several signature-based time-stamping appli-
cations for proving time evidences of digital signatures [14]; the IETF standard [2] (an
update is [15]) specified signature-based time-stamping protocols; the ISO/IEC and
ANSI standards cover various time-stamping mechanisms and renewal mechanisms.
Notice that the time-stamping services in both the NIST and IETF are not specified in
long-term, the ANSI and ISO/IEC standards contain the specifications for long-term
time-stamping services.

Apart from the standards, the ideas of [13] have been extended into several
long-term integrity schemes [16–22], but the security analyses of such schemes were
not given until 2016, Geihs et al. formalized this idea separately into a signature-based
long-term integrity scheme [10], and a hash-based long-term time-stamping scheme [11]
in 2017. These two schemes are related to the security of two types of server-side
algorithms: signature schemes and hash functions, and their renewal mechanisms, but
the renewal mechanisms for client-side hash functions are not addressed. In [10], the
client-side hash functions are ideally modelled as random oracles, and the renewal
of client-side hash functions is not discussed; in [11], the client-side hash functions
are not considered in the scheme, time-stamp tokens carry out on actual data items.

Similarly, in Geihs’ PhD thesis [23] (includes [10,11]), the signature-based time-
stamping scheme is slightly different with [10]: time-stamp tokens are created on a
data item and signature pair, and the consideration of client-side hash functions is
removed. For all these analyses [10,11,23], the client-side security is guaranteed with
ideal assumptions.

Nevertheless, the papers [10,11,23] provide substantial frameworks for analysing
the security of long-term time-stamping schemes. For example, they presented a
new computational framework based on [24], and a global time model based on [25]
for modelling the computational power of long-lived adversaries; they created “long-
term unforgeability” model for the integrity of signature-based time-stamping [10];
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they constructed “long-term extraction” model for the integrity of hash-based time-
stamping [11], which is an integration of “extraction-based” time-stamping proposed
in [26] and “preimage awareness” hash functions defined in [27].

In addition, the security of hash functions in time-stamping has been explored
[28–31], and only in [29] Buldas et al. analysed the security of client-side hash func-
tions. They proposed a new notion named “unpredictability preservation” and argued
that this property, rather than collision resistance or second preimage resistance (the
definitions are in Section 3.1), is necessary and sufficient for client-side hash functions
in secure time-stamping. However, their conclusions are not in the case of long-term
time-stamping since the time-stamping renewal is not considered in their works.

In this paper, we create a “long-term integrity” model for our long-term time-
stamping scheme including both client-side and server-side renewal (will be introduced
in Section 6.3). In this model, we follow the computational framework of long-lived
adversaries, and refer to the analysis results of server-side security in [10,11,23]. In
our analysis, we mainly focus on analysing the security at the client-side.

3 Review the ANSI and ISO/IEC time-stamping services

The ISO/IEC 18014 standard specifies time-stamping services in four parts: the
framework in Part 1 [3], mechanisms producing independent tokens in Part 2 [4],
mechanisms producing linked tokens in Part 3 [5], and traceability of time sources
in Part 4 [6]. The ANSI X9.95 standard [1] specifies both independent and linked
tokens, which are similar to the mechanisms specified by the ISO/IEC in [3–5].

In this section, we review some common specifications from the first three parts of
the ISO/IEC 18014 [3–5] and the ANSI X9.95 [1] standards, which includes the defi-
nition of hash functions, two types of time-stamp tokens and time-stamp transactions
between entities.

3.1 Hash functions

A secure hash function [32] maps a string of bits of variable (but usually upper
bounded) length to a fixed-length string of bits, satisfying the following three prop-
erties:

– Preimage Resistance: it is computationally infeasible to find, for a given output,
an input which maps to this output.

– Second Preimage Resistance: it is computationally infeasible to find a second
input which maps to the same output.

– Collision Resistance: it is computationally infeasible to find any two distinct
inputs which map to the same output.

Note that the hash functions discussed in this paper are compression functions. That
means, the collision resistance of a hash function implies preimage resistance [33,34].
In other words, if a hash function is collision resistant, then it is also preimage
resistant; if a hash function is not preimage resistant, then it is not collision resistant.
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3.2 Types of time-stamp tokens

There are two types of time-stamp tokens that can be generated by a time-stamping
service:

1. Independent tokens: An independent time-stamp token can be verified without
involving other time-stamp tokens. The protection mechanism used to generate
this type of tokens can be digital signatures, message authentication codes (MAC),
archives or transient keys [1]. For instance, for signature-based time-stamping,
a Time-Stamping Authority (TSA) digitally signs a data item and a time value
that results a cryptographic binding between the data and time. The data, time
and the corresponding signature together form a time-stamp token.

2. Linked tokens: A linked time-stamp token is associated with other time-stamp
tokens produced by the same methods. The protection mechanism used to gen-
erate this type of tokens can be hash functions and a public repository, therefore
a time-stamping service generating this type of tokens is referred to “hash-based
time-stamping” or “repository-based time-stamping”. In specific, a TSA hashes
a data item and a time value together and aggregates the hash output with
other data items produced at the same time, (e.g., uses a Merkle Tree [35]). The
aggregation result can be linked to other data produced at previous times, (e.g.,
uses linear chain linking [12]). Eventually, the aggregation or linking result is
published at a widely visible media (e.g., newspapers). The data, time record,
published information, and group values that are contributed to determine the
published result, together form a time-stamp token.

3.3 Time-stamp transactions

There are two time-stamp transactions that are performed between a requester and
one or more TSAs, or between a requester and a verifier, respectively:

1. Time-stamp request transaction: A requester sends a time-stamp request to a
TSA and the TSA returns a time-stamp response to the requester.

2. Time-stamp verification transaction: A requester sends a verification request to
a verifier and the verifier returns a verification response to the requester.

The data formats of a time-stamp request and response are shown in Fig. 1. A time-
stamp request contains a “messageImprint” field, which is comprised of a hash value of
a data item and its hash function identifier, an “extensions” field and other information.

More specifically, the “extensions” field contains three types of additional infor-
mation: ExtHash, ExtMethod and ExtRenewal, which work as follows:

1. ExtHash: In this field, a requester could submit multiple “messageImprint” fields,
in which each hash value could be computed from a different hash function so
that it prevents the failure of any single hash function.

2. ExtMethod: In this field, a requester could indicate a specific protection mech-
anism (e.g., a digital signature scheme) to bind the data item and time.
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Fig. 1: Data formats of time-stamp request and time-stamp response

3. ExtRenewal: In this field, a requester could submit an existing time-stamp token
on the data item in the purpose of extending the validity period of the time-stamp
token.

After the TSA receives the request, it adds the current time to the request content
to form a “TSTInfo” structure, and produces a cryptographic binding on the TSTInfo
by using the indicated protection mechanism or a default one if it is not indicated.
The TSTInfo and the cryptographic binding together form a time-stamp token, then
the TSA returns a time-stamp response with the time-stamp token to the requester.

In order to validate the time-stamp token, the requester could send a verification
request that contains the time-stamp token to a verifier at time tv. For a single
time-stamp token that has not been renewed, the verifier checks the following:

– The token is syntactically well-formed.
– Every hash value of the data item is correctly computed through the corresponding

hash function.
– At least one of the hash functions that is used to generate digests of the data

item is collision resistant at tv.
– The protection mechanism of the time-stamp token is not broken at tv.
– The cryptographic binding is correctly computed on the data and time.

If all above conditions are held, the time-stamp token is valid at time tv, so the verifier
returns a verification response with a “true” result to the requester. Otherwise, the
verifier returns a “false” result to the requester.

For a renewed time-stamp token, the verifier checks the validity of each nested
time-stamp token at the time it was generated or renewed, and validity of the latest
time-stamp token at tv following the above checking steps. The verifier returns a
verification response with a “true” result to the requester if all verifications are
successful, or a “false” otherwise.
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4 Discussions on client-side renewal

In Section 3, we have reviewed some common specifications in the ANSI and ISO/IEC
time-stamping services. In this section, we observe that the client-side renewal mech-
anisms in both standards are not explained thoroughly, which may cause some
ambiguities for implementations. To make our discussions clear, we analyse several
possible scenarios that the client-side hash functions are not renewed correctly by
following the standards and their consequences.

4.1 The ambiguities in the ANSI and ISO/IEC standards

As specified in Section 3.3, a time-stamp token consists of hash value(s) of a data
item, a time value and a cryptographic binding. The cryptographic algorithms used
in the token include client-side hash functions and server-side algorithms. However,
the lifetimes of these cryptographic algorithms are restricted due to the operational
life cycles or advanced computational architectures. Once the algorithms are compro-
mised, the time-stamp token becomes invalid and the existence of the data item could
not be proved after that. Thus, time-stamp tokens should be constantly renewed to
extend their validity periods.

In both the ANSI and ISO/IEC standards, the server-side renewal could be
achieved by using the “ExtMethod” and “ExtRenewal” fields as following: when
the server-side algorithm in the time-stamp token is close to the end of its lifecycle,
or there is strong evidence that it will be compromised in the near future, the re-
quester associates the time-stamp token in the “ExtRenewal” field, and indicates
a new server-side algorithm in the “ExtMethod” field. The TSA then maintains
these contents in the “TSTInfo” structure, and generates a new time-stamp token
on TSTInfo using the indicated algorithm.

For client-side hash functions, as Section 3.3 shows, the ISO/IEC and ANSI
standards both introduce the “ExtHash” field that allows multiple hash values of a
data item to be submitted in the time-stamp request, but how to renew the client-side
hash functions are not introduced clearly. For example, as the quote from the ISO/IEC
18014-1 [3], Section 5.7, Time-stamp renewal:

“Time-stamped data may be time-stamped again at a later time. This process is
called time-stamp renewal and may optionally be implemented by the TSA. This may
be necessary for example for the following reasons:

– The mechanism used to bind the time value to the data is near the end of its
operational life cycle (e.g., when using a digital signature and the public key
certificate is about to expire).

– The cryptographic function used to bind the time value to the data is still trusted;
however, there is strong evidence that it will become vulnerable in the near future
(e.g., when a hash function is close to begin broken by new attacks or available
computing power).

– The issuing TSA is about to terminate operations as a service provider.”

We can see that the “mechanism used to bind the time value and data” and
“cryptographic function used to bind the time value to the data” do not include the
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client-side hash functions, which means that the client-side hash functions are not
defined as a motivation for time-stamp renewal. Apart from this, there are no other
specifications in the ISO/IEC standard about how to renew client-side hash functions.

In the ANSI standard [1], the client-side renewal is briefly addressed in the def-
inition of the “renewal” term, as the quote from the ANSI X9.95 [1], Section 3.29,
Renewal:

– “A renewal is the extension of the validity of an existing time stamp token.
Legitimate reasons to renew a TST include: (i) the public key certificate used to
verify the TSA digital signature is nearing its expiration date, or (ii) a requestor
needs to replace the hash value using a stronger hash algorithm. ”

We can see that “a requestor could replace the hash value using a stronger hash
algorithm” is a statement that allows requesters to replace the client-side hash value,
but when to replace the hash value, how many hash values should be replaced are
not specified. The ambiguities in both standards may mislead the implementers to
ignore or improperly operate client-side renewal.

4.2 Possible failed implementations of client-side renewal

Based on the observations in Section 4.1, we further analyse some possible scenarios
for implementations that do not effectively renew client-side hash functions. Note
that the following three cases are arguably compatible with both the ISO/IEC and
ANSI time-stamping standards.

– Case 1: A requester only submits one hash value of a data item without renewal.
– Case 2: A requester submits multiple hash values of a data item without renewal.
– Case 3: A requester replaces hash values using stronger hash functions after all

current hash functions are not collision resistant.

Case 1: Let D denote a data item, and the hash value of D is h0, which is
computed through a client-side hash function H0, i.e., h0=H0(D). The requester
sends the pair (h0, H0) to a TSA, the TSA generates a time-stamp token TST0 at
time t0. When the server-side algorithm in TST0 is nearly compromised, the requester
sends (h0, H0, TST0) to a TSA, the TSA produces a new time-stamp token TST1
on the input at time t1. Repeat the server-side renewal in a long-term period, the
requester eventually has TST0, ..., TSTn (n∈N ).

Assume the collision resistance of H0 is broken at time tb0. After tb0, the verifica-
tion condition “at least one client-side hash function is not broken at tv” is failed. Thus,
time-stamp tokens generated after tb0 are verified as “false”, the time-stamping service
could prove the existence time of data item D at most between t0 and tb0. After tb0,
any server-side renewal does not extend the validity of time-stamp tokens any more.

Case 2: Let D denote a data item, and the hash values of D are h0, ..., hm,
which are computed through client-side hash functions H0, ..., Hm separately, i.e.,
h0 = H0(D), ..., hm = Hm(D). The requester sends (h0, H0), ..., (hm, Hm) to
a TSA, the TSA generates a time-stamp token TST0 at time t0. After that, the
server-side renewal is implemented correctly in a long-term period, the requester
obtains TST0, ..., TSTn (n∈N ) at the end.

8



Assume the collision resistance of H0, ..., Hm are all broken at time tbm. After
tbm, the verification condition “at least one client-side hash function is not broken
at tv” is failed. The time-stamp tokens produced after tbm are verified as “false”, the
time-stamping service could prove the existence time of D at most between t0 and
tbm, not any longer.

Case 3: With the same notation as in Case 2, if the requester replaces one or
more hash values in h0, ..., hm using stronger hash functions at time t1>tbm, for
the same reason as Case 1 and Case 2, the new time-stamp token generated at t1
is valid, but the time-stamp tokens generated before t1 are verified as “false”. The
time-stamping service only proves the existence of D at t1 or after, and certainly can
not prove its existence at time t0.

Summary: If a requester does not renew client-side hash functions correctly, the
time-stamping service is only able to prove the existence of data items with limited
time periods, when at least one of the client-side hash functions in the set is collision
resistant. Multiple hash values only extend the lifetime of a single hash function, but
the overall lifetime of them is still limited. In other words, a time-stamping service
without correct client-side renewal does not satisfy the definition of “long-term” in
Section 1. In order to achieve a long-term time-stamping service, the client-side
renewal is necessary and should be specified clearly.

5 Proposed long-term time-stamping scheme

In this section, we propose a comprehensive long-term time-stamping scheme that
describes how the client-side hash functions and server-side algorithms are used and
renewed. Notice that the server-side protection mechanism is not described as a
particular one, which could be any of the mechanisms for an independent token or
a linked token, as specified in either the ISO/IEC 18014-2 [4], ISO/IEC 18014-3 [5]
or the ANSI X9.95 [1].

n∈N Total number of time-stamp renewal processes
i∈{0, n} Index number of time-stamp renewal
D The data item to be time-stamped
H∗

0 , ..., H
∗
n Client-side hash functions’ identifiers, each of them could be a set of identifiers.

h∗
0, ..., h

∗
n Hash values computed through hash function H∗

0 , ..., H
∗
n respectively, each of them

could be a set of hash values.
t0, ..., tn Time points of requesting time-stamp renewal
TST0, ..., TSTn Time-stamp tokens generated at time t0, ..., tn respectively
C0, ..., Cn Cryptographic binding in time-stamp token TST0, ..., TSTn respectively

Table 1: Notation

Our proposed scheme has three functionalities: time-stamp generation, time-stamp
renewal and time-stamp verification. Fig. 2 shows the time-stamp generation and
renewal together, the notation is listed in Table 1. For simplicity, we assume that each
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Fig. 2: The proposed long-term time-stamping scheme

hash value also contains its hash identifier, e.g., we denote (h∗0, H
∗
0 ) pair as h

∗
0. For

every pair (h0, H0) in (h∗0, H
∗
0 ) satisfying h0=H0(D), we denote them as h∗0=H∗0 (D).

Note that some message formats that are not relevant to security analysis are omitted.

5.1 Time-stamp generation

As the top row in Fig. 2, at time t0 (i=0): a requester computes one or more hash
values of D and sends them to a TSA. i.e., h∗0=H∗0 (D). The TSA generates a crypto-
graphic binding C0 on (h∗0, t0), and returns the time-stamp token TST0 :=(h∗0, t0, C0)
to the requester.

5.2 Time-stamp renewal

Fig. 3: Timeline of client-side renewal (CR represents “Collision Resistant”)
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As the second to the last row in Fig. 2, at time ti (i ∈ {1, n}): the re-
quester sends (h∗i , TSTi−1) to a TSA. The TSA produces a new time-stamp token
TSTi :=(h∗i , TSTi−1, ti, Ci) to the requester. hi and Ci are determined with different
renewal mechanisms as follows:

1. Server-side renewal: When the server-side algorithm is about to be compro-
mised or reach the end of its life cycle, the requester remains the previous hash
value(s) of D, i.e., h∗i =h∗i−1, then indicates a stronger server-side algorithm in
the time-stamp request. The TSA generates a new cryptographic binding Ci

with the indicated server-side algorithm.
2. Client-side renewal: When the collision resistance of all client-side hash func-

tions in the latest time-stamp token are about to be broken, and at least one
of them is still collision resistant, the requester computes one or more new hash
values of D using stronger hash functions, i.e., h∗i =H∗i (D), then replaces some
of the old hash values with the new ones, or directly adds the new ones into the
time-stamp request. The TSA generates a new cryptographic binding Ci using the
server-side algorithm used in Ci−1. As the timeline shows in Fig. 3, each renewal
should happen between the current set of hash functions are all compromised.

3. Both-side renewal: A combination of the above two cases: when the security
of server-side algorithm and collision resistance of client-side hash functions are
all threatened as above scenarios, the requester computes one or more new hash
values of D with stronger hash functions, i.e., h∗i =H∗i (D), replaces the old
hash values with new ones, or adds the new ones into the request, and then
indicates a stronger server-side algorithm in the request. The TSA generates a
new cryptographic binding Ci with the indicated server-side algorithm.

*Note that the message format of Ci depends on the server-side protection mecha-
nisms and their details are not discussed in this paper. We stress that the scheme
is applicable for any type of server-side protection mechanism.

5.3 Time-stamp verification

At the verification time tv, the verifier receives a time-stamp token TSTi (i∈{0, n})
and checks the following conditions:

– The time-stamp token is syntactically well-formed.
– The hash values of D through H∗0 , ..., H

∗
i match the corresponding hash values

in time-stamp tokens, i.e., h∗0=H∗0 (D), h∗1=H∗1 (D), ..., h∗i =H∗i (D).
– At least one hash function in H∗0 and in H∗1 is collision resistant when H∗0 is

renewed, ..., at least one hash function inH∗i−1 and inH∗i is collision resistant when
H∗i−1 is renewed, at least one hash function in H∗i is collision resistant at time tv.

– The server-side algorithm used in C0 and C1 are secure at the time the one for
C0 is renewed, ..., the server-side algorithm used in Ci−1 and Ci are secure at the
time the one for Ci−1 is renewed, the server-side algorithm for Ci is secure at tv.

– Cryptographic binding C0, ..., Ci are correctly computed on the corresponding
input content.
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If all above conditions are satisfied, we say the time-stamp token TSTi is valid
at time tv, and the verifier returns “true” to the requester if the verifications are
successful. Otherwise, return a “false” to the requester. The valid time-stamp token
TSTi indicates that the data item D existed at the time t0.

6 Security notions

In this section, we formalize the syntax of a long-term time-stamping scheme, the
security assumptions that are required for analysis, and the security properties that
a long-term time-stamping scheme should satisfy.

6.1 Syntax of a long-term time-stamping scheme

As defined as follows, a comprehensive long-term time-stamping scheme consists
of three algorithms, which are respectively associated with time-stamp generation,
time-stamp renewal and time-stamp verification.

Definition 1. (Long-term time-stamping (LTTS) scheme.) A LTTS scheme is a
tuple of the following algorithms (TSGen, TSRen, TSV er):

– TSGen(h∗0)→TST0: the algorithm TSGen takes as input a set of hash values
h∗0, outputs a time-stamp token TST0.

– TSRen(h∗i , TSTi−1)→TSTi: the algorithm TSRen takes as input a set of hash
values h∗i and a previous time-stamp token TSTi−1, outputs a new time-stamp
token TSTi.

– TSV er(D, TSTi, V D, tv)→b: the algorithm TSV er takes as input a data item
D, a time-stamp token TSTi, the necessary verification data VD (e.g., revocation
lists of cryptographic algorithms that can be updated over time), and the verification
time tv, outputs b=1 if the time-stamp token is valid, otherwise outputs b=0.

6.2 Security assumptions

In the following models and proofs, we assume that

1. The verifier correctly performs the verification algorithm.
2. TSAs correctly perform the TSGen and TSRen algorithms.
3. The verification data VD is trusted and cannot be tampered.
4. Each cryptographic algorithm is associated with a validity period and provides

correct outputs within their validity periods.

6.3 Security models and definitions

A long-term time-stamping (LTTS) scheme should achieve three security properties:
correctness, nondisclosure, and long-term integrity. The formal definitions of these
properties are given as follows:
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Correctness. This property means that assuming every entity is honest, a long-term
time-stamping scheme is able to prove existence of data items in a long period of
time that is not bounded with the lifetimes of underlying cryptographic algorithms.
The formal definition of correctness is given below.

Definition 2. (Correctness.) Let LTTS=(TSGen, TSRen, TSV er) be a long-term
time-stamping scheme, D be a data item to be time-stamped, TSTn (n∈N ) is a
time-stamp token produced as follows.

At time t0, a requester computes a set of hash values of D, i.e., h∗0 =H∗0 (D),
then the algorithm TSGen takes input h∗0 (includes identifiers H∗0) and outputs a
time-stamp token TST0. Then for i=1, ..., n, at time ti, the algorithm TSRen takes
as input a set of hash values h∗i =H∗i (D) and a time-stamp token TSTi−1 at a point
in time when the server-side algorithm and client-side hash functions in TSTi−1 are
still secure, and outputs a time-stamp token TSTi. In the end, at a point in time
tv>tn, the algorithm TSV er takes as input the data item D, the time-stamp token
TSTn, the verification data VD and verification time tv. Assume at tv, at least one
client-side hash function in H∗n is still collision resistant, and the server-side algorithm
in TSTn is still secure.

For a long-term time-stamping scheme to be correct, it must satisfy that if a
time-stamp token TSTn is generated for any data item D following the above process,
the verification algorithm outputs TSV er(D, TSTn, V D, tv)=1.

Nondisclosure. This property means that the data item to be time-stamped is not
exposed to any party except for the requester and verifier. Similar to the definition of
a long-term time-stamping scheme, if the nondisclosure could be achieved with limited
duration that is bounded by the lifetimes of corresponding cryptographic algorithms,
we say it is short-term nondisclosure, otherwise it is long-term nondisclosure. The
formal definition of nondisclosure in a long-term time-stamping scheme is as follows.

Definition 3. (Nondisclosure.) A long-term time-stamping service provides nondis-
closure for data items to be time-stamped if it is computationally infeasible for any
party except the requester and verifier to reveal the data items.

Long-term Integrity. The security notion of long-term integrity is based on the con-
cept of “compromising” a time-stamping scheme. In specific, we say an attacker is able
to compromise a time-stamping scheme, if it is able to claim that a data object exists
at a point in time that actually it does not exist, or to tamper valid time-stamp tokens
without being detected. Thus, we say a time-stamping scheme has “long-term integrity”
if an attacker is unable to compromise the time-stamping scheme in a long period of
time that is not bounded with the lifetimes of underlying cryptographic algorithms.

The long-term integrity model is defined as a game running between a long-
lived adversary A, a simulator B and a set of TSAs. As same in [10, 11, 23], A
is modelled as a set of computing machines that have abilities to develop compu-
tational power and computing architectures with time increasing, but also being
restricted within each time period. B has computational resources comparable to
A. Besides, A is able to advance time by calling a global clock oracle Clock(t),

13



and communicate with TSAs through available queries in different time periods.
Based on timely manner, the long-term integrity model could be divided into two
stages:

Stage 1 (t=t0):

1. Set time and power: A is able to set current time as t0 by querying the oracle
Clock(t), i.e., tcur = t0, and use computing machine M0 and computational
power P0.

2. Request time-stamps: The adversary A is able to select a secure TSA, then
send one or more hash values of a data object x to the TSA. The TSA returns
a time-stamp token TST0 to A. i.e., h∗0 := H∗0 (x), TST0 ← h∗0. H

∗
0 and the

server-side algorithm used in TST0 are secure against (M0, P0).

Stage 2 (t=ti, i∈{1, n}):

1. Set time and power: A is able to set current time as ti by querying the oracle
Clock(t), i.e., tcur=ti, and use computing machineMi and computational power
Pi.

2. Request time-stamp renewal: The adversary A is able to select a secure TSA,
then send one or more hash values of a data object x with a previous time-stamp
token TSTi−1 to the TSA. The TSA returns a new time-stamp token TSTi to A.
i.e., h∗i =H∗i (x), TSTi←(h∗i , TSTi−1). H

∗
i ,H

∗
i−1 and the server-side algorithm

used in TSTi are secure against (Mi, Pi).
3. Compromise TSAs: The adversary A is able to select an expired TSA, and

obtain the relevant secret information kept by the TSA (e.g., the private key for
signature-based time-stamping).

The winning conditions of the long-lived adversary A and the simulator B are defined
as:

– A: At any point in time tv, A outputs a pair (x′, TST), A wins the game if the
pair (x′, TST) is not queried from the TSAs, and TSV er(x′, V D, tv, TST)=1.

– B: At any point in time tv, B breaks any set of the client-side hash functions, or
any of the server-side algorithms within their validity periods.

We denote the probability that A wins the game as ALTI
LTTS. Until time tv, the sum

probability that B breaks at least one client-side hash function within its validity
period is denoted as BCS

tv , and the sum probability that B breaks at least one server-
side algorithm within its validity period is denoted as BSStv . Furthermore, we define

the BCryp
tv as the sum probability of the failure of cryptographic algorithms within

their validity periods:
BCryp
tv =BCS

tv + BSStv .

Definition 4. (Long-term Integrity.) Let LTTS = (TSGen, TSRen, TSV er) be
a long-term time-stamping scheme, let A and B be a long-lived adversary and a
simulator respectively as specified in the game above. we say a LTTS has long-term
integrity if there exists a constant c for B such that for any point in time tv,

ALTI
LTTS ≤ c·BCryp

tv .
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7 Security analysis

In terms of the security models and definitions in Section 6.3, we now prove our
proposed long-term time-stamping scheme holding each security property.

7.1 Proof of correctness

Theorem 1. The proposed long-term time-stamping scheme is correct.

Proof. In our proposed LTTS=(TSGen, TSRen, TSV er), we assume that a data
item D has been through the TSGen and TSRen algorithms separately at time t0
and time ti for i∈{1, n} as the process described in Definition 2, and finally outputs
a time-stamp token TSTn (n ∈ N ). At time tv > tn, the verification algorithms
takes input D, TSTn, V D and tv, the verification result could be analysed for each
condition specified in Section 5.3 as follows:

First, the time-stamp token TSTn is generated through TSGen and TSRen legit-
imately, so every enclosed time-stamp token TST0, ..., TSTn is syntactically correct.

Second, every set of hash values h∗i of the data item D are computed through the
corresponding set of hash functions H∗i , and every cryptographic binding is generated
by the TSGen and TSRen algorithms, it is clear that the hash values of D through
H∗0 , ..., H∗i match the corresponding hash values in time-stamp tokens, and all
cryptographic bindings are correctly computed on the corresponding input contents.

Third, since the algorithm TSRen is implemented every time before client-side
hash functions in the latest time-stamp tokens are all broken, and also before the
server-side algorithm in the latest cryptographic binding is compromised, the validity
or client-side hash functions and server-side algorithms are all guaranteed at their
renewal times. With the assumption that at tv, at least one client-side hash function
in TSTn is still collision resistant, and the server-side algorithm in TSTn is still
secure, all verification steps are satisfied. Therefore, the verification algorithm outputs
TSV er(D, TSTn, V D, tv)=1 and the theorem follows. ut

7.2 Proof of nondisclosure

Theorem 2. The proposed long-term time-stamping scheme is able to provide nondis-
closure for data items when all client-side hash functions are preimage resistant.

Proof. Assume a requester obtains a time-stamp token, which contains a set of hash
values of a data itemD. These hash values are computed using a set of client-side hash
functions, H∗0 =(H0, ..., Hm), i.e., h0=H0(D), ..., hm=Hm(D). Assume that the
preimage resistance of H0, ..., Hm are compromised at tp0, ..., tpm respectively, and
that the hash functionHf is one ofH0, ..., Hm, the preimage resistance ofHf is broken
at tpf , with {tp0, ..., tpm}min=tpf ({...}min denotes the earliest time in the set). Then
at time t0<t<tpf , if an attacker is able to find a preimage for any of h0, ..., hm with
non-negligible possibilities, the preimage resistance of at least one ofH0, ..., Hm is bro-
ken within its validity period, which contradicts our assumption. After time tpf , the at-
tacker is able to attack at least the hash functionHf that determine preimages of hf to
D with non-negligible possibilities. Thus, the proposed time-stamping scheme provides
short-term nondisclosure in the duration (t0, tpf). Therefore, the theorem follows. ut
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7.3 Proof of long-term integrity

Based on the assumptions discussed in Section 6.2, TSAs and the verifier are trusted
parties and always perform operations correctly. The integrity of data objects only
relies on the security of client-side hash functions and server-side algorithms. In this
paper, we do not limit out discussion with a specific server-side protection mechanism.
A time-stamp token could be any type as introduced in Section 3.2.

For the security of server-side mechanisms, the existing security analyses from [10]
and [11] have proved the security of a signature-based long-term time-stamping
scheme as well as a hash-based one. As introduced in Section 2, these two schemes
satisfy the long-term integrity property under the condition that client-side security
is guaranteed. Thus, their results can be fitted in our analysis. We assume that
server-side security is satisfied in our proposed scheme, and focus on the analysis of
client-side security. In other words, as defined in Section 6.3, the probability of the
adversary breaking the scheme through server-side is reduced to BSStv .

Theorem 3. If the security of server-side is guaranteed, the proposed time-stamping
scheme has long-term integrity.

Proof. That the server-side security is guaranteed means that all the time-stamp
tokens TSTs must be created by the corresponding trusted TSAs. The adversary A
can only join the long-term integrity game as defined in Section 6.3 to obtain these
tokens. These token are not tampered after their generations.

If A wins the game, it must output a time-stamp token TST=(TST0, ..., TSTn)
on a data item x′, which is distinct to the original x value that was used to request any
of TST0, TST1, ..., TSTn but somehow to manage letting TSV er(x′, V D, tv, TST)=
1. Based on Section 5.3, this equation guarantees that at time ti for i ∈ {1, n},
the two corresponding sets of client-side hash functions used by A, denoted by
H∗i−1=(H(i−1)1, H(i−1)2, ..., H(i−1)mi−1

) and H∗i =(Hi1, Hi2, ..., Himi
), must both

contain at least one collision resistant hash function. Besides, each set of hash values
H∗i (x) is a part of token TSTi. Now let us check the following reasoning:

At time t0, A submits a set of hash values H∗0 (x) of a data item x to a TSA,
the TSA returns a time-stamp token TST0 on H∗0 (x). Assume that the set of hash
functions H∗0 =(H01, H02, ..., H0m0

), H0j for j∈{1, m0} is collision resistant at t0.
At time t1, A decides to renew the token TST0 by using another set of client-side

hash functions H∗1 =(H11, H12, ..., H1m1
). Since at least one of the hash functions in

H∗0 , which is still collision resistant at this time, we assumeH0j is still collision resistant
at t1, although it may have become weak, and the corresponding hash value H0j(x)
is a part of TST0. Then A can submit (H∗1 (x), TST0) for requesting a time-stamp
renewal and obtains TST1 (Case 1) or A may submit (H∗1 (x

′), TST0) for requesting
a time-stamp renewal and obtains TST1 (Case 2). If Case 2 happens, there must have
H0j(x)=H0j(x

′) with a pair of collisions (x, x′).B can then obtain this pair. This result
is contradict to the assumption that H0j is collision resistant at t1. If Case 1 happens,
let us carry on with our reasoning. The TSA returns a renewed time-stamp token
TST1. We now assume that H1j∈H∗1 for j∈{1, m1} is collision resistant at time t1.

At time t2, H0j and all other client-side hash functions used at t0 may have been
broken, but we assume thatH1j is still collision resistant, and the hash valueH1j(x) is
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a part of TST1. Now repeating the previous situation,A can submit (H∗2 (x), TST1) for
requesting another time-stamp renewal and obtains TST2 (Case 1) or A may submit
(H∗2 (x

′), TST1) for requesting another time-stamp renewal and obtains TST2 (Case
2). Again, Case 2 allows B to obtain a pair of collisions satisfying H1j(x)=H1j(x

′)
and it contradicts the assumption, and Case 1 leads us to continue our reasoning.

Carrying on our argument as before, only Case 1 for each time-stamp renewal
is considered. We assume that H(n−1)j for j ∈{1, m(n−1)} is collision resistant at
both tn−1 and tn, and the hash value H(n−1)j(x) is a part of TSTn−1. If A finally
submits (H∗n(x

′), TSTn−1) and successfully obtains TSTn, then B obtains a pair of
collisions (x, x′) satisfying H(n−1)j(x)=H(n−1)j(x

′).
In summary, based on the above reasoning, as long as A wins the game, B can

break at least one client-side hash function within its validity period. Therefore,
the winning probability of A through client-side is reduced to the same level of the
probability that B breaks at least one client-side hash function within its validity
period. With adding the probability of the failure of server-side algorithms BSStv , there
exists a constant c such that:

ALTI
LTTS ≤ c·(BCS

tv +BSStv ).

Thus, we have proved Theorem 3. ut

8 Evaluations of client-side security level

In this section, we determine the client-side security level LCS in practical, which
represents the probability of a long-lived adversary as defined in Section 6.3 breaks
the client-side security of the proposed scheme. In terms of the ISO/IEC and ANSI
standards, multiple hash values are allowed in every time-stamp request, and the
system is available to set up policies for the number of client-side hash functions in
every time-stamp request, and the interval of time-stamp renewal. Therefore, there
are two parameters that affect the client-side security level:

1. lset: the security level of a set of client-side hash functions in a time-stamp request,
which means the probability that a long-lived adversary as defined in Section 6.3
breaks all collision resistant hash functions in the set within their validity periods.

2. n: the number of sets of client-side hash functions in time-stamp tokens, which
means the number of client-side renewal process.

Assume the security level of each set of client hash functions are lset1 , ..., lsetn respec-
tively. The winning probability of the adversary is the aggregated probability of the
failure of every set of client-side hash functions:

LCS=

n∑
i=1

lseti .

We can see that the more sets of client-side hash functions are used in the
scheme, the higher probability that the adversary breaks the client-side security of
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the proposed scheme. The stronger of each set of client-side hash functions, the lower
probability that the adversary breaks the client-side security of the proposed scheme.

Furthermore, the security level of a set of client-side hash functions lset is decided
by another two parameters:

1. l: the security level of a specific client-side hash function in the set, which means
the probability of a long-lived adversary as defined in Section 6.3 breaks the
collision resistance of the specific hash function within its validity period.

2. m: the number of client-side hash functions required in a set.

Assume the security level of each hash function in a set is l1, ..., lm respectively.
Then the probability of the failure of a whole set of hash functions, is equal to the
probability that every hash function in the set fails:

lset=

m∏
i=1

lm.

Based on the bounded computational resources in each time period, a long-lived
adversary has not enough resources to break the collision resistance of whole set of
hash functions. That means, the computational resources of the adversary is not
enough to break at least one of the hash functions in the set. If the adversary owns
computational power to break some of the hash functions, then the security level of
these hash functions are equal to 1, the lset is only determined by the security level
of the other hash functions.

Summary: The evaluation results show that with more times the client-side
renewal happens, the probability of the adversary breaks the scheme increases; for
multiple hash values submitted in each time-stamp request, the more collision resistant
hash functions are required in each time-stamp request, the lower probability of the
adversary breaks the scheme.

9 Conclusions

In this paper, we have discussed the importance of client-side renewal: it is not enough
for a requester to only use the same set of multiple hash values in an initial time-
stamping request as well as a time-stamp renewal request, new hash values computed
through stronger hash functions should be used before the failure of current set of
hash functions. This argument is straightforward but is not explicitly addressed in the
ISO/IEC and ANSI standards. Then we propose a long-term time-stamping scheme
with specifications of both client-side and server-side mechanisms. We have proved
that our scheme achieves correctness, short-term nondisclosure and long-term integrity
properties. Finally, we have provided a quantified evaluation for the client-side security
level of our proposed scheme.

We argue that the short-term nondisclosure of our scheme could be accepted, since
the integrity could naturally be required for much longer time than nondisclosure.
For instance, intellectual-property data is usually protected in secret for a certain
period before it is released but its integrity should be maintained in perpetuity.
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As the future work, we will implement the proposed scheme in a time-stamping
service environment to measure the timing overhead and to determine the network
channel affectation. Besides, our research could be carried on covering other re-
newable applications that require long-term integrity. The renewal mechanisms in
time-stamping services may have other application scenarios and such applications
and their security analyses should be explored.
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