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Abstract. Homomorphic Encryption (HE), first demonstrated in 2009,
is a class of encryption schemes that enables computation over encrypted
data. Recent advances in the design of better protocols have led to the
development of two different lines of HE schemes – Multi-Party Homo-
morphic Encryption (MPHE) and Multi-Key Homomorphic Encryption
(MKHE). These primitives cater to different applications as each ap-
proach has its own pros and cons. At a high level, MPHE schemes tend
to be much more efficient but require the set of computing parties to be
fixed throughout the entire operation, frequently a limiting assumption.
On the other hand, MKHE schemes tend to have poor scaling (quadratic)
with the number of parties but allow us to add new parties to the joint
computation anytime since they support computation between cipher-
texts under different keys.
In this work, we formalize a new variant of HE called Multi-Group Ho-
momorphic Encryption (MGHE). Stated informally, an MGHE scheme
provides a seamless integration between MPHE and MKHE, thereby en-
joying the best of both worlds. In this framework, a group of parties gen-
erates a public key jointly which results in the compactness of ciphertexts
and the efficiency of homomorphic operations similar to MPHE. How-
ever, unlike MPHE, it also supports computations on encrypted data
under different keys similar to MKHE.
We provide the first construction of such an MGHE scheme from BFV
and demonstrate experimental results. More importantly, the joint public
key generation procedure of our scheme is fully non-interactive so that
the set of computing parties does not have to be determined and no
information about other parties is needed in advance of individual key
generation. At the heart of our construction is a novel re-factoring of the
relinearization key.

1 Introduction

With the rapid growth of data science and industry, it has been a significant issue
to effectively utilize a large amount of data, yet, made it challenging for individ-
uals or organizations with limited resources to take the benefit. Fortunately, the
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cloud computing technologies offer sharing of resources and outsourcing com-
putation on the cloud server. Being stored in plaintext, however, the uploaded
data is exposed to the risk of breach by an attacker or by a malicious service
provider. In fact, such issues have been occurred continually within the cloud
of global enterprises; Alibaba and Facebook in 2019. To securely compute and
take the advantage of outsourced data, Homomorphic Encryption (HE) came
into the spotlight as a cryptographic solution.

HE enables us to perform operations over the encrypted data without de-
cryption. Thus, it prevents a leakage of private information while evaluating
data within untrusted environment. It requires large resource even when it com-
putes a simple arithmetic operation such as multiplication. Therefore, HE is
desirable in applying on the cloud system which is able to support huge amount
of resource for evaluation. Private Set Intersection is a representative example of
this privacy–preserving cloud service [13, 12]. In the PSI, a client only needs to
encrypt their private resource and send it to the server. Then, the server finds
intersection without revealing any data about the client. However, a typical HE
only supports computations between data encrypted by the same key. When
there are multiple data owners, therefore, it assumes a trusted third party who
possesses a key released to each party for encryption. It may cause authority
issue since the key owner can decrypt and infringe on all data providers’ privacy
using the key.

To resolve the aforementioned problem, there have been several researches
to distribute the authority and design HE schemes for multiple parties. The ex-
isting works can be mostly classified into two categories, namely Multi-Party
Homomorphic Encryption (MPHE, a.k.a. Threshold HE) and Multi-Key Ho-
momorphic Encryption (MKHE). In MPHE [2, 26, 28], multiple parties work
collaboratively to generate a joint public key and the joint secret key is (addi-
tively) shared among them. The performance of MPHE is comparable to that
of the single-key HE schemes since encryption and homomorphic computation
are performed in similar fashion. However, the set of participants should be de-
termined and fixed in the preparation phase and no other parties can join the
computation in the middle. Moreover, the existing MPHE schemes are based on
multi-round key generation protocol in which the involved parties should interact
with each other to generate a joint evaluation (relienarization) key.

Meanwhile, MKHE [25] has very different pros and cons from MPHE. In the
multi-key setting, each party independently generates its own key pair which does
require no information about other participants. A message can be encrypted
using a single key, and it supports homomorphic operation between ciphertexts
which do not necessarily have to be encrypted under the same key. The main
advantage of MKHE is its flexibility: it is not necessary to pre-determine the
list of participants or computational task. From the performance perspective,
however, the size of ciphertexts grows and the complexity of homomorphic op-
erations increases depending on the number of the involved parties.
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1.1 Our Contribution

Formalization of Multi-Group Homomorphic Encryption Schemes. We
propose and formalize a new variant of homomorphic encryption schemes –
Multi-Group Homomorphic Encryption (MGHE). Conceptually, an MGHE scheme
is a generalization of both Multi-Party Homomorphic Encryption and Multi-Key
Homomorphic Encryption. In other words, MPHE and MKHE variants of HE
are simply special instantiations of the MGHE variant. This formalization is
motivated by a number of emerging application scenarios, some of which are
mentioned in detail in Section 3.3.

Construction of the first MGHE Scheme. We provide the first concrete
construction of an MGHE scheme. At the heart of our construction lies a novel
refactoring of the key generation algorithm that makes the key generation non-
interactive. Thus, our construction (which by definition is an MPHE scheme),
is the first MPHE scheme that has non-interactive key generation. At the same
time, our construction (which by definition is an MKHE scheme) enjoys the su-
perior performance when comparing against applicable schemes with the same
number of parties. Furthermore, it enables application scenarios that are not
completely suited for purely MKHE or MPHE schemes but can benefit from a
hybrid combination of both.

Concrete Efficiency. We demonstrate that such a generalized HE scheme, one
that enjoys the benefits of both MPHE and MKHE, does not come at a high
concrete efficiency cost. In fact, when coupled with improvements we make in
the “MKHE part” of our scheme, our MGHE scheme is 1.3 to 1.5× faster when
used for a homomorphic multiplication. The source code is written in C++ over
Microsoft SEAL [29] version 3.3.0.

1.2 Technical Overview

At the heart of our construction lies a non-interactive key generation algorithm.
This allows the joint key of a group to be constructed non-interactively from
independently generated keys of the group members. The key generation follows
a hybrid construction between MPHE (the encryption key aspects) and MKHE
(the relinearization mechanisms). We begin by giving a high-level overview of
our MPHE construction.

We assume that each party is identified as a unique index i and let I be a
group of parties. An MPHE scheme behave like a single-key HE scheme where
the joint secret key s =

∑
i∈I [s]i is additively shared among the members of

I. We use the Common Random String (CRS) assumption to construct a joint
public (encryption) key: given a random polynomial a ∈ Rq, each party i ∈ I
generates [b]i = a · [s]i+[e]i (mod q) for some error [e]i, then the joint public key
is obtained as b =

∑
i∈I [b]i ≈ a · s (mod q). However, it is more challenging to

generate a joint evaluation key because, roughly speaking, the relinearization key
is usually supposed to be an encryption of s2 which has quadratic structure with
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respect to the individual secrets [s]i. In the previous constructions [2, 26], the
key generation process involved a multi-round protocol among the parties: the
first round for generating a joint public key as described above, and additional
rounds for constructing a joint relinearization key from encryptions of [s]i · s
under s generated by parties i ∈ I. In our MPHE scheme, we propose a new
key generation algorithm which is nearly linear with respect to the secret. This
property enables the parties to generate their public keys [pk]i independently
from individual secrets [s]i which add up to a valid joint public (encryption and
evaluation) key jpk =

∑
i∈I [pk]i corresponding to the joint secret s =

∑
i∈I [s]i.

The technical details of our MPHE construction are described in Section 4.

Finally, to construct our MGHE scheme, we show how the functionality of our
MPHE scheme can be extended so that it supports homomorphic computation
between ciphertexts under different (joint) secret keys. For example, if we per-
form homomorphic computation on ctj ’s which are MPHE ciphertexts encrypted
under the joint secret keys sj =

∑
i∈Ij

[s]i of groups Ij for 1 ≤ j ≤ k, then the

output is a “multi-group” ciphertext under the secret (s1, . . . , sk). Moreover,
no additional interaction or computation is required among the parties since the
same joint public keys of the involved groups can be reused in the relinearization
process of multi-group ciphertexts. The technical details of our MGHE construc-
tion are described in Section 5.

Thus, our MGHE scheme behaves as if it is an MKHE scheme in which
each key is jointly generated by a group of parties (akin to MPHE). This makes
MGHE an ideal generalization of both these HE variants and the hierarchical
key structure allows an MGHE scheme to take advantage of strengths of both
MPHE and MKHE.

1.3 Related Works

Asharov et al. [2] proposed the notion of MPHE and designed the first MPHE
scheme from BGV. Mouchet et al. [26] simplified the idea of [2] and presented
an MPHE scheme from BFV. They also improved the functionality to build
MPC and demonstrated some experimental results. Recently, Park [28] modified
the key generation process to reduce the communication between the parties
and suggested a conversion method between MPHE and MKHE. However, prior
works had a common limitation that the key generation procedure is a multi-
round protocol which requires interaction between all the involved parties.

After López-Alt et al. [25] presented the first MKHE scheme, there have been
several studies to design MKHE schemes from GSW [20, 27], LWE (TFHE) [7, 9],
BGV [14], and BFV/CKKS [10] for better performance and functionality. Our
relinearization algorithm is inspired from that of [10], but we make an additional
CRS assumption to possess the linearity property.

Aloufi et al. [1] combined MPHE and MKHE to perform computation on
ciphertexts under two different keys: a joint key of model owners and the other
of a client. This can be viewed as a special case of MGHE in which there are
two groups consisting of model owners and a client, respectively. However, its
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key generation procedure also involves an interactive protocol to obtain a relin-
earization key.

In the usual MPHE or MKHE setting, the decryption procedure has N -out-
of-N access structure, i.e., all the involved parties should collaborate to decrypt
a ciphertext. Badrinarayanan et al. [3] combined MKHE and a linear secret
sharing scheme to construct a threshold MKHE scheme whose decryption works
at least t partial decryptions are collected.

2 Background

2.1 Notation

We assume all logarithms are in base two unless otherwise indicated. Vectors are
denoted in bold, e.g. a, and matrices in upper-case bold, e.g. A. We denote the
inner product of two vectors u, v as ⟨u,v⟩. For a finite set S, U(S) denotes the
uniform distribution over S.

Let n be a power of two. We denote by R = Z[X]/(Xn + 1) the ring of
integers of the (2n)-th cyclotomic field and Rq = Zq[X]/(Xn + 1) the residue
ring of R modulo an integer q. An element of R (or Rq) is uniquely represented
as a polynomial of degree < n with coefficients in Z (or Zq). We identify a =∑

0≤i<n ai · Xi ∈ R with the vector of its coefficients (a0, . . . , an−1) ∈ Zn. For
σ > 0, we denote by Dσ a distribution over R which samples n coefficients
independently from the discrete Gaussian distribution of variance σ2.

For a, b ∈ Rq, we informally write a ≈ b (mod q) if b = a + e (mod q) for
some small e ∈ R.

2.2 Ring Learning with Errors

Given the parameters (n, q, χ, σ), consider the samples of the form bi = s ·ai+ei
(mod q) for polynomial number of i’s where ai ← U(Rq) and ei ← Dσ for a
fixed s← χ. The Ring Learning with Errors (RLWE) assumption states that the
RLWE samples (bi, ai)’s are computationally indistinguishable from uniformly
random elements of U(R2

q).

2.3 Gadget Decomposition and External Product

The gadget decomposition is a widely used technique in HE schemes to manage
the noise growth of homomorphic operations. For a gadget vector g = (gi) ∈ Zd

and an integer q, the gadget decomposition is a map g−1 : Rq → Rd such that
a = ⟨g−1(a),g⟩ (mod q) for all a ∈ Rq. Typical examples are bit decomposi-
tion [5, 6], digit decomposition [17], and Residue Number System (RNS) based
decompositions [4, 24]. Our implementation is based on an RNS-friendly decom-
position for efficiency.

For µ ∈ R, we call U = (u0,u1) ∈ Rd×2
q a gadget encryption of µ under secret

s if u0+s·u1 ≈ µ·g (mod q). Chillotti et al. [17] formalized an operation between
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RLWE and RGSW ciphertexts and named it the external product. We adopt and
generalize this concept as follows: For c ∈ Rq and v ∈ Rd

q , we define the external
product as c⊡ v := ⟨g−1(c),v⟩ (mod q). We also write c⊡U = (c⊡ u0, c⊡ u1)
for U = (u0,u1) ∈ Rd×2

q . We note that ⟨c⊡U, (1, s)⟩ = c⊡ (u0 + s · u1) ≈ c · µ
(mod q) if U is a gadget encryption of µ.

2.4 Special Modulus

The special modulus technique first proposed in [23] handles the noise growth
in key-switching process. It temporarily increases the ciphertext modulus q upto
Q = q · q′ for some q′, and the key switching procedure is executed over RQ.
Then the modulus is reduced back to q so that the key-switching error is cut
down by a factor of about q′.

In our implementation, the special modulus technique is applied to the ex-
ternal product of gadget decomposition. The gadget encryptions have ciphertext
modulus Q which can be multiplied to the regular ciphertexts of modulus q using
the modified external product defined by c⊡ v :=

⌊
q′−1 · ⟨g−1(c),v⟩

⌉
(mod q).

3 Formalizing a Multi-Group Homomorphic Encryption
Scheme

In this section, we formally describe what is a Multi-Group Homomorphic En-
cryption (MGHE) scheme, it’s correctness and security properties. We also dis-
cuss the connection of MGHE schemes with MPHE and MKHE schemes and
describe application scenarios that are enabled by MGHE schemes.

3.1 Syntax

Let M be a plaintext space. An MGHE scheme over M is a tuple MGHE =
(Setup, KeyGen, Enc, Dec, Eval) of algorithms and multi-party protocols.

• Setup: pp← MGHE.Setup(1λ, 1d). On input the security parameter λ and a
depth bound d, the setup algorithm outputs a public parameter set pp.

• Key Generation Protocol: MGHE.KeyGen(pp, I). Initially the parties in I
hold pp and run the key-generation protocol. At the end of the protocol, it
outputs a public key pk and each party i ∈ I obtains a private share [sk]i.
We denote by sk the (implicitly defined) secret key which can be recovered
from the shares [sk]i, i ∈ I.

• Encryption: ct ← MGHE.Enc(pk;m). Given a public key pk and a message
m ∈M, the encryption algorithm outputs a ciphertext ct.
For convenience, we assume that every ciphertext implicitly includes the
references to the associated public keys. For example, a fresh ciphertext
contains one reference to the public key that is used in its encryption.
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• Evaluation: ct← MGHE.Eval(pk1, . . . , pkk;C, ct1, . . . , ctℓ). Given input a cir-
cuit C :Mℓ → M, ℓ ciphertexts ct1, . . . , ctℓ, let pk1, . . . , pkk be the public
keys which are associated to at least one input ciphertext. The evaluation al-
gorithm outputs a ciphertext ct. The output ciphertext contains ℓ references
to the associated public keys pk1, . . . , pkℓ.

• Decryption: m← MGHE.Dec(sk1, . . . , skℓ; ct). Given a ciphertext ct and the
associated secret keys sk1, . . . , skℓ, the decryption algorithm outputs a mes-
sage m ∈M.

Note that while the decryption algorithm requires access to the individual se-
cret keys, when implemented in practice, an additional algorithm known as dis-
tributed decryption is used to preserve privacy of individual secret keys. For our
MGHE construction described in Section 5, we also provide such a distributed
decryption algorithm. Our algorithm uses a standard MPC based interactive
protocol to achieve secure decryption over an MGHE scheme setup.

Security. We require that an MGHE scheme is semantically secure against a
dishonest majority. In other words, for any adversarial subset of parties A ⊊ I
and for any messages m1,m2 ∈ M, the advantage of the adversary in distin-
guishing the distributions MGHE.Enc(pk;m1) and MGHE.Enc(pk;m2) is negligible
in the security parameter λ.

Correctness. An MGHE scheme is said to be correct if the following holds: let
pp ← MGHE.Setup(1λ, 1d). Consider k public keys pk1, . . . , pkk each of which is
generated by the parties in I1, . . . , Ik and let sk1, . . . , skk be the corresponding
secret keys, respectively. For anym1, . . . ,mℓ ∈M and indices 1 ≤ k1, . . . , kℓ ≤ k,
let cti ← MGHE.Enc(pkki

;mi). For any circuit C :Mℓ →M of depth ≤ d, it holds
that

MGHE.Dec(sk1, . . . , skk; MGHE.Eval(pk1, . . . , pkk;C, ct1, . . . , ctℓ)) = C(m1, . . . ,mℓ)

with an overwhelming probability in λ.

3.2 Connections to MPHE and MKHE schemes

MPHE and MKHE are generalized notions of HE with distributed authority.
Since they have different (dis)advantages, one is not compatible with the other.
Our suggestion, the MGHE primitive, can be considered as a generalization
of MPHE and MKHE. In other words, both MPHE and MKHE are specific
instantiations of MGHE which are obtained by restricting the number of groups
or parties in the MGHE setting. Recall that an MGHE scheme works on groups
of parties, where the evaluation is done within a group in MPHE sense and
among groups in MKHE sense. Hence, MGHE over a single group can be viewed
as an MPHE scheme, on the other hand, it can also be viewed as an MKHE
scheme when each group consists of only one party.

From technical aspect, our MGHE construction is not just a combination of
the existing MPHE and MKHE schemes but we made a significant improvement
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Fig. 1. A schematic presenting the overall structure of MGHE schemes. Each boxed
group of participants acts as an MPHE scheme. The secret keys and ciphertext equa-
tions for each group and the entire set of participants (including between groups) are
described above.

in the MPHE part. The existing MPHE schemes had a common limitation that
the key generation procedure requires multiple rounds of interaction between
the key owners due to the quadratic structure of the relinearization key. In our
scheme, however, key owners only need to publish their own key pairs indepen-
dently from the groups they belong to. This makes our MGHE scheme achieve
the non-interactivity property of the setup phase and especially come in handy
when a party belongs to multiple groups since the same key can be reused to
build joint public keys of belonging groups and eventually saves the communica-
tion cost proportional to the number of groups. In addition, this property allows
us to form the computing groups dynamically on-the-fly by data providers or
the cloud without interacting with key owners.

3.3 Application

Our MGHE scheme has three important properties that make it a key enabler
for certain application scenarios. In particular, an MGHE scheme is (1) an HE
scheme (2) enjoy non-interactivity of the setup (key generation) phase and (3)
provides efficient computation between ciphertexts encrypted under different
keys. Below we describe a few applications that can be enabled by such a scheme.

Vertical Federated Learning (VFL): Federated learning is a technique for
decentralized machine learning where the data is available in silos with privacy
constraints. Vertical federated learning is a sub-category of this field where the
various datasets differ in the feature space. For instance, two datasets might



A Unified Framework of HE for Multiple Parties with Non-Interactive Setup 9

share the same set of user (rows) but store different attributes of these users
(columns). VFL can further be split into two components, the feature engi-
neering and the training/learning. Examples of the former include private set
intersections protocols to securely identify common column identifiers while ex-
amples of the latter include traditional training of ML models using FL (once a
common feature space is identified). Feature engineering is an important open
problem in the field of VFL and designing secure techniques for the same is an
important unsolved challenge.

The only promising solutions, with cryptographic privacy, that exist today
rely on HE or MPC. However, each of these approaches have severe practical
limitations when considering the above scenario. While traditional HE schemes
such as MKHE suffer from huge overheads when datasets need to be adaptively
selected, MPC schemes incur the overhead of resharing the features with every
group of parties. MGHE schemes can provide a transformative new tool to share
features one-time, and adaptively process them making it an ideal technical tool
for solving the feature engineering challenge.

Privacy-preserving Datalake Infrastructure: Privacy regulations such as
GDPR envision a goal that enables users to take control of their data in our
increasing digital infrastructure. While such a goal has not been realized, our
proposed MGHE scheme can provide a practical solution to the vision.

Let us assume that normal users (individuals) would like to share their data
for privacy conscious analytics. However, given the overhead of hosting such
databases, it is not feasible to expect each such individual to host their data. One
promising approach is to have data hosting services launched by a small number
of entities (such as Google, Alibaba, Facebook etc.). Thus, each user encrypt
and share their data to one of the datasets held by one such entity. Thus, we
have datasets DGoogle, · · · , DFacebook, which are encrypted under the secret keys
of different entities and operated by a dynamic and flexible MKHE scheme. In
addition, these entities may wish to distribute the authority to eliminates the
risks of a single point of failure. Hence multiple key centers can share the secret
key using an MPHE scheme since it is acceptable to use a fixed key access
structure in a single entity.

As a result, the use of MGHE here (1) allows for adaptive data selection
where an analyst can selectively use or ignore entire datasets as well as parts of
datasets (2) allows users to inherently gain control of their data, and (3) enables
such a system with low overhead. In this way, MGHE schemes combine the best
of both MPHE and MKHE schemes and make for an ideal solution to such a
privacy-preserving datalake infrastructure.

4 Construction of MPHE with Non-Interactive Setup

In this section, we present our MPHE scheme which will be extended to an
MGHE scheme in the next section. We describe our scheme over the BFV
scheme [5, 21].
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4.1 Basic Scheme

Our scheme is based on the Common Random String (CRS) model, i.e., all the
involved parties have access to the same random vectors sampled in the setup
phase. A parameter set also includes the RLWE dimensions, ciphertext modulus,
the key distribution, as well as the error parameter.

• MPHE.Setup(1λ): Set the RLWE dimension n, the plaintext modulus p, the
ciphertext modulus q, the key distribution χ over R, and the error parame-
ter σ. Sample random vectors a,u ← U(Rd

q). Return the parameter set pp =
(n, p, q, χ, σ,a,u). We write ∆ = ⌊q/p⌉.

The joint key generation procedure consists of two steps; each party first
generates (locally) a key pair and publishes the public key, and then the joint
public key of a group of parties is built from the collection of public keys from
the associated parties. The most distinguishing feature of our scheme is that it is
fully non-interactive. The generation of the individual keys can be done locally
without knowing any information about other parties, and building a joint public
key can be done publicly with no interaction with the involved parties.

• MPHE.KeyGen(i): Each party i samples [s]i, [r]i ← χ and [e0]i, [e1]i, [e2]i ← Dd
σ.

Set [b]i = −[s]i · a+ [e0]i (mod q), [d]i = −[r]i · a+ [s]i · g+ [e1]i (mod q) and
[v]i = −[s]i · u − [r]i · g + [e2]i (mod q). Return the secret key [sk]i = [s]i and
the public key [pk]i = ([b]i, [d]i, [v]i).

• MPHE.JointKeyGen({[pk]i : i ∈ I}): Let I be a group of parties. Given a set of
public keys [pk]i of parties i in I, return the joint public key jpk = (b,d,v) ∈
Rd

q ×Rd
q ×Rd

q where b =
∑

i∈I [b]i, d =
∑

i∈I [d]i and v =
∑

i∈I [v]i. We denote
the joint encryption key as jek = (b[0],a[0]) ∈ R2

q .

Each component of the public key [pk]i forms a gadget encryption with a CRS
under the secrets [s]i or [r]i. We call s =

∑
i∈I [s]i the (implicitly defined) joint

secret key of the group I of parties. The individual secrets [s]i of parties i ∈ I
can be viewed as additive shares of s. Note that the public key [pk]i is nearly
linear with respect to [s]i and [r]i so that the joint public key jpk = (b,d,v)
satisfies the same properties as the individual keys:

b ≈ −s · a (mod q)

d ≈ −r · a+ s · g (mod q)

v ≈ −s · u− r · g (mod q)

Note that the encryption key jek can be viewed as an RLWE instance with
secret s. The usual BFV encryption and decryption algorithms are used in our
scheme as follows.

• MPHE.Enc(jek;m): Given a message m ∈ Rp, sample t ← χ and e0, e1 ← Dσ.
Return the ciphertext ct = t · jek+ (∆ ·m+ e0, e1) (mod q).

• MPHE.Dec(sk; ct): Given a ciphertext ct = (c0, c1) and a secret key sk = s,
output m = ⌊(p/q) · (c0 + c1 · s)⌉ (mod p).
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We provide a high-level sketch of the correctness proof. We refer the reader
to Appendix B for details about the noise analysis.

Correctness and security. Our encryption algorithm returns a valid BFV
ciphertext under the secret s. The only difference is that our encryption key has
a larger noise variance depending on the number of parties which also affects the
final encryption noise.

We claim that our MPHE scheme is semantically secure against a dishon-
est majority under the RLWE assumption with parameter (n, q, χ, σ). Sup-
pose that the adversary A = I\{i} is the set of all parties except i and let
[pk]i = ([b]i, [d]i, [v]i) be a public key generated by the i-th party. Then the
rows of ([b]i,a) are RLWE samples of secret [s]i, and the encryption key b[0] =
[b]i[0]+

∑
j∈I\{i}[b]j [0] is computationally indistinguishable from a uniform ran-

dom variable over Rq to A. Since our encryption algorithm is the usual BFV
encryption, our scheme also achieves the semantic security.

Meanwhile, ([d]i,a) and ([v]i,u) can be viewed as a ‘chain’ of two gadget
encryptions of [s]i and −[r]i under secrets [r]i and [s]i, respectively. Here we
make an additional circular security assumption that our scheme still remains
secure even if [d]i and [v]i are public. We also remark that our key generation
algorithm is identical to that of [10] except that all parties share the random
vector u instead sampling it independently.

Distributed decryption protocol. Ideally, an MPHE ciphertext is decrypt-
able by the joint secret key s, however, the basic decryption algorithm is not
generally useful in practice since the joint secret is shared between the parties
in I. On the other hand, the parties can perform a simple multi-party protocol
to decrypt an MPHE ciphertext in a distributed manner.

As an example, we present a well-known method based on the noise flooding
technique [2, 26]. In this protocol, each party i ∈ I partially decrypts the input
ciphertext using [s]i and publishes its approximate value by adding auxiliary
noise, then the plaintext can be recovered from the sum of partial decryptions.

• MPHE.DistDec({[sk]i : i ∈ I}, σ′; ct): Let ct = (c0, c1) be a multi-party cipher-

text, σ′ > 0 an error parameter, and [sk]i = [s]i the secret key of party i ∈ I.
The distributed decryption protocol consists of the following procedures:

– Partial decryption: Each party i ∈ I samples [e′]i ← Dσ′ , then computes
and publishes [µ]i = c1 · [s]i + [e′]i (mod q).

– Merge: Compute µ = c0 +
∑

i∈I [µ]i (mod q) and return m = ⌊(p/q) · µ⌉.

4.2 Arithmetic Operations

In the following, we present homomorphic addition and multiplication algo-
rithms. The major difference between our scheme and the standard BFV scheme
is in their multiplication algorithms: our relinearization algorithm is more ex-
pensive due to the linear structure of a joint public key, but it provides the same
functionality as shown below.
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Algorithm 1 Relinearization procedure of MPHE

Input: jpk = (b,d,v), ctmul = (c′′0 , c
′′
1 , c

′′
2)

Output: ctrelin = (c∗0, c
∗
1) ∈ R2

q

1: c∗2 ← c′′2 ⊡ b
2: (c∗0, c

∗
1)← (c′′0 , c

′′
1 + c′′2 ⊡ d) + c∗2 ⊡ (v,u) (mod q)

• MPHE.Add(ct, ct′): Given two ciphertexts ct, ct′ ∈ R2
q , output ctadd = ct + ct′

(mod q).

• MPHE.Mult(jpk; ct, ct′): Given two ciphertexts ct = (c0, c1), ct
′ = (c′0, c

′
1) and a

joint public key jpk, let ctmul = (c′′0 , c
′′
1 , c

′′
2) where c

′′
0 = ⌊(p/q) · (c0c′0)⌉ (mod q),

c′′1 = ⌊(p/q) · (c0c′1 + c1c
′
0)⌉ (mod q) and c′′2 = ⌊(p/q) · (c1c′1)⌉ (mod q). Return

the ciphertext ctrelin ← MPHE.Relin(jpk; ctmul) where MPHE.Relin(·; ·) is the relin-
earization procedure described in Alg. 1.

Correctness of homomorphic multiplication. Let [s]i, [r]i be the poly-
nomials sampled from χ during the generation of a key pair [sk]i = [s]i and
[pk]i = ([b]i, [d]i, [v]i) of the i-th party and let s =

∑
i∈I [s]i and r =

∑
i∈I [r]i.

First of all, we remark that the first step of homomorphic multiplication com-
puting ctmul is identical to the usual BFV scheme. If ct and ct′ are valid BFV
encryptions of m and m′, respectively, then ctmul = (c′′0 , c

′′
1 , c

′′
2) is an encryption

of mm′ under (1, s, s2), that is, c′′0 + c′′1 · s+ c′′2 · s2 ≈ ∆ ·mm′ (mod q).
Now suppose that (c∗0, c

∗
1)← MPHE.Relin(jpk; (c′′0 , c

′′
1 , c

′′
2)) is the output of our

relinearization algorithm. We claim that c∗0+ c
∗
1 · s ≈ c′′0 + c′′1 · s+ c′′2 · s2 (mod q).

Recall that the joint public key satisfies b+ s · a ≈ 0 (mod q), d+ r · a ≈ s · g
(mod q) and v + s · u ≈ −r · g (mod q). Then, we have

c∗0 + c∗1 · s = c′′0 + c′′1 · s+ (c′′2 ⊡ d) · s+ c∗2 ⊡ (v + s · u) (mod q)

≈ c′′0 + c′′1 · s+ c′′2 ⊡ (−rs · a+ s2 · g)− c∗2 ⊡ (r · g) (mod q)

≈ c′′0 + c′′1 · s+ r · (c′′2 ⊡ b) + c′′2 · s2 − r · c∗2 (mod q)

≈ c′′0 + c′′1 · s+ c′′2 · s2 (mod q)

as desired.

4.3 Homomorphic Automorphism

The packing technique of the BFV scheme enables us to encode multiple values
in a finite field into a single plaintext polynomial for better efficiency [30, 22].
The (un)packing algorithm has a similar algebraic structure with the canonical
embedding map over the cyclotomic field K = Q[X]/(Xn + 1), and the auto-
morphisms in the Galois group Gal(K/Q) provide special functionality on the
plaintext slots such as rotation. In the single-key setting, the homomorphic eval-
uation of an automorphism can be done by taking the automorphism on input
ciphertext and then performing the key-switching procedure.
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We present a multi-party variant of homomorphic automorphism such that
the joint automorphism key is generated non-interactively. The following setup
and automorphism key generation procedures can be added to the basic scheme
to support homomorphic evaluation of an automorphism ψ. We note that it is
required to sample an additional CRS and include it in the public parameter.

• MPHE.Setup(1λ): Sample a random vector k ← U(Rd
q) and put it into the

parameter set pp.

• MPHE.AutKeyGen([s]i): Let [s]i be the secret key of party i. Sample [e]i ← Dd
σ

and compute [h]i = −[s]i ·k+ψ([s]i)·g+[e]i (mod q). Return the automorphism
key [ak]i = [h]i ∈ Rd

q .

• MPHE.JointAutKeyGen({[ak]i : i ∈ I}): Given a set of automorphism keys of

parties i ∈ I, return the joint automorphism key jak = h ∈ Rd
q where h =∑

i∈I [h]i (mod q).

The automorphism key generation algorithm is also nearly linear with respect
to the secret [s]i. Hence the joint automorphism key, together with CRS k, forms
a gadget encryption of ψ(s) under the secret s which can be used as a key-
switching key from ψ(s) to s for the usual automorphism evaluation algorithm
as follows.

• MPHE.EvalAuto(jak; ct): Given a ciphertext ct = (c0, c1) and the joint auto-
morphism key jak = h, compute and return the ciphertext ctaut = (ψ(c0), 0) +
ψ(c1)⊡ (h,k) (mod q).

Correctness and security of homomorphic automorphism. Let ctaut =
(c′0, c

′
1) ← EvalAuto(jak; ct) for a ciphertext ct = (c0, c1). As mentioned above,

the joint automorphism key jak = h satisfies that h + s · k ≈ ψ(s) · g (mod q).
Therefore, we have

c′0 + c′1 · s = ψ(c0) + ψ(c1)⊡ (h+ s · k) (mod q)

≈ ψ(c0) + ψ(c1) · ψ(s) (mod q)

= ψ(c0 + c1 · s) (mod q)

The security of homomorphic automorphism relies on the same RLWE as-
sumption as the basic scheme. It also requires additional security assumption
similar to the standard BFV scheme.

5 Extension to MGHE

In this section, we design an MGHE scheme by improving the functionality of
our MPHE scheme. Recall that, in the MPHE setting, we can perform computa-
tions on encrypted data only if input ciphertexts are encrypted under the same
joint key, but MGHE supports homomorphic operations between multi-party
ciphertexts which do not necessarily have to be encrypted under the same key.
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5.1 Scheme description

Let us give a technical overview of our multi-group variant of the BFV scheme.
As we shall see, the setup, (joint) key generation, and encryption procedures
happen to identical to our MPHE scheme and thus is non-interactive. However, it
also supports homomorphic operations between ciphertexts under different keys,
and the dimension of ciphertext dimension may increase as the homomorphic
computation progresses when we add or multiply two multi-group ciphertexts
corresponding to different sets of groups.

• MGHE.Setup(1λ): Run MPHE.Setup(1λ) and return the public parameter pp =

(n, p, q, χ, σ,a,u). If necessary, sample additional k ← U(Rd
q) for homomorphic

automorphism and incorporate it into the parameter set.

• MGHE.KeyGen(i): Each party i runs MPHE.KeyGen(i) and outputs secret and
public keys [sk]i = [s]i and [pk]i = ([b]i, [d]i, [v]i), respectively.

• MGHE.AutKeyGen([s]i): The automorphism key can be generated if a CRS k is
included in pp. Given the secret key [s]i of party i, run MPHE.AutKeyGen([s]i)
and output the automorphism key [h]i = [ak]i.

Note that both KeyGen(i) and AutKeyGen([s]i) are non-interactive and thus
do not require any knowledge of groups or other parties involved.

• MGHE.JointKeyGen({[pk]i : i ∈ I}): Given a set of public keys of i ∈ I, output
the joint public key jpk = (b,d,v) ← MPHE.JointKeyGen({[pk]i : i ∈ I}). We
write the joint encryption key as jek = (b[0],a[0]).

• MGHE.JointAutKeyGen({[ak]i : i ∈ I}): Given a set of automorphism keys of i ∈
I, output the joint automorphism key jak = h← MPHE.JointAutKeyGen({[ak]i :
i ∈ I}).

• MGHE.Enc(jek;m): Given a joint encryption key jek and a message m, return
ct← MPHE.Enc(jek;m).

As we discussed in Section 3, an MGHE ciphertext holds the references to the
associated public keys. In our scheme, each ciphertext stores an ordered set of
the involved groups. For example, a fresh ciphertext encrypted by a joint public
key jpk =

∑
i∈I [pk]i is linked to the set containing a single element I.

More generally, a multi-group encryption of m corresponding an ordered set
of k groups I = {I1, . . . , Ik} is an (k + 1) tuple ct = (c0, c1, . . . , ck) ∈ Rk+1

q

satisfying c0 + c1 · s1 + · · ·+ ck · sk = ∆ ·m+ e (mod q) for some error e where
sj =

∑
i∈Ij

[s]i is the joint secret key of the j-th group Ij for 1 ≤ j ≤ k.

Homomorphic operations include a pre-processing step which aligns the com-
ponents of input ciphertexts as follows. Suppose that we are given two multi-
group ciphertexts such that they are associated to the ordered sets of groups I
and I ′, respectively. We write their union as I ∪ I ′ = {I1, . . . , Ik} by permuting
the elements of I and I ′ properly if needed. Then, we extend the input cipher-
texts by padding some zeros and rearranging their components so that both ci-
phertexts are decryptable with respect to the same secret sk = (s1, . . . , sk) where
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Algorithm 2 Relinearization procedure of MGHE

Input: ct = (ci,j)0≤i,j≤k, jpkj = (bj ,dj ,vj) for 1 ≤ j ≤ k.
Output: ctrelin = (c∗j )0≤j≤k ∈ Rk+1

q .

1: c∗0 ← c0,0
2: for 1 ≤ j ≤ k do
3: c∗j ← c0,j + cj,0 (mod q)
4: end for
5: for 1 ≤ j ≤ k do
6: c∗j ← c∗j +

∑
1≤i≤k ci,j ⊡ di (mod q)

7: end for
8: for 1 ≤ i ≤ k do
9: c′′i ←

∑
1≤j≤k ci,j ⊡ bj

10: (c∗0, c
∗
i )← (c∗0, c

∗
i ) + c′′i ⊡ (vi,u) (mod q)

11: end for

sj is the joint secret of group Ij , 1 ≤ j ≤ k. We assume that this pre-processing
is always performed on the input ciphertext and the output ciphertext is linked
to I ∪ I ′ even if it is not explicitly mentioned in the algorithm description.

In [10], the authors introduced an MKHE scheme from BFV with a relin-
earization method. Our MGHE scheme and [10] have similar ciphertext and
decryption structures c0+ c1 · s1+ · · ·+ ck · sk ≈ ∆ ·m although each secret si is
generated by a single party in [10]. Our relinearization algorithm is also similar
to the one in [10], but our scheme enjoys better performance by reducing the
number of external products by almost a factor of 2. More concretely, the former
method computes c′′i,j ← ci,j ⊡ bj and updates (c′0, c

′
i) by (c′0, c

′
i) + c′′i,j ⊡ (vj ,u)

running over 1 ≤ i, j ≤ k, inducing 4k2 external products in total. We observe
that

∑
1≤j≤k ci,j ⊡bj can be precomputed before the update and reused for the

relinearization of multiple ciphertext components which consequently reduces
the number of external products down to 2k2 + 2k.

• MGHE.Add(ct, ct′): Given two ciphertexts ct and ct
′
, return the ciphertext ctadd =

ct+ ct
′
(mod q).

• MGHE.Mult(jpk1, . . . , jpkk; ct, ct
′
): Given two multi-group ciphertexts ct = (c0, . . . , ck),

ct
′
= (c′0, . . . , c

′
k) and k joint public keys jpk1, . . . , jpkk, compute ctmul = (ci,j)0≤i,j≤k

where ci,j =
⌊
(p/q) · cic′j

⌉
(mod q) for 0 ≤ i, j ≤ k. Return the ciphertext

ctrelin ← MGHE.Relin(jpk1, . . . , jpkk; ctmul) where MGHE.Relin(·) is the relineariza-
tion procedure described in Alg. 2.

The idea of homomorphic automorphism for MPHE can be also extended to
the multi-group case. Given a multi-group ciphertext ct = (c0, . . . , ck) linked to
k groups I1, . . . , Ik, the joint automorphism key of Ij is used to perform the key-
switching procedure of the j-th entry ψ(cj) during the homomorphic evaluation
of ψ ∈ Gal(K/Q).
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• MGHE.EvalAuto(jak1, . . . , jakk; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and
the joint automorphism keys jakj = hj for 1 ≤ j ≤ k, compute and return
the ciphertext ctaut = (c′0, c

′
1, . . . , c

′
k) where c′0 = ψ(c0) +

∑
1≤j≤k(ψ(cj) ⊡ hj)

(mod q) and c′j = ψ(cj)⊡ k (mod q) for 1 ≤ j ≤ k.

Finally, we present a basic (ideal) decryption algorithm and a distributed
decryption protocol. For given a ciphertext ct = (c0, . . . , ck) which is linked to k
groups I1, . . . , Ik, the basic algorithm takes as input the joint secret keys si of
the associated groups Ii and recovers the plaintext message while the distributed
decryption protocol let the parties in

⋃
1≤j≤k Ij perform the same computation

securely in a distributed manner.

• MGHE.Dec(sk1, . . . , skk; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and joint

secret keys skj = sj for 1 ≤ j ≤ k, return m =
⌊
(p/q) · (c0 +

∑
1≤j≤k cj · sj)

⌉
(mod p).

• MGHE.DistDec(∪1≤j≤kIj , σ
′; ct): Let ct = (c0, . . . , ck) be a multi-group cipher-

text corresponding to the set of groups I = {I1, . . . , Ik} and [sk]i = [s]i be the
secret key of party i ∈ Ij .

– Partial decryption: For 1 ≤ j ≤ k, each party i ∈ Ij samples [e′j ]i ← Dσ′ ,
then computes and publishes [µj ]i = cj · [s]i + [e′j ]i (mod q).

– Merge: Compute m =
⌊
(p/q) · (c0 +

∑
1≤j≤k

∑
i∈Ij

[µj ]i)
⌉

(mod p).

Security. As described above, our MGHE scheme is based on the same (joint)
key generation and encryption algorithms as the previous MPHE scheme. There-
fore, it achieves the semantic security against a dishonest majority under the
same RLWE assumption of parameter (n, q, χ, σ) and additional circular secu-
rity assumptions.

Correctness. The correctness of the encryption algorithm is obvious so we
focus on the homomorphic multiplication (relinearization) and automorphism
algorithms of our MGHE scheme.

Suppose that ct and ct
′
are encryptions of m and m′ under secret sk =

(s1, . . . , sk), respectively, and let ctmul = (ci,j)0≤i,j≤k =
⌊
(p/q) · ct⊗ ct

′⌉
(mod q).

Then, we have ⟨ctmul, (1, sk) ⊗ (1, sk)⟩ ≈ ∆ · mm′ (mod q). We claim that if
ctrelin ← MGHE.Relin({jpkj}1≤j≤k; ctmul), then the output ciphertext ctrelin =
(c∗0, . . . , c

∗
k) satisfies c∗0 +

∑
1≤j≤k c

∗
j · sj ≈

∑
0≤i,j≤k ci,j · sisj and thereby is a

valid encryption of mm′.
First, we have

c∗0+
∑

1≤j≤k

c∗j ·sj = c0,0+
∑

1≤j≤k

(c0,j+cj,0)·sj+
∑

1≤i,j≤k

(ci,j⊡di)·sj+
∑

1≤i≤k

c′′i ⊡(vi+si·u)

where c′′i =
∑

1≤j≤k ci,j ⊡ bj from the definition of Alg. 2.
We also consider the properties sj ·di ≈ −risi · a+ sisj · g ≈ ri ·bj + sisj · g

(mod q) and vi + si · u ≈ −ri · g (mod q) of the joint public keys and deduce
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the following equations:∑
1≤i,j≤k

(ci,j ⊡ di) · sj ≈
∑

1≤i,j≤k

ri · (ci,j ⊡ bj) +
∑

1≤i,j≤k

ci,j · sisj (mod q),

∑
1≤i≤k

c′′i ⊡ (vi + si · u) ≈ −
∑

1≤i≤k

ri · c′′i = −
∑

1≤i,j≤k

ri · (ci,j ⊡ bj) (mod q).

Putting them all together, we obtain

c∗0+
∑

1≤j≤k

c∗j ·sj ≈ c0,0+
∑

1≤j≤k

(c0,i+ci,0)·sj+
∑

1≤i,j≤k

ci,j ·sisj =
∑

0≤i,j≤k

ci,j ·sisj (mod q)

which completes the correctness proof of the relinearization algorithm.
Finally, we show below the correctness of multi-group homomorphic auto-

morphism algorithm:

c′0 +
∑

1≤j≤k

c′j · sj = ψ(c0) +
∑

1≤j≤k

ψ(cj)⊡ (hj + sj · k) (mod q)

≈ ψ(c0) +
∑

1≤j≤k

ψ(cj) · ψ(sj) (mod q)

= ψ(c0 +
∑

1≤j≤k

cj · sj) (mod q)

where ct = (c0, . . . , ck) and ctaut = (c′0, . . . , c
′
k)← MGHE.EvalAuto(h1, . . . ,hk; ct).

5.2 Other issues

Applying to other HE schemes. We built an MGHE scheme from the BFV
scheme, but our idea is easily applicable to design multi-group variants of other
HE schemes such as BGV [6] and CKKS [16]. In particular, we implement MGHE
schemes from both BFV and CKKS and present experimental results in the next
section. We provide a formal description of multi-group CKKS in Appendix A.

Bootstrapping. For a fixed parameter set, the BFV and CKKS schemes can
support the evaluation of circuits with a limited depth due to the reduction of
ciphertext modulus or the noise growth induced from homomorphic operations.
Bootstrapping is a method to refresh a ciphertext and recover its computational
capability. From the technical point of view, bootstrapping is done by homomor-
phically evaluating the decryption circuit of HE.

The known bootstrapping methods of BFV or CKKS (e.g. [11, 15, 8]) share
the same workflow consisting of arithmetic operations and linear transformations
which can be also represented by basic operations and homomorphic automor-
phisms. As these basic operations (multiplication, rotation) are supported in our
MGHE schemes, the bootstrapping procedure can be also performed in a similar
manner.
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5.3 Building MPC from MGHE

MGHE being a generalization of both the MKHE and MPHE primitives, it can
be used as a drop-in replacement for any application build using these primitives.
Thus, MGHE can be used for general 2-round MPC computation, for outsourced
computation applications and in distributed machine learning set-ups. Similarly,
it can be used a building block in MPC protocols that require a varying number
of parties [18, 19].

Both MPHE and MKHE can be used as building blocks for MPC [25, 26,
27], however, each primitive has its own limitations that constrain the set of
applications where these techniques are useful. For example, to apply MPHE
scheme in MPC protocol, all parties have to communicate with each other to
generate evaluation keys. On the other hand, MKHE schemes are more expensive
than MPHEs in terms of time and space complexity because ciphertexts expand
when they interact with other ciphertexts under different keys. Thus, an MGHE
scheme, that integrates the strengths of both these schemes can be used to
construct round-efficient MPC protocols. Below we describe the high level flow
of a 2-round MPC computation.

– Setup: The setup phase is driven by the application however, in abstract
terms, the number of parties have two hierarchies: there is a group of parties
that have a distributed secret key (the MPHE component) and there exist
a number of such groups with their own independent set-up (interaction
between groups is the MKHE component). As the first step of the protocol,
all these parties in every group together instantiate the MGHE scheme.
They determine cryptographic public parameter set (e.g. RLWE dimension,
plaintext modulus). Based on the parameter set, they generate their own
key pair, consist of the public key and the private share, and broadcast it.
We can treat this step as an offline phase since all of these procedures has
to be run only once and each party is able to run this step independently

– Circuit evaluation: In the next step, inputs are encrypted by joint en-
cryption key which is generated by the summation of published key pairs in
each group. After encryption, the ciphertexts are provided to a computing
party which may be an external entity such as a cloud service provider. In
general, semi-honest cloud service provider or parties themselves in MPC
assume the role of computing party. The circuit is evaluated using the ho-
momorphic properties of the encryption scheme and thus does not require
any interaction.

– Distributed decryption: To securely decrypt a result, i.e., without reveal-
ing the secret keys of each party, we can use an interactive protocol known
as distributed decryption. Each party partially decrypts the ciphertext us-
ing their own secret keys. As mentioned in distributed decryption of MGHE
scheme, each party has to add an additional error to prevent data leakage
from partial decryption. Such data leakage prevention uses techniques such
as noise smudging [2] where an additional error super-poly size compared
to existing error is sampled and added to mask each individual partial de-
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cryption. Finally, the decryption is performed by adding all of the partially
decrypted results.

6 Experimental Results

We implemented our MGHE scheme and measured the elapsed time of basic
operations. The source code is written in C++ over Microsoft SEAL [29] ver-
sion 3.3.0 with implementations of both BFV and CKKS. We introduce some
optimization techniques and report the timing results of basic operations under
several parameter settings. The experiment was conducted on Intel(R) Core(TM)
i9-10900 CPU @ 2.80GHz and 64GB RAM. In our implementation, the key dis-
tribution χ samples the coefficients uniformly from the ternary set {−1, 0, 1},
the error parameter is fixed as σ = 3.2, and the plaintext modulus is fixed as
p = 65537. Our experimentation is performed on three parameter sets: the ring
dimension n = 213, 214, or 215 and the ciphertext modulus ⌈log q⌉ = 218, 438,
or 862, respectively, which achieve at least 128-bit security level. In addition, we
set q as a product of 4, 8, or 16 distinct primes of bitsize ≤ 60.

6.1 Execution time for basic operations

Table 1 shows the execution times to operate multiplication with relinearization
and rotation, both in the BFV and CKKS schemes. Although not included in the
table, the number of parties in groups does not affect the execution time in both
schemes. It is because, as described in Section 4.1, the size of ciphertext does
not expand even if there are many parties in the group. On the other hand, the
execution time depends on the dimension of base ring and the number of groups
participating in evaluation. As dimension of the plaintext increases, the cipher-
text modulus increases and eventually affects the execution time of arithmetic
operations. Moreover, according to the Section 5.1, relinearization or automor-
phism requires more external products when there are more groups involved
in the evaluation. Therefore, it takes more time to complete multiplication or
rotation.

We also show the performance of the MKHE scheme [10] for comparison.
As described in the Section 5.1, we reduce the number of external products
during the relinearization. According to the Table 1, our algorithm achieves
better performance in homomorphic multiplication when more than one groups
are involved in the computation. It reduces the complexity of homomorphic
multiplication of BFV and CKKS by about 1.3 and 1.5 times, respectively, when
the input ciphertext is associated to eight groups.

6.2 Noise growth

We also evaluate how much noise increases when proceeding multiplication with
relinearization. Table 2 shows the growth of ciphertext noise from homomorphic
multiplication. In this experimentation, we generate k fresh ciphertexts using
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n k

Mult + Relin Auto

BFV CKKS BFV CKKS

Ours [10] Ours [10] Ours [10] Ours [10]

213

1 17 20 6 8 3 3 4 4

2 32 44 14 22 6 7 7 8

4 77 116 37 67 11 14 13 16

8 213 365 110 229 22 28 27 31

214

1 100 110 51 59 21 22 25 24

2 206 257 122 165 42 47 47 49

4 514 717 331 521 81 88 92 95

8 1,490 2,350 1,018 1,845 160 176 178 193

215

1 651 675 427 465 161 170 170 172

2 1,443 1,715 1,035 1,364 317 333 333 359

4 3,731 5,025 2,874 4,287 631 646 671 711

8 11,425 17,450 9,040 15,159 1,303 1,332 1,338 1,413

Table 1. Performance of our MGHE scheme and the MKHE scheme by Chen et
al. [10]: execution times to operate homomorphic multiplication (Mult + Relin) and
automorphism (Auto), taken in milliseconds (ms). n denotes the dimension of base ring
and k denotes the number of the associated groups (keys) to the ciphertext.

different joint public keys and compute their summation to obtain an k-group
ciphertext (depth 0). Then, we perform the squaring operation repeatedly and
obtain ciphertexts of depth from 1 to 5.

We observe that the ciphertext noise grows more quickly when as the number
of the involved parties increases, which aligns with our theoretic estimation. We
refer the reader Appendix B for more detailed noise analysis of the relineariza-
tion and multiplication algorithms. In addition, the automorphism algorithm
introduces a noise in an additive manner (unlike multiplicative noise growth of
homomorphic multiplication), so it has almost no effect on the bitsize of noise
since the additional automorphism noise is insignificant compared to the total
noise.

6.3 Application to Oblivious Neural Network

One possible application of MGHE is to enable secure workflow of machine learn-
ing models comprising the privacy of multiple data owners. Suppose the model
is trained with datasets owned by multiple providers. If data owners can be de-
termined before training, the MPHE scheme would be a reasonable solution for
privacy-preserving training of the model. In the case of inference, however, the
client may not be determined aforehand and the model may deal with multiple
independent clients. Thus, it is more reasonable to perform inference using an
MKHE scheme which shows better flexibility. The model and the user data en-
crypted under the different keys of the model owners and the client, respectively,
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k N Depth 0 Depth 1 Depth 2 Depth 3 Depth 4 Depth 5 Avg. Diff.

1

1 15.0 45.3 79.3 114.7 150.1 185.4 34.1

2 15.0 46.0 80.6 116.9 152.7 188.7 34.7

4 15.0 47.1 83.0 119.6 156.0 192.7 35.5

8 15.0 48.1 85.0 122.7 160.3 197.8 36.6

2

1 15.0 47.0 81.8 118.3 154.7 191.0 35.2

2 15.0 47.4 82.8 119.4 156.1 192.9 35.6

4 15.0 48.3 85.0 122.6 160.2 197.8 36.6

8 15.0 49.4 86.6 124.4 162.4 200.4 37.1

4

1 15.0 48.3 83.3 119.9 156.0 192.6 35.5

2 15.0 49.1 84.4 121.4 158.3 195.3 36.1

4 15.0 49.9 86.8 125.0 162.0 199.7 36.9

8 15.0 50.2 87.1 125.2 163.3 201.3 37.3

8

1 15.0 49.7 84.6 121.3 158.3 195.0 36.0

2 15.0 50.3 86.7 124.4 162.1 200.3 37.1

4 15.0 51.3 87.8 126.1 164.6 203.3 37.7

8 15.0 51.9 88.9 127.4 166.1 204.1 37.8

Table 2. Size of noise (bits) to operate multiplication with relinearization (Mult +
Relin) several times according to the number of groups (k) and the number of parties
(N). Initial level is 9 and evaluation is examined on the BFV scheme and n = 214.

are converted into encrypted multi-key ciphertext under those two keys. After
evaluating neural network inference in 2-key MKHE, the output is obtained by
distributed decryption among the model owners and the client. Our MGHE in-
terpolates between MPHE (where the neural network is trained) and MKHE
(where the neural network inference is performed) so that the entire process
can be done in the same encryption scheme. Aloufi et al. [1] presented a similar
scenario in the random forest model where each party owns a decision tree, not
a single data. This is apparently involved in our scenario as their set-up is a
special case of our set-up where we instantiate an MGHE scheme with multiple
parties and inference is performed by 2-key evaluation, i.e., 2-group evaluation.

In this section, we apply our MGHE scheme to a convolution neural net-
work (CNN) model and compared the performance with the previous MKHE
paper [10]. Our experimentation is based on the same model with the following
structure: the convolutional layer takes 28×28 input image and perform convolu-
tion with 4×4 window and stride (2, 2). The five output channels are followed by
the square activation function on 845 inputs. Then the fully connected layer with
845 inputs and 64 outputs is again followed by the square activation function.
Finally, the second fully connected layer outputs 10 values, then the softmax is
applied to obtain probabilistic values.

Table 3 shows the performance of MKHE and MGHE schemes for evaluating
inference over encrypted CNN model. In MKHE scheme, the model is evaluated
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under two different keys each from the model owner and the client. On the other
hand, the good property of our MGHE scheme supporting multiple model owners
replace the key of a single model owner by the joint public key of parties that
owns the model. The number of model owners, again, does not influence the
performance and is set to one in Table 3 for comparison. It is shown that our
MGHE scheme is slightly faster in all layers thanks to our optimization technique
in the relinearization process.

Scheme Convolution Square-1 FC-1 Square-2 FC-2

MKHE [10] 600 121 621 62 112

MGHE 579 107 603 55 108

Table 3. Time taken in milliseconds (ms) to perform oblivious CNN inference to the
MNIST dataset. The parameter set of dimension n = 214 is used.

7 Conclusion

In this work, we propose Multi-Group Homomorphic Encryption, a new variant
of homomorphic encryption for multiple parties. MGHE generalizes the notion
of Multi-Key Homomorphic Encryption and Multi-Party Homomorphic Encryp-
tion. We also provide the first construction of an MGHE scheme that enjoys
non-interactive key generation. We propose some optimizations to implement
this scheme and our benchmarks indicate it is between 1.3 − 1.5× faster than
existing HE schemes for the same applications.
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A Construction of MGHE with CKKS

The CKKS supports approximate arithmetic operations for complex numbers.
The BFV and CKKS have similar structure, we can easily extend MGHE scheme
of the CKKS. The difference is that it adds an error into the plaintext itself and
additionally supports the rescaling algorithm to control the size of ciphertext.
The ciphertext has a level and it decreases whenever rescaling is performed. To
proceed arithmetics between two ciphertexts, they should have same level and it
requires bootstrapping when level is low in order to continue evaluation. We are
going to transform MPHE scheme without interactive setup first, and extend
it into the MGHE scheme. In both cases, we skip setup, key generation, and
joint key generation phase since they are same as BFV. Galois automorphism
is also not included since it has same procedure with the BFV. We assume the
ciphertext modulus q =

∏L
i=1 pi for some integers pi and denote ql =

∏l
i=1 pi.

A.1 MPHE with Non-Interactive Setup

• MP-CKKS.Enc(jek;m): Sample t ← χ and e0, e1 ← Dσ. For an input message
m ∈ Rp, return the ciphertext ct = t · jek+ (m+ e0, e1) (mod q).

• MP-CKKS.Add(ct, ct′): If ct and ct′ have same level, return ctadd = ct + ct′

(mod q). If not, lower the high-level ciphertext to low-level ciphertext before the
computation.

• MP-CKKS.Mult(jpk; ct, ct′): If ct and ct′ have different level, make two cipher-

texts have the same level. Given two ciphertexts ct = (c0, c1), ct
′ = (c′0, c

′
1) and a



A Unified Framework of HE for Multiple Parties with Non-Interactive Setup 25

joint public key jpk, let ctmul = ct⊗ ct′ = (c0c
′
0, c0c

′
1 + c1c

′
0, c1c

′
1). Return the ci-

phertext MP-CKKS.Relin(jpk; ctmul) where MP-CKKS.Relin(·) is the relinearization
procedure described in Alg. 1.

• MP-CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1) ∈ R2
ql

at level l, return

ct′ = (
⌊
p−1
l · c0

⌉
,
⌊
p−1
l · c1

⌉
) ∈ R2

ql−1 which is at level l − 1.

• MP-CKKS.Dec(sk; ct): Given a ciphertext ct = (c0, c1) and a secret key sk = s,
output m = ⟨ct, sk⟩ = (c0 + c1 · s) (mod p).

• MP-CKKS.DistDec({[sk]i : i ∈ I}, σ′; ct): Let ct = (c0, c1) be a multi-party ci-

phertext, σ′ > 0 an error parameter, and [sk]i = [s]i the secret key of party i ∈ I.
The distributed decryption protocol consists of the following procedures:

– Partial decryption: Each party i ∈ I samples [e′]i ← Dσ′ , then computes
and publishes [µ]i = c1 · [s]i + [e′]i (mod q).

– Merge: Compute m = (c0 +
∑

i∈I [µ]i).

A.2 Extension to MGHE with CKKS

• MG-CKKS.Enc(jek;m): For a joint encryption key jek and a message m, return
ct← MP-CKKS.Enc(jek;m).

• MG-CKKS.Add(ct, ct′): If two given ciphertexts ct and ct
′
has same level, return

the ciphertext ctadd = ct+ ct
′
(mod q). If not, modify ciphertexts to have same

level before the computation.

• MG-CKKS.Mult({jpkj}1≤j≤k; ct, ct
′
): Set ct and ct′ have same level. Let ct =

(ci)0≤i≤k and ct
′
= (c′i)0≤i≤k be two multi-group ciphertexts and {jpkj}1≤j≤k

the collection of the joint public keys of groups Ij for 1 ≤ j ≤ k. Compute ctmul =
(ci,j)0≤i,j≤k where ci,j = cic

′
j (mod q) for 0 ≤ i, j ≤ k. Return the ciphertext

MG-CKKS.Relin({jpkj}1≤j≤k; ctmul) where MG-CKKS.Relin(·) is the relinearization
procedure described in Alg. 2.

• MP-CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1, . . . , ck) ∈ Rk+1
ql

at level

l, compute c′i =
⌊
p−1
l · ci

⌉
for 1 ≤ i ≤ k, and return ct

′
= (c′0, c

′
1, . . . , c

′
k) ∈ R

k+1
ql−1

which is at level l − 1.

• MG-CKKS.Dec({skj}1≤j≤k; ct): Given a ciphertext ct = (c0, c1, . . . , ck) and joint

secret keys skj = sj for 1 ≤ j ≤ k, return m = ⟨ct, sk⟩ = (c0 +
∑

1≤j≤k ci · sj)
(mod p).

• MG-CKKS.DistDec({[skj ]i}1≤j≤k,i∈Ij , σ
′; ct): Let ct = (c0, . . . , ck) be a multi-

group ciphertext corresponding to the set of groups I = {I1, . . . , Ik} and [sk]i =
[s]i be the secret of party i ∈ Ij .

– Partial decryption: For 1 ≤ j ≤ k, each party i ∈ Ij samples [e′j ]i ← Dσ′ ,
then computes and publishes [µj ]i = cj · [s]i + [e′j ]i (mod q).

– Merge: Compute m = (c0 +
∑

1≤j≤k

∑
i∈Ij

[µj ]i) (mod p).
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B Noise analysis

In BFV (or CKKS) scheme, the correct decryption is guaranteed when the size
of error term, or the noise, in the ciphertext is smaller than a certain fraction of
ciphertext modulus q. A fresh ciphertext has a small initial noise, yet it grows
along with homomorphic operation, especially multiplication (with relineariza-
tion). We analyze an average-case noise growth on the variance of polynomial
coefficients.

Before estimating a noise growth, we specify some distributions for sampling
randomness or errors. Let the key distribution χ as the uniform distribution
over the set of binary polynomials and the error distribution ψ as the Gaussian
distribution with variance σ2. We also assume that the coefficients of the poly-
nomials are independent zero-mean random variables with the same variances.
We denote by Var(a) = Var(ai) the variance of coefficients for random variable
a =

∑
i ai · Xi over the ring R. Then the variance of the product c = a · b of

two polynomials with degree n can be represented as Var(c) = n ·Var(a) ·Var(b)
if a and b are independent. Similarly, we define variance for a vector a ∈ Rk

of random variables as Var(a) = 1
d

∑d
i=1 Var(a[i]). We also assume that each

ciphertext behaves as if it is a uniform random variable over Rk+1
q .

B.1 Encryption

Suppose that there are N parties in a group. Let ct = (c0, c1) be an encryption
of m ∈ Rp generated by the randomness r ← χ and errors e0, e1 ← ψ. Then, it
satisfies

c0 + c1s = ∆ ·m+ r · (b+ as) + (e0 + e1s) = ∆ ·m+ (re+ e0 + e1s) (mod q),

where b =
∑

i [b]i, a =
∑

i [a]i, and e =
∑

i [e]i. Since there are N parties
in the group, the variance of e is N · σ2. Therefore, the encryption noise eenc =
re+ e0 + e1s has the variance of

Venc = σ2 · (nN
2

+ 1 +
n

2
) ≈ nNσ2

2
.

The CKKS scheme has the same encryption error as the BFV scheme. The
only difference is that there is no scaling factor ∆ in the result of decryption.

B.2 Relinearization

We now provide an analysis of noise growth during relinearization. Recall that
each secret key is sampled from the key distribution χ and error from Dσ. For
simplicity, we analyze the noise growth of k-group case, each comprising Ni

parties for 1 ≤ i ≤ k. We also denote by M =
∑

1≤i≤kNi the number of parties

in all groups. With an input ct = (ci,j)0≤i,j≤k in Algorithm 2 of Section 5.1, we
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observe that∑
1≤i≤k

c′′i ⊡ (vi + si · u) = −
∑

1≤i≤k

ri · c′′i +
∑

1≤i≤k

c′′i ⊡ ei,2

= −
∑

1≤i,j≤k

ri · (ci,j ⊡ bj) +
∑

1≤i≤k

c′′i ⊡ ei,2 (mod q)

and

∑
1≤i,j≤k

(ci,j ⊡ di) · sj

=
∑

1≤i,j≤k

ri · (ci,j ⊡ (bj + ej,0)) +
∑

1≤i,j≤k

sisj · ci,j +
∑

1≤i,j≤k

sj · (ci,j ⊡ ei,1)

=
∑

1≤i,j≤k

ri · (ci,j ⊡ bj) +
∑

1≤i,j≤k

sisj · ci,j +
∑

1≤i,j≤k

e′i,j (mod q)

where e′i,j = ci,j ⊡ (ri · ej,0 + sj · ei,1) (mod q). We denote by Vg = Var(g−1(a))
where a is a uniform random variable over Rq. Similar to the previous analysis,
we have Var(ri) = Var(si) = Ni/2, and Var(ei,k) = Ni·σ2. Therefore, the variance
of e′i,j is obtained as n2d · σ2 · Vg ·Ni ·Nj .

Finally, the variance of a relinearization error elin =
∑

1≤i,j≤k (c
′′
i ⊡ ei,2 + e′i,j)

is obtained by

Vlin = nd · σ2 · Vg ·

n ∑
1≤i,j≤k

NiNj + k
∑

1≤i≤k

Ni

 ≈ n2d · σ2 · Vg ·M2

In our implementation, we use RNS-friendly decomposition Rq =
∏

iRpi

such that pi’s have the same bit-size. Then, we can obtain d = ⌈log q/ log pi⌉
and the variance Vg = 1

12d

∑d
i=1 p

2
i .

B.3 Multiplication

We only consider about the BFV scheme since, unlike the BFV scheme, the
error is added to the message itself during the encryption in CKKS scheme. Let
cti is an encryption of the message mi for i = 1, 2 which are input ciphertexts
of multiplication. The ciphertext cti satisfying ⟨cti, sk⟩ = q · Ii + ∆ · mi + ei
for Ii = ⌊ 1q ⟨cti, sk⟩⌉ and some ei. We can consider 1

q · cti as an uniform random

variable over 1
q ·R

k+1
q which variance is about 1

12 . Also, as same as relinearization
analysis, we consider about k-group case, comprising Ni parties for 1 ≤ i ≤ k.
Then, the variance of sk is V ar(sk) = 1

2

∑
1≤i≤kNi and we can calculate the

variance of Ii by Var(Ii) ≈ 1
12 (1 +

1
2nM) ≈ 1

24nM .
The result of multiplication without relinearization satisfies

⟨ct1 ⊗ ct2, sk⊗ sk⟩ = ⟨ct1, sk⟩ · ⟨ct2, sk⟩
=∆2 ·m1m2 + q · (I1e2 + I2e1) +∆ · (m1e2 +m2e1) + e1e2 (mod q ·∆)
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After mutiplying scaling factor p
q with plaintext modulus p, the result ctmul

satisfies

⟨ctmul, sk⊗ sk⟩ = ⟨
⌊
p

q
· ct1 ⊗ ct2

⌉
, sk⊗ sk⟩

= ∆ ·m1m2 + (p · (I1e2 + I2e1) + (m1e2 +m2e1)) +∆−1 · e1e2 + erd

where erd = ⟨pq · ct1 ⊗ ct2 − ctmul, sk ⊗ sk⟩. Therefore, the multiplication error
emul is observed by

emul = p · (I1e2 + I2e1) + (m1e2 +m2e1) +∆−1 · e1e2 + erd

From above equation, the first term p · (I1e2 + I2e1) dominates the whole mul-
tiplication error. If we write Ve = max{Var(e1),Var(e2)}, then the variance of
multiplication error is

Vmul ≤ 4np2 · Var(Ii) · Ve ≈
1

6
n2p2M · V.

The relinearization error has a fixed size depending on the parameters, but
the multiplication error amplifies by a certain ratio as the computation pro-
gresses. Therefore, the total noise is eventually dominated by the multiplication
error unless Ve is very small (e.g. fresh ciphertext).


