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Abstract. One of the main promoted advantages of deep learning in profiling side-
channel analysis is the possibility of skipping the feature engineering process. Despite
that, most recent publications consider feature selection as the attacked interval
from the side-channel measurements is pre-selected. This is similar to the worst-case
security assumptions in security evaluations when the random secret shares (e.g.,
mask shares) are known during the profiling phase: an evaluator can identify points of
interest locations and efficiently trim the trace interval. To broadly understand how
feature selection impacts the performance of deep learning-based profiling attacks, this
paper investigates four different feature selection scenarios that could be realistically
used in practical security evaluations. The scenarios range from the minimum possible
number of features to the whole available trace samples.
Our results emphasize that deep neural networks as profiling models show successful
key recovery independently of explored feature selection scenarios against first-order
masked software implementations of AES 128. Concerning the number of features,
we found three main observations: 1) scenarios with less carefully selected point-of-
interest and larger attacked trace intervals are the ones with better attack performance
in terms of the required number of traces during the attack phase; 2) optimizing and
reducing the number of features does not necessarily improve the chances to find
good models from the hyperparameter search; and 3) in all explored feature selection
scenarios, the random hyperparameter search always indicate a successful model with
a single hidden layer for MLPs and two hidden layers for CNNs, which questions the
reason for using complex models for the considered datasets. Our results demonstrate
the key recovery with a single attack trace for all datasets for at least one of the
feature selection scenarios.
Keywords: Side-channel Analysis · Deep learning · Feature Selection

1 Introduction
Side-channel analysis (SCA) explores unintentional leakage of information from electronic
devices [MOP06]. Common targets are cryptographic algorithms executed on software
(e.g., low-end IoT devices) or hardware (e.g., FPGAs or System-on-Chip) platforms.
Among several proposed methods for side-channel attacks, differential power analysis
(DPA) [KJJ99], correlation power analysis (CPA) [BCO04], and Mutual Information Anal-
ysis (MIA) [GBTP08] represent direct or non-profiling attacks. They require no knowledge
about target implementation to deploy an attack. Nowadays, properly implemented mask-
ing [CJRR99, RP10] (at least second-order) and hiding [HOM06, CK10] (noise, shuffling,
and misalignment) countermeasures represent strong protection combinations to defeat
non-profiling attacks and deliver successful security evaluation results. On the other hand,
profiling attacks assume a scenario where an adversary has a clone (open) target to learn
approximated statistical distributions from the side-channel measurements. With it, the
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adversary can target the secret key of a second device, and the strength of this adversary
is related to how much information the adversary has about the target implementation.

This information includes algorithm implementation details (e.g., source code) and
access to random secret shares during profiling. Template attacks [CRR02], stochastic
attacks [SLP05], and machine learning [LMBM13] are profiling attacks widely considered
due to their practical aspects. However, they require feature extraction to locate points of
interest (POI) representing the most leaking samples from measurements, which, in most
cases, is only efficiently possible by knowing the secret random shares.

Deep learning has been widely explored as a competitive profiling attack [MPP16].
One of the main advantages of deep learning in profiling SCA is its possible deployment
without pre-processing/feature engineering [MBC+20, LZC+21]. This means that raw
measurements containing (typically) hundreds or thousands of sample points (features)
are directly fed into a deep neural network, and the learning algorithm automatically
detects the most leaking points. This is equivalent to concluding that POI selection would
have a small impact on a security evaluation for the worst-case security assumptions.
Whether this is true or not, we first need to understand how much POI selection impacts
deep learning-based profiling attack results. Based on recently published results, this
scenario would be practical against first-order masked implementations, including, for
some cases, hiding countermeasures [CDP17]. To the best of our knowledge, no published
work demonstrated the practical possibility of a successful deep learning-based profiling
attack against second-order (or higher) masking schemes without some POI selection.
In [MDP19] and [Tim19], the authors demonstrated that deep neural networks could fit
three secret shares from simulated traces, but the same analysis was not demonstrated to
be feasible with real side-channel measurements. In the end, this still leaves unanswered
the question of how much the POI selection helps (or interferes) in the attack performance
of a deep neural network.

To better understand how POI selection affects the outcome of a profiling attack, we
define and explore the following feature selection scenarios:

• refined points of interest (RPOI) from Signal-to-Noise Ratio (SNR) peaks of the
random secret shares;

• optimized points of interest (OPOI), where the attacked interval is the minimum
possible interval that includes the main SNR peaks obtained from the known secret
random shares;

• semi-optimized points of interest (SOPOI), where we assume that an adversary has
no access to the random secret shares but has a rough idea of their timing location
and selects a large window around this area;

• non-optimized points of interest (NOPOI), where the adversary has no access to the
secret random shares and decides to apply profiling attacks over the full available
trace interval.

RPOI and OPOI scenarios are aligned to the worst-case security evaluations. SOPOI
and NOPOI relax the assumptions about the adversary and are closer to real-world attacks.
Nevertheless, the complexity of deep neural networks is considered to be the same in all
scenarios, i.e., up to eight hidden layers for multilayer perceptron (MLP) and convolutional
neural network (CNNs). Additionally, when considering larger trace intervals, the model
accuracy can be very high for the best-found deep learning models, and attacks can be
successful with a single attack trace.

The main contributions of this paper are:
1. We explore four feature selection scenarios for profiling side-channel analysis that

would be realistically adopted during security evaluations. The scenarios range from
the worst-case security (adversary with knowledge about implementation and access
to the random secret shares) to assumptions of a more relaxed adversary with limited
knowledge about target implementation and no access to the secret random shares.
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Results, therefore, indicate how much a specific feature selection scenario impacts
the evaluation results;

2. We deploy extensive random hyperparameters search for each feature selection
scenario on different datasets. For each specific combination of neural network type,
leakage model, dataset, and feature selection, we conduct a random hyperparameter
search of 500 models. We observed that each model training on a single GPU
takes approximately 5 minutes to 1 hour. Therefore, we limited a random search
to 500 models as this process takes up to 48 hours to complete for the worst case
when considering multiple GPUs. We demonstrate that simple models containing
up to eight hidden layers can successfully recover the key regardless of the feature
selection scenario. We limit our analysis to eight hidden layers for two main reasons.
First, this number of layers is based on attack performance provided by related
works for ASCAD datasets [CDP17, KPH+19, ZBHV19, WAGP20, PCP20]. Second,
adding more layers shows poor performance for the evaluated datasets and selected
training settings (i.e., number of epochs, number of training traces). Nevertheless,
our results indicate that neural networks with a single hidden layer in the case of
multilayer perceptron and two hidden layers in the case of convolutional neural
networks can successfully recover the key in all scenarios when feature selection is
relaxed. This questions the need for adopting complex models for the same datasets
or similar targets [LZC+21, WHJ+21]. We also apply the same hyperparameter
search process to desynchronized traces with the NOPOI scenario and recover the key
without defining new CNN hyperparameters ranges. This indicates that bypassing
desynchronization countermeasures can be performed without the improvement of
CNN architecture complexity.

3. For the NOPOI scenario, in which no feature selection is considered, we apply the
same best found model for one AES key byte on the remaining key bytes. In this
case, the model is initialized with the same weights and trained on each separate
key byte. Our results show that we can recover the key with less than three attack
traces for most key bytes.

4. We show that inconsistencies between accuracy and guessing entropy are also affected
by feature selection when the target is a protected software implementation. In
most cases, we show that attacking the minimum possible trace intervals (commonly
considered in related works) is a situation where validation accuracy does not reflect
attack performance. For longer attacked trace intervals, the neural networks may
also be trained with more leaky points of interest, and validation accuracy shows to
be a relevant metric for profiling SCA. This also sheds new perspective to insights
from [PHJ+18] since, up to now, feature selection was not connected with the ability
of machine learning metrics to provide a proper estimation of the SCA performance.

We provide the best-found MLP and CNN models for all feature selection scenarios in
this link: https://github.com/AISyLab/feature_selection_ascad.

2 Background

2.1 Deep Learning-based Profiling SCA
Profiling techniques use the fact that side-channel measurements follow an unknown
distribution that can only be approximated by an assumed statistical distribution for
the leakage. The first approach for profiling attacks is the template attack, where an
adversary assumes that the leakage follows a multi-variate Gaussian distribution [CRR02].
The profiling phase consists of computing statistical parameters for a Gaussian mixture
model. Thus, the model is built for each possible hypothetical leakage class (e.g., all
possible Hamming weight values of a byte). In the attack phase, the adversary computes

https://github.com/AISyLab/feature_selection_ascad
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Figure 1: SNR of r and sr secret shares for the ASCADf dataset.

the probability that a new side-channel measurement (under attack) belongs to a certain
class by using the computed probability density function from the approximate statistics.
While the profiling attack assumes a more powerful attacker than a non-profiling one, it
requires significantly fewer traces than direct attacks to break the target: sometimes, only
one trace is sufficient.

Machine learning methods learn the statistical parameters from data according to
(usually) a limited number of tunable hyperparameters. This way, profiling attacks based
on machine learning methods have the advantage of skipping the assumption about the
statistical distribution of side-channel leakages. Additionally, deep neural network models
represent functions that map input data X to output class probabilities Ŷ. The mapping
is performed by a function f(X , θ) −→ Ŷ , where θ is a set of parameters learned during the
training phase. In the profiling SCA domain, X is a set of N side-channel traces, X = XN,
which is also a 2D-array with N rows and J columns. Each point in the array X is an
element ti,j , where i indicates the side-channel trace index and j indicates point index
inside a side-channel trace i. Here, a point ti,j is also referred as a sample or feature.

The learned mapping between input side-channel traces XN and outputs probabilities
Ŷ depends on the estimated number of classes presented in XN. This number of classes,
C, is derived from a leakage function implementing an operation processed inside the
interval of J samples. The leakage function can provide an estimated leakage of an n-bit
intermediate variable S, e.g., the Hamming weight or the Identity values.

2.2 Leakage Assessment of the Considered Software AES Datasets
In this section, we perform leakage assessment on the considered datasets. All datasets
refer to side-channel measurements collected from AES 128 implementations. For the
experiments conducted in this paper, we selected two publicly available SCA datasets
containing side-channel measurements from 8-bit software devices.

ASCAD with a Fixed Key - ASCADf . ASCADf 1 dataset contains 60 000 side-channel
measurements collected from an 8-bit ATMega device. All measurements are encryption
operations with a fixed key. Each trace contains 100 000 sample points representing the
electromagnetic emission from the first AES 128 encryption round. The implementation is
protected with the first-order Boolean masking, and an S-box output byte is represented
as:

sr,i = Sbox(pi ⊕ ki)⊕ ri, (1)

where ri is a secret value randomly generated for each key byte and each encryption
operation, pi is the i-th plaintext, and ki is the i-th key byte. Figure 1 shows the
signal-to-noise ratio (SNR) of secret shares sr,2 = Sbox(p2 ⊕ k2)⊕ r2 and r2.

1https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
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Figure 2: SNR of r and sr secret shares for the ASCADr dataset.

In this work, from 60 000 traces, 50 000 are considered for profiling, 5 000 for validation,
and 5 000 for the attack phase. For all the results with ASCADf dataset, guessing entropy
is computed with 3 000 traces, which are randomly selected from the 5 000 traces in each
separate key rank execution.

ASCAD with Random Keys - ASCADr. ASCADr 2 contains 300 000 traces collected
from a software implementation of AES 128, where the first 200 000 measurements have
random keys and 100 000 contain a fixed key. Each measurement contains 250 000 samples.
The countermeasure on S-box output follows the same implementation indicated in Eq. (1).
Figure 2 shows the Signal-To-Noise ratio (SNR) of secret shares sr,2 = Sbox(p2 ⊕ k2)⊕ r2
and r2.

For this dataset, 200 000 traces are considered for profiling, 10 000 for validation, and
10 000 for the attack phase. For all the results with ASCADr dataset, guessing entropy
is computed with 5 000 traces (in both validation and attack phases), which are randomly
selected from the 10 000 traces in each separate key rank execution.

3 Related Works
Commonly used datasets in deep learning-based SCA publications represent side-channel
acquisitions from software platforms. ASCAD datasets often appear as studied cases.
The authors of these datasets released trace sets with raw measurements containing
thousands of features. However, most recent studies consider trimmed versions of the
traces strategically selected from where leakage (main SNR peaks of secret shares) is
located [ZBHV19, WAGP20, BPS+20, PCP20]. This feature selection process is done
based on the implementation details and the knowledge of secret mask shares. As such, we
cannot assume that previous publications deployed deep learning attacks without points
of interest selection.

In [MBC+20], authors demonstrated that CNNs could be efficient against side-channel
measurements from software AES containing 160 000 sample points, indicating that at-
tacking large-scale traces is not a limiting factor for deep learning-based SCA. Recently,
the authors of [LZC+21] attacked the full trace intervals of software-based AES implemen-
tation, including ASCAD. The authors of [BCS21] attacked raw traces from ASCADr
dataset by firstly selecting points of interest from the main SNR peaks of secret shares
and later applying template attacks based on Linear Discriminant Analysis (LDA) [SA08].
These publications demonstrated the possibility of recovering a correct key byte with less
than twenty attack traces ([BCS21] showed that the full key could be obtained with less
than 32 attack traces), where different adversaries perspectives are assumed. [LZC+21]
is the first appearance of an end-to-end deep learning-based profiling attack without any
feature selection, where the authors considered highly complex deep neural networks, which
include LTSM, attention, and convolution blocks. This may convey a possibly alarming

2https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key
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message that attacking raw measurements requires many neural network layers. As we
show in this paper, we can recover a target key byte with a single attack trace without
any feature selection by using very small MLP and CNN models.

4 Explored Feature Selection Scenarios
This section describes four specific scenarios to select points of interest for a deep learning-
based profiling SCA. We start from the worst-case security assumption, where an adversary
can identify points of interest based on implementation details and knowledge about mask
shares. This assumption allows us to define two scenarios where the number of features is
highly reduced. Next, we assume a slightly weaker adversary that does not know mask
shares. However, the attacker can guess the location of the best attack interval from the
full measured interval. The last scenario assumes that the adversary has no information
about implementation and the complete measured intervals (raw traces) are attacked.
Finally, we summarize the four scenarios in Table ??.

4.1 Refined Points Of Interest (RPOI)
In this scenario, we assume an adversary has access to the mask shares and has sufficient
knowledge of the implementation details to select points of interest. The knowledge of
implementation details is important to use the known random masks to compute all secret
intermediates. This way, the adversary can compute the SNR of these intermediates and
select Refined Points Of Interest (RPOI) from datasets indicating the most leaking samples.
As we target the first-order protected AES implementations, the two sensitive variables
representing the points of interest are assumed to be sr = Sbox(pi ⊕ ki)⊕ r and r.

The maximum number of RPOI is set to 100, in which 50 RPOI are selected from
the highest SNR peaks obtained from sr = Sbox(pi ⊕ ki)⊕ r and the other 50 RPOI are
selected from highest SNR peaks obtained from mask share r. We restricted the number
of RPOIs to 100 to understand how the evaluated deep learning models perform against
a highly reduced number of points of interest. Note that RPOIs are obtained from the
SNR peaks observed from the full available trace interval. In Section 6, each profiling
attack is applied to a minimum of 10 and a maximum of 100 RPOI. In each attack, we
ensure that half of RPOI are selected from sr = Sbox(pi ⊕ ki)⊕ r leakages and the other
half from r leakages. Intuitively, feature selection following the RPOI principle ends up
attacking the minimum number of features. Our goal is to verify whether deep learning
models benefit from the minimum number of input features that contain the maximum
side-channel leakage information.

Objective 1. Verify if the refined and minimized number of points of interest is beneficial
for deep learning-based profiling attack performance.

4.2 Optimized Points Of Interest (OPOI)
To select Optimized Points Of Interest (OPOI), we again assume the adversary has access
to random secret shares and implementation knowledge. The main difference from RPOI
scenario is that OPOI considers the minimum trace interval where the main SNR peaks
from sr = Sbox(pi ⊕ ki)⊕ r and r are located.

This scenario follows most of the reported results in related works, such as [BPS+20,
PCP20, ZBHV19, WAGP20]. Indeed, the ASCAD database provided datasets with the
optimized points of interest selection. For ASCADf , the authors also released a separate
optimized dataset by selecting 700 samples per trace, representing the most leaking interval.
To do so, the authors evaluated the SNR of the intermediate values sr = Sbox(p2⊕ k2)⊕ r2
and r2, as reported in [BPS+20]. Similarly, an optimized interval for ASCADr dataset
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is also provided, containing 1 400 samples per trace. Although the attacked interval is
considered optimized (it contains the main SNR peaks from secret shares), the selected
interval contains several noise samples, i.e., have low SNR values. A profiling model built
from this interval should be, therefore, insensitive to the noisy samples. Therefore, the
main reason for defining RPOI besides the OPOI is to understand how much deep learning
models benefit from noisy samples’ exclusion (or inclusion).

Objective 2. Verify if selecting refined and minimized continuous trace interval including
the main SNR peaks from the random secret shares is beneficial for deep learning-based
profiling attack performance.

4.3 Semi-optimized Points Of Interest (SOPOI)
We assume that an adversary selects a larger attack interval and guesses the points of
interest location inside the complete measured interval. This assumption is realistic for
several reasons. For instance, an adversary could split the most promising area of raw traces
and attack several trace intervals window by window. Another example would be to conduct
the plaintext correlation with side-channel measurements to identify the start interval of
interest. Finally, an adversary could identify patterns inside the measurements indicating
the AES activities, such as round executions (S-box, ShiftRows, MixColumns). In practice,
the patterns can be obtained with low-pass filtering and/or resampling processes. Although
not completely realistic in the black-box attack, this scenario is more practical than the
OPOI case. One of the main goals of this work is to verify whether more samples are
beneficial for a deep learning profiling model, so we create datasets with different trace
interval sizes around the points of interest location from the OPOI case. By doing so, we
may end up with two main situations: either a larger trace interval that includes more
leaky point-of-interest related to sr = Sbox(pi ⊕ ki)⊕ ri and ri or the larger interval that
includes only noisy samples. To solve this doubt, the evaluated datasets in the results
section provide both situations.

Objective 3. Verify if selecting an arbitrary trace interval that includes main SNR
peaks from random secret shares and a significant number of noisy (non-leaky) samples is
beneficial or irrelevant for deep learning-based profiling SCA.

4.4 Non-optimized Points Of Interest (NOPOI)
To skip the feature selection process and profile over lengthy trace intervals, we also define a
Non-Optimized Points Of Interest (NOPOI) scenario. This scenario was already considered
in [LZC+21], where the authors proposed deep learning models that could break protected
software AES implementations. Although results are competitive with state-of-the-art
(they were able to recover the correct key byte from synchronized ASCADf and ASCADr
with 6 and 8 attack traces, respectively), the models are very complex and contain more
than 50 hidden layers (in particular, for attacking desynchronized ASCADf dataset,
authors implemented a neural network with 56 hidden layers). From the adversary’s
perspective, attacking the complete measured trace interval (and leaving to the model
the difficult feature selection task) is very advantageous. However, training deep neural
networks with tenths of hidden layers may be very challenging and, depending on the
attack circumstances, impractical due to time and memory constraints.

Attacking raw traces without following any pre-processing could sound counter-intuitive
from the practical perspective. The datasets evaluated in this paper (and also in [LZC+21])
have trace lengths of 100 000 (ASCADf) and 250 000 (ASCADr) samples. The work
of [WAGP20] already demonstrated the efficiency of deep learning architectures when the
first layer is composed of average-pooling layer that, in the end, implements a window
resampling of the input traces. Essentially, delivering this resampling task to the neural
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Table 1: Possible feature selection scenarios for deep learning-based SCA with the syn-
chronized measurements.

Scenario Knowledge of r mask share POI selection and
pre-processing

Noisy/non-
leaking
samples

RPOI Yes Main SNR peaks of r and sr.
No pre-processing required. No

OPOI Yes
Minimum trace interval

including SNR peaks of r and
sr. No pre-processing required.

Reduced

SOPOI No
Large trace interval including
main SNR peaks of r and sr.
No pre-processing required.

Significant

NOPOI No No POI selection and
pre-processing is required. All available

network is similar to performing trace resampling beforehand. Therefore, the proposed
NOPOI scenario applies resampling to the input traces with a window of ten samples3,
resulting in trace lengths of 10 000 and 25 000 for ASCADf and ASCADr, respectively.
Obviously, in this case, a first average-pooling (as considered in [WAGP20]) is not necessary
anymore. Furthermore, as shown in the results section, a single hidden layer is sufficient
to achieve results that are better than [LZC+21], questioning the reason for using very
deep models for these datasets.

Objective 4. Verify if attacking complete available trace interval with sub-sampling is
beneficial for deep learning-based profiling SCA.

5 Methodology for Model Selection
5.1 Model Selection in Profiling SCA
Model or algorithm selection is an important and analytically difficult part of a deep
learning analysis for any domain. In the context of profiling SCA, recent publications
usually follow one of three approaches:

1. Find the smallest possible model for a specific dataset [ZBHV19, WAGP20].
2. Small models selected from a short-term hyperparameter search [PCP20, BPS+20,

RWPP21, WPP20].
3. Large models for more difficult problems (trace desynchronization bypassing and

denoising) [LZC+21, WHJ+21].
The first approach requires more knowledge on the effect of hyperparameters on the

learning process, and usually, several different configurations (which in a few cases include
a grid search process as is the case of [ZBHV19]) are tested until the best hyperparameters
are found. The second approach is more automated. Additionally, search algorithms are
used to relax the expertise assumption required to understand hyperparameters effects,
even if optimized ranges are required for a more efficient hyperparameters search. For the
third approach, more complex models are defined to bypass hiding countermeasures, and
more expertise is required for defining the hyperparameters.

From a literature review on different model selections, it is still difficult to conclude
whether the number of features impacts the performance of a model. Of course, this
conclusion cannot be done by only looking at the model’s performance for a few datasets.
None of the publications mentioned in this section evaluated the performance of a model
for different feature selection scenarios on the same dataset. Therefore, in this paper, the
hyperparameters related to the model size (number of layers, filters, kernels, strides, and

3Trace resampling is performed with resample module from scipy.signal python package v1.7.0.
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Table 2: Random search configuration for MLPs.

Searched Hyperparameters
Hyper-parameter Options

Optimizer Adam, RMSprop
Dense (or Fully-Connected) Layers 1, 2, 3, 4, 5, 6, 7, 8

Neurons 10, 20, 50, 100, 200, 300, 400, 500
Activation Function SeLU, ReLU

Learning Rate 1e-3, 5e-3, 1e-4, 5e-4
Batch Size 100 to 1 000 (step: 100)

Weight Initialization random, glorot or he uniform

neurons) are the same across all feature selection scenarios. By doing this, we aim to
empirically provide evidence of whether the model size is highly affected by the different
number of features.

5.2 Random Hyperparameter Search
We follow the second approach listed in section 5.1 for the model selection since we aim
1) at defining an algorithm selection process independent of the evaluated dataset and
2) at verifying how a unique hyperparameter search process performs across multiple
feature selection scenarios. We perform a random hyperparameter search for MLP and
CNN models. Our search space allows the selection of a deep neural network with up
to eight hidden layers. For each specific number of points of interest, we search for 500
different models. This process is separately applied to MLPs and CNNs architectures for
the Hamming weight and Identity leakage models.

Tables 2 and 3 list the covered search space for each hyperparameter. MLP models are
randomly selected to contain at most eight hidden (dense) layer and all layers are defined
with the same number of neurons. Based on the best MLPs reported in literature [PCP20,
BPS+20], we only allow two possible activation functions, namely SeLU or ReLU. To
define the optimizer, we consider only Adam and RMSprop. Also, we allow the search for
different weight initialization options, which are random, glorot or he uniform. The
options for CNN require the definition of convolution and pooling layer hyperparameters.
The maximum number of hidden layers for CNNs is eight (excluding pooling and batch
normalization layers from the counting), which we define as a maximum of four convolution
layers and four dense layers. Again, for CNNs, dense layers will all contain the same
number of neurons. The number of filters in a convolution layer is always twice the number
of filters from the previous convolution layer. For both MLP and CNN cases, learning
rate and batch size are not fixed but also included in the random search process. For
all cases, the only fixed hyperparameter is the number of epochs, which is always set to
100. This number of epochs is aligned with related works, and, in our experiments, we
observed that training for more than 100 epochs either leads to overfitting or shows no
performance improvements for the considered model sizes. The only regularization method
always present is the batch normalization layer after each pooling layer in CNNs.

6 Results
6.1 ASCADf
RPOI. Figure 3 shows the maximum validation accuracy obtained after deploying a
random search of 500 models for the dataset that results from feature selection based on
refined points of interest. Note that the random search is applied to different numbers
of RPOI, starting from 10 and increasing it until 100 points. Results from Figures 3a
and 3b indicate that the Hamming weight leakage model does not provide good results for
reduced number of points of interest. We can only observe that the maximum number
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Table 3: Random search configuration for CNNs.

Searched Hyperparameters
Hyper-parameter Options

Optimizer Adam, RMSprop
Convolution Layers 1, 2, 3, 4

Convolution Filters 4 ∗ 2i−1, 8 ∗ 2i−1, 12 ∗ 2i−1, 16 ∗ 2i−1 (i = conv.
layer index)

Convolution Kernel 1 to nf (nf=10 if RPOI, nf=50 otherwise)
Convolution Stride 1 to nf (nf=10 if RPOI, nf=50 otherwise)

Pooling Type maxpooling, avgpooling
Pooling Size 2, 4, 6, 8, 10
Pooling Stride Pooling Size

Dense (or Fully-Connected) Layers 1, 2, 3, 4
Neurons 10, 20, 50, 100, 200, 300, 400, 500

Activation Function SeLU, ReLU
Learning Rate 1e-3, 5e-3, 1e-4, 5e-4
Batch-Size 100 to 1 000 (step: 100)

Weight Initialization random, glorot or he uniform

(a) Hamming weight. (b) Identity.

Figure 3: Refined Points Of Interest (RPOI): best validation accuracy results obtained
from random hyperparameter search with the ASCADf dataset for different leakage
models. Results are provided for MLP and CNN models.

(a) Hamming weight. (b) Identity.

Figure 4: Refined Points Of Interest (RPOI): best number of attack traces to reach GE=1
obtained from random hyperparameter search with the ASCADf dataset for different
leakage models. Results are provided for MLP and CNN models.

of RPOI (i.e., 100) leads to maximum validation accuracy for both MLP and CNN cases.
When the Identity leakage model is considered, we can observe a more clear pattern, where
increasing the number of RPOI increases the model performance.

The behavior for maximum validation accuracy from Figure 3 is reflected on the
minimum number of attack traces to achieve guessing entropy of 1, as shown in Figure 4.
Indeed, we could only successfully recover the key with the Hamming weight leakage model
after 500 searched models if 100 RPOI are considered, and this result is illustrated in
Figure 4a. Figure 4b shows the minimum required number of attack traces obtained with
the Identity leakage model, clearly showing that increasing the number of RPOI provides
a better attack performance. Also, we can observe similar behavior for CNN and MLP
models.
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(a) MLP. (b) CNN.

Figure 5: Refined Points Of Interest (RPOI):Best guessing entropy results for the
ASCADf dataset with different leakage models.

(a) MLP. (b) CNN.

Figure 6: Optimized points of interest (OPOI): best guessing entropy results for the the
ASCADf dataset with different leakage models.

Figure 5 provides the guessing entropy for the best-found models from the executed
random search. The Hamming weight leakage model in both MLP and CNN cases provides
inferior results than the Identity leakage model. For the latter, successful key recovery
is achieved after processing only 58 and 80 attack traces for best found MLP and CNN
architectures, respectively.

OPOI. Results for the OPOI scenario are commonly reported in the literature with
different deep neural network configurations [BPS+20, ZBHV19, WAGP20, PCP20]. Here,
we again apply the hyperparameter search process where the number of searches is limited
to 500. The guessing entropy results for best-found models with OPOI scenario are shown
in Figure 6. Results are aligned with state-of-the-art [ZBHV19, WAGP20], especially for
the Identity leakage model. A first observation indicates that attacking a continuous and
minimum interval that includes main SNR peaks from random secret shares provides
superior results for the Hamming weight leakage model than the RPOI case. On the other
hand, OPOI results for the Identity leakage model obtained with the best MLP and CNN
models are inferior (but not too much) in comparison to results obtained with RPOI.

SOPOI. Semi-Optimized Points Of Interest (SOPOI) results in larger trace intervals that
at least include the samples considered for the OPOI case. As defined in Objective 3, the
main goal of this analysis is to understand how the significant addition of noisy samples
interferes with the profiling attack performance. For that, we defined several SOPOI
interval lengths ranging from 1 500 to 5 000 traces samples, with a step of 500 sample
points. Figure 7 illustrates the SOPOI interval for the ASCADf dataset. As we can see,
the trace intervals are constructed by leaving the previous OPOI interval as a reference.
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Figure 7: ASCADf SNR SOPOI. This figure shows how larger trace intervals are selected
by having the OPOI trace set interval (highlighted in green) as a reference.

(a) Hamming weight. (b) Identity.

Figure 8: Semi-Optimized Points Of Interest (SOPOI): the best validation accuracy results
obtained from a random hyperparameter search for the the ASCADf dataset and different
leakage models. Results are provided for MLP and CNN models.

Notice also that the larger SOPOI interval also includes more leaky samples, and for this
reason, we expect a higher attack performance (besides the fact that more noisy samples
are also included).

Figure 8 shows the best-found validation accuracy for each different SOPOI interval.
Figure 8a directly illustrates the effect of including more leaky samples in the attacked
interval. As expected, when the length of attacked interval achieves 2 000 samples, leakage
from S(p2 ⊕ k2) ⊕ r2 is included, and the model search result in a model with higher
validation accuracy (34%) in comparison to the best model from 1 500 sample interval
(27.5%). When increasing the attacked interval to 2 500 samples, we see that the accuracy
decreases again, as the extra 500 samples only contain noisy samples. However, when the
attacked interval increases even more and more SNR peaks are included, the best model
performance increases again until the attacked interval reaches 3 500 samples, which is the
minimum interval to include all SNR peaks from Figure 7. Interestingly, increasing the
interval to 5 000 by only including more noisy samples does not significantly deteriorate
the best model performance. In conclusion, we may assume that deep learning models
can deal quite well with a significant number of noisy samples in side-channel traces. The
results for the Identity leakage model follow a similar pattern, as shown in Figure 8b,
indicating that this behavior is not limited to a specific leakage model. An important
remark from this analysis is that our best-found models achieved a validation accuracy
that is significantly higher than random guess values for both Hamming weight (i.e., 27.5%,
when all traces are classified as Hamming weight 4) and the Identity (i.e., 0.39% ) leakage
models. This already demonstrates the benefit of attacking datasets by considering a larger
trace interval.

The evolution of the number of required attack traces to reach guessing entropy equal
to 1 shows similar behavior to validation accuracy. As shown in Figure 9, the inclusion of
more leaky samples until achieving 3 500 samples allow us to find better profiling models,
and the further inclusion of noisy samples until we reach an interval of 5 000 samples does
not reduce the chances of finding the best model that keeps similar performance.
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(a) Hamming weight. (b) Identity.

Figure 9: Semi-optimized Points Of Interest (SOPOI): best number of attack traces to
reach GE=1 obtained from random hyperparameter search with the the ASCADf dataset
for different leakage models. Results are provided for MLP and CNN models.

(a) MLP. (b) CNN.

Figure 10: Semi-optimized points of interest (SOPOI): best guessing entropy results for
the ASCADf dataset with different leakage models.

Finally, Figure 10 shows the guessing entropy for the best found model in the SOPOI
scenario. We can recover the correct key byte after processing only 4 and 16 attack
traces for the best-found MLP model in the Hamming weight and Identity leakage models,
respectively. CNN case also shows similar performance for the Identity leakage model.
Not surprisingly, the best-found model happens when we attack a trace interval of 3 500
samples.

NOPOI. Figure 11 shows the performance of the best-found models when the Non-
optimized Points of Interest (NOPOI) scenario is considered. In this case, we apply a
pre-processing step by resampling the raw traces into side-channel traces with 10 000
samples. Resampling provides benefits by reducing the number of trainable parameters
in the input layer. The best found MLP with the Identity leakage model was able to
successfully recover the correct key byte after processing only four attack traces, as
illustrated in Figure 11a. At the same time, as shown in Figure 11b, the best CNN model
with the Identity leakage model requires a single attack trace to achieve GE equal to 1.
Exceptionally, for MLP cases, we also considered l1 and l2 regularization techniques in
the random hyperparameter search. As ASCADf dataset contains a small number of
profiling traces (i.e., 50 000), even small neural networks can overfit. As the NOPOI
scenario considers all available features, the model could fit noise instead of leaky samples,
as noisy samples are more numerous. This way, adding regularization prevents overfitting,
improves generalization, and provides better attack results in comparison to results without
l1 and l2 regularization.

To the best of our knowledge, this is the first time that a profiling attack was able to
retrieve the correct key byte from the ASCADf dataset with a single attack trace when no
knowledge of mask shares are considered.
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(a) MLP. (b) CNN.

Figure 11: Non-optimized points of interest (NOPOI): best guessing entropy results for
the ASCADf dataset with different leakage models.

(a) CNN with data augmentation. (b) CNN without data augmentation.

Figure 12: Non-optimized points of interest (NOPOI) with desynchronization: best
guessing entropy results for the ASCADf dataset with and without data augmentation.

NOPOI with Trace Desynchronization. In this section, we also evaluate the possibility of
attacking the full trace interval from ASCADf in the presence of trace desynchronization.
For that, we take the original raw measurements from the ASCADf dataset that contains
100 000 samples per trace and perform artificial trace shifts. The number of shifted samples
is randomly selected between -50 and 50. After, we again apply trace resampling, and this
process results in side-channel measurements with 10 000 samples.

Figure 12 shows results for ASCADf with desynchronized side-channel traces. In
Figure 12a, results were obtained when we apply data augmentation to the training process
by randomly shifting the training traces to the left or to the right by up to 10 samples. As
we can see, the attack is successful with 36 attack traces for the Identity leakage model.
The Hamming leakage model requires 532 attack traces to reach guessing entropy equal
to 1. On the other hand, when data augmentation is disregarded, we need a significantly
higher number of attack traces to succeed.

Attacking the Full AES Key with NOPOI Scenario. In this section, we retrain the
best-found model with the NOPOI scenario (without desynchronization) for the full AES
key. We apply this process for MLP and CNN, including the Hamming weight and Identity
leakage models. The best model is always initialized with the same weights as the best
model found in the random hyperparameter search process. Table 4 displays the number
of required attack traces to reach guessing entropy equal to 1 for each separate key byte.
As we can see, for the MLP case with the Hamming weight leakage model, the full AES
key from ASCADf dataset is recovered with less than 20 attack traces.
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Table 4: Minimum number of attack traces to obtain guessing entropy equal to 1 with the
ASCADf dataset for all key bytes (results provided by MLP and CNN, for the Hamming
weight and Identity leakage models).

Model Type Leakage Model Required Attack Traces (per key byte)
CNN Sbox(pi ⊕ ki) 1, 1, 1, >3000, 2, >3000, >3000, >3000, >3000.0, >3000, >3000, 1,

>3000, >3000, 3, >3000
CNN HW (Sbox(pi ⊕ ki)) 3, 3, 14, 6, 8, 7, >3000, 8, >3000, 7, >3000, 11, >3000, 40, 10, >3000
MLP Sbox(pi ⊕ ki) 1, 1, 4, 3, 3, 2, 3, 3, 7, 4, 4, 2, 14, 20, 2, 7
MLP HW (Sbox(pi ⊕ ki)) 2, 3, 6, 6, 6, 5, 10, 6, 7, 6, 7, 6, >3000, 20, 7, 7

(a) Hamming weight. (b) Identity.

Figure 13: Refined points of interest (RPOI): best validation accuracy results obtained
from random hyperparameter search with the ASCADr dataset for different leakage
models. Results are provided for MLP and CNN models.

6.2 ASCADr
RPOI. Figure 13 shows validation accuracy results for RPOI scenario for the ASCADr
dataset. Again, we evaluate ten different numbers of points of interest, ranging from 10 up
to 100 points. For each specific number of RPOIs, we deploy a random hyperparameter
search. The best found MLP and CNN models indicate a better performance as more
points of interest are considered for the Hamming weight leakage model scenario. The
ASCADr dataset contains 200 000 profiling traces, and this might be the reason for better
results obtained with the Hamming weight leakage model in comparison to results obtained
for ASCADf . For the Identity leakage model, results for the ASCADr dataset also
indicate that more refined features improve the performance of the model.

Figure 14 shows the relationship between the number of required attack traces to
achieve guessing entropy equal to 1 and the number of RPOIs. For the Hamming weight
leakage model, Figure 14a indicates that, for both best-found MLP and CNN models, at
least 30 RPOIs are required for successful key recovery. This figure also indicates that
more RPOI allows us to find better models. Figure 14b illustrates the number of required
attack traces when the Identity leakage model is considered. In this case, we can recover
the key for any considered number of RPOIs, and adding more than 20 RPOIs does not
significantly improve the attack performance.

Figure 15 shows the guessing entropy evolution for the best found MLP and CNN
models when the RPOI scenario is considered. Best models configured with the Identity
leakage model show superior results compared to the Hamming weight leakage model.
Note, however, that best models are always found for the maximum number of RPOI, i.e.,
100, indicating that neural network models tend to learn better when more input features.

OPOI. Figure 16 shows the guessing entropy for the best models for the ASCADr
dataset with OPOI feature selection scenario. Results obtained are aligned with state-of-
the-art results [RWPP21] for ASCADr dataset for the same feature selection case. As
we can see, using the Identity leakage model allows us to recover the correct key with only
78 attack traces when CNNs are considered. The best results are obtained for MLP with
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(a) Hamming weight. (b) Identity.

Figure 14: Refined Points Of Interest (RPOI): best number of attack traces to reach GE=1
obtained from random hyperparameter search with the ASCADr dataset for different
leakage models. Results are provided for MLP and CNN models.

(a) MLP. (b) CNN.

Figure 15: Refined points of interest (RPOI):Best guessing entropy results for the
ASCADr dataset with different leakage models.

(a) MLP. (b) CNN.

Figure 16: Optimized points of interest (OPOI): best guessing entropy results for the
ASCADr dataset with different leakage models.

up to two hidden layers and CNN with up to 4 hidden layers.

SOPOI. To analyze the SOPOI feature selection scenario for the ASCADr dataset,
we trimmed the interval from sample index 79 145 until 84 145 from the full available
trace interval of 250 000 samples per trace. Figure 17 shows the SNR of secret shares
computed over this SOPOI interval, which contains 5 000 sample points. This figure
highlights the interval corresponding to the OPOI interval, commonly used in related
works as the main attacked interval for deep learning-based profiling SCA. Following the
same procedure executed for the ASCADf dataset, we run a random hyperparameter
search for different trace intervals, ranging from 1 500 to 5 000 samples, with a step of 500
samples, as illustrated by the arrows in Figure 17. Again, the main idea is to verify the
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Figure 17: ASCADr SNR SOPOI. This figures shows how larger trace intervals are selected
by having the OPOI trace set interval (highlighted in green) as reference.

(a) Hamming weight. (b) Identity.

Figure 18: Semi-optimized Points Of Interest (SOPOI): best validation accuracy results
obtained from random hyperparameter search with the ASCADr dataset for different
leakage models. Results are provided for MLP and CNN models.

influence of additional noisy samples in deep neural network learning.
Figure 18 shows the best-found validation accuracy for each SOPOI interval. For the

Hamming weight leakage model, as shown in Figure 18a, for both MLP and CNN cases,
the best validation accuracy starts to show higher values after we consider SOPOI intervals
higher than 3 500 samples. If we compare to Figure 17, we can observe that with 4 000
sample points, the attacked interval also includes other SNR peaks from secret shares.
Until 3 500 samples, there is only the addition of noisy samples to the considered interval,
and the best models show performance comparable to the OPOI case. For the CNN case,
as illustrated in Figure 18b, the best validation accuracy gradually increases with the
addition of more samples to the attacked SOPOI interval. Therefore, comparing MLP
and CNN cases, we can immediately observe that MLP is more sensitive to the presence
of non-leaky samples and can have a performance boost if additional leaky samples are
added to the attacked interval.

Results in Figure 19 provide the minimum number of traces that the best model needs
to reach a guessing entropy equal to 1. The minimum number of traces for each SOPOI
interval follows a similar pattern observed for the best validation accuracy from 18. For the
Hamming weight leakage model, the minimum number of traces reaches values lower than
100 after 4 000 samples are considered. This happens for both MLP and CNN scenarios.
For the Identity leakage model, the addition of samples gradually improves the results for
the CNN case. For the best-found MLPs, the addition of more samples provides successful
attacks with less than 50 attack traces after 3 500 sample points are considered. Figure 20
shows the best guessing entropy results for SOPOI scenario. As we can see, the best found
MLP and CNN models can recover the key with less than 40 attack traces.

NOPOI. In this scenario, we consider the full available samples from the ASCADr
dataset traces (250 000). To improve the performance of deep neural network training
and reduce memory overheads, we resample the full interval into 25 000 sample points.
Figure 21 shows the guessing entropy for the best-found models in random hyperparameter
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(a) Hamming weight. (b) Identity.

Figure 19: Semi-optimized points of interest (SOPOI): best number of attack traces to
reach GE=1 obtained from random hyperparameter search with the ASCADr dataset
for different leakage models. Results are provided for MLP and CNN models.

(a) MLP. (b) CNN.

Figure 20: Semi-Optimized points of interest (SOPOI): best guessing entropy results for
the ASCADr dataset with different leakage models.

(a) MLP. (b) CNN.

Figure 21: Non-optimized points of interest (NOPOI): best guessing entropy results for
the ASCADr dataset with different leakage models.

search for MLP and CNN cases, with both the Hamming weight and Identity leakage
models. For the Identity leakage model, we can find the best neural network model that
recovers the key with a single attack trace. Surprisingly, for the MLP case, the best model
contains a single hidden layer, and this model can successfully recover the target key byte
with only six attack traces. The best CNN was able to succeed with a single trace by having
one convolution layer and three dense layers. For the Hamming weight leakage model, we
achieve guessing entropy equal to 1 after processing seven traces for the CNN case.

NOPOI with Trace Desynchronization. The desynchronization is artificially added to
the dataset by shifting each trace to the left or the right. The number of shifted samples is
randomly selected between -50 and 50. Afterward, each trace containing 250 000 samples
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(a) CNN with data augmentation. (b) CNN without data augmentation.

Figure 22: Non-optimized points of interest (NOPOI) with desynchronization: best
guessing entropy results for the ASCADr dataset with and without data augmentation.

Table 5: Minimum number of attack traces to get guessing entropy equal to 1 with the
ASCADr dataset for all key bytes (results provided by MLP and CNN, for the Hamming
weight and Identity leakage models).

Model Type Leakage Model Required Attack Traces (per key byte)
CNN Sbox(pi ⊕ ki) 1, 1, 2, 10, 1.0, 1, 5, 7, 4, 1, 3, 1, 19, 7, 1, 3
CNN HW (Sbox(pi ⊕ ki)) 2, 2, 7, 6, 7, 45, 8, 8, 6, 6, 6, 88, 8, >5000, 6, 7
MLP Sbox(pi ⊕ ki) 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 2
MLP HW (Sbox(pi ⊕ ki)) 1, 2, 11, 10, 20, 6, 19, 13, 84, 13, 13, 11, 11, 14, 10, 13

is resampled into 25 000 samples. Results for the NOPOI scenario with desynchronized
ASCADr dataset are shown in Figure 22. We apply random hyperparameter search with
the same hyperparameters range from the previous experiments. Results from Figure 22a
show best guessing entropy results for each leakage model when data augmentation is
considered. Data augmentation randomly shifts the training traces by a maximum of 10
samples to the left and the right. As we can see, the correct key byte can be recovered
after 25 attack traces with the Identity leakage model. Results in Figure 22b show the
best guessing entropy obtained without data augmentation. With the Identity leakage
model, we can recover the key with 76 attack traces. We can also recover the key for the
Hamming weight leakage model with significantly more attack traces. As we can see, the
usage of data augmentation again provides better results.

Attacking the Full AES Key with the NOPOI Scenario. As for the ASCADf dataset,
in this section, we also retrain the best-found model with the NOPOI scenario and the
ASCADr dataset (without desynchronization) for the full AES key. This process is also
executed for MLP and CNN, including the Hamming weight and Identity leakage models.
Again, the best model is always initialized with the same weights as the best model found
in the random hyperparameter search process. Table 5 displays the number of required
attack traces to reach guessing entropy equal to 1 for each separate key byte. As we can see,
in three out of four attack scenarios, we can recover the full AES key. In particular, for the
MLP case with the Hamming weight leakage model, the full AES key for the ASCADr
dataset is recovered with less than three attack traces. This is the best-reported attack
results so far on the ASCADr dataset in the literature. For comparison, in [BCS21], the
authors reported their best profiling attack on the ASCADr dataset required at least 32
attack traces. Note also that our attack does not assume any knowledge from mask shares.

6.3 Summary of Results
Table 6 summarizes the results obtained in the experiments conducted in this section.
This table provides the minimum number of attack traces required for guessing entropy



20 Exploring Feature Selection for Deep Learning-based SCA

Table 6: Minimum number of attack traces to get guessing entropy equal to 1 with the
ASCADf and ASCADr datasets on different feature selection scenarios.

Dataset Model Type Feature Selection POIs (HW/ID) Attack Traces (HW/ID)
ASCADf MLP RPOI 100/100 1436/58
ASCADf CNN RPOI 100/100 2994/80
ASCADf MLP OPOI 700/700 480/104
ASCADf CNN OPOI 700/700 744/87
ASCADf MLP SOPOI 3500/3500 16/4
ASCADf CNN SOPOI 3500/3500 20/4
ASCADf MLP NOPOI 10000/10000 6/4
ASCADf CNN NOPOI 10000/10000 8/ 1
ASCADf CNN NOPOI desync 10000/10000 532/36
ASCADr MLP RPOI 100/100 360/28
ASCADr CNN RPOI 100/100 458/40
ASCADr MLP OPOI 1400/1400 328/129
ASCADr CNN OPOI 1400/1400 538/78
ASCADr MLP SOPOI 4500/3500 16/4
ASCADr CNN SOPOI 5000/4500 21/8
ASCADr MLP NOPOI 25000/25000 6/ 1
ASCADr CNN NOPOI 25000/25000 7/ 1
ASCADr CNN NOPOI desync 10000/10000 1631/73

equal to 1 for one target key byte (the third key byte of AES key). It is important to
observe that scenarios that consider larger attack trace intervals require fewer traces to
succeed. Following the same observation, the best attack results happen when considering
the maximum analyzed number of points of interest for the RPOI scenario. In particular,
the NOPOI scenario for both datasets requires a single attack trace to recover the key
with the Identity leakage model. Results for OPOI are aligned with state-of-the-art
results [ZBHV19, WAGP20], where the best case reaches successful key recovery with a
number of attack traces close to 100.

7 Conclusions and Future Works

For the first-order protected software AES implementations, feature selection has a very
small impact from the perspective of searching for an efficient deep learning model. Indeed,
the larger the attacked interval (around the first AES round for datasets considered in this
paper), the better the performance of the best-found model from a random hyperparameter
search. Our results indicate that for the considered datasets, random hyperparameters
search for MLP and CNN models can find highly efficient and small models (with up to
eight hidden layers) that can recover the target key byte with a single trace. With the
same hyperparameter search process, we successfully and efficiently recovered the key from
scenarios with trace desynchronization and without any feature selection process. We
found neural network models that recover the key with a single attack trace. Finally, the
same best model that found one key byte can be directly applied to the remaining key
bytes with similar performance. Thus, we can conclude that the number of features does
not directly affect the required model size for successful key recovery. For many cases, a
single hidden layer in MLP models and a single convolution layer plus one dense layer in
CNN models are sufficient to provide a successful key recovery.

As future works, we plan to evaluate the performance of different feature selection
scenarios against newer and more protected datasets, such as ASCADr2 [MS21]. In this
case, we would like to anticipate that our statements about the relevance of knowing
the mask shares for security evaluations could lead to different conclusions, as already
evidenced in [MS21] (in which a successful profiling attack was only possible by assuming
the knowledge of at least one mask share).
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A Summary of Results
This section provides the percentage of successful models from the hyperparameter search
process applied to each feature selection scenario. In general, the chances to find deep
learning models that provide successful key recovery increase when the number of hidden
layers is reduced. Note that for most cases, a single hidden layer in MLP models and
a single convolution layer plus one dense layer in CNN models is sufficient to provide
successful key recovery.
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Table 7: Influence of the number of hidden layers on the number of successful MLP models
(key recovery) for ASCADf .

Model Leakage Number of Layers
Type Model POI 1 2 3 4 5 6 7 8 Total
MLP HW 10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 30 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 40 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 60 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 70 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 80 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 90 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 100 0.0% 0.0% 0.0% 0.0% 1.6% 1.5% 3.8% 1.6% 1.0%
MLP HW 700 56.6% 82.0% 77.3% 70.6% 89.2% 62.7% 66.2% 58.2% 70.6%
MLP HW 1500 74.5% 82.1% 83.8% 74.0% 78.0% 75.9% 69.6% 56.5% 73.3%
MLP HW 2000 90.1% 88.9% 78.0% 83.9% 82.5% 78.8% 69.1% 63.0% 80.2%
MLP HW 2500 83.6% 87.3% 77.8% 80.0% 72.9% 69.8% 57.6% 66.7% 74.2%
MLP HW 3000 83.9% 89.5% 84.5% 85.1% 77.9% 77.0% 76.1% 58.2% 79.2%
MLP HW 3500 87.8% 80.9% 89.8% 85.5% 74.5% 78.4% 77.8% 67.3% 80.3%
MLP HW 4000 87.9% 73.8% 85.7% 85.5% 77.4% 80.9% 75.0% 68.4% 79.4%
MLP HW 4500 93.5% 84.2% 85.0% 82.9% 72.5% 71.7% 75.5% 58.8% 78.2%
MLP HW 5000 88.1% 68.9% 73.0% 87.5% 83.8% 87.2% 50.0% 70.5% 75.3%
MLP HW 10000 37.1% 36.1% 37.9% 37.5% 23.1% 24.6% 15.6% 11.9% 28.5%
MLP ID 10 77.4% 80.3% 66.2% 76.9% 59.6% 63.5% 55.1% 51.5% 66.2%
MLP ID 20 72.7% 73.6% 70.1% 66.0% 60.0% 75.0% 57.7% 53.0% 66.6%
MLP ID 30 78.0% 90.3% 92.5% 83.0% 76.1% 85.9% 85.9% 80.8% 83.8%
MLP ID 40 74.2% 92.5% 86.0% 86.4% 85.7% 78.5% 82.8% 62.1% 80.6%
MLP ID 50 69.5% 82.4% 94.5% 85.5% 85.7% 79.1% 78.6% 77.4% 81.8%
MLP ID 60 60.8% 77.8% 90.6% 84.1% 80.0% 77.2% 75.7% 79.5% 78.4%
MLP ID 70 63.3% 93.5% 86.7% 88.7% 75.6% 70.8% 70.1% 73.9% 77.8%
MLP ID 80 78.3% 80.6% 86.0% 89.9% 87.7% 82.8% 82.3% 79.7% 83.4%
MLP ID 90 78.9% 88.0% 89.3% 86.8% 85.5% 79.3% 74.6% 83.0% 83.2%
MLP ID 100 72.9% 87.5% 88.5% 91.2% 89.6% 82.4% 75.8% 87.1% 84.4%
MLP ID 700 70.8% 73.0% 77.1% 73.4% 61.4% 57.6% 57.6% 54.0% 66.0%
MLP ID 1500 78.3% 64.3% 57.1% 55.2% 38.9% 40.0% 31.7% 17.2% 47.1%
MLP ID 2000 71.8% 59.2% 50.8% 47.8% 56.2% 38.7% 28.3% 34.3% 49.2%
MLP ID 2500 75.0% 52.2% 54.7% 38.4% 37.5% 24.6% 21.0% 25.8% 40.2%
MLP ID 3000 70.4% 69.4% 46.9% 37.3% 44.2% 24.5% 25.0% 29.7% 43.4%
MLP ID 3500 77.4% 76.1% 64.3% 50.0% 56.9% 50.0% 51.0% 45.8% 59.1%
MLP ID 4000 83.3% 66.0% 74.4% 70.3% 50.0% 57.5% 61.5% 56.1% 63.8%
MLP ID 4500 76.4% 59.5% 59.5% 54.3% 60.0% 46.2% 47.7% 36.4% 56.4%
MLP ID 5000 75.0% 55.0% 60.0% 62.2% 57.9% 41.4% 33.3% 36.8% 52.6%
MLP ID 10000 13.8% 1.8% 0.0% 0.0% 0.0% 0.0% 1.6% 0.0% 2.3%
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Table 8: Influence of the number of hidden layers on the number of successful CNN models
(key recovery) for ASCADf .

Model Leakage Number of Layers
Type Model POI 1 2 3 4 5 6 7 8 Total
CNN HW 10 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 20 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 30 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 40 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 50 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 60 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 70 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 80 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 90 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 100 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 700 - 27.8% 26.1% 40.8% 37.4% 29.0% 30.2% 31.6% 33.2%
CNN HW 1500 - 50.0% 35.8% 37.1% 47.0% 37.3% 35.7% 28.6% 39.6%
CNN HW 2000 - 39.4% 57.6% 47.7% 53.6% 40.2% 50.0% 38.9% 48.4%
CNN HW 2500 - 50.0% 40.7% 53.6% 41.7% 42.7% 32.0% 24.0% 42.9%
CNN HW 3000 - 55.6% 68.5% 55.8% 67.2% 50.0% 50.0% 38.5% 57.5%
CNN HW 3500 - 65.4% 85.1% 75.5% 70.2% 60.0% 53.5% 65.2% 69.5%
CNN HW 4000 - 86.4% 76.6% 70.8% 61.6% 60.5% 59.2% 50.0% 65.8%
CNN HW 4500 - 69.7% 71.7% 78.2% 53.7% 57.0% 62.9% 50.0% 63.3%
CNN HW 5000 - 81.2% 67.6% 75.0% 65.0% 52.6% 52.6% 43.3% 63.3%
CNN HW 10000 - 23.3% 13.8% 16.5% 8.1% 6.1% 5.5% 0.0% 10.5%
CNN ID 10 - 100.0% 89.5% 89.8% 87.1% 72.1% 71.7% 84.2% 84.5%
CNN ID 20 - 87.5% 80.0% 73.4% 66.7% 76.0% 72.2% 65.4% 73.0%
CNN ID 30 - 95.7% 92.9% 88.0% 79.3% 70.4% 82.1% 73.9% 81.7%
CNN ID 40 - 87.0% 81.7% 78.6% 81.5% 74.0% 67.7% 60.9% 76.7%
CNN ID 50 - 91.7% 86.4% 72.5% 75.0% 72.5% 73.8% 85.2% 77.3%
CNN ID 60 - 81.8% 87.7% 78.9% 68.7% 64.4% 54.7% 75.0% 71.9%
CNN ID 70 - 83.9% 82.1% 66.7% 75.5% 59.8% 72.6% 59.5% 70.2%
CNN ID 80 - 75.0% 86.9% 83.3% 75.0% 64.4% 62.5% 40.9% 72.8%
CNN ID 90 - 66.7% 78.2% 78.6% 70.1% 63.0% 60.7% 51.3% 68.7%
CNN ID 100 - 86.5% 87.9% 85.4% 79.5% 67.7% 59.0% 52.9% 76.5%
CNN ID 700 - 31.4% 31.7% 37.5% 30.9% 36.3% 34.1% 43.8% 34.2%
CNN ID 1500 - 50.0% 32.7% 27.1% 26.0% 15.4% 21.3% 18.2% 25.3%
CNN ID 2000 - 25.7% 19.1% 33.7% 30.2% 19.5% 20.8% 11.5% 25.1%
CNN ID 2500 - 23.8% 33.8% 28.9% 21.1% 20.2% 19.3% 14.8% 23.7%
CNN ID 3000 - 37.0% 50.0% 27.7% 20.8% 21.4% 20.0% 20.7% 26.3%
CNN ID 3500 - 52.0% 61.9% 55.0% 38.1% 37.8% 34.4% 36.7% 44.3%
CNN ID 4000 - 44.4% 47.1% 40.4% 39.8% 34.5% 33.3% 20.0% 38.2%
CNN ID 4500 - 15.8% 58.5% 40.5% 35.0% 34.4% 31.3% 28.0% 37.5%
CNN ID 5000 - 26.9% 45.3% 36.5% 35.4% 30.2% 18.6% 25.9% 33.4%
CNN ID 10000 - 11.1% 3.4% 1.0% 2.4% 2.3% 0.0% 0.0% 2.5%
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Table 9: The influence of the number of hidden layers on the number of successful models
(key recovery) for ASCADr.

Model Leakage Number of Layers
Type Model POI 1 2 3 4 5 6 7 8 Total
MLP HW 10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
MLP HW 30 0.0% 2.4% 4.9% 8.3% 9.8% 6.2% 13.9% 14.8% 7.1%
MLP HW 40 30.0% 26.3% 28.0% 32.4% 23.7% 31.6% 20.0% 22.2% 26.6%
MLP HW 50 78.8% 77.4% 75.5% 72.5% 49.2% 66.0% 47.9% 58.5% 64.9%
MLP HW 60 83.8% 81.6% 80.8% 70.6% 75.0% 52.4% 53.8% 57.5% 68.8%
MLP HW 70 95.3% 92.5% 87.9% 88.9% 73.3% 73.5% 87.0% 74.3% 84.3%
MLP HW 80 97.4% 93.3% 95.6% 90.0% 90.0% 78.0% 75.6% 65.2% 85.5%
MLP HW 90 97.8% 97.8% 93.3% 95.7% 89.8% 88.0% 86.1% 71.8% 90.4%
MLP HW 100 100.0% 100.0% 84.2% 93.1% 97.6% 91.7% 85.0% 84.9% 92.1%
MLP HW 1400 73.4% 89.4% 78.9% 74.6% 62.1% 60.7% 66.1% 47.1% 68.2%
MLP HW 1500 83.3% 85.1% 88.9% 62.9% 65.7% 58.8% 59.5% 32.1% 67.8%
MLP HW 2000 70.0% 81.0% 84.8% 65.0% 57.8% 52.5% 51.4% 43.6% 63.0%
MLP HW 2500 92.9% 77.1% 60.0% 51.2% 59.3% 51.5% 33.3% 53.8% 57.7%
MLP HW 3000 64.3% 47.6% 78.6% 87.5% 66.7% 45.5% 30.8% 25.0% 54.6%
MLP HW 3500 69.2% 82.9% 65.7% 71.0% 47.1% 53.8% 29.4% 30.8% 57.3%
MLP HW 4000 85.7% 81.2% 81.2% 72.7% 54.5% 45.2% 58.8% 46.4% 66.5%
MLP HW 4500 95.0% 81.8% 68.0% 83.3% 82.6% 70.8% 67.9% 41.7% 73.2%
MLP HW 5000 100.0% 100.0% 72.7% 68.4% 69.2% 71.0% 50.0% 40.0% 70.3%
MLP HW 25000 78.9% 50.0% 50.9% 34.4% 40.9% 32.6% 31.8% 31.6% 43.9%
MLP ID 10 93.9% 91.9% 92.1% 89.5% 80.6% 69.4% 56.8% 61.3% 79.7%
MLP ID 20 88.4% 100.0% 93.8% 93.9% 79.3% 82.9% 80.0% 79.2% 87.3%
MLP ID 30 77.8% 91.3% 73.3% 87.5% 84.2% 86.1% 89.3% 73.5% 82.7%
MLP ID 40 80.0% 100.0% 89.2% 93.5% 92.3% 84.2% 79.4% 87.2% 88.2%
MLP ID 50 89.3% 83.3% 94.3% 89.7% 80.0% 87.5% 71.0% 76.5% 84.1%
MLP ID 60 90.6% 88.9% 96.4% 100.0% 89.3% 88.5% 80.0% 79.4% 88.8%
MLP ID 70 79.3% 94.6% 88.9% 88.6% 90.3% 93.5% 79.4% 82.5% 87.1%
MLP ID 80 72.2% 85.2% 91.9% 84.4% 74.2% 83.9% 54.8% 87.1% 79.3%
MLP ID 90 81.8% 100.0% 83.9% 88.2% 70.0% 84.4% 82.5% 71.4% 82.8%
MLP ID 100 80.9% 80.8% 87.5% 91.2% 81.2% 80.5% 81.1% 70.0% 81.5%
MLP ID 1400 53.8% 46.7% 32.7% 39.7% 34.7% 25.9% 22.9% 26.8% 35.3%
MLP ID 1500 40.0% 37.9% 32.0% 43.5% 47.1% 17.4% 24.0% 6.5% 29.8%
MLP ID 2000 42.4% 28.0% 24.4% 21.6% 18.4% 27.5% 15.6% 19.4% 24.5%
MLP ID 2500 31.8% 32.3% 20.9% 20.0% 21.2% 7.7% 24.2% 16.7% 22.5%
MLP ID 3000 23.1% 8.1% 7.7% 11.5% 14.8% 11.1% 0.0% 2.9% 9.1%
MLP ID 3500 13.9% 3.7% 26.5% 8.3% 16.7% 13.3% 14.3% 7.4% 13.6%
MLP ID 4000 26.3% 25.0% 26.1% 26.5% 5.6% 17.2% 15.8% 20.0% 21.1%
MLP ID 4500 46.7% 21.7% 31.8% 33.3% 16.1% 20.0% 18.2% 6.2% 23.5%
MLP ID 5000 60.0% 50.0% 7.1% 11.1% 6.2% 7.1% 27.8% 12.5% 19.8%
MLP ID 25000 35.1% 5.2% 4.3% 3.3% 6.7% 1.4% 4.0% 1.3% 7.2%
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Table 10: Influence of the number of hidden layers on the number of successful models
(key recovery) for ASCADr.

Model Leakage Number of Layers
Type Model POI 1 2 3 4 5 6 7 8 Total
CNN HW 10 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 20 - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CNN HW 30 - 0.0% 0.0% 0.0% 0.0% 1.1% 0.0% 0.0% 0.2%
CNN HW 40 - 5.1% 1.8% 2.9% 4.3% 2.2% 1.6% 4.0% 3.1%
CNN HW 50 - 20.7% 17.6% 22.2% 23.6% 20.2% 18.0% 11.4% 20.3%
CNN HW 60 - 18.8% 23.4% 30.9% 24.2% 26.2% 25.0% 25.0% 25.5%
CNN HW 70 - 40.0% 53.6% 51.9% 50.0% 50.6% 34.8% 44.0% 48.0%
CNN HW 80 - 69.0% 70.8% 67.0% 61.4% 64.4% 46.8% 50.0% 62.9%
CNN HW 90 - 78.6% 61.4% 71.7% 67.2% 71.2% 59.1% 48.0% 66.7%
CNN HW 100 - 69.4% 77.0% 74.3% 75.2% 60.5% 54.4% 65.2% 68.6%
CNN HW 1400 - 40.0% 47.3% 55.3% 34.7% 49.3% 36.9% 16.7% 43.2%
CNN HW 1500 - 36.0% 41.7% 51.8% 34.6% 45.7% 48.4% 46.2% 43.6%
CNN HW 2000 - 25.0% 34.9% 37.7% 28.6% 23.9% 15.8% 12.5% 28.4%
CNN HW 2500 - 28.6% 41.2% 48.6% 27.1% 24.5% 14.8% 13.3% 29.8%
CNN HW 3000 - 10.0% 35.5% 31.8% 20.4% 17.2% 35.0% 0.0% 25.9%
CNN HW 3500 - 25.0% 27.1% 32.5% 20.6% 23.1% 15.4% 18.2% 24.1%
CNN HW 4000 - 52.2% 69.1% 52.4% 51.7% 31.9% 34.6% 20.7% 45.6%
CNN HW 4500 - 53.6% 60.9% 60.2% 53.1% 40.7% 18.0% 25.0% 48.2%
CNN HW 5000 - 65.6% 68.6% 59.0% 50.7% 47.9% 37.9% 22.7% 52.3%
CNN HW 25000 - 20.0% 25.0% 50.0% 38.9% 25.0% 12.5% 0.0% 29.4%
CNN ID 10 - 100.0% 100.0% 97.6% 93.9% 98.7% 94.2% 89.7% 96.3%
CNN ID 20 - 100.0% 100.0% 99.0% 96.6% 93.5% 92.0% 81.2% 96.2%
CNN ID 30 - 100.0% 100.0% 100.0% 98.1% 98.9% 90.4% 85.3% 97.1%
CNN ID 40 - 100.0% 100.0% 98.7% 94.8% 93.0% 96.4% 94.9% 96.2%
CNN ID 50 - 100.0% 98.3% 98.8% 94.9% 93.8% 90.2% 84.0% 95.1%
CNN ID 60 - 100.0% 100.0% 100.0% 94.0% 94.4% 94.2% 91.3% 96.3%
CNN ID 70 - 100.0% 98.1% 96.5% 96.7% 92.5% 80.4% 86.4% 93.5%
CNN ID 80 - 100.0% 100.0% 97.1% 92.6% 84.1% 88.7% 77.8% 92.2%
CNN ID 90 - 100.0% 100.0% 98.4% 92.2% 86.8% 91.5% 86.4% 93.1%
CNN ID 100 - 100.0% 98.2% 95.1% 91.6% 88.7% 86.7% 83.3% 92.2%
CNN ID 1400 - 33.3% 24.4% 26.7% 24.0% 26.6% 10.6% 10.0% 22.6%
CNN ID 1500 - 11.1% 24.5% 18.0% 27.8% 29.2% 10.0% 0.0% 22.1%
CNN ID 2000 - 14.3% 21.1% 10.9% 19.7% 13.0% 20.8% 16.7% 16.5%
CNN ID 2500 - 25.0% 8.0% 12.2% 15.6% 15.6% 4.0% 0.0% 12.6%
CNN ID 3000 - 0.0% 19.2% 11.4% 3.6% 12.0% 15.4% 0.0% 10.6%
CNN ID 3500 - 7.4% 17.6% 25.4% 20.7% 20.5% 9.4% 21.7% 19.2%
CNN ID 4000 - 37.5% 23.8% 23.4% 19.4% 17.8% 16.3% 4.8% 20.5%
CNN ID 4500 - 20.7% 18.8% 15.2% 21.0% 18.3% 8.8% 5.9% 17.1%
CNN ID 5000 - 3.8% 25.0% 16.9% 14.8% 18.5% 10.4% 2.9% 15.0%
CNN ID 25000 - 0.0% 20.0% 6.2% 0.0% 0.0% 0.0% 0.0% 3.5%
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B Guessing Entropy Results for Full Key with NOPOI Sce-
nario

(a) MLP. (b) CNN

Figure 23: Non-optimized points-of-interest (NOPOI) on the full AES key: best guessing
entropy results for the ASCADf dataset with different leakage models.

(a) MLP. (b) CNN

Figure 24: Non-optimized points-of-interest (NOPOI) on the full AES key: best guessing
entropy results for the ASCADr dataset with different leakage models.
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