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Abstract. We report a break of the $IKEp182 challenge using a meet-in-the-middle
attack strategy improved with multiple SIKE-specific optimizations. The attack was
executed on the HPC cluster of the University of Luxembourg and required less than
10 core-years and 256TiB of high-performance network storage (GPFS). Different
trade-offs allow execution of the attack with similar time complexity and reduced
storage requirements of only about 70TiB.
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1 Introduction
Under the threat of quantum computers appearing in the near future, public-key cryp-
tography has to evolve to keep modern communication protocols secure. To foster the
evolution, NIST organizes a competition for Post-Quantum Cryptography Standardization
(PQC) [Nat22]. SIKE [JAC+20] (Supersingular Isogeny Key Encapsulation) is one of the
alternate candidates of the ongoing 3rd round. It is based on the SIDH protocol (Supersin-
gular Isogeny Diffie-Hellman) developed by De Feo and Jao [JD11], following and improving
the ideas of the constructions proposed by Rostovtsev and Stolbunov [RS06,Sto10]. Isogeny-
based cryptography only recently started to develop rapidly.

In particular, for a specially shaped prime p, the security of SIKE relies on the hardness
of finding an isogeny between two given supersingular elliptic curves defined over the
finite field Fp2 . The classic meet-in-the-middle attack (MitM, also known as bidirectional
search), applied in the isogeny setting by Galbraith [Gal99], requires O(p1/4) time and
memory/storage. Adj, Cervantes-Vazquez, Chi-Domínguez, Menezes and Rodríguez-
Henríquez [ACC+19] observed that large amounts of storage are likely impossible to be
achieved in practice due to fundamental physical constraints. They thus applied the classic
low-memory van Oorschot-Wiener (vOW) golden collision search [vW99] to the isogeny
setting by using less memory at the expense of more time, and conjectured that this
attack represents the main threat to SIKE. Improved analysis of the application of van
Oorschot-Wiener to SIKE with further optimizations was given by Costello, Longa, Naehrig,
Renes and Virdia [CLN+20]. Based on this analyses, Longa, Wang and Szefer [LWS21]
estimated the real costs of mounting such attack at various security levels, concluded that
previous security estimates were conservative, and proposed to revise parameters in order
to improve efficiency. For example, they propose to replace SIKEp434 with SIKEp377,
which is 40% faster, while still targeting to satisfy NIST Level 1 security requirements.

∗The work of Giuseppe Vitto was supported by the Luxembourg National Research Fund (FNR) project
FinCrypt (C17/IS/11684537). The experiments presented in this paper were carried out using the HPC
facilities of the University of Luxembourg [VBCG14] – see https://hpc.uni.lu.
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In order to motivate security analysis of SIKE, Microsoft recently published two
challenges [Mic21b] with reduced-size instances of SIKE: $IKEp182 and $IKEp217, with
bounties of $5000 and $50 000, respectively. In this report, we describe how we managed to
break the first instance using the HPC facilities of the University of Luxembourg [VBCG14].
While the classic security of the instance via the meet-in-the-middle attack is only about
45 bits, such amount of memory (245 storage units ≥ 256TiB) is not trivial to manage
efficiently. Nonetheless, we chose to stick to MitM instead of vOW due to the large
overheads introduced by the latter, where, for example, a single step requires computing
expensive isogenies (which can instead be amortized in MitM), and large penalties are paid
to reduce the memory usage. Our implementation is mainly written in SageMath [The21]
and C++, using parts of the SIDH library by Microsoft Research [Mic21a].

1.1 Our Approach
At the high level, we used the classic meet-in-the-middle approach for solving the isogeny
path problem, in which the hardness of SIKE lies. We developed/applied several optimiza-
tions:

(2-bit leak from the knowledge of the final curve)
In [CLN+20], it was noted that the final curve (i.e., the image of the initial curve
through a secret 2e-isogeny) fully leaks the last 4-isogeny. This effectively reduces
the set of j-invariants that can be reached from the final curve by a factor of 4. In
addition, we show how to express this reduced set in the same form as the set of
j-invariants reached from the initial curve. This simplifies conceptually the MitM
application to SIKE, by unifying the representation of sets arising from the initial
and the final curves. In the case of $IKEp182, both sets have 244 elements, after
applying this and the next optimization.

(1-bit conjugation-based reduction)
In SIKE, the initial Montgomery curve is y2 = x3 + 6x2 + x, and by being defined
over Fp, all the curves 2e-isogenous over Fp2 to it (through SIKE isogenies), have
j-invariants which can be grouped in conjugate pairs. It is thus sufficient to search
for a collision of e.g. the real part of the j-invariants in the middle, to effectively
halve the size of the set arising from the initial curve. Recovering the full colliding
j-invariant from such partial collision is easy due to the fact that paths to conjugate
elements are element-wise conjugates. This technique was discovered and applied in
the vOW setting in [CLN+20].

(Efficient tree exploration and optimal strategy)
A direct application of meet-in-the-middle with the (optimized) arithmetic from
SIKE, would recompute a lot of intermediate steps repeatedly (simply speaking,
computing each entry in the middle would require following a full path from the root
of a full binary tree to its leaf). However, these computations are not fully identical
and can not be avoided by simply storing some intermediate values. We show how to
explore the tree more efficiently, and adapt the optimal isogeny evaluation strategy
of [DJP11] to this case.

(Disk-based storage and sorting)
It is much more feasible to obtain and use a large amount of disk-based storage,
than a similar amount of RAM memory. However, the classic meet-in-the-middle
formulation uses a (hash-)table where the majority of queries follow a random access
pattern, most suitable for RAM. When disk storage is used, latency represents the
bottleneck of using hash-tables, and limits the application of parallelization. To
counter this, we follow an alternative approach to implement the MitM attack: we
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generate the two large j-invariants sets arising from the starting and the final curves,
and we intersect them using sorting and merging techniques, which, instead, mostly
require a sequential access pattern.

(Storage-collision trade-off and compression)
Truncating intermediate entries (j-invariants representations) permits to reduce
storage requirements at the cost of allowing false-positive collisions. By omitting
all the auxiliary information (e.g. the path in the set to an entry), we can reduce
the storage further at the cost of an extra recomputation step, where the two sets
are recomputed (fully memoryless and in parallel) in order to retrieve the relevant
auxiliary information for collisions found in the previous step. Furthermore, the
resulting sets become dense due to the truncation of entries, and can be compressed
(when sorted) by storing the differences between successive elements. In our case, we
used 64-bit entries, which already at 32GiB of sorted data (232 truncated entries) have
the expected difference of about 32 bits. This reduces the total storage requirements
down to approximately 244 × 2× 4 bytes = 128 TiB.

2 Preliminaries
2.1 The Supersingular Isogeny Graph
Definition 1. An isogeny of elliptic curves φ : E → E′ defined over Fq is a surjective
morphism of curves that induces a group homomorphism E(Fq) → E′(Fq). When such
map exists, E and E′ are said to be isogenous over Fq.

An isogeny of elliptic curves φ : E → E′ defined over Fq can be represented as a
non-constant rational map fixing the identity, i.e.,

φ : (x, y) 7→
(
a(x)
c(x) ,

b(x)
d(x)y

)
with a(x), b(x), c(x), d(x) ∈ Fq[x] and gcd(a(x), c(x)) = gcd(b(x), d(x)) = 1. The degree
of φ is defined as max(deg a(x),deg c(x)) and φ is said to be separable if

(
a(x)
c(x)

)′
6= 0.

For every separable degree-d isogeny φ : E → E′, there exists a dual degree-d isogeny
φ̂ : E′ → E so that the maps φ ◦ φ̂ = [d]E and φ̂ ◦ φ = [d]E′ are the multiplication-by-d
endomorphisms on E and E′, respectively.

If d is composite, it is possible to decompose a degree-d isogeny, or simply a d-isogeny,
into a composition of isogenies of prime order. We note that this property allows, in practice,
to compute efficiently high (smooth) degree isogenies. More precisely, if d = pe0

0 · . . . · pen
n

and φ is a d-isogeny, then there exists pi-isogenies φpi

j , with i ∈ [0, n] so that
φ = φp0

1 ◦ . . . ◦ φp0
e0
◦ . . . ◦ φpn

1 ◦ . . . ◦ φpn
en

It is well known that separable isogenies φ : E(Fq)→ E′(Fp) (up to isomorphism) are
in bijections with subgroups G of E(Fp) so that ker(φ) = G and φ is a |G|-isogeny: in
such case, the curve E′ is isomorphic to the group quotient E/G.

In the following, we will consider only separable isogenies over Montgomery elliptic
curves.
Definition 2 (Montgomery Elliptic Curves). An elliptic curve over a finite field Fq is said
Montgomery of parameters A,B ∈ Fq if it has equation EA,B : By2 = x3 +Ax2 + x with
B(A2 − 4) 6= 0.

The j-invariant of a Montgomery elliptic curve EA,B(Fp) is equal to j(EA,B) =
256(A2−3)3

A2−4 . Hence, the Fp-isomorphism class1 of EA,B(Fp) depends only on A2.
1Two elliptic curves are Fp-isomorphic if they have the same j-invariant.
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Through a simple change of variables, Montgomery curves EA,B are isomorphic over
Fq to only one of the following two quadratic twists

EA,B '
{
y2 = x3 +Ax2 + x if B ∈ Fq is a square
uy2 = x3 +Ax2 + x otherwise

where u is a non-square of Fq.
Supersingular elliptic curves (i.e. curves with trace congruent to 0 mod p), have their

j-invariant defined over Fp2 [Sil09, V.3 - Theorem 3.1.a]: in fact, any supersingular curve is
isomorphic to an elliptic curve defined over Fp2 and we can thus consider only supersingular
curves over Fp2 . Moreover, the property of being supersingular is invariant under isogeny,
and is induced by curves’ j-invariants: if there is a supersingular curve with j-invariant
equal to j, then j is said to be a supersingular j-invariant and all curves having j as
j-invariant are supersingular too.

Definition 3 (Supersingular Isogeny Graph). For p, ` distinct primes, the degree-` super-
singular isogeny graph over Fp2 is the graph where vertexes are curves’ representatives of
Fp2-isomorphism classes, and two vertexes are connected by an (undirected) edge if and
only if there exists a separable `-isogeny between them.

By Hasse’s bound, supersingular curves E over Fp2 have #E(Fp2) = p2 + 1− t number
of points, where the trace t can be equal only to 0,±p,±2p. Since, by Tate’s Isogeny
theorem [Tat66], two curves are isogenous over Fq if and only if have the same number
of points over Fq, it follows that separable `-isogenies over Fp2 partition the `-degree
Supersingular Isogeny graph over Fp2 into multiple connected subgraphs, each connecting
curves’ representatives of same trace.

In [AAM19, Theorem 6] is proved that the two subgraphs associated to traces 2p and
−2p are isomorphic, which in turn are isomorphic to the `-degree supersingular isogeny
graph built considering Fp-isomorphism classes instead. This fact suggests that we can
equivalently (in terms of security) work in any of these two O(p) size subgraphs induced
by supersingular curves with traces in ±2p (equivalently, by curves of cardinality (p± 1)2),
moving between neighbour representatives using `-isogenies. Interestingly, from the fact
that for a curve E(Fp2) and an ` - p, we have E[`] ' Z` × Z`, it follows that supersingular
curves E belonging to classes in these two subgraphs, decomposes as, depending on E
cardinality, E ' Zp±1 × Zp±1. In particular, curves coincide with their (p± 1)-torsions,
which imply that the latter are Fp2 -rational.

By adopting Montgomery curves, it is possible to further simplify this setting. If,
for a supersingular j-invariant j0, we have j0 = j(EA,1), then clearly its quadratic twist
satisfies j0 = j(EA,u). However, if we exclusively use the efficient Montgomery x-coordinate
only arithmetic (which employs the curve A-coefficient only), the twist selected becomes
irrelevant2, since it affects only the y-coordinate, and we can then represent Montgomery
curves EA,B simply as EA.

It follows that, in practice, by using Montgomery curves and x-coordinate arithmetic
only, the two isomorphic supersingular isogeny subgraphs corresponding to the traces ±2p,
coincide, and vertexes can be denoted with just supersingular j-invariants rather than
with isomorphism class curve representative.

Definition 4 (Supersingular Isogeny Graph - Revisited). For p, ` distinct primes, the
degree-` supersingular isogeny graph over Fp2 is the graph where vertexes are supersingular
j-invariants, and two vertexes (j1, j2) are connected by an (undirected) edge if and only if
there exists a separable `-isogeny between two Montgomery curves EA1 and EA2 so that
j1 = j(EA1) and j2 = j(EA2).

2In [Cos20] it was noted that, in fact, it is possible to build isogeny-based schemes over Montgomery
curves which are “twist-agnostic”, that is can work independently of curves’ quadratic twist chosen.
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Definition 5 (J dA-set). Let EA be a supersingular Montgomery elliptic curve over Fp2

and let d be so that #EA(Fp2) = d · r with gcd(d, r) = 1. The J dA-set is then

J dA =
{
j(EA′) ∈ Fp2 | ∃ a separable d-isogeny φ : EA → EA′

}
i.e., the set of j-invariants of curves d-isogenous to EA.

We note that due to the existence of dual isogenies, edges in an isogeny graph are
undirected. In the case of supersingular curves, the degree-` isogeny graph over Fp2 has
approximately

⌊
p+1
12
⌋
vertexes [Sch87, Theorem 4.6] and each vertex has exactly ` + 1

neighbours (counting multiplicities), with edges corresponding to an isogeny with kernel
being a distinct order-` subgroup of the torsion Z` × Z`. In other words, the degree-`
supersingular isogeny graph is a connected (` + 1)-regular graph which results to be
Ramanujan (see [Piz90,Piz98]). It follows that random length-e walks in the supersingular
isogeny graphs correspond to `e-isogenies between supersingular elliptic curves.

By exploiting the correspondence between order-` kernels and `-isogenies, a walk in
the supersingular isogeny graph starting from a curve E, can be expressed in terms of a
linear combination of two independent generators of the torsion E[`].

Definition 6 (Walk). Let E0 be a supersingular elliptic curve over Fp2 , ` a prime distinct
from p and let (P0, Q0) be two independent generators of E0[`e] = Z`e × Z`e . Two
values a, b ∈ Z`e not simultaneously divisible by `, define a separable `e-isogeny φ =
φe−1 ◦ . . . ◦ φ0 : E0 → Ee over Fp2 (i.e., a walk in the supersingular isogeny graph), where,
for i ∈ [0, e− 1], φi : Ei → Ei+1 is an `-isogeny with ker(φi) = 〈[`e−1−i] · ([a]Pi + [b]Qi)〉
and (Pi+1, Qi+1) = (φi(Pi), φi(Qi) ). We will often refer to such φ as the isogeny arising
from [a]P + [b]Q.

Remark 1. If ` - a, then 〈[a]P + [b]Q〉 = 〈P + [s]Q〉, with s = a−1b ∈ Z`e , and such
subgroups give rise to `e distinct isogenies. If instead a = ` · c, kernels can be written as
〈[s`]P +Q〉, with s = b−1c ∈ Z`e and there exists at most `e−1 such distinct subgroups.
This brings the total number of walks that can be traversed from a starting curve E0 to
`e−1(`+ 1), which in turn correspond to all walks obtained by iteratively exploring all `+ 1
neighbours of E0 up to depth e (with no backtracking). Kernels of the form 〈P + [s]Q〉,
with s ∈ Z`e , will be the ones employed by SIKE (Subsection 2.2): we note that this choice
restricts the possible isogeny-paths that can be walked, since only ` out of `+ 1 neighbours
of E0 can be explored.

The main observation that ensures correctness of Definition 6 is that the order of
φi([a]Pi + [b]Qi) decreases by ` with respect to the order of [a]Pi + [b]Qi: indeed, from
ker(φi) = 〈[`e−1−i] · ([a]Pi + [b]Qi)〉 we must have [`e−1−i] · φi([a]Pi + [b]Qi) = OEi+1 and
since P0, Q0 both have order `e, by induction, we can conclude that φi([a]Pi + [b]Qi) has
order `e−1−i.

The difficulty to obtain the scalar s from two curves E and E′ isogenous through the
`e-isogeny arising from P + [s]Q, is one of the different (formulations of) problems which
are believed to be hard in the supersingular isogeny setting.

Problem 1 (Path-finding). Given two supersingular Montgomery curves EA and EA′ over
Fp2 so that, for an ` - p prime and e > 0, there exists a separable `e-isogeny φ : EA → EA′

over Fp2 (equivalently j(EA′) ∈ J `
e

A ), find a sequence of groups {Ki}i∈[1,e] such that

• φi is a separable `-isogeny defined over Fp2 with ker(φi) = Ki;

• φ = φ1 ◦ . . . ◦ φe up to isomorphism.

We note that a solution to Problem 1 for an `e-isogeny arising from P + [s]Q can be
efficiently mapped bit-by-bit to the corresponding generating secret value s.
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2.2 The SIKE Protocol
Supersingular Isogeny Key Encapsulation (SIKE) [JAC+20] is a post-quantum key en-
capsulation mechanism (KEM) based on the difficulty to find a length-e path between
two `e-isogenous elliptic curves (Problem 1). It is based on the Supersingular Isogeny
Diffie-Hellman (SIDH) [JD11] key exchange.

In SIKE, p has the form p = 2eA3eB − 1 with 2eA ≈ 3eB and the working field is set
to be Fp2 = Fp(i) = Fp[x]/(x2 + 1). The parameters eA and eB are chosen so that the
Montgomery curve E = E6 over Fp2 is supersingular with (p + 1)2 rational points and
torsions E[`eA

A ] = Z`eA
A
× Z`eA

A
= 〈PA, QA〉 and E[`eB

B ] = Z`eB
B
× Z`eB

B
= 〈PB , QB〉. To

avoid some technicalities introduced by adopting efficient 2-isogeny computation formulas,
the order-2 point (0, 0) is not allowed to be into any 2-isogeny kernel in a path arising
from PA + [s]QA with s ∈ Z2eA : thanks to a result of Renes [Ren18, Corollary 2], this is
guaranteed by choosing the generators PA, QA of the torsion E[2eA ] so that [2eA−1]QA =
(0, 0).

Once the public parameters (p,E(Fp2), PA, QA, PB , QB) are generated, two parties,
Alice and Bob, can agree on a common secret as follows:

• Alice picks secret sA ←$ Z2eA and computes the 2eA-isogeny φA : E → EA arising
from 〈PA + [sA] ·QA〉. She then sends to Bob EA and the points φA(PB), φA(QB).

• Bob picks secret sB ←$ Z3eB and computes the 3eB -isogeny φB : E → EB arising
from 〈PB + [sb] ·QB〉. He then sends to Alice EB and the points φB(PA), φB(QA).

• Alice computes the 2eA -isogeny φÃ : EB → EBA arising from 〈φB(PA)+[sA]·φB(QA)〉
and sets the common secret to j(EBA).

• Bob computes the 3eB -isogeny φB̃ : EA → EAB arising from 〈φA(PB)+[sB ]·φA(QB)〉
and sets the common secret to j(EAB).

It easy to see that since separable isogenies correspond to curve quotients, in this
setting they commute, and so j(EBA) = j(EAB). For more details and proof of correctness
of the above protocol we refer to [JD11,JAC+20].

2.3 Efficient Isogeny Computation
In this section we provide an overview of how isogenies, and thus walks in the isogeny
graph, can be practically and efficiently computed.

We will focus on `-isogenies with ` = 2, 3, relevant for SIKE and for our attacks. Proofs
that the following formulas define isogenies can be found, for example, in [CH17,Ren18].

Proposition 1 (2-isogeny). Let EA,B be a Montgomery supersingular elliptic curve over
Fp2 with p 6= 2 and let R = (xR, yR) ∈ E(Fp2) be an order 2 point not equal to (0, 0). Then

φ : EA,B −→ EA′,B′

(x, y) 7−→ (f(x), yf ′(x))

with
f(x) = x

x · xr − 1
x− xr

is a separable 2-isogeny between Montgomery elliptic curves with ker(φ) = 〈R〉 and
(A′, B′) = (2(1− 2x2

r), Bxr).

Remark 2. The 2-isogeny defined in Proposition 1 fixes the point (0, 0), and thus cannot
belong to its kernel.
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Proposition 2 (3-isogeny). Let EA,B be a Montgomery supersingular elliptic curve over
Fp2 with p 6= 2 and let R = (xR, yR) ∈ E(Fp2) be an order 3 point. Then

φ : EA,B −→ EA′,B′

(x, y) 7−→ (f(x), yf ′(x))

with
f(x) = x

x · (xR − 1)2

(x− xR)2

is a separable 3-isogeny between Montgomery elliptic curves with ker(φ) = R and (A′, B′) =
(−6x3

R +Ax2
R + 6xR, Bx2

R).

Walk structure induced by SIKE 2-isogenies The structure induced by 2-isogeny for-
mulas adopted by SIKE is of relevance for the attack we will outline in next sections.

It is easy to see that in the Fp2 -isomorphism class of a supersingular j-invariant j0, we
have (at most) 6 distinct Montgomery curves: if ±A satisfy the equation j0 = 256(x2−3)3

x2−4 ,
then also

±B = 3x̃+A√
x̃2 − 1

± C = 3z̃ +A√
z̃2 − 1

do, where x̃, z̃ = 1/x̃ are roots of x2 +Ax+ 1 = 0.
When these 6 coefficients are all distinct, a 2-isogeny as in Proposition 1 can walk in

the supersingular isogeny graph to only 2 of the possible 3 neighbour j-invariants j1, j2, j3,
and whose values depend on the A-coefficient of the curve to which we are applying the
isogeny.

As already noted in Remark 2, by using SIKE 2-isogenies, we cannot have 〈(0, 0)〉 as
kernel: this practically correspond to the fact that if a curve EB, with j(EB) = j0, is
pushed through a 2-isogeny to EA′ , then EA′ will not be pushed back to EB by any of the
2-isogeny induced by an order-2 subgroup of EA′ distinct from 〈(0, 0)〉.

In the Fp2 -isomorphism class of EA′ , however, there will be 4 curves E±B′ , E±C′ which
can be pushed back to a curve in the isomorphism class of EB (i.e., j0), but not to the
curve EB itself, because, otherwise, there will be a 2-isogeny that will move EB back to
EA′ , a circumstance prevented by not allowing 〈(0, 0)〉 to be an isogeny kernel.

It follows that each of the 4 curves E±B′ , E±C′ can be pushed to only one of the two
isomorphic curves E±A3, which will eventually be pushed further to nodes j3, j2 distinct
from j(EA′) = j(E±B′) = j(E±C′) = j1.

This example is illustrated (with same notation) in Figure 1.

3 The Meet-in-the-Middle Attack for Solving the Isogeny
Path Problem

3.1 High-level Description
In this section we will provide an overview of the meet-in-the-middle attack to solve the
path-finding Problem 1. In terms of path search on a graph between two nodes, this
approach is also known as bidirectional search.

In order to find a path of length e between two curves EA and EB in the supersingular
isogeny graph (i.e., an `e-isogeny between EA and EB), an attacker can explore all length-
be/2c paths starting from EA and all length-de/2e paths starting from EB (intuitively,
this corresponds to exploring the subgraph spheres centered in EA and EB with radius
be/2c and de/2e, respectively) looking for a non-trivial intersection: since isogenies are

3Since, in SIKE, Fp2 = Fp(i), the map (x, y) 7→ (−x, iy) defines an isomorphism between E∗ and E−∗.
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Figure 1: The different j−invariants reached by pushing curve’s A-coefficients through 2-
isogenies defined by Proposition 1. Here ±A,±B,±C are the 6 roots satisfying j0 = (x2−3)3

(x2−4)
(resp. ±A′,±B′,±C ′ and j1), and define 6 Montgomery curves isomorphic over Fp2 . The
two edges associated to a certain coefficient represent isogenies with kernels order-2
subgroups not equal to 〈(0, 0)〉.

defined up to isomorphisms, we can identify the curve(s) in-the-middle by computing their
j-invariants.

The full path can then reconstructed either by iteratively applying the same attack on
the two found half-length sub-paths, or by simply storing the paths starting in EA or EB
associated with j-invariant in the middle and concatenate them once a collision is found.

Problem 2 (Meet-in-the-Middle). Given two `e-isogenous curves EA(Fp2) and EB(Fp2)
for some ` - p prime and e > 0, the Meet-in-the-Middle (MitM) problem asks to find the
intersection

J `
be/2c

A ∩ J `
de/2e

B

3.2 Application to SIKE
In SIKE, MitM can be applied to attack either Alice’s or Bob’s public key: indeed, from
Alice’s public key we can easily recompute the curve EA that is 2eA -isogenous to the starting
curve E, and, similarly, Bob’s public key reveals the curve EB that is 3eB -isogenous to
the starting curve E. Explicitly finding the secret isogeny φA : E → EA or φB : E → EB ,
allows the attacker to reapply it to the other party’s public key to ultimately obtain the
shared secret key.

As already noted in Remark 1, in SIKE not all (` + 1)`e−1 isogenies are possible,
because isogeny kernels are restricted to the shape 〈P + [s]Q〉, which excludes in the first
`-isogeny step the kernel

〈
[`e−1]Q

〉
, leaving only `e isogenies.

In Subsection 4.1, we show that the isogeny formulas of Subsection 2.3 can be used to
walk from the curve EA towards the starting curve E, by moving to an isomorphic curve
EA′ and defining kernels as P ′ + [s′]Q′ with 〈P ′, Q′〉 = EA′ [`e].

This refines the meet-in-the-middle Problem 2 into generating and intersecting the
leaves of the two “trees” of j-invariants spanned by walks from the bases (P,Q) ∈ E(Fp2)
and (P ′, Q′) ∈ EA′(Fp2). The meet-in-the-middle trees structure for ` = 2 is illustrated in
Figure 2.

Definition 7 (SIKE-tree). Given a curve E defined over Fp2 and a basis (P,Q) for its
torsion E[`e], the tree spanned by (P,Q) of depth d ≤ e is the directed graph consisting of
all length-d walks from E arising from [`e−d] · (P + [s]Q) with s ∈ Z`e , i.e. all length-d
walks from E excluding those arising from [` · a]P + [b]Q for any a, b ∈ Z`e .
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Figure 2: Example of 2-isogeny trees starting from the two 2e-isogenous curves E and EA.
Red nodes in the middle denote curves with same j-invariant, whose respective path in the
tree (in red) connect EA to EB. Edge labels are assigned arbitrarily in order to identify
the paths.

Remark 3. Since two different kernels may lead to the same image curve, the graph spanned
by the `e-torsion generators (P,Q) may not always correspond to a tree. However, for
simplicity of analysis, we assume this does not happen, although such cases do not pose a
problem in practice.
Remark 4. In SIKE, a party computes a full `e-isogeny using an `e-torsion basis (P,Q). In
other circumstances, like in tree computation or in the meet-in-the-middle attack, we need
to compute only the initial part of such full walks: thus, to keep Definition 6 consistent,
such full torsion basis needs to be re-scaled, so that the path length matches the desired
one.

For a walk of length i, the re-scaling is done as

(P ′, Q′) = ([`e−i]P, [`e−i]Q).

so that all length-i walks arising from P ′ + [t]Q′ with t ∈ [0, `i] will match the first i steps
of length-e walks arising from P + [s]Q with s ∈ [0, `e].

It follows that, to succeed in a meet-in-the-middle attack, it is crucial to be able to
generate trees (more precisely, their leaves) from curves.

Problem 3 (Tree generation). Given a supersingular curve E defined over Fp2 and an
`e-torsion basis (P,Q) for it, compute the set of j-invariants of curves appearing as leaves
in the depth d ≤ e tree spanned by (P,Q).

3.3 Tree Generation Strategy
In this section, we address how it is possible to generate leaves of the tree spanned by
some torsion generators.

If, in SIKE, a MitM attack relative to one party, e.g. Alice with her full torsion E[`eA ],
succeeds, then the shared secret can be efficiently computed from the data she exchanged
with Bob. It thus suffices to run the attack only on one full torsion and, for the sake of
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simplicity, we will hereafter address only the case ` = 2, i.e. attack E[2eA ]. In this setting,
we can take advantage of efficient 2-isogeny computation formulas and simpler formulation
of tree generation and exploration, although we remark that the following discussion can
be generalized to the E[3eB ] torsion as well.

A straightforward approach for generating a tree, is to enumerate all possible s ∈
[0, 2e−1] and compute the respective isogeny’s image curve, similarly as done in SIKE for a
given private key s. In fact, such walk computation is performed as a single step in the low-
memory van Oorschot-Wiener collision search applied to SIKE [ACC+19,CLN+20,LWS21].
However, many intermediate curves will be visited multiple times for different values s.
More precisely, if two different s0 and s1 share the same k least significant bits of their
binary representations, then the first k steps in the walks arising from P + [s0]Q and
P + [s1]Q will be (partially) identical. To better understand the complexity of such naive
approach, a depth-e tree has 2e+1 − 1 nodes and 2e+1 − 2 edges, while here we would walk
through e2e edges, a logarithmic slowdown (in the tree size) with respect to other tree
exploration techniques. In addition, lower-depth edges are typically more expensive to
compute due to the larger scalar multiplication required to obtain an order-2 point (e.g.
in SIKE isogeny evaluation algorithms), increasing the performance gap further.

We also note that, although s0 and s1 share the first k bits, the initial kernel generator
points pushed through the two walks differ, and therefore the computations done on the
shared sub-walks are not fully identical and cannot be trivially avoided by caching.

A better and more natural way to explore the tree is through a depth-first traversal,
which also avoids a large memory footprint.

To better explain how it works, we will label tree nodes with the Ai coefficients of
the corresponding curve EAi

. Given a path from the starting node A0 to the current
node Ai, made of composition of 2-isogenies, we explore the node Ai by generating its
2 children nodes, each identified by an order-2 point on EAi with nonzero x-coordinate
(as we noted in Subsection 2.2, the remaining third order-2 point corresponding to (0, 0)
is automatically excluded and this corresponds to the edge pointing backwards from a
node towards the root). However, to the best of our knowledge, all known generic ways
to iteratively compute coordinates of these order-2 kernel generators in a walk, require
extracting an expensive square root in Fp2 .

Our goal is to avoid this heavy operation, while maintaining 2 distinct order-2 kernels
at each step (one for each possible child direction) on the way through the tree exploration.
In addition, we want to take advantage of the efficient formulas for 2-isogenies, so we
need to ensure that (0, 0) never appears as one of the kernel generators, similarly as
in [Ren18, Corollary 2].

Approach outline Our solution is based on a modified isogeny evaluation algorithm from
SIKE. For a depth d node Ai, we store a basis P ′, Q′ of EAi

[2e−d], with the constraint that
[2e−d−1]Q′ = (0, 0). The children nodes are then reached by the two isogenies corresponding
to the order-2 points [2e−d−1]P ′ and [2e−d−1](P ′+Q′), respectively, for which it is ensured
that none of them equals (0, 0), thus allowing efficient SIKE arithmetic implementation.
As scalar multiplication by a large power of 2 is expensive (it is comparable to the field
square root cost), we offset such operations by selectively pushing through isogenies few
intermediate points, as done in SIKE, with the additional effort of ensuring they form
a good basis. Finally, the optimal strategy - a trade-off between the number of point
doublings and isogeny evaluations - can be computed using dynamic programming, similarly
to how it was done in the SIDH paper by Jao, De Feo and Plût [JD11,DJP11], in order to
compute the full walk up to a certain depth. Our general approach is easily parallelizable
by distributing subtree generation tasks among available workers.
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3.3.1 Maintaining Torsion Basis for Efficient Isogeny Computations

We now describe a method which allows us to maintain, during path traversals, a basis
suitable for the efficient arithmetic formulas used by SIKE, i.e., the ones detailed in
Subsection 2.3.

Proposition 3. Let A ∈ Fp2 and e ≥ 2. Let P,Q ∈ EA(Fp2) be a basis of EA[2e] with
[2e−1]Q = (0, 0). Then, for a 2-isogeny φ : EA → EA′ arising from [2e−1](P + [s]Q) with
s ∈ [0, 2e − 1],

1. if kerφ =
〈
[2e−1]P

〉
, then P ′, Q′ ∈ EA′(Fp2) is a basis of EA′ [2e−1] with [2e−2]Q′ =

(0, 0), where

P ′ = φ(P ),
Q′ = φ([2]Q);

2. if kerφ =
〈
[2e−1](P +Q)

〉
, then P ′, Q′ ∈ EA′(Fp2) is a basis of EA′ [2e−1] with

[2e−2]Q′ = (0, 0), where

P ′ = φ(P +Q),
Q′ = φ([2]P ).

Proof. Since P,Q are distinct generators and both have order 2e, it follows that the 3
order 2 points [2e−1]P, [2e−1]Q, [2e−1](P + Q) generates the 2 + 1 distinct subgroups of
E[2] = Z2 × Z2. Since [2e−1]Q = (0, 0), the order-2 point [2e−1](P + [s]Q) appearing as a
kernel for φ can only be equal to either [2e−1]P or [2e−1](P +Q). If kerφ =

〈
[2e−1]P

〉
we

immediately have φ([2e−1]P ) = OEA′ = [2e−1]P ′ and since φ([2e−2]P ) 6= OEA′ , P ′ = φ(P )
must then be a generator of E[2e−2]. Since 2-isogenies formulas arising from P + [s]Q have
the property to fix the point (0, 0) (see Remark 2), we then have φ([2]Q) has order 2e−1

and is such that [2e−2]φ([2]Q) = φ((0, 0)) = (0, 0).
Similarly, if kerφ =

〈
[2e−1](P +Q)

〉
, then P ′ = φ(P +Q) has order 2e−1. It follows

that φ([2e−1]P ) + φ([2e−1]Q) = OEA′ , i.e. [2e−2]Q′ = φ([2e−1]P ) = −φ([2e−1]Q) = (0, 0).
For P ′ and Q′ to form a basis, we further need to show that 〈P ′〉∩ 〈Q′〉 = OEA′ . Let us

assume, by contradiction, that there exists a non-trivial R ∈ 〈P ′〉 ∩ 〈Q′〉: we then have, for
certain s, t 6= 0, that R = [s]P ′ = [t]Q′ and thus [s]P ′− [t]Q′ = OEA′ . If kerφ =

〈
[2e−1]P

〉
,

we then have that [s]P − [t]Q is in kerφ and thus [2e−1]P = [s]P − [2t]Q. Since P,Q form
a basis for EA[2e], this in turn implies s = t = 0, a contradiction. A similar contradiction
is reached also for the case kerφ =

〈
[2e−1](P +Q)

〉
.

Our formulation can be used to straightforward map isogenies used to traverse tree
nodes to binary strings: using a bit, we can represent the relation between the kernel
used to walk a certain step and the (current) torsion generators (e.g. we associate “0” if
kerφ =

〈
[2e−d−1]P̃

〉
and “1” if kerφ =

〈
[2e−d−1](P̃ + Q̃)

〉
), as illustrated in Figure 2.

This allows us to easily reconstruct later from such binary strings4 the full sequence of
j-invariants traversed, which in turn can be easily mapped back to the value s whose walk
arising from P + [s]Q traverses exactly the same j-invariants.

3.3.2 Optimal Strategies for the Doubling/Isogeny Evaluation Trade-off

During evaluation of the isogeny walk arising from P + [s]Q, the order-` kernel for the
next step can be obtained through scalar multiplication as [`e−1](P + [s]Q). To compute
such kernels more efficiently, we can store some intermediate values [`e0−1](P + [s]Q) with

4With some abuse of notation, we will often refer to such binary strings as paths.
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Figure 3: An example of evaluation strategy graph. Multiplication by [`] edges ( −→) and
isogeny evaluation edges (−→ ) transform K0 ∈ E[`6] to the leaf values {[`6−i−1]Ki}i∈[0,5],
needed to compute the walk arising from K0. In bold, an optimal evaluation strategy
assuming Ceval = 1.5 · Cmult (verified experimentally).

e0 < e, and later push all such points through isogenies and scalar multiplications. Indeed,
this allows to compute the kernel of the next-step `-isogeny with just e − 1 − e0 point
multiplications by ` for the maximum e0 for which [`e0−1](P +[s]Q) is stored, while storing
and pushing smaller multiples will be useful for later steps. It is then clear the relevance
of finding good trade-offs between the number of multiplications by ` and the number of
isogeny evaluations needed to traverse a walk: indeed, depending on the implementation
adopted, these two operations have different costs.

In the extended version of [JD11], i.e. [DJP11], De Feo, Jao and Plût describe how to
derive an optimal evaluation strategy for the best trade-off between scalar multiplications
and isogeny evaluations, using the dynamic programming paradigm.

We now provide a brief overview of how optimal evaluation strategies are found
in [DJP11]. Let K0 ∈ EA[`e], φi : EAi → EAi+1 , i ∈ [0, e− 1] be the sequence of isogenies
on the length-e walk defined by K0 and Ki = φi−1(Ki−1) for i ∈ [1, e− 1]. The goal is to
compute kerφi =

〈
[`e−1−i]Ki

〉
for all i ∈ [0, e− 1] in a minimum overall cost in terms of

scalar multiplications and isogeny evaluations.
Aiming at this, we construct a directed graph with nodes{

[`i]Kj | j ∈ [0, e− 1], i ∈ [0, e− 1− j]
}
,

connected by two types of edges, namely:

• “multiplication by [`]” edges of cost Cmult, connecting [`i]Kj to [`i+1]Kj , for i+j+1 ≤
e− 1;

• “isogeny evaluation” edges of cost Ceval, connecting [`i]Kj to [`i]Kj+1 (through an
`-isogeny φj), for i+ j + 1 ≤ e− 1.

A strategy for evaluating all the kerφi =
〈
[`e−1−i]Ki

〉
can then be described by a tree

subgraph in this graph, rooted in K0 and consisting of directed paths towards the goal
leaf nodes [`e−1−i]Ki for i ∈ [0, e− 1]. The cost of a strategy is then the sum of the costs
of the edges in it, counting only once edges traversed by multiple paths. It is then clear
that best strategies are those ones in which paths to leaves overlap as much as possible.
An example of such graph along with an optimal strategy is illustrated in Figure 3

In [DJP11], it is shown that there exist minimal-cost strategies with recursive structures.
The problem is decomposed into two subproblems: the subgraph induced after following a
multiplication edges, and the subgraph induced after following e− a isogeny evaluation
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edges. This is possible due to the fact that, in paths towards leaves, the order of any
two consequent edges can be swapped (if it does not break strategy consistency), since
multiplication commutes with isogenies and such swaps do not change the overall strategy
cost. An optimal strategy can thus be obtained by evaluating all possible choices of a and
solving recursively the induced subproblems. Since the subproblems are fully characterized
by their size (and are independent from the root kernel chosen), their solutions can be
cached and reused (dynamic programming).

Application to tree generation We are interested in using best strategies during tree
generation to make path computations faster.

The difference between the tree generation and a simple isogeny evaluation is that
now, each isogeny evaluation edge creates ` new exploration nodes deeper in the tree.
However, all the ` induced sub-trees differ only by curves and generators, and so all can
follow the same sub-strategy. Effectively, an isogeny evaluation edge multiplies the number
of nodes being explored in the isogeny tree by `. To account this, we can then set the
weight of an isogeny evaluation edge φj to `j+1, while we assign to multiplication edges
[`i]Kj → [`i+1]Kj a weight of `j , since in this case the overall number of nodes being
explored doesn’t change.

Once weights are assigned, the dynamic programming approach can be applied in order
to find best strategies on these new graphs. However, in contrast to best strategies for
single paths, sub-problems are not fully characterized by their size: edge weights depend,
indeed, on where we currently are in the strategy graph. Therefore, we have to solve all
sub-problems separately.

Alternatively, we can observe that the cost of a sub-problem of height e rooted at [`i]Kj

can be obtained by multiplying by `j the cost of solving a pure instance (i.e., rooted at
[`0]K0) of height e− i− j. This reduces the dynamic programming dimension back to 1.

3.3.3 Full Algorithm

We sketch the full attack pseudo-code for the case ` = 2 in Algorithm 1.

4 Further Optimizations
4.1 Final Curve 2-bit Leak
In SIKE, the shared secret key is (computed from) the j-invariant of the image curve EAB
of the isogeny resulting from composing Alice and Bob walks in their respective torsions.
To allow this, each party publishes intermediate image curves EA and EB along with
images of others’ party torsion basis through their secret isogeny (see Subsection 2.2 for
more details). For example, Alice, who computes her 2eA -isogeny φA : E → EA, provides
Bob a basis (φA(PB), φA(QB)) for the 3eB -torsion of EA, and the coordinates of such basis
leak the final curve itself, i.e. the value A ∈ Fp2 . As was further noticed in [CLN+20], the
final value A leaks the j-invariant of the curve visited two 2-isogeny steps before reaching
the final curve during her walk: more concretely, it can be shown that the order-4 points
Q̃ = (1,±

√
A+ 2) lie in the kernel of the dual of the isogeny φ : E6 → EA, and we can

thus easily obtain the j-invariant j′ = j(EA′) of the curve EA′ = EA/
〈
Q̃
〉
visited two

steps before the end.
We note however that, since j-invariants of Montgomery curves are characterized by A2,

the A-value of the curve effectively visited two step before the end remains undetermined:
indeed, by solving the equation j′ · (A′2 − 4)− 256(A′2 − 3)3 = 0 we obtain (at most) 6
solutions for A′, and all of them correspond to Montgomery curves isomorphic to the curve
visited 2 steps before EA.
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Algorithm 1 Tree generation (` = 2)
Input: A0 ∈ Fp2 , (P0, Q0) a basis of EA0 [2e] with [2e−1]Q0 = (0, 0)
Output: j-invariants of curves 2e-isogenous to EA0 through isogenies with kernel
〈P0 + [s]Q0〉 for some s ∈ [0, 2e − 1]
Remark: x-coordinate only arithmetic may be directly implemented (details omitted).
1: function recurse(d, path, Ad, L)
2: if d = e then
3: output (path, j(EAd

))
4: return
5: (P,Q, i)← arg max(P,Q,i)∈L i

6: (P ′, Q′)← ([2e−1−i]P, [2e−1−i]Q); add tuples ([2i′−i]P, [2i′−i]Q, i′)
7: to L according to the optimal strategy (depends on d, i′)
8: for b ∈ {0, 1} do
9: K ← (P ′ + [b]Q′) ∈ EAd

10: (φ,Ad+1)← φ : EAd
→ EAd+1 is a 2-isogeny with kerφ = 〈K〉

11: L′ ← ∅
12: for (P,Q, i) ∈ L, i ≤ e− 1 do
13: if b = 0 then
14: (P,Q)← (φ(P ), φ([2]Q)) . Proposition 3
15: else
16: (P,Q)← (φ(P +Q), φ([2]P )) . Proposition 3
17: L′ ← L′ ∪ {(P,Q, i+ 1)}
18: recurse(d+ 1, path||b, Ad+1, L′)

19: recurse(0, (), A0, {(P0, Q0, 0)})

We can use 4-isogeny formulas from [JAC+20], in order to detect which coefficients
A′ can be pushed directly to the final curve EA through the 2-isogeny formulas from
Proposition 1. For an order 4 point (xk, yk) ∈ EA′ defining the isogeny φ : EA′ → EA, we
have that A = 4x4

k − 2. It then suffices to check for which of the 6 candidate values for A′,
the point on EA′ with x-coordinate (−i)n · 4

√
A+2

4 , with n ∈ [0, 3], has order 4.
Since Fp2 = Fp(i), the map (x, y) 7→ (−x, iy) defines an isomorphism between EA′ and

E−A′ , thus the order-4 point in EA′(Fp2) with x-coordinate (−i)n 4
√

(A+ 2)/4 and n ∈ [0, 3],
corresponds to an order-4 point in E−A′(Fp2) with x-coordinate (−i)m 4

√
(A+ 2)/4, where

m = n+ 2 (mod 4).
From Section 2.3 and Figure 1, we know that there are 4 coefficients ±B′,±C ′ out

of 6, each corresponding to a curve with j-invariant equal to the j-invariant of the curve
visited two step before EA, that satisfy the final 4-isogeny with respect to EA: it is then
enough to pick any of the 2 remaining coefficients ±A′, and set the updated final curve
to EA′ : in this way, all isogenies from this curve defined as in Proposition 1, will (have
at least a) walk towards the starting curve E6. This allows us to saves a factor of 4 in
the tree generated from the final curve if traversals are matched in-the-middle looking at
j-invariants.

Alternative expression for A′ Interestingly, by taking into consideration the walk struc-
ture induced by SIKE 2-isogenies (Section 2.3), the relation between such A′ and the final
curve coefficient A is very easy to express.

Lemma 1. Let EB be a Montgomery supersingular elliptic curve over Fp2 with p 6= 2, and
let K0,K1 ∈ EB(Fp2) be two order 2 points distinct from (0, 0). By applying the 2-isogeny
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formulas from Proposition 1 to the groups generated by K0 and K1, we obtain, respectively,
two isogenies φ1 : EB → EA, φ2 : EB → EA′ such that

(A− 2)(A′ − 2) = 16.
Proof. Let x̃, z̃ = 1/x̃ be the roots of x2 + Bx+ 1 = 0. Then x̃, z̃ are the x-coordinates
of K0 and K1. By applying the 2-isogeny formulas from Proposition 1 on these two
points, we then obtain A = 2− 4x̃2 and A′ = 2− 4z̃2. It then immediately follows that
(A− 2)(A′ − 2) = (−4)2 · x̃2z̃2 = 16.

Let us now consider the last 3 traversed nodes in Alice’s walk, i.e. the j-invariant of
EA′ , followed by a middle node j′, and the final j(EA). Then there exists a B ∈ Fp2 so
that j(EB) = j′, which is pushed, depending on the kernel chosen, through 2-isogenies to
−A and A′ (cf. Figure 1). Note that we use −A instead of A, since otherwise we would
select the ±B from the original path which only has a backwards edge towards j(EA′)
(i.e., an isogeny with the kernel 〈(0, 0〉). From Lemma 1, we then conclude that

A′ = 2− 16
A+ 2 (two final 2-isogenies)

This equation assumes that the last two steps consist of a sequence of two 2-isogenies. If a
4-isogeny is used instead (as in the case of SIKE challenges), this decomposes, according
to specification [JAC+20], into a sequence of two 2-isogenies followed by a sign flip of the
pushed curve coefficient. We then need to flip the sign of the coefficient of the final curve
to match the assumptions of Lemma 1, thus obtaining

A′ = 2 + 16
A− 2 (one final 4-isogeny) (3)

4.2 Storing Conjugation Representatives
In SIKE, the starting curve is chosen to be E6(Fp2), and since A = 6 ∈ Fp, the Frobenius
map π : (x, y) 7→ (xp, yp) defines an automorphism for E6(Fp2). As already noticed
in [CLN+20], this implies that for any kernel 〈R〉 ⊂ E6, j(E6/ 〈R〉)p = j(E6/π(〈R〉)), that
is pairs of conjugate kernels give rise to paths to curves having conjugate j-invariants. By
recalling that π fixes Fp, from the above we further easily obtain that if EA is isogenous
to E6, then EĀ is isogenous to E6 as well, since j(EA) = j(EĀ).

We take advantage of this fact to approximately halve the time complexity of the
meet-in-the-middle-attack. It is indeed sufficient to explore non-conjugate subtrees starting
from E6, and store the norm of j-invariants in the middle to be able to detect intersections
of j-invariants. It can be shown that at any (non-trivial) depth of the tree expanded
from E6, there exists exactly two curves with their A-coefficients in Fp, while all the other
nodes are conjugate pairs (each arising from two conjugate subtrees). This means that at
a certain depth e > 0, we have exactly 2e−1 + 1 different norms for j-invariants, which can
be computed by exploring just 2e−1+1

2e ≈ 1
2 of the tree expanded from E6.

If the j-invariants found in the intersection during the meet-in-the-middle attack have
same norm but are conjugates, we need to retrieve the correct “conjugate path” on the
tree from E6, in order to solve Problem 1. From the above properties, the sequence
of j-invariants on the path from E6 to a curve with j-invariant j′, is an element-wise
conjugate of the sequence towards a curve of j-invariant j′: it is then enough for a kernel
P + [s]Q going to j′, to suitably flip bits in s, so that the resulting path walks step-by-step
over nodes with conjugate j-invariants.

As a final note, SIKE works in the quadratic extension Fp2 = Fp(i), so elements can be
seen as complex numbers over Fp. Conjugates can be then obtained by simply changing
sign to elements’ imaginary parts, and in place of expensive to compute norms, we can
store as a unique representative of a conjugation class just real parts of j-invariants in the
middle.
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4.3 Set Intersection

4.3.1 Hash-tables or Sort and Merge?

A standard way to implement the final stage of our meet-in-the-middle attack, i.e., finding
elements common to the two tree j-invariant norm datasets, is by using hash-tables: we
fill one of such tables with entries from the first dataset, and we then lookup every element
in the second one. In theory, the amortized cost of an hash-table lookup would be O(1),
but in practice, random memory accesses get slower and slower as the table size grows and
memory latency starts dominating execution time.

An alternative approach is to sort the two datasets and perform a linear-time merge
operation by keeping common elements only, an operation requiring sequential memory
accesses. The drawback of this approach is that the sorting step has quasilinear complexity
O(n logn) in the (biggest) dataset size n, and to complete it we need memory access
patterns which are not necessarily sequential.

In order to compare these two approaches, we implemented a simple hash-set for
64-bit integers with linear scanning and double-sized buffer (i.e., to store n elements, the
structure allocates memory for 2n elements). In the following, we will refer to such custom
hash-set with the name FastHash. In our experiments, it outperforms the default C++
unordered_set (compiled on g++ 9.3.0) more than a few times. We then implemented
the sort and merge approach (denoted SortMerge).

In Figure 4, we provide different benchmarks for both FastHash and SortMerge at
different array sizes 2L.

More precisely, in Figure 4a we compare the time to intersect two unsorted 64-bit
integers arrays, assuming no preprocessing of the input datasets. Here, the FastHash-based
approach first inserts all 2L elements of the first dataset, and then performs lookups of
the 2L elements of the second dataset. In SortMerge, instead, the two datasets are first
sorted (using C++ sort()) and then merged using a two-pointers linear scan. Although
FastHash outperforms the sorting approach on up to 230 ≈ 109 entries, the advantage ratio
decreases quickly from an initial value of 4 (for L = 8) to a ratio close to 1 for L = 30. In
particular, a sharp advantage drop is visible after L = 18, which is likely related to the
dataset not fitting the CPU cache (Intel® Core™ i5 10210U 1.6-4.2 GHz).

In Figure 4b, we compare the two methods under some allowed precomputations. For
FastHash this means that only lookups are counted (insertions are excluded from time
computation), while for SortMerge we consider two cases: i) the first dataset is pre-sorted,
that is the timings include sorting the second dataset only and merging (in green); ii) both
datasets are pre-sorted, that is the timings include only merging (in blue). We can see
that the pure merging cost remains constant for any array size, and is negligible compared
to both FastHash lookups and sorting.

Parallelization When dataset sizes are large, efficient parallelization techniques are a
requirement. The most straightforward approach for parallelizing intersection finding,
consists in splitting the input datasets A and B in k (equally sized) chunks (A0, . . . , Ak)
and (B0, . . . , Bk), and then intersect all k2 distinct pairs Ai ∩ Bj independently in par-
allel. Clearly, this parallelization comes at the cost of k times more work than standard
lookups/merges, but can be acceptable if k is small.

An advantage of this approach, is that each chunk can be preprocessed independently, so
that each of the k2 chunks intersection takes preprocessed data as input. From Figure 4 it
is clear that already for k = 2, SortMerge (which requires an amortized number of 2 sorting
and k merges/interesections per chunk) outperforms the FastHash hash-set approach (which
requires 1 chunk insertion and k chunks lookups per chunk). In Figure 5, we illustrate how
these two approaches perform, for different values of k, on k chunks each of size 1GiB.
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(b) Lookup in a prepared array

Figure 4: Performance comparison between FastHash and SortMerge over 64-bit integer
arrays of total size 2L.
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Figure 5: Performance comparison between FastHash and SortMerge running on parallel
over k 64-bit integers chunks, each of size 230 (extrapolated using timings from Figure 4b).

4.4 Storage-Collisions Trade-off and Compression
Real parts (or, in general, norms) of j-invariants belong to Fp: in our meet-in-the-middle
attack, each tree has only approximately 2eA/2 ≈ p1/4 leaves, therefore, the chance of
having multiple collisions is negligible.

However, we would like to reduce storage requirements as much as possible. This can
be done by reducing the number of bits we use to represent j-invariants, while allowing
only a reasonable amount of false positive collisions. More concretely, if we use n bits to
represent j-invariants, we then expect to observe approximately (p1/4)2/2n collisions.

In addition, paths associated to j-invariants in the middle (useful to quickly test full
isogenies associated to collisions) may be omitted too. This comes at the cost of an extra
(memoryless) tree exploration, required to recover full j-invariants associated to a colliding
representation5 and the respective paths in the trees.

In some cases, it is possible to further reduce memory requirements. If the n-bit
j-invariant representations are uniformly distributed, we can compress sorted chunks of 2m
such elements by noticing that two consecutive elements are expected to differ, on average,
by 2n−m. We can then store only such reduced differences, reserving 1 flag bit in order

5Since just few false positive collisions are expected, recovering full 2 log p-sized j-invariants is useful to
immediately detect their correct conjugate branch in the tree expanded from E6.
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to distinguish between a small difference from an n-bit full representation, in case two
elements differ by more than 2n−m (in practice, a larger difference is allowed to capture
more small elements). This, in fact, reduces memory requirements from n2m bits to at
most ≈ (n−m+ 1)2m bits, with different implementation-specific wordsize trade-offs in
the middle.

We note that by requiring chunks to be sorted, this compression technique goes towards
the SortMerge intersection finding approach we detailed in Subsection 4.3: indeed, merges
can be performed equivalently by using two extra n bits registers, in which we store the n
bits values to compare, obtained by iteratively adding differences to each dataset’s first
uncompressed element.

5 Cryptanalysis of the $IKEp182 Challenge

In this section we will detail how all the above ideas allowed us to break the $IKEp182
challenge [Mic21b], a small parameters specification-compliant SIKE instance generated
by Microsoft in a live event during the 3rd NIST PQC Standardization conference.

In $IKEp182, the field characteristic is equal to p = 291357 − 1. According to the
specification, we have Fp2 = Fp(i) = Fp[x]/(x2 + 1), #E6(Fp2) = (p+ 1)2 and E6[291] =
〈PA, QA〉, E6[357] = 〈PB , QB〉 with

PA = (0x05a324935a4d7b75024fdc3601fe8b5888cea9f88212b2 +

0x02357bdd576772bf2a93e3d680ed7306e16eafc6aff904 · i,

0x242a9e09aa8e6995e4fdce9f68e8c2c902154c332de68a +

0x011b23646f8884b7a9faa5159ef13842880ed0f9f43dcd · i)
QA = (0x27b8def415bae0506a9607fff7704832151cdcbc93cb22 +

0x085c86f386b94b8c413f5e49736f26de95103a9b65f31a · i,

0x16af6790fb0f5cfd0e124033bb7619e2f75a25cae5f42b +

0x172567b99058dd9d5b99ce5ea4bacd685f57c8326011a3 · i)
PB = (0x02ca3bc7e98f88b3ca3239c276eb7a224c51f61bc8c5ed,

0x262a38701d1b61dd8875909ff268a50d912f620db980a1)
QB = (0x02dcff7123e2380f552f5bff91da77ae62e9556b866d8f,

0x06aeb7c764aa40913b3fc784d569833d4226cc4a53432f · i)

Our meet-in-the-middle attack will target the 291 torsion and will recover Alice’s full
91-steps walk in the Supersingular 2-Isogeny Graph. After a quick Setup, the full attack
will consist of 5 main stages: Trees Expansions, k-way Merge, Compression, Sieving and
Final Trees Expansions.

Setup In the first step of the SIKE protocol (Subsection 2.2), Alice sends to Bob a
compressed representation of the points φA(PB), φA(QB), consisting of the following 3
x-coordinates
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xφA(PB) = 0x17d02d323c815eee1ec75f1c675609b0bea78064cb8cc1 +

0x12fa80de8027f68c3f780b5bcd519e8205606ac249025d · i

xφA(QB) = 0x272c54d49af950b0829072753e3525091aaf87085bd7b2 +

0x23efe3c087965a49fcc5161e6453dbe632d7dec90bab12 · i

xφA(QB)−φA(PB) = 0x22c38abb1427245de1e049408dab87ed9ba54efeb4a4e4 +

0x0c5d768e87a762b6a460b941bcc5537ba0f73ce8b9f955 · i

Such representation is justified by use of efficient implementations which exploits x-only
arithmetic: we refer to [JAC+20] for more details.

If we denote the tuple (xφA(PB), xφA(QB), xφA(QB)−φA(PB)) as (xP , xQ, xQ−P ) we obtain
[CLN16, Section 6] the A coefficient of the Montgomery curve EA on which the points
φA(PB), φA(QB) lie, as

A = (1− xPxQ − xPxQ−P − xQxQ−P )2

4xPxQxQ−P
− xP − xQ − xQ−P

= 0xc0cbda5ef968048cd2c1b125774f1417125b9b02b6f91 +

0x1e8121a2a60fd266d321bb9db8d9e3111e3095c08e0bc6 · i

To take advantage of the final 2-bit leak described in Subsection 4.1, we computed the
coefficient A′ such that j(EA′) lies on the (secret) traversed path 2 steps before the final
curve, and the SIKE-tree arising from A′ does not go towards the final curve EA. This
can be achieved by using (3), i.e., A′ = 2 + 16/(A− 2), to obtain:

Ã′ = 0x164db610b03a9b3c38e59bf29485a60462d1cd9f22d95e +

0x1a8d75d6d0285807042e900df3c2cf74b4eb160d50a92e · i

j(EA′) = 0xe48a8271ea06ec4193db09970a23bea55c777ef2fb5be +

0x56910191b4835901ef45e4b857817391ad1213080afa9 · i

The Setup phase was implemented in SageMath [The21].

Trees Expansions We set A′ = Ã′, and we proceed by attacking the 89-steps path in the
isogeny graph between j(E6) and j(EA′). Note that there may be no path in the SIKE-tree
(Definition 7) between the exact curves, as we might chose a different representative curve,
but there must exist a path in the isogeny graph between j(E6) and j(EA′), and the
SIKE-trees arising from E6 and EA′ must contain paths following this path by j-invariants
(from the opposite endpoints). In order to meet in the middle, we generate in a depth-
first manner the SIKE-tree expanded from E6 (up to the depth 45) and the SIKE-tree
expanded from EA′ (up to the depth 44), employing the optimal strategies detailed in
Subsubsection 3.3.2.

We note that, as discussed in Subsection 4.2, it suffices to explore only half of conjugate
sub-branches of the tree expanded from E6: this results in an almost equal number of
leaves in-the-middle generated from both trees, with a total of 244 + 1 leaves for the tree
expanded from E6, and 244 leaves for the one expanded from EA′ .

Once the depth-first generation reaches a leaf, we compute the corresponding j-invariant
and we store the least significant 64 bits of its real part. In our implementation, multiple
jobs explore in parallel distinct branches of each tree: when a job collects 2GiB of 64-bit
j-invariant representations (which correspond to 228 j-invariants visited), this chunk is
sorted in-memory, written to disk, and then the job terminates. On the University of
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Luxembourg High Performance Computing (HPC) facilities [VBCG14], each of these job
took approximately 17 minutes to complete on a single core of an Intel® Xeon® E5-2680v4
@ 2.4GHz with 4GiB of RAM reserved. This sums up to a total of approximately 4.2
core-years and 256TiB of disk space needed to explore both trees and store the truncated
j-invariants.
Remark 5. By utilizing the Merge and Compression earlier - on the fly after a sufficient
amount of chunks is generated, the storage requirement could be reduced to close to
128TiB.

k-way Merge We employed our custom k-way merge implementation optimized for 64-bit
unsigned integers, to merge the 2GiB sorted chunks generated from each tree: on a single
core of an Intel® Xeon® E5-2680v4 @ 2.4GHz and 4GiB of RAM, we needed approximately
2.5 core hours to merge 256 2GiB chunks into a single 512GiB sorted chunk. We note
that, to keep memory requirements close to the ones needed to store all j-invariants
representations, chunks can be merged in parallel to the depth-first expansions, as soon
as enough new 2GiB chunks from a certain tree are generated. Practicality of running
multiple such merges in parallel depends, however, on storage architecture, cluster load
and maximum disks I/O throughput: on the University of Luxembourg HPC cluster, we
were able to run 4 nodes in parallel, running 28 merge jobs each, without degrading too
much I/O performances. This merging stage took, overall, approximately 54 core days.

Compression Since 512GiB chunks contain already 236 64-bit elements each, at this point
we ran single-core jobs to merge 4 chunks directly in compressed form (Subsection 4.4),
using 32 bits (including 1 flag bit) to encode elements differences. This resulted in a
compression factor very close to 1

2 . In the same configuration as above (and under the same
limitations), we needed roughly 5 core hours to complete one of such merge-to-compressed
job (we ran only 2-3 nodes concurrently, each executing 28 such jobs), for a total of 27
core-days to complete all jobs.

We then finally obtained 64 1TiB compressed chunks from each tree, for a total of
128TiB disk space used (all previous sub-chunks were deleted).

Sieving At this point we proceed with finding elements shared by chunks from different
trees. Since chunks are sorted already, we can use the parallel version of SortMerge with
parameter k = 64 detailed at the end of Subsubsection 4.3.1. This stage consists in merging
tuples of (compressed) 1TiB chunks and storing only the common elements. If ran in a
single thread on the full data, this stage only requires sequential read of the 128TiB of
data. However, the heap operations in k-way merge dominate the performance and can
not be parallelized. In our implementation, a sieving job consisted in merging at the same
time 4 chunks from the first tree with 4 chunks from the second tree, by decompressing
elements and storing only collisions: on a single core, it took approximately 1.1 core days
to complete, for a total of 280 core-days for 256 such jobs. This trade-off results in 2PiB
of data read, which is acceptable to allow sufficient parallelization.

We expected and we actually found 16 777 119 ≈ 244·2/264 = 224 = 16 777 216 64-bit
collisions among the two trees: once such collisions are safely stored, we can delete all the
128 1TiB chunks from previous stages.

Final Trees Expansions With the collisions just found, we run the tree explorations again,
similarly as in the first stage of the attack, but this time we store only full j-invariants
in the middle that have the least 64 bits of their real part matching any of the collisions
found, and their paths in the respective trees.

During tree explorations, we regularly check if were found j-invariants from different
trees that share same real part: if yes, we stop tree traversals, and we reconstruct Alice’s
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full walk from E6 to EA (and thus her secret) using the paths associated to the matching
j-invariants, with special care in case the two result to be conjugate (Subsection 4.2).

In our case, the colliding conjugate j-invariants in-the-middle obtained by expanding
the trees from E6 and EA′ were, respectively,

j0 = 0x0008132653e4d53cb9cc0defb36a0141d900adbb128a24f0 +

0x0001049f06c78aaed22786dfcff5b202ce3a50429f369b86 · i

j1 = 0x0008132653e4d53cb9cc0defb36a0141d900adbb128a24f0 +

0x0027910d1a0d795d077f40d1480a4dfd31c5afbd60c96479 · i

Using the (implementation-dependent) path information we stored, we then reconstruct,
in linear time, the Alice’s private key as

sA = 0x59d64d476da9487be414734

which allowed us to easily compute Alice’s and Bob’s shared secret from Bob’s public key
exchanged, as

j(EAB) = 0x7a470546a24124f06f49bcbb855a6e3c1402ba1004bfc +

0x1a88f02557168dd75b64f8407a368aa4ff2bc03121fbaf · i

whose value is a correct pre-image for the publicly released SHA512 hash of the challenge
shared secret [Mic21b].

We found the solution to the challenge after exploring approximately 44% of the tree
expanded from E6 (only conjugate-unique sub-branches) and 63% of the tree expanded
from EA′ (success probability of ≈ 28%).

This brings the total cost of our attack to approximately 8.5 core years and 256TiB of
disk memory.

We note however that we decided to employ compression only during the execution
of the above attack, in order to reduce the amount of not fully parallelizable disk reads
needed for the parallel SortMerge. Thus, in fact, the whole attack can be executed in 8.5
core years with just slightly more than 128TiB of disk memory available. The storage
requirement can be reduced further by sacrificing parallelization and performing the main
steps for a single part of the second tree at a time. In our case, we used 4-chunk groups
(4TiB) on each side and so only 64 + 4 = 68TiB of storage is sufficient for the (less-parallel)
attack.

6 Conclusions
In this work, we showed how the $IKEp182 challenge can be broken in practice. A natural
question is whether the $IKEp217 challenge is reachable for attacking using our method.

In $IKEp217, the prime p is equal to 2110367 − 1, so that eA = 110, leading to
192PiB storage requirement if our attack on $IKEp182 is applied directly and 64-bit
j-invariant representations are stored (which may produce a large number of collisions,
namely 2107−64 = 243).

On the ULHPC cluster, the main limitation is the I/O performance, which is about
20GiB/s6. Even if arbitrary storage size is available, this maximum throughput limits the
time needed to solve the instance, since full data must be read/written at least once. To
read the 192PiB of data on the ULHPC cluster, one would need at least 116 days. Since
full attack performs several I/O rounds, the attack would likely take more than a year.

On the other hand, an attacker with a custom highly-parallelized supercomputer may
perform the attack much faster. Precise trade-off analysis and parameter selection are left
as a future work.

6https://hpc-docs.uni.lu/filesystems/gpfs/

https://hpc-docs.uni.lu/filesystems/gpfs/
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