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Abstract. This paper utilizes the techniques used by Regev [Reg09] and Lyubashevsky,
Peikert & Regev in the security reduction of LWE and its algebraic variants [LPR13] to
exhibit a quantum reduction from the decryption of NTRU to leaking information about the
secret key. Since this reduction requires decryption with the same key one wishes to attack, it
renders NTRU vulnerable to the same type of attacks that affect the Rabin–Williams scheme
[Ber08] – albeit requiring a quantum decryption query.
A common practice thwarting such attacks consists in applying the Fujisaki-Okamoto (FO,
[FO99]) transformation before encrypting. However, not all NTRU protocols enforce this
protection. In particular the DPKE version of NTRU [SXY18] is susceptible to such an
attack.

1 Introduction

The leading post-quantum cryptographic schemes are lattice-based. They account for five
among six PQC Round 3 finalists in NIST’s standardization process, and two out of seven
alternative candidates3. Within lattice-based cryptography the most common approaches
are module learning with errors (MLWE, three finalists) and NTRU (two finalists and one
alternative), which have both undergone substantial scrutiny [AD21].

The major appeal of MLWE schemes comes from their security reductions. In 2009,
Regev [Reg09] showed a quantum reduction from the worst-case instances of lattice problems
to random instances of the learning with errors (LWE) problem. In 2013 Lyubashevsky,
Peikert & Regev [LPR13] extended this result to algebraic variants of LWE (such as MLWE)
with a quantum reduction from worst-case algebraic lattice problems to MLWE.

Recently, Pellet-Mary and Stehle provided the first security proof for NTRU [PS21]. In
their paper they present a quantum reduction from worst-case approximate Shortest Vector
Problem (SVP) over ideal lattices to an average-case search variant of the NTRU problem.
However, their result does not provide a complete security proof.

Indeed, in NTRU (unlike MLWE) the mathematical problem which must be solved
to break the private key and the mathematical problem which must be solved to decrypt
a single message are very different : breaking the secret key requires finding the shortest
vector in a certain lattice, whereas decrypting a message requires the solution of a Bounded
Distance Decoding (BDD) problem in the dual lattice.

In this paper we show that a quantum decryption oracle allows an adversary to find
relatively short vectors in the key lattice. For the parameters considered for the NTRU NIST
3 See https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
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PQC candidates this does not seem to lead to a full attack, but does allow the attacker to
solve an otherwise computationally difficult problem and thereby breaks indistiguishability.
Note that stronger results are known for LWE [AJOP20]: a single quantum decryption
query allows the adversary to recover the full secret key with constant success probability.

The result is somewhat a double-edged sword: On one hand it is another step in the
direction of proving NTRU’s security. On the other hand, it lends the scheme to a new set
of attacks since a single quantum query to the decryption oracle would compromise it. This
is similar to the security proof of the Rabin–Williams scheme, where the security proof led
many to avoid it, precisely because of the threat of an adversary which might be able to
use a single decryption to break the private key using the reduction of the security proof.

While NIST’s original call for proposals did not require resistance to quantum decryption
oracles, we think that since such an attack exists and since the foreseen advent of quantum
computers is the very reason to be of the NIST’s call, it is prudent to implement all possible
protections to the scheme before deployment.

2 The NTRU Cryptosystem

Before we proceed, let us briefly remind the definition of NTRU [HPS98]. The scheme uses
three public parameters: a prime n and two integers p, q such that p - q. Typically n and q
are taken in the range 250 to 2500, whereas p is usually very small, e.g., p = 3.

There are two equivalent ways to describe NTRU operations, in terms of polynomial
multiplication in the quotient ringR = Z[X]/(Xn−1) (which is the usual point of view), or in
terms of the convolution product in the group Zn.4 Ideed a polynomial a0+. . .+an−1X

n−1 is
identified with the vector of its coefficients a = (a0, . . . , an−1), which makes the equivalence
immediate:

c = ab ⇔ ck =
∑

k=i+j mod n

aibj .

Polynomials of R with coefficients in {−1, 0, 1} form the small elements set S, which
plays a fundamental role in NTRU. Key generation consists in picking F ,G ∈ S and
computing

f ← 1 + pF , g ← pG, h← f−1g mod q,

where all operations are in R. The public key is pk = h, whereas the secret key is sk = (F ,G).
To encrypt a plaintext m ∈ S, pick a random s ∈ S and compute the ciphertext

c← sh+m mod q.

Finally, to decrypt a ciphertext c, first compute

a← fc mod q,

then lift a to Zn with coefficients |ai| ≤ q
2 . The result of this operation, taken modulo p

retrieves m.
4 See Silverman: http://archive.dimacs.rutgers.edu/Workshops/Post-Quantum/Slides/Silverman.pdf.
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3 Quantum Decryption Query Attacks

3.1 Preliminaries

Quantum Decryption Query. A Quantum Decryption Query is a superposition of inputs,
i.e., a linear combination of inputs of the attacker’s choice. Using the bra-ket notation, such
a query is written

∑
x ψx|x〉. We do not make normalization explicit to maintain readability.

In fact we will consider queries of the form
∑

x ψx |x〉 |x〉 (this is to ensure unitarity). A
response to this query is a superposition

∑
x ψx |x〉 |Deck(x)〉 where Deck(x) computes the

decryption of x with key k (unknown to the attacker but known to the oracle). For more
information on such queries see [BZ13b,BZ13a,GHS16].

Quantum Fourier Transform. The Quantum Fourier Transform (QFT) is a unitary operator,
usually defined over {0, 1}N by

QFT =
1√
2N

2N−1∑
x=0

2N−1∑
y=0

ωxy |y〉 〈x| ,

where ω = exp
(
2iπ/2N

)
. Recall that the QFT can be computed exactly in polylog time on

a quantum computer [Kit95,HH00]. The above definition for the QFT is directly extended
over vectors, using the dot product instead of integer product.

3.2 Algorithm

Inputs: S ⊂ R, h ∈ R.

1. Prepare initial state:
∑

m∈S |m〉
2. State expansion (see [Reg09])

∑
m,s∈S |m〉 |s〉

3. Apply the unitary operation |a〉 |b〉 7→ |a〉 |a+ hb〉 to obtain the state∑
m,s∈S

|m〉 |hs+m〉

Notice that the second register’s state is the NTRU encryption of the first register’s
state.

4. Apply the unitary operation |a〉 |b〉 7→ |a−Deck(b)〉 |b〉 to obtain the state∑
m,s∈S

|m−Deck(hs+m)〉 |hs+m〉 =
∑

m,s∈S
|0〉 |hs+m〉

Note that to perform this step we execute one quantum decryption query to the oracle.
5. Compute the QFT of the right-most register, and return the result |p〉.
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3.3 Analyzing the Results

Just before applying the QFT gate, our quantum state behaved according to the distribution
D = Dm ∗ (hDs), where Dm is the distribution of short messages, Ds is the distribution of
short salts and ∗ denotes convolution. By the convolution theorem,

QFT (Dm ∗ (hDs)) = QFT(Dm) ·QFT(hDs) = D̂m ·QFT(hDs)

= D̂m · h̄QFT(Ds) = D̂m · h̄D̂s

We would like to express the right-hand side of this equation as a function of D̂s = QFT(Ds).
As we show below there exists h such that QFT(hDs) = hQFT(Ds).

For some choices of Ds and Dm we can anticipate that both D and D̂ will have a low
variance (e.g., if D is a Gaussian distribution with standard deviation σ =

√
q then so is

D̂).
Therefore, the output of our algorithm is a ring element which tends to be both short

and h̄ times a short element. If h̄ were equal to h−1 (the inverse of h in R), then finding
this element would be exactly the problem of finding a short vector in the lattice of the
NTRU private key.

3.4 Dealing With the Transpose

Now we need to explain why being h̄ times a short vector is equivalent to being h−1 times
a short vector.

Assume for simplicity that we are dealing with the ring Z[x]/(xn + 1), and consider
the polynomial h(x) = h0 + h1x+ . . . hn−1x

n−1. Denote by H the matrix such that for the
polynomial p(x) = p0+p1x+. . . pn−1x

n−1, the coefficients of ph are given by (p0, . . . , pn−1)H.
It is easy to see that:

H =


h0 h1 . . . hn−1
−hn−1 h0 . . . hn−2

...
...

. . .
...

−h1 −h2 . . . h0

 for which H> =


h0 −hn−1 . . . −h1
h1 h0 . . . −h2
...

...
. . .

...
hn−1 hn−2 . . . h0


That is: if H is the matrix corresponding to the polynomial h(x) = h0+h1x+. . .+hn−1x

n−1,
then H> corresponds to the polynomial h> = h0 − hn−1x − . . . − h1xn−1. We will note
three important facts about this transformation:

1. It clearly preserves the L2 norm of the coefficients.
2. It can be shown that it behaves well with the multiplication in the ring:

∀p, h ∈ Z[x]/(xn + 1), (ph)>(x) = h>p>(x).

3. (h>)> = h.
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Denote by p (instead of |p〉) the output of the quantum algorithm described above. We showed
that p is short and that h>p is short. Therefore p> is short and such that hp> = (h>p)> is
short, so by transposing the output of the quantum algorithm we obtain a short vector in
the NTRU private key lattice.

The same phenomenon happens in R = Z[X]/(Xn − 1) namely:

H =


h0 h1 . . . hn−1
hn−1 h0 . . . hn−2
...

...
. . .

...
h1 h2 . . . h0

 for which obviously H> =


h0 hn−1 . . . h1
h1 h0 . . . h2
...

...
. . .

...
hn−1 hn−2 . . . h0


Here H is the matrix corresponding to the polynomial h(x) = h0 +h1x+ . . .+hn−1x

n−1

and H> corresponds to the polynomial h> = h0 + hn−1x+ . . .+ h1x
n−1. The three facts

that we stated for the case R = Z[X]/(Xn + 1) hold for R = Z[X]/(Xn − 1) as well.

Remark 1 (Ternary error distribution). In most NTRU applications the secret keys, the
messages and the salt are chosen to be random ternary vectors. If we look at Ds = Dm =
U({−1, 0, 1}), the indicator function has a simple Fourier transform:

f̂(α) =
∑

x=−1,0,1
exp(2iπαx/q) = 1 + 2 cos(2πα/q).

Therefore, |f(α)|2 = (1 + 2 cos(2πα/q))2. This distribution attains its maximum in α = 0
and its minimum at α = ±q/3.

Remark 2. If we now consider a vector-valued distribution, i.e, U({−1, 0, 1}n), the Fourier
transform becomes:

f̂(α) =
∑

x∈{−1,0,1}n
exp

(
2iπ

q
α · x

)
=

n∏
i=1

(1 + 2 cos(2παi/q)) ,

which is also strongly biased, peaking at vectors whose coordinates are multiples of q.

Remark 3. Note that in the general case, the Fourier transform of the indicating function
of U([−`, `]) is

|f̂(α)| = csc

(
`πα

q

)
sin

(
(1 + 2`)πα

q

)
.

This distribution exhibits a similar behaviour as the cases discussed above.

4 Small-Scale Example

We can work out the computation on a small-scale example, demonstrating the claims made
above. We consider q = 3329, n = 3, f = X + 1, g = −X2 +X + 1. We get

h :=
g

f
= 1664X2 + 1664X + 1666.
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The collection {m + hs | m, s ∈ S} contains 729 elements, which are not uniformly
distributed. Of these, 238 are unique, 90 appear twice, 54 appear three times, 18 appear 4
times, etc.

Rather that visualising directly the Fourier transform, which is a function of 3D space,
we can look at it over 1D slides along each coordinate. This is represented in Figure 1,
obtained using a classical FFT. This distribution favours short results, a fact that is not
substantially impacted by increasing n.
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Fig. 1. Coordinate-wise Fourier transform. Each coordinate corresponds to a colour: red, green, blue. The
x scale is between 0 and a cutoff at 108.

Next we can verify that hp is also short. We can do this by plotting f̂(hb), where b
spans R and f̂ is the Fourier transform computed above. Here too we only look at 1D slices
which are easier to visualise, see Figure 2. This distribution should also favor short values.

Remark 4. Storing hb for all b ∈ R requires qn log2 q bits; this barely fits within 64 GB
with the example parameters.

5 Mitigations

One possible mitigation could be to use the NTRU encryption in a protocol which would
prevent direct access to a decryption oracle. In fact, modern lattice KEMs use an external
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Fig. 2. Coordinate-wise distribution of f̂(hb), with a horizontal cutoff at 108.

protocol which is aimed at preventing adversaries from decrypting malicious ciphertexts.
However, it is unclear whether current protocols should prevent the user from decrypting a
legitimate ciphertext upon request.

The Fujisaki-Okamoto transformation [FO99], which is a good textbook practice, protects
against this type of attack since it both requires the salt and the message entering the CPA
encryption to be produced using a PRF, and hashes the decryption’s result. Almost all
lattice-based cryptographic schemes in the NIST competition use FO, except NTRU. Indeed,
the NTRU candidate uses a modified protocol that defends against known decryption failure
attacks; in particular their commitment is to never decrypt a ciphertext that was not
produced using a message and salt pair within the message space and hence rely upon the
“rigidity” of their scheme thwart decryption failure attacks.

In particular, the DPKE version of the NTRU candidate [SXY18] contains explicit
instructions on how to make it CCA secure5 but these still leave it vulnerable to our attack.

5 Excerpt of DPKE_Decrypt: “This implementation assumes that only the KEM interface is exprosed
to users. Implementations that exposed to users. Implementations that expose the DPKE to users are
required to return (pack_S3(0)‖pack_S3(0), 1) on failure.”
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6 Conclusions and Further Research

The reduction presented above can be seen both as a security claim for NTRU (since
together with [PS21] it shows that NTRU’s security reduces to the worst-case hardness
of gap ideal SVP). However, it is still important to take into consideration the adverse
effect it has on the security of NTRU. Note that the attack does not allow us to find the
private key itself but allows us to solve a related problem that might (or rather should)
otherwise be very difficult. In particular this reduction can be used by an adversary with
access to a quantum decryption oracle to obtain a hint about the private key (at the very
least, breaking the indistiguishability assumption).

An interesting research direction6 would consist in running the attack described in this
paper several times to collect more and more information about the secret key’s lattice
with the hope to eventually hand-over the extracted information to quantum lattice sieving
or extreme pruning to access the secret key (or a functionally equivalent one).

A further question is that of the applicability of the techniques described in this paper
to Falcon and NTRU Prime – if such extensions happen to be possible.
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