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Abstract

Bitcoin Cash, created in 2017, is a “hard fork” from Bitcoin responding to the need for
allowing a higher transaction volume. This is achieved by a larger block size, as well as a new
difficulty adjustment (target recalculation) function that acts more frequently (as opposed to
Bitcoin’s difficulty adjustment happening about every two weeks), resulting in a potentially
different target for each block. While seemingly achieving its goal in practice, to our knowledge
there is no formal analysis to back this proposal up.

In this paper we provide the first formal cryptographic analysis of Bitcoin Cash’s target
recalculation functions—both ASERT and SMA (current and former recalculation functions,
respectively)—against all possible adversaries. The main distinction with respect to Bitcoin’s is
that they are no longer epoch-based, and as such previous analyses fail to hold. We overcome
this technical obstacle by introducing a new set of analytical tools focusing on the “calibration”
of blocks’ timestamps in sliding windows, which yield a measure of closeness to the initial
block generation rate. With that measure, we then follow the analytical approach developed
in the Bitcoin backbone protocol [Eurocrypt 2015 and follow-ups] to first establish the basic
properties of the blockchain data structure, from which the properties of a robust transaction
ledger (namely, Consistency and Liveness) can be derived.

We compare our analytical results with data from the Bitcoin Cash network, and conclude
that in order to satisfy security (namely, properties satisfied except with negligible probability
in the security parameter) considerably larger parameter values should be used with respect to
the ones used in practice.
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1 Introduction

While opening up a new era in the area of cryptocurrencies, Nakamoto’s Bitcoin protocol [Nak09b,
Nak09a] has been critized for its heavy use of the computational resources needed by its underlying
proof of work (PoW) mechanism as well as its relatively long settlement time of transactions. As
a consequence, a number of alternative cryptocurrencies have been proposed with the purpose of
ameliorating the above issues. One such proposal is Bitcoin Cash (BCH)1, created in August 2017
as a “hard fork” of Bitcoin, with the original motivation of increasing the size of blocks, and thus
allowing more transactions to be processed.

Due to lesser prominence and popularity, the computational “investment” on these alternate
cryptocurrencies is relatively low (for example, the hashing power invested on Bitcoin Cash is
approximately 5% of that on Bitcoin). Moreover, miners are able to evaluate their expected reward
and rapidly switch among different blockchains in order to achieve a higher profit, giving rise to an
environment where the number of participating miners on these minor blockchains may fluctuate
wildly, which in turn has a direct effect on suitable difficulty (of PoWs’) recalculation mechanisms2.

The above two aspects—desired higher transaction throughput and higher participation variation—
are the motivation for this work. We focus on Bitcoin Cash as a representative of a newly proposed
target recalculation function, and perform a formal analysis of the protocol’s security under such
dynamic environment. The importance of an adequate target recalculation mechanism has already
been pointed out in [GKL17], where it is observed that if it is removed, the blockchain protocol
becomes insecure in the dynamic setting even if all parties behave honestly, resulting in a blockchain
that will diverge substantially (i.e., spawning “forks”) as the number of miners keeps increasing,
thus becoming vulnerable to many known cryptographic attacks. Furthermore, an inadequate
target recalculation function may break the balance between miners’ invested hashing power and
reward, thus reducing their confidence in the system and leading them to quit the mining pool,
arguably a situation that should be avoided.

Bitcoin Cash’s target recalculation algorithm has gone through three stages. When created,
the recalculation mechanism was a combination of Bitcoin’s target recalculation function and an
emergency difficulty adjustment (EDA) mechanism, which would suddenly enlarge targets by 25%
(i.e., decrease mining difficulty by 20%) if the block generating interval of 6 blocks exceeds 12
hours.

In November 2017, this initial function was replaced by a new function called SMA (for Simple
Moving Average, or “cw-144”). At a high level, SMA is analogous to Bitcoin’s recalculation function
in the sense that it determines the next target based on an “epoch” of blocks, except that in the
new algorithm the target value is recalculated more frequently—in fact, the target for each block
varies. Moreover, the epoch of blocks changes with every block in a “sliding window” fashion.
Generally speaking, the SMA function calculates target for the next block based on the length of
the epoch and the average target of the blocks in the epoch.

Finally, the recent (November 2020) update introduces a control-theory-inspired recalculation
function called ASERT (for Absolutely Scheduled Exponentially Rising Targets) [WISK20]), which
is completely different from previous recalculation functions. ASERT is not epoch-based, and
adjusts the difficulty level of each block simply based on its timestamp and height difference with
the “anchor” block. Specifically, once an anchor block is chosen, a timestamp can be computed
for all the subsequent blocks according to its height and ideal block generating interval. The
difficult adjustment is an exponential function of the block’s timestamp deviation from its scheduled

1https://www.bitcoincash.org/.
2As a reference, Bitcoin adjusts the PoWs’ difficulty level every 2016 blocks – approximately every two weeks.
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timestamp. the target changes is controlled by a “smoothing factor” m, which we will show is a
crucial parameter in our analysis.

Overview of our results. Our main contribution is establishing under what conditions regarding
party fluctuation Bitcoin Cash’s target recalculation functions (both ASERT and SMA) achieve a
steady and close to the ideal block generation rate, given that they are not epoch-based, and the
recalculation mechanism is invoked for every block—and further, in the case of ASERT, that it is
“memory-less,” meaning that the target for one block is only decided by the current timestamp
and the block’s height. As such, previous analyses based on the duration of an epoch no longer
hold, and new analytical tools are needed.

As in prior work on dynamic environments, bounds on the ways that miners come in and drop
out of the computation are necessary for things to work. We suggest a new methodology to capture
how the number of parties can fluctuate. In a nutshell, our definition is comprised of two parts
concerning both short-term and long-term participation. In such context, we first (Section 3)
perform a preliminary analysis of the ASERT function to establish whether in a suitable respecting
environment, the blocks in chains created according to the function will have blocks with timestamps
to make the probability of producing the next blocks close to the ideal block generation rate (we
will call such timestamps “good”). Through a closeness measure based on “calibrated timestamps”
and probabilitic analysis we conclude that they do.

Our conclusions then serve as a crucial part of the complete security analysis (Section 4), where,
following [GKL15, GKL17], we present an abstraction of the protocol we term the Bitcoin Cash
backbone, and follow the “template” of establishing two main properties of the blockchain data
structure—“common prefix” and “chain quality”—which serve as an intermediate step to build a
robust transaction ledger. As a result, (our abstraction of) the Bitcoin Cash protocol with chains
of variable difficult using the ASERT function running in a bounded-delay network and suitably
parameterized, satisfies, with overwhelming probability, the properties of consistency and liveness.

In addition (Section 5), we also provide a description and analysis of Bitcoin Cash’s previous
target recalculation function SMA. Even though the function has now been deprecated, it provides
insights and elements of comparison against ASERT with regard to party fluctuation.

Finally (Section 6), we compare our results with data from the Bitcoin Cash network, from
which we extract the actual party fluctuation rate and network delay. Our main conclusion is
that in order to satisfy security (namely, properties satisfied except with negligible probability)
increased parameter values should be used with respect to the ones used in practice—specifically, a
larger value of m (the smoothing factor in ASERT and epoch length in SMA)–concretely, m = 432,
compared to the value m = 288 that is being used in ASERT (which in turn corresponds to 2
days)— should be adopted. In addition, regarding the SMA function, a larger dampening filter
τ = 8 in the SMA function should be used, instead of τ = 2, which is the value that was last used.
Lastly, our comparison with the existing Bitcoin Cash network shows that the ASERT function
performs better than the SMA function under a pronounced party fluctuation.

Due to space limitations, some of the proofs and detailed protocol descriptions, and other
complementary material are presented in the appendix.

2 Preliminaries

In this section we present the network model where we analyze Bitcoin Cash’s target recalculation
functions as well as the Bitcoin Cash protocol abstraction, as well as some basic blockchain notation.
These notions and terminology follow closely [GKL17, GKL20], and therefore the presentation
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here is succinct, except for the extension of the notion of respecting environments with respect
to [GKL20]. More formal details about the model are presented in Appendix B.1.

Model. We describe our protocol in the bounded-delay (aka “partially synchronous”) network
model considered in [PSS17, GKL20], where there is an upper bound ∆ in the delay (measured
in number of rounds) that the adversary may inflict to the delivery of any message. The precise
value of ∆ will be unknown to the protocol. “Rounds” still exist in the model, but now these
are not synchronization rounds where messages are supposed to be delivered to honest parties
(“miners”). At any given time (round), a fraction of the parties may be “corrupted” and controlled
by an adversary A, directing them to behave in an arbitrary and potentially malicious manner.
The underlying communication graph is not fully connected and messages are delivered through a
“diffusion” mechanism.

As in [GKL20], we assume a dual hash function/network functionality that is available to all
parties running the protocol and the adversary, and which abstracts the access of the parties to
the hash function and the network. The hash function aspect relates to the parties attempting
to solve “proofs of work” (PoW) [DN92] during the execution of the protocol, and is modeled as
parties having access to the oracle H(·). In our analysis, each honest party Pi is allowed to ask
one query to the oracle in each round, but unlimited queries for verification. The adversary A, on
the other hand, is given at each round r a number of queries that cannot exceed tr. The “diffusion”
aspect of the communication allows the order of messages to be controlled by A. Furthermore, the
adversary is allowed to spoof the source information on every message (i.e., communication is not
authenticated).

Garay et al. [GKL20] refer to the setting defined by the two series n = {nr}r∈N and t = {tr}r∈N,
representing the number of “ready” honest parties and the bound on corrupted parties that may
be activated at each round r, with the above bounded access to the random oracle functionality,
as the dynamic setting. As pointed out in [GKL17], protocol’s properties cannot be satisfied under
arbitrary sequences of parties, and restrictions are in order. In our model, one important difference
with respect to [GKL17, GKL20] is the bound on the short-term variation of the number of parties,
in addition to the long-term bound, which results in the following definition of accepted variation
terms on the number of parties3:

Definition 1. For γ,Γ ∈ R+, we call a sequence (nr)r∈N (〈γ, σ〉, 〈Γ,Σ〉)-respecting if it holds that
in a sequence of rounds S with |S| ≤ Σ rounds, maxr∈S nr ≤ Γ ·minr∈S nr and for any consecutive
sub-sequence rounds S′ 4 S with |S′| ≤ σ rounds, maxr∈S′ nr ≤ γ ·minr∈S′ nr.

The term viewΠ,A,Z denotes the random variable ensemble, when considering a “standalone”
execution without any auxiliary information as well as concatenation of view of all parties ever
activated. In our theorems we will be concerned with properties of protocols Π. Such properties
will be defined as predicates over viewΠ,A,Z with a small probability of error in κ as well as in a
parameter k that is selected from {1, . . . , κ}.

Blockchain notation. A block is a quadruple of the form B = 〈r, st, x, ctr〉 with st ∈ {0, 1}κ, x ∈
{0, 1}∗ and r, ctr ∈ N. They satisfy the predicate validblockTq (B) defined as (H(ctr,G(r, st, x)) <
T )∧(ctr ≤ q) whereG(·), H(·) are cryptographic hash functions with output in {0, 1}κ. A blockchain
is a sequence of blocks. The rightmost block is the head of the block denoted head(C). Note that
the empty string ε is also a chain and head(ε) = ε. A chain Cwith head(C) can be extended by

3Definition 1 is consistent with the notion introduced in [GKL17], except that there the party fluctuation is
expressed with respect to the number of honest parties. Note that the two fluctuations are related by a constant
(concretely, 2 − δ; see Table 1). As it turns out, expressing statements in terms of honest-party fluctuation will
considerably simplify them.
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appending a valid block B = 〈r′, st′, x′, ctr′〉 that satisfies (st′ = H(ctr,G(r, st, x))) ∧ (r′ > r). By
convention, any valid block may extend the chain C = ε. The length of a chain len(C) is its number
of blocks. Consider a chain C of length ` and any nonnegative integer k, we denote by Cdk the chain
resulting from “pruning” the k rightmost blocks. Note that for k ≥ len(C), Cdk = ε. If C1 is a prefix
of C2 we write C1 4 C2.

3 Bitcoin Cash

A salient distinction of Bitcoin Cash (in addition to the size of blocks) with respect to Bitcoin is
its target recalculation function—ASERT. Intriguingly, and in contrast to SMA, this function is
“memory-less,” so one thing we would like to find out right away is whether such a function is able
to maintain, under the conditions allowed by our model, a steady block generation rate. If that’s
the case, we will then proceed with the protocol abstraction and analysis to establish under what
values of parameters the blockchain and ledger properties (cf. Section 4) can be satisfied. (The
latter is also required for the SMA analysis.)

3.1 The ASERT Target Recalculation Function

The November 2020 Bitcoin Cash update introduced a new difficulty adjustment algorithm, called
ASERT (for “Absolutely Scheduled Exponentially Rising Targets”), aimed at achieving a stable
block generation interval and transaction confirmation time as well as reducing the advantage of
non-steady mining strategies. The new algorithm is derived from the control theory literature, and,
specifically, from the notion of Exponentially Moving Average (EMA), a type of moving average that
places greater weight on the most recent data points, in contrast, to Simple Moving Average (SMA,
the previous target recalculation function), which applies an equal weight to all the observations
in the period. For additional details, refer to [WISK20], where a mathematical derivation of this
function based on exponential smoothing, a common technique for removing noise from time series
data, is provided.

ASERT adjusts the target based on the anchor block, i.e., a block whose target is denoted by
T0, and is used as a reference for all subsequent blocks. We use f ∈ (0, 1) to denote the ideal block
generation rate (and thus 1/f represents the ideal block generation interval). At a high level, for
a given block, ASERT compares its timestamp with the scheduled timestamp, which is a product
of the ideal block generating interval and the block’s height difference (e.g., for the i-th block, it is
(i− 1)/f). If the block’s timestamp is ahead of the scheduled time, which means that the number
of miners is larger than that corresponding to the anchor block, ASERT decreases the target (i.e.,
raises the difficulty of generating a block); if it falls behind the scheduled time, then the target is
increased (i.e., the difficulty is reduced).

The amount by which the target is changed is based on a value m, the decay or smoothing
factor. Specifically, the target is adjusted exponentially based on the ratio of time difference and
the smoothing time (i.e., m/f). For example, if the smoothing time is 2 days, then a block with a
timestamp 2 days ahead of the scheduled timestamp would have a target whose value is half of the
anchor target’s.

Formally, ASERT is defined as follows. (Note that we assume the anchor block to be the first
block and timestamps start at 0.)

Definition 2 (ASERT). For fixed constants m,T0, the target calculation function DASERT : Z∗ →
R is defined as

DASERT(ε) = T0 and DASERT(r1, . . . , rv) = T0 · 2(rv−(v−1)/f)/(m/f), (1)
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where (r1, . . . , rv) corresponds to a chain of v blocks with ri the timestamp of the i-th block.

Note that, as opposed to Bitcoin’s target recalculation algorithm [GKL17] and also to Bitcoin
Cash’s recalculation function (SMA, Section 5), ASERT is not epoch based. Moreover, and as
mentioned earlier, ASERT is memoryless—i.e., the target for one block is only decided by the
current timestamp and the block’s height. No matter what timestamps the previous blocks have,
they would not influence the current block’s target value.

Removing the function’s “dampening” filter raises the question of whether it would suffer from
Bahack’s raising difficulty attack [Bah13]. It turns out that it does not, since Equation (1) intrin-
sically prevents the difficulty from a sudden sharp increase. Concretely, assuming monotonically
increasing timestamps, even if the adversary produces m blocks with the same timestamp, he can
only double the difficulty value.

3.2 ASERT: Preliminary Analysis

We now provide a preliminary analysis of the ASERT function to establish whether in a suitable
environment, the blocks in chains created according to the function will have blocks with timestamps
to make the probability of producing the next blocks close to the ideal block generating rate.
(With foresight, we will call such timestamps “good.”) Our preliminary conclusions will then serve
as a crucial part of the complete security analysis, after we introduce the Bitcoin Cash protocol
abstraction.

Our security parameter is hash function length κ, and we let the smoothing factor m =
polylog(κ). Our probability space is over all executions of length at most some polynomial in
κ. We will denote by Pr the probability measure of this space.

We use nr to denote the total number of parties at round r ([GKL17, GKL20] uses nr to denote
the number of honest parties), and tr to denote the number of corrupted parties. Thus, the number
of honest parties at round r is nr−tr. For simplicity, we use hr = nr−tr. This follows the tradition
in the secure multiparty computation literature and the notation in [GKL15].

Recall that in our model, each party’s query bound to the random oracle (RO) per round is
q = 1. Now suppose that at round r exactly n parties query the RO with a target T . Then the
probability that at least one of them will succeed is

f(T, h) = 1− (1− pT )h ≤ phT, where p = 1/2κ.

We let f0 = f(T0, h0), where T0 and h0 are the initial target and estimate of number of honest
parties, respectively. The objective of the target recalculation mechanism is to maintain a target
T for each party such that f(T, hr) ≈ f0 for all rounds r. For notational simplicity, we will drop
the subscript from f0, and will always specify the two arguments of f(·, ·) to avoid confusion.

We say round r is a target-recalculation point of a valid chain C, if there is a block with
timestamp r. Recall that our goal is to show that all the target recalculation points on a chain
using the ASERT function are close to f , i.e., “good.” How close should this generation rate (phrT )
be?

Intuitively, the block generation rate should satisfy f/Γ ≤ phrT ≤ Γf , when considered in a
respecting environment with long-term party fluctuation ratio Γ (recall Definition 1). Moreover,
adversarial parties can choose to keep silent, hence decelerate the block production process. One
might consider adding an honest-party advantage, say, δ to the lower bound—i.e., f/(2 − δ)Γ ≤
phrT ≤ Γ. As we shall see, it turns out that this modification is not sufficient for a satisfactory
security analysis, and is inadequate to absorb all the errors in our model. I.e., the adversary would
be able to wait for an appropriate moment to act and then disturb the regular block production.
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Consequently, we need a looser bound to compensate for adversarial behavior as well as for errors
introduced by the (peer-to-peer and dynamic) network. Taking this into account, we proceed to
define a “good” target-recalculation point:

Definition 3 (Goodness). A target-recalculation point r is good if the target T for the next block
satisfies f/2(2− δ)Γ3 ≤ phrT ≤ 2Γ3f .

As mentioned above, ASERT not being epoch-based means that previous analyses regarding
the “goodness” of recalculation points for Bitcoin [GKL20] (as well as for SMA—Section 5) do not
hold.

We start our analysis by presenting some basic observations regarding the ASERT function.
Note that the target for the next block is merely related to the block’s timestamp and height. For
the i-th block with timestamp r and corresponding number of honest parties hr, it is not hard to
see that if r = (i−1)/f+(m/f) log(h0/hr), the i-th block would have block generation rate exactly
f . We call this timestamp r the calibrated timestamp for block Bi. In addition, r is a good target
recalculation point if it satisfies

i− 1

f
+
m

f
log(2(2− δ)Γ3 · h0

hr
) ≤ r ≤ i− 1

f
+
m

f
log(2Γ3 · h0

hr
). (2)

We now define a new random variable to describe the deviation of timestamps: We use Xi to
express by how much the i-th block deviates from its calibrated timestamp. For the i-th block with
timestamp ri and number of honest parties hi,

X1 = 0 and Xi+1 = Xi + (ri+1 − ri)−
1

f
− m

f
log

hi+1

hi
for i ≥ 0.

The three parts in the definition of Xi+1 are as follows: (1) (ri+1 − ri) represents the difference
between their timestamps, (2) 1/f is the ideal block interval, and (3) (m/f) log(hi+1/hi) is the
difference between the respective number of honest parties. For “good” blocks, variable Xi should
satisfy −(m/f) log 2(2− δ)Γ3 ≤ Xi ≤ (m/f) log 2Γ3.

As defined, Xi is sensitive to the fluctuation of number of parties. Since we can only bound the
fluctuation rate during a fixed number of rounds, Xi is not suitable for the analysis. To overcome
this, we consider a new random variable Wi within a (〈γ, ` + 2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting
environment, and then show that if this new random variable satisfies certain conditions, then Xi

presented above satisfies the ideal bound (2).
In more detail, we consider the calibrated timestamp r = (i − 1)/f + (m/f) log(h0/hr), and

a sliding window of 4(m/f) log Γ rounds starting with block Bu and number of honest parties
hu. For each subsequent block in this window, we replace hr with hu and call r′ = (i − 1)/f +
(m/f) log(h0/hu) the relatively calibrated timestamp with respect to Bu for i-th block Bi, i ≥ u. We
can now define a new random variable Wi expressing by how much the i-th block deviates from its
relatively calibrated timestamp (wrt Bu). That is, for i-th block with timestamp ri,

Wu = Xu and Wi+1 = Wi + (ri+1 − ri)−
1

f
for i ≥ u.

Now the definition of the random variable only consists of two parts: The difference between their
timestamps, and the ideal block interval. For good target recalculation points, Wi should satisfy

−m
f

log 2(2− δ)Γ2 ≤Wi ≤
m

f
log 2Γ2.
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Figure 1: The states based on the values of random variable Wi.
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Next, we define seven states based on values of the random variable Wi. Studying the possible
transitions between them allows us to establish that target recalculation points are good. Refer to
Figure 1. Let hmax, hmin denote the maximum and minimum number of parties during the sliding
window, respectively.

HotLefti ,Wi < −
m

f
log 2(2− δ)Γ2

VolatileLeftOuteri , −
m

f
log 2(2− δ)Γ2 ≤Wi < −

m

f
log 2(2− δ)Γ

VolatileLeftInneri , −
m

f
log 2(2− δ)Γ ≤Wi < −

m

f
log

2(2− δ)hmax

hu

Coldi , −
m

f
log

2(2− δ)hmax

hu
≤Wi ≤

m

f
log

2hu
hmin

VolatileRightInneri ,
m

f
log

2hu
hmin

< Wi ≤
m

f
log 2Γ

VolatileRightOuter ,
m

f
log 2Γ < Wi ≤

m

f
log 2Γ2

HotRighti ,Wi >
m

f
log 2Γ2

States VolatileLeftOuter and VolatileRightOuter are of fixed length (m/f) log Γ, while states
VolatileLeftInner and VolatileRightInner are of length at most (m/f) log Γ. These lengths will play a
significant role in the following analysis of the ASERT function.

We aim to show that for blocks Bu, . . . , Bv generated in an interval of length 4(m/f) log Γ
rounds, the following holds:

� For a block Bi, i > u with Wi (w.r.t. Bu) in state Cold, we can construct a new 4(m/f) log Γ-
round sliding window with Wi (w.r.t. Bi) in state VolatileLeftInner, VolatileRightInner or Cold.

� If Wu is in state VolatileLeftInner, VolatileRightInner or Cold, the probability of Wi, i > u reaching
HotLeft or HotRight is negligible.

� If Wu is in state VolatileLeftInner,VolatileRightInner or Cold, Wi, i > u will return to Cold with
overwhelming probability.

Lemma 1 below follows from the definition of each state and party fluctuation; Lemma 2 estab-
lishes a basic property the volatile states satisfy.

Lemma 1. For a block Bv, if Wv w.r.t. Bu is in state Cold, then Wv w.r.t. Bv is in state Volatile
LeftInner,VolatileRightInner or Cold.
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Proof. While w.r.t. Bu, Xv = Wv + (m/f) log(hv/hu). Combine it with Coldv as well as hmax ≤
Γ · hv, hv ≤ Γ · hmin, we get

−m
f

log 2(2− δ)Γ ≤ −m
f

log
2(2− δ)hmax

hu
+
m

f
log

hv
hu

≤ Xv = Wv +
m

f
log

hv
hu
≤ m

f
log

2hu
hmin

+
m

f
log

hv
hu
≤ m

f
log 2Γ.

By the definition of Wv w.r.t. Bv, Wv = Xv, therefore in state VolatileLeftInner, VolatileRightInner
or Cold.

Lemma 2. Until the next block is produced, if Wi is in the state VolatileLeftOuter or VolatileLeft
Inner, the block generation rate is always below f/2; if Wi is in the state VolatileRightInner or Volatile
RightOuter, the block generation rate is always above 2f .

Proof. For the first part, our goal is to show that even if the adversary and the honest parties join
force, they cannot achieve the block generation rate over f/2. Suppose i-th block has timestamp r
and number of honest parties hr. If Wi < −(m/f) log[2(2− δ)hmax/hu], the target of Bi satisfies

Tr < T0 · 2( i−1
f

+m
f

log
h0
hu
−m
f

log
2(2−δ)hmax

hu
− i−1

f
)/(m/f)

=
T0

2
· h0

(2− δ)hmax
≤ T0

2
· h0

(2− δ)hr
.

Therefore, the block generating rate at round r is pTrhr < f/[2(2 − δ)]. Note that pTrhmax <
f/[2(2 − δ)] as well, which implies that while the number of honest parties may raise during the
rounds till the next block will be produced, the block generating rate will never exceed f/[2(2−δ)].
Moreover, the adversary may join force to accelerate the block production. Recall that ∀r, tr ≤
(1− δ)hr, after the adversary joins, the block production rate is still below f/2.

For the second part, we prove that the block generating rate will not fall below 2f when the
honest parties keep solely working. Similarly, assuming i-th block has timestamp r and number of
honest parties hr as well as Wi ≥ (m/f) log(2hu/hmin). Thus, the corresponding target

Tr > T0 · 2
( i−1
f

+m
f

log
h0
hu

+m
f

log 2hu
hmin
− i−1

f
)/(m/f)

= 2T0 ·
h0

hmin
≥ 2T0 ·

h0

hr
.

By pTrhmin > 2f , we learn that the block generating rate is always above 2f .

We are now ready to establish the probability of “escaping” from a volatile state to a hot state.

Lemma 3. Consider blocks Bu, . . . , Bv with timestamps rv − ru ≤ 4(m/f) log Γ in a (〈γ, ` +
2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting environment. If Wu is in state VolatileLeftInner,VolatileRightInner
or Cold, the probability of Wi, i > u reaching HotLeft or HotRight is negligible.

Proof. Regarding the probability of escaping from VolatileLeftOuter, by Lemma 2, at every round
it will succeed producing a block with probability at most f/2. We view the number of blocks
produced as a binomial distribution with success probability f/2. And, for worst case, Wi begins
at the leftmost point in VolatileRightInner, it has to go leftwards for (m/f) log Γ in order to reach
HotLeft.

Since Wi+1 = Wi + (ri+1 − ri) − 1/f , we get Wv = Wu + rv − ru − (u − v)/f . Assume now
Wu = −(m/f) log 2(2 − δ)Γ, if Wv is in HotLeft, rv − ru − (u − v)/f < −(m/f) log Γ. Obviously,
this will never happen in the first (m/f) log Γ rounds. For the rounds with index in {(m/f) log Γ +
1, . . . , 4(m/f) log Γ}, split them into segments with length 1/f . For r in i-th segment with index
{(m/f) log Γ+(i−1)/f+1, . . . , (m/f) log Γ+ i/f}, suppose we produce a block Bv, in expectation,
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parties will succeed for b(m log Γ + i− 1)/2c times in these rounds. If they succeed for more than
(m log Γ + i) times, then rv − ru − (u− v)/f < −(m/f) log Γ, thus reach HotLeft.

Note that m log Γ+i ≥ 2·b(m log Γ+i−1)/2c always holds. By Theorem 19, let Zi, . . . , ZT (T =
r) be independent variables with E[Zi] = f/2 and Zi ∈ {0, 1}. Let Z =

∑T
i=1 Zi, µ =

∑T
i=1 f/2 =

E[Z] = b(m log Γ + i− 1)/2c ≥ m log Γ. Then, for Λ = 1, we get

Pr[Z ≥ (1 + Λ)µ] ≤ exp
[
− Λ2

2 + Λ
·m log Γ

]
≤ 2−Ω(m).

Eventually, this may happen for 3(m/f) log Γ times, thus we get the negligible escape probability

1− (1− 2−Ω(m))
3m
f

log Γ ≥ 3
m

f
log Γ · 2−Ω(m) = 2−Ω(polylog(κ)).

Consider the the probability of escaping from VolatileRightOuter, by Lemma 2, at every round
it will succeed producing a block with probability at least 2f . We view the number of blocks
produced as a binomial distribution with success probability 2f . And, for worst case, Wi begins at
the rightmost point in VolatileRightInner, it has to go rightwards for (m/f) log Γ in order to reach
HotRight.

Since Wi+1 = Wi + (ri+1 − ri) − 1/f , we get Wv = Wu + rv − ru − (u − v)/f . Assume now
Wu = (m/f) log 2Γ, if Wv is in HotRight, rv − ru − (u − v)/f > (m/f) log Γ. Obviously, this
will never happen in the first (m/f) log Γ rounds. For the rounds with index in {(m/f) log Γ +
1, . . . , 4(m/f) log Γ}, split them into segments with length 1/f . For r in i-th segment with index
{(m/f) log Γ+(i−1)/f +1, . . . , (m/f) log Γ+ i/f} suppose we produce a block Bv, in expectation,
parties will succeed for 2(m log Γ + i − 1) times in these rounds. If they succeed for less than i
times, then rv − ru − (u− v)/f > (m/f) log Γ, thus reach HotRight.

Note that i ≤ (1/2) · 2(m log Γ + i− 1) always holds. By Theorem 19, let Zi, . . . , ZT (T = r) be
independent variables with E[Zi] = 2f and Zi ∈ {0, 1}. Let Z =

∑T
i=1 Zi, µ =

∑T
i=1 2f = E[Z] =

2(m log Γ + i− 1) ≥ 2 log Γ. Then, for Λ = 1/2, we get

Pr[Z ≤ (1− Λ)µ] ≤ exp
[
− Λ2

2 + Λ
· 2m log Γ

]
≤ 2−Ω(m).

Eventually, this may happen for 3(m/f) log Γ times, and the final escape probability

1− (1− 2−Ω(m))
3m
f

log Γ ≥ 3
m

f
log Γ · 2−Ω(m) = 2−Ω(polylog(κ))

is still negligible.

Next, we focus on the “return” probability. Since Wi will travel far away from the relatively
calibrated timestamp (i.e., HotLeft or HotRight) only with negligible probability, and once it reaches
Cold we are done, we consider the following two bad events:

� During 4(m/f) log Γ rounds, beginning at −(m/f) log 2(2 − δ)Γ (the leftmost point of Volatile
LeftInner), Wi stays in state VolatileLeftOuter and VolatileLeftInner.

� During 4(m/f) log Γ rounds, beginning at (m/f) log 2Γ (the rightmost point of VolatileRight
Inner), Wi stays in the state VolatileRightInner and VolatileRightOuter.

We show that by the concentration of the binomial distribution, these two bad events happen
only with negligible probability. Note that our results are achieved considering the largest distance
Wi needs to travel and with worst success probability. For those events that start closer to the
relatively calibrated timestamp, the events’ probability will be much lower.
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Lemma 4. Consider blocks Bu, . . . , Bv with rv−ru ≤ 4(m/f) log Γ in a (〈γ, `+2∆〉, 〈Γ, 4(m/f) log Γ〉)-
respecting environment. If Wu is in state VolatileLeftInner,VolatileRightInner or Cold, Wi, i > u
will return to Cold with overwhelming probability.

Proof. We consider the two bad events that makes Wi fail to return Cold.
For the first event of staying in the left-side states, Lemma 2 shows that at every round it will

succeed producing a block with probability at most f/2. We view the number of blocks produced
as a binomial distribution with success probability f/2. And, since we assume it begins at the
leftmost point in VolatileLeftInner, it has to go rightwards for at most (m/f) log Γ in order to reach
Cold.

Consider the first (4m/f) log Γ rounds with blocks {Bu, . . . , Bv}. Since Wi+1 = Wi + (ri+1 −
ri)− 1/f , we get Wv = Wu + rv − ru − (u− v)/f . Assume now Wu = −(m/f) log 2(2− δ)Γ, if Wv

is in Cold, rv − ru − (u − v)/f > (m/f) log Γ. In expectation, parties will succeed for (2m log Γ)
times in (4m/f) log Γ rounds. If they succeed for more than (3m log Γ) times, it cannot satisfy
rv − ru − (u− v)/f > (m/f) log Γ, thus fails to reach Cold, i.e., Wi still falls in VolatileLeftInner.

By Theorem 19, let Zi, . . . , ZT (T = (4m/f) log Γ) be independent variables with E[Zi] = f/2
and Zi ∈ {0, 1}. Let Z =

∑T
i=1 Zi and µ =

∑T
i=1 f/2 = E[Z] = 2m log Γ. Then, for ∆ = 1/2, we

get

Pr[Z ≥ (1 + Λ)µ] ≤ exp
(
− Λ2

2 + Λ
· 2m log Γ

)
= 2−Ω(m).

For the second event of staying in the right-side states, Lemma 2 shows that at every round
it will succeed producing a block with probability at least 2f . We view the number of blocks
produced as a binomial distribution with success probability 2f . And, since we assume it begins at
the rightmost of VolatileRightInner, it has to go leftwards for at most (m/f) log Γ in order to reach
Cold.

Consider the first (2m/f) log Γ rounds with blocks {Bu, . . . , Bv}. Since Wi+1 = Wi + (ri+1 −
ri) − 1/f , we get Wv = Wu + rv − ru − (u − v)/f . Assume now Wu = (m/f) log 2Γ, if Wv is
in Cold, rv − ru − (u − v)/f < −(m/f) log Γ. In expectation, parties will succeed for (4m log Γ)
times in (2m/f) log Γ rounds. If they succeed for less than (3m log Γ) times, it cannot satisfy
rv − ru − (u− v)/f > −(m/f) log Γ, thus fail to reach Cold, i.e., Wi still falls in VolatileRightInner.

By Theorem 19, let Zi, . . . , ZT (T = (2m/f) log Γ) be independent variables with E[Zi] = 2f
and Zi ∈ {0, 1}. Let Z =

∑T
i=1 Zi and µ =

∑T
i=1 2f = E[Z] = 4m log Γ. Then, for ∆ = 1/4, we get

Pr[Z ≤ (1− Λ)µ] ≤ exp
(
− Λ2

2 + Λ
· 4m log Γ

)
= 2−Ω(m).

Therefore, the return probability is 1− 2−Ω(polylog(κ)).

Lemma 3 guarantees “goodness” in a sliding window with fixed length and ideal start state,
while Lemma 4 states the desired probability of finding the next ideal start block in such a sliding
window. Therefore, we are able to extend our analysis from the first 4(m/f) log Γ rounds to the
whole execution. Formally:

Theorem 5. All the target recalculation points on a chain in a (〈γ, ` + 2∆〉, 〈Γ, 4(m/f) log Γ〉)-
respecting environment are good.

Proof. We show that “goodness” is maintained for all target recalculation points in a sliding window
of length 4(m/f) log Γ, and that it can be iterated from the first round to the whole execution.
Note that in our assumption, the first block satisfies pT1nr1 = f (i.e., the state is Cold), thus, we can
establish the first sliding window starting from B1. The iteration works as follows: We choose the
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last block with state Cold in the sliding window, and then establish a new sliding window starting
from it. According to Lemma 4, such block always exists. For blocks in each sliding window,
Lemma 3 ensures that all the target recalculation points are good (i.e., never go into the state Hot
Left or HotRight).

We note that if we consider a respecting environment that allows more time for the same party
fluctuation, then the goodness parameter—i.e., the upper bound and lower bound of the target
recalculation point—can be closer to f . For example, the good target recalculation parameter can
be changed to (1 + Γ3)f and f/[(2 − δ)(1 + Γ3)], with sliding window length 2Γ3(m/f) log Γ. In
the analysis, this is a trade-off. For simplicity, the presentation in this section chooses the more
intuitive values (2f and f/2).

4 Full Security Analysis

So a memoryless target recalculation function, under certain conditions, is able to maintain a
steady block generation rate. Can this be used by a protocol to satisfy the desired blockchain
and ledger properties, as formulated in [GKL15, GKL17]? That’s what this section demonstrates,
by providing the relevant protocol abstraction and following their analytical approach, albeit with
different parameters and proofs.

4.1 The Bitcoin Cash Backbone Protocol

The main changes introduced by Bitcoin Cash’s hard fork from Bitcoin were an increase of the block
size, replacement of the difficulty adjustment algorithm, and modification of the transaction rules;
the protocol structure remained unchanged. For the analysis, we adopt the protocol abstraction
presented in [GKL15] (and follow-ups), consisting of the main algorithm (Algorithm 4), which at
the beginning of a round receives input (new transactions as well as chains sent by other miners);
validates them and compares them (according to their accumulated difficulty) against the miner’s
current chain, adopting the one with highest difficulty (it could be the party’s own); and attempts
to extend the adopted chain by generating a PoW with the current round’s difficulty value. Before
turning to the protocol description, we first review the desired properties the protocol should satisfy.

Blockchain properties. We review the two main properties to be satisfied by a PoW-based
blockchain protocol.

� Common Prefix Qcp (Parameterized by k ∈ N): For any two players P1, P2 holding chains C1,

C2 at rounds r1, r2, with r1 ≤ r2, it holds that Cdk1 � C2.

� Chain Quality Qcq (Parameterized by µ ∈ R and ` ∈ N): For any party P with chain C in
viewΠ,A,Z , and any segment of that chain of difficulty d such that the timestamp of the first
block of the segment is at least ` smaller than the timestamp of the last block, the blocks the
adversary has contributed in the segment have a total difficulty that is at most µ · d.

Transaction ledger. Similarly to Bitcoin, the main application of the Bitcoin Cash protocol is a
robust transaction ledger, aimed at maintaining a serialized transaction sequence organized in the
form of a blockchain, satisfying the following two properties. Let L denote such ledger.

� Consistency: For any two honest parties P1, P2, reporting L1,L2 at rounds r1 ≤ r2, resp., it
holds that L1 is a prefix of L̃2.

13



� Liveness (Parameterized by u ∈ N, the “wait time” parameter): If a transaction tx is provided
to all honest parties for u consecutive rounds, then it holds that for any player P , tx will be in
L.

Protocol description. As in [GKL15], in our description of the protocol we intentionally avoid
specifying the type of values/content that miners try to insert in the chain, the type of chain
validation they perform (beyond checking for its structural properties with respect to the hash
functions G(·), H(·), and the way they interpret the chain. These checks and operations are handled
by the external functions V (·), I(·) and R(·) (the content validation function, the input contribution
function and the chain reading function, resp.) which are specified by the application that runs
“on top” of the backbone protocol. The Bitcoin Cash protocol in the dynamic setting comprises
three algorithms chain validation, chain comparison and proof of work.

Chain validation. The validate algorithm performs a validation of the structural properties of
a given chain C. It is given as input the value q, as well as hash functions H(·), G(·). It is
parameterized by the content validation predicate predicate V (·) as well as by D(·), the target
calculation function (see Section 3.1 and Appendix 5). For each block of the chain, the algorithm
checks that the proof of work is properly solved (with a target that is suitable as determined by the
target calculation function), and that the counter ctr does not exceed q. Furthermore it collects the
inputs from all blocks, xC , and tests them via the predicate V (xC). Chains that fail these validation
procedure are rejected. (Algorithm 1.)

Algorithm 1 The chain validation predicate, parameterized by q, T , the hash functions G(·), H(·),
and the content validation predicate V (·). The input is C.

1: function validate(rnow, C)
2: valid← V (xC) ∧ (C 6= ε)
3: if valid = true then . The chain is non-empty and meaningful w.r.t. V (·)
4: r′ ← rnow
5: 〈r, st, x, ctr〉 ← head(C)
6: st′ ← H(ctr,G(r, st, x))
7: repeat
8: 〈s, x, ctr〉 ← head(C)
9: T ← D(rCd1) . Calculate target based on Cd1

10: if validblockTq (〈st, x, ctr〉) ∧ (H(ctr,G(r, st, x)) = st′) ∧ (r < r′) then
11: r′ ← r . Retain round timestamp
12: st′ ← st . Retain hash value
13: C = Cd1 . Remove the head from C
14: else
15: valid← False
16: end if
17: until (C = ε) ∨ (valid = False)
18: end if
19: return valid
20: end function

Chain Comparison. The objective of the second algorithm, called maxvalid, is to find the “best
possible” chain when given a set of chains. The algorithm is straightforward and is parameterized
by a max(·) function that applies some ordering in the space of chains. The most important aspect
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is the chains’ difficulty in which case max(C1, C2) will return the most difficult of the two. In case
diff(C1) = diff(C2), some other characteristic can be used to break the tie. In our case, max(·, ·)
will always return the first operand to reflect the fact that parties adopt the first chain they obtain
from the network. (Algorithm 2.)

Algorithm 2 The function that finds the “best” chain, parameterized by function max(·). The
input is {C1, . . . , Ck}.

1: function maxvalid(r, {C1, . . . , Ck})
2: temp← ε
3: for i = 1 to k do
4: if validate(r, Ci) then
5: temp← max(C, temp)
6: end if
7: end for
8: return temp
9: end function

Algorithm 3 The proof of work function, parameterized by q and hash functions H(·), G(·). The
input is (x, C).

1: function pow(r, x, C)
2: if C = ε then . Determine proof of work instance.
3: st← 0
4: else
5: 〈r′, st′, x′, ctr′〉 ← head(C)
6: st← H(ctr′G(r′, st′, x′))
7: end if
8: ctr ← 1
9: B ← ε

10: T ← D(rC) . Calculate target for next block based on timestamps.
11: h← G(r, st, x)
12: while (ctr ≤ q) do
13: if H(ctr, h) < T then . Proof of work succeeds and a new block is created.
14: B ← 〈r, st, x, ctr〉
15: break
16: end if
17: ctr ← ctr + 1
18: end while
19: C ← CB . Chain is extended.
20: return C
21: end function

Proof of work. The third algorithm, called pow, is the proof of work-finding procedure. It takes as
input a chain and attempts to extend it via solving a proof of work. This algorithm is parameterized
by two hash functions H(·), G(·). Moreover, the algorithm calls the target calculation function D(·)
in order to determine the value T that will be used for the proof of work. The procedure, given a
chain C and a value x to be inserted in the chain, hashes these values to obtain h and initializes
a counter ctr. Subsequently, it increments ctr and checks to see whether H(ctr, h) < T ; in case a
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suitable ctr is found then the algorithm succeeds in solving the POW and extends chain C by one
block. (Algorithm 3.)

Bitcoin Cash backbone protocol. The core of the Bitcoin Cash backbone protocol with variable
difficulty is similar to that in [GKL17], with several important distinctions. First is the procedure
to follow when the parties become active. Parties check the ready flag they possess, which is false
if and only if they have been inactive in the previous round. In case the ready flag is false, they
diffuse a special message ‘Join’ to request the most recent version of the blockchain(s). Similarly,
parties that receive the special request message in their Receive() tape broadcast their chains.
As before parties, run “indefinitely” (our security analysis will apply when the total running time
is polynomial in κ). The input contribution function I(·) and the chain reading function R(·)
are applied to the values stored in the chain. Parties check their communication tape Receive()
to see whether any necessary update of their local chain is due; then they attempt to extend it
via the POW algorithm pow. The function I(·) determines the input to be added in the chain
given the party’s state st, the current chain C, the contents of the party’s input tape Input()
and communication tape Receive(). The input tape contains two types of symbols, Read and
(Insert, value); other inputs are ignored. In case the local chain C is extended the new chain is
diffused to the other parties. Finally, in case a Read symbol is present in the communication tape,
the protocol applies function R(·) to its current chain and writes the result onto the output tape
Output(). The pseudocode of the backbone protocol is presented in Algorithm 4.

Algorithm 4 The Bitcoin Cash backbone protocol in the dynamic setting at round “round” on
local state (st, C) parameterized by the input contribution function I(·) and the chain reading
function R(·). The ready flag is false if and only if the party was inactive in the previous round.

1: if ready = true then
2: Diffuse(‘ready’)
3: C̃ ← maxvalid(C all chains C′ found in Receive())
4: 〈st, x〉 ← I(st, C̃, round, Input(),Receive())
5: Cnew ← pow(round, x, C̃)
6: if (C 6= Cnew) ∨ (‘Join’ ∈ Receive()) then
7: C ← Cnew
8: Diffuse(C) . chain is diffused when it is updated or when someone wants to join.
9: end if

10: if Input() contains Read then
11: write R(xC) to Output()
12: Diffuse(RoundComplete)
13: end if
14: else
15: ready← true
16: Diffuse(Join,RoundComplete)
17: end if

4.2 ASERT: Full Analysis

Table 1 summarizes the parameters that will be used in our analysis, some of which have already
been introduced. Note that our security parameter is κ, and ϕ = Θ(m) = polylog(κ). Moreover,
we consider the fluctuation of the total number of parties (cf. Definition 1 and Fact 1).
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Table 1: Summary of parameters (ASERT).

� δ: Advantage of honest parties, ∀r(tr/hr < 1− δ).
� γ, σ,Γ,Σ: Determine how the number of parties fluctuates across rounds in a period (cf.

Definition 1 and Fact 1).
� f : Probability that at least one honest party succeeds generating a PoW in a round assuming
h0 parties and target T0 (the protocol’s initialization parameters).

� m: Smoothing factor (cf. Definition 2).
� τ : Parameter that regulates the target that the adversary could query the PoW with.
� ε: Quality of concentration of random variables (cf. Definition 6).
� κ: The length of the hash function output.
� ϕ: Related to the properties of the protocol.
� L: The total number of rounds in the execution of the protocol.

During a round r of an execution E, the honest parties might be split and work on different
chains, and thus might query the random oracle on different targets. Denote by Tmin

r and Tmax
r

the minimum and maximum of these targets, respectively.
Next, we extend the definition of “goodness” from Section 3.2 to apply rounds and chains, in

addition to recalculation points, and following [GKL17], we define a property called accuracy, which
we will then show most executions satisfy, and which will help achieve the desired application’s
properties.

Definition 4 (Goodness). A target-recalculation point r is good if the target T for the next
block satisfies f/2(2 − δ)Γ3 ≤ phrT ≤ 2Γ3f . Round r is good if f/2γ(2 − δ)Γ3 ≤ phrT

min
r and

phrT
max
r ≤ 2γΓ3f . A chain is good if all its target-recalculation points are good.

Definition 5 (Accuracy). A block created at round u is accurate if it has a timestamp v such that
|u − v| ≤ ` + 2∆. A chain is accurate if all its blocks are accurate. A chain is stale, if for some
u ≥ `+ 2∆, it does not contain an honest block with timestamp v ≥ u− `− 2∆.

For a given round r, we let Sr denote the set of chains that belong, or could potentially belong
to an honest party. Being explicit about this set of chains will help in the formulation of a number
of predicates (see below). Specifically, Sr includes4:

� Chain C that belongs to an honest party;
� chain C with diff(C) > diff(C′) for some chain C′ of an honest party; and
� chain C with diff(C) = diff(C′) for some chain C′ of an honest party and head(C) was computed

no later than head(C′).

Random variables. We are interested in estimating the difficulty acquired by honest parties
during a sequence of rounds. For a given round r, the following real-valued random variables are
defined in [GKL20]:

� Dr: Sum of the difficulties of all blocks computed by honest parties.
� Yr: Maximum difficulty among all blocks computed by honest parties.
� Qr: Equal to Yr when Du = 0 for all r < u < r + ∆ and 0 otherwise.

4Note that these chains should exist and be valid at round r.
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A round r such that Dr > 0 is called successful and one where Qr > 0 isolated-successful.
Regarding the adversary, in order to overcome the fact that he can query the oracle for arbitrarily

low targets and thus obtain blocks of arbitrarily high difficulty, we would like to upper-bound the
difficulty he can acquire during a set J of queries. This is achieved by associating a set of consecutive
adversarial queries J with the target of its first query. We denote this target T (J), and say that
T (J) is associated with J . We then define A(J) and B(J) to be equal to the sum of the difficulties
of all blocks computed by the adversary during queries in J for target at least T (J)/τ and T (J),
respectively–i.e., queries in J for targets less than T (J)/τ (resp. T (J)) do not contribute to A(J)
(resp. B(J)).

For simplicity, we write h(S) =
∑

r∈S hr for a set of rounds S and queries J (similarly, t(S),
D(S), Y (S), Q(S), A(J) and B(J)).

We also define the random variable E taking values on our probability space and with a dis-
tribution induced by the random coins of all entities (adversary, environment, parties) and the
random oracle. Let Er−1 fix the execution just before round r. In particular, a value Er−1 of Er−1

determines the adversarial strategy and so determines the targets against which every party will
query the oracle at round r and the number of parties hr and tr, but it does not determine Dr

or Qr. For an adversarial query j we will use, slightly overloading notation, E
(J)
j−1 to denote the

execution just before this query.
The following fact is a consequence of Definition 1 (respecting environments):

Fact 1. Let S be a set of at most Σ consecutive rounds in a (〈γ, σ〉, 〈Γ,Σ〉)-respecting environment
and U ⊆ S.
(a) If U 4 S and |U | < σ,

hS
Γ
≤ h(S)

|S|
≤ Γ · hS and

hU
γ
≤ h(U)

|U |
≤ γ · hU ,

where hS ∈ {hr : r ∈ S} and hU ∈ {hr : r ∈ U}.
(b)

h(S) ≤ (1 +
Γ|S\U |
|U |

)h(U) and |S|
∑
r∈S

(phr)
2 ≤ Γ(

∑
r∈S

phr)
2.

Proof. (a) As proved in [GKL17], the average of several numbers (i.e., h(S)/|S|) is bounded by
their minimum and maximum, we get the desired inequality.

(b) We learn by (a) that h(S\U) ≤ |S\U | · Γ · h(U)/|U |. Note that h(S) = h(S\U) + h(U),
by adding h(U) we get the first inequality. The second inequality is a simple implementation of
Theorem 21 with ak = phr, bk = 1, wk = 1 and M = Γ′ ·m.

In order to obtain meaningful concentration of random variables, we have to consider a suffi-
ciently long sequence with a number of rounds at least

` =
4(2− δ)(1 + 3ε)

ε2f [1− 2γΓ3f ]∆+1
·max{∆, τ} · γΓ4 · ϕ. (3)

We will assume that ` is appropriately small compared to the length m of a sliding interval/window.
Specifically,

2`+ 6∆ ≤ εm

2γΓ3f
. (C1)

In addition, we would like the advantage δ of the honest parties over adversarial parties to be large
enough to absorb error factors. Thus, we require the following inequalities:

[1− 2γΓ3f ]∆ ≥ 1− ε and ε ≤ δ/8 ≤ 1/8. (C2)
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Next, we show a chain-growth lemma referring to accumulated difficulty (cf. [GKL20]), as
opposed to number of blocks in the original formulations [GKL15, KP15].

Lemma 6 (Chain Growth). Suppose that at round u of an execution E an honest party diffuses a
chain of difficulty d. Then, by round v, every honest party has received a chain of difficulty at least
d+Q(S), where S = {r : u+ ∆ ≤ r ≤ v −∆}.

Proof. If two blocks are obtained at rounds which are at distance at least ∆, then we are certain
that the later block increased the accumulated difficulty. To be precise, assume S∗ ⊆ S is such
that, for all i, j ∈ S∗, |i− j| ≥ ∆ and Yi > 0. We argue that, by round v, every honest party has a
chain of difficulty at least

d+ Y (S∗) ≥ d+Q(S).

Observe first that every honest party will receive the chain of difficulty d by round u+∆ and so the
first block obtained in S∗ extends a chain of weight at least d. Next, note that if a block obtained
in S∗ is the head of a chain of weight at least d′, then the next block in S∗ extends a chain of weight
at least d′.

Typical executions. The notion of typical executions was introduced in the analysis framework
we are following [GKL15] in order to capture situations where an execution E’s progress does not
deviate too much from its expected (desired) progress. Since executions consist of rounds, and
within rounds parties perform Bernoulli trials, we can calculate the expected progress when given
the corresponding probabilities. On this basis, if the difference between the real execution and
its expectation is reasonable, E is declared “typical.” Note that besides expectation, the variance
should also be taken into consideration. We will later show (applying Theorem 20—martingale
inequality) that either the variance is too high with respect to a set of rounds, or the parties have
made progress during these rounds as expected.

In addition to the behavior of the random variables described above, bad events may occur
related to the underlying hash function H(·), which is modeled as a random oracle and used to
obtain PoWs. The bad events are insertion (of a block in between two consecutive blocks), copy
(same block exists in two different position of the blockchain), and prediction (a block extends one
with an earlier creation time). Refer to [GKL20] for a precise definition. A typical execution will
rule out these bad events as well.

We are now ready to specify what is a typical execution in our setting (compare with [GKL20]’s).

Definition 6 (Typical execution). An execution E is typical if the following hold:

(a) For any set S of at least ` consecutive good rounds,

(1− ε)[1− 2γΓ3f ]∆ph(S) < Q(S) ≤ D(S) < (1 + ε)ph(S).

(b) For any set J indexing a set of consecutive adversarial queries and α(J) = 2(1
ε + 1

3)ϕ/T (J),

A(J) < p|J |+ max{εp|J |, τα(J)} and B(J) < p|J |+ max{εp|J |, α(J)}.

(c) No insertions, no copies, and no predictions occurred in E.

The next proposition is a simple application of Definition 6 and the honest-majority assumption.

Proposition 7. Let E be a typical execution in a (〈γ, σ〉, 〈Γ,Σ〉)-respecting environment. Let S =
{r | (u ≤ r ≤ v) ∧ (v − u ≥ `)} be a set of consecutive good rounds and J the set of adversarial
queries in U = {r | u−∆ ≤ r ≤ v + ∆}. Then the following inequalities hold:
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(a) (1 + ε)p|J | ≤ Q(S) ≤ D(U) < (1 + 5ε)Q(S).
(b) If w is a good round such that |w − r| ≤ Σ for any r ∈ S, then Q(S) > (1 + ε)[1 −

2γΓ3f ]∆|S|phw/Γ. If, in addition, T (J) ≥ Tmin
w , then A(J) < (1− δ + 3ε)Q(S).

Proof. (a) The middle inequality directly follows the definition of the random variables Q and D.
For the other two inequalities, since |J | ≤ (1− δ)h(U) we only have to compare the value of h(S)

and h(U). Note that Fact 1(b) implies that h(U\S) ≤ Γ · |U\S| · h(S)
|S| ≤ Γ · h(S)

` · 2∆. Thus,

h(U) ≤ (1 +
2Γ∆

`
)h(S) < (1 +

ε2

2
)h(S).

(b) The first inequality is a direct application of Fact 1(a). For the second one, round w is good
implies phwT (J) ≥ phwTmin

w ≥ f/2γ(2− δ)Γ3. Condition (C2) implies that

ε(1− 2ε)ph(S) ≥ ε(1− 2ε)|S| · phwT
min
w

ΓT (J)
≥ ε(1− 2ε)f`

2γ(2− δ)Γ4T (J)
> τα(J).

As showed in (a), p|J | ≤ (1−δ+ε2/2)ph(S). For either εp|J | or τα(J) in Definition 6(b), we obtain
A(J) < (1− δ + 3ε)Q(S).

We are now able to show that almost all Bitcoin Cash backbone protocol executions polynomially
bounded (in κ) are typical (the proof is presented in Appendix C). Formally:

Theorem 8. Assuming the Bitcoin Cash backbone protocol runs for L rounds, the event “E is not
typical” is bounded by poly(L) · e−Ω(polylog(κ)).

Accuracy and goodness. Next, we consider accuracy and goodness over the space of typical
executions in a (〈γ, `+ 2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting environment, as well as implications be-
tween the two. We assume that all the requirements for the initialization parameters h0 and T0 are
satisfied.

Lemma 9. Let E be a typical execution in a (〈γ, `+2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting environment.
If Er−1 is good, then there are no stale chains in Sr.

Proof. For the sake of a contradiction, consider a chain C ∈ Sr which has not been extended by the
honest party for at least ` + 2∆ rounds. Without loss of generality, let r denote the least round
with this property. Let B be the last block of C computed by the honest party (possibly the genesis
block) and let w be its timestamp. Set S = {u : w + ∆ ≤ u ≤ r −∆} and U = {u : w ≤ u ≤ r}.
Therefore, to reach a contradiction it suffices to show that the adversary’s accumulated difficulty
d < Q(S).

Let J denote the queries in U starting from the first adversarial query attempting to extend
B. We learn from Condition (C1) that targets the adversary can query during U is bounded by
T (J)/τ . Thus, d < A(J). If A(J) < (1 + ε)p|J |, then A(J) < Q(S) is obtained by Proposition
7(a). Otherwise, A(J) < (1

ε + 1)τα(J) = 2(1
ε + 1)(1

ε + ε
3)τϕ/T (J). However, by considering only

the first ` rounds in S, h(S) ≥ hu`/γ. We have

Q(S) > (1− ε)[1− 2γΓ3f ]∆ · phu`T (J)

γT (J)
>

(1− ε)[1− 2γΓ3f ]∆f`

2γ(2− δ)Γ4T (J)
≥ 2(1− ε)(1 + 3ε)τϕ

ε2T (J)
≥ A(J).

In either situation, we obtain the desired inequality d < Q(S).
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Corollary 10. Let E be a typical execution in a (〈γ, `+2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting environ-
ment. If Er−1 is good, then all chains in Sr are accurate.

Proof. Suppose—towards a contradiction—that, for some w ≤ r, C ∈ Sr contains a block which is
not accurate and let u ≤ w be the timestamp of this block and v its creation time. If u−v > `+2∆,
then every honest party would consider C to be invalid during rounds v, v + 1, . . . , u. If v − u >
` + 2∆, then in order for C to be valid it should not contain any honest block with timestamp in
u, u+ 1, . . . , v. (Note that we are using Definition 6(c) here as a block could be inserted later.) In
either case, C ∈ Sr but is stale, contradicting Lemma 9.

Theorem 11. A typical execution in a (〈γ, ` + 2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting environment is
accurate and good.

Proof. Accuracy directly follows Corollary 10. Regarding goodness, Theorem 5 claims that all the
target recalculation points are good. For those rounds which are not target recalculation points, it
follows from Lemma 9 that the maximum interval between two blocks is `+ 2∆, thus, by Fact 1(a)
hu/γ ≤ hr ≤ γhu holds. Combining it with f/2(2 − δ)Γ3 ≤ phuT ≤ 2Γ3f , we obtain the desired
inequality in Definition 4.

Blockchain and ledger properties. We now show that the Bitcoin Cash backbone protocol
satisfies the two properties common prefix and chain quality (Section 4.1) for a suitable respecting
environment. First, a preliminary lemma:

Lemma 12. For any round r of a typical execution in a (〈γ, `+ 2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting
environment and any two chains C and C′ in Sr, the timestamp of head(C∩C′) is at least r−2`−4∆.

Proof. Let v be the timestamp of head(C ∩ C′) and u ≤ v the greatest timestamp among those
blocks on C ∩ C′ that was computed by an honest party. Let U = {i : u < i ≤ r}, S = {i : u+ ∆ ≤
i ≤ r−∆}, and let J denote the adversarial queries that correspond to the rounds in U . We claim
that if r − v ≥ `+ 2∆, then

2Q(S) ≤ D(U) +A(J).

This contradicts Proposition 7 for δ ≥ 8ε, which implies D(U) < (1 + 5ε)Q(S) and A(J) <
(1− δ + 3ε)Q(S).

Towards proving the claim, associate with each r ∈ S such that Qr > 0 an arbitrary honest
block that is computed at round r for difficulty Qr. Let B be the set of these blocks and note that
their difficulties sum to Q(S). We argue the existence of a set of blocks B′ computed in U such
that B ∩ B′ = ∅ and {d ∈ B : B ∈ B} ⊆ {d ∈ B : B ∈ B′}. This suffices, because each block in B′
contributes either to D(U)−Q(S) or to A(J) and so Q(S) ≤ D(U)−Q(S) +A(J).

Consider, then, a block B ∈ B extending a chain C∗ and let d = diff(C∗B). If d ≤ diff(C ∩ C′)
(note that u < v in this case and head(C∩C′) is adversarial), let B′ be the block of C∩C′ containing
d. Such a block clearly exists and has a timestamp greater than u. Furthermore, B′ /∈ B, since B′

was computed by the adversary. If d > diff(C ∩ C′), note that there is a unique B ∈ B such that
d ∈ B (recall the argument in Chain Growth Lemma). Since B cannot simultaneously be on C and
C′, there is a B′ /∈ B either on C or on C′ that contains d.

Theorem 13 (Common-Prefix). For a typical execution in a (〈γ, ` + 2∆〉, 〈Γ, 4(m/f) log Γ〉)-
respecting environment, the common-prefix property holds for parameter εm.
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Proof. Suppose—towards a contradiction—common prefix fails for two chains C1 and C2 at rounds
r1 ≤ r2. It is easy to see that there exist a round r ≤ r2 and two chains C and C′ such that each
had at least k blocks after head(C ∩ C′). In view of Lemma 12, it suffices to show that these blocks
were computed within at least ` + 2∆ rounds. Suppose the honest parties query during a set of
rounds S of size `+ 2∆, the accumulated difficulty is D(S), and the number of blocks produced in
|S| is at most Tmax ·D(S) where Tmax denote the maximum target among blocks in |S|. For the
target recalculation round r∗ associated with target Tmax, we have

Tmax ·D(S) < (1 + ε)pTmaxh(S) ≤ (1 + ε)pγTmaxhr∗ |S| < (1 + ε)εm/2.

For the last inequality, note that by Condition (C1) |S| < εm/(4γΓ3f) and by Theorem 11
pTmaxhr∗ ≤ 2Γ3f . By proposition 7 the adversary contributed to less than (1 + ε)εm/2(1 + δ)
blocks, for a total of less than εm.

Theorem 14 (Chain-Quality). For a typical execution in a (〈γ, `+2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting
environment, the chain-quality property holds with parameters `+ 2∆ and µ = δ − 3ε.

Proof. Let us denote by Bi the i-th block of C so that C = B1 . . . Blen(C) and consider K consecutive
blocks Bu, . . . , Bv. Define K ′ as the least number of consecutive blocks Bu′ . . . Bv′ that include the
K given ones (i.e., u′ ≤ u and v ≤ v′) and have the properties (1) that the block Bu′ was computed
by an honest party or is B1 in case such block does not exist, and (2) that there exists a round r′

that B1 . . . Bv′ ∈ Sr′ . Denote by d′ the total difficulty of these K ′ blocks. Define U = {r, . . . , r′},
S = {r + ∆, . . . , r′ − ∆}, and J the adversarial queries in U starting with the first to obtain one
of the K ′ blocks. Let x denote the total difficulty of all the blocks from honest parties that are
included in the K blocks and—towards a contradiction—assume x < µd′. In a typical execution,
all the K ′ blocks Bj : u′ ≤ j ≤ v′ have been computed in U . But then we have the following
contradiction to Proposition 7(b).

(1− δ + 3ε)Q(S) > A(J) ≥ d′ − x ≥ (1− µ)d′ ≥ (1− µ)Q(S) = (1− δ + 3ε)Q(S).

The inequalities follow from the definitions of x and d′ and Chain-Growth Lemma. Note that if
U > 4(m/f) log Γ, we may use Lemma 9 to partition U appropriately and apply Proposition 7(b)
to each part. Its validity come from that a block computed by an honest party provides both
properties (1) and (2) required for K ′.

We conclude by showing that a typical execution of the Bitcoin Cash backbone protocol in
a (〈γ, ` + 2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting environment, satisfies the two properties of a robust
transaction ledger presented in Section 2. They are the direct consequence of the blockchain
properties shown above, following the approach in [GKL17, GKL20].

Theorem 15 (Consistency). For a typical execution in a (〈γ, `+2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting
environment, Consistency is satisfied by setting the settled transactions to be those reported more
than εm blocks deep.

Theorem 16 (Liveness). For a typical execution in a (〈γ, ` + 2∆〉, 〈Γ, 4(m/f) log Γ〉)-respecting
environment, Liveness is satisfied for depth εm with wait-time (4Γ4 + 1)εm/f .

Proof. We claim that the chain C of any honest party has at least εm blocks that where computed
in the last 2(2 − δ)εΓ4m/(1 − 2ε)f + 2∆ rounds. Denote by Tmin the lowest target among these
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blocks and r∗ a round associated with this target. If S is its subset without the first and last ∆
rounds, by Chain-Growth Lemma, the length of the segment is at least

Tmin ·Q(S) > (1− ε)[1− 2γΓ3f ]∆pTminh(S) ≥ (1− 2ε)f |S|
2(2− δ)Γ4

≥ εm.

Furthermore, if a transaction tx is included in any block computed by an honest party for the first
`+ 2∆ rounds, by Lemma 9, the chain C of any honest party contains tx in a block B. Thus, the
honest parties will have

`+ 6∆ +
2(2− δ)εΓ4m

(1− 2ε)f
≤ εm

2γΓ3f
+

2(2− δ)εΓ4m

(1− 2ε)f
≤ (4Γ4 + 1) · εm

f

as the total wait-time.

5 The SMA Target Recalculation Function

For completeness, here we present a brief description and analysis of Bitcoin Cash’s previous target
recalculation function. Even though this function has now been deprecated, it provides some
insights and elements of comparison against ASERT based on actual party fluctuation. The full
analysis of SMA is presented in Appendix D.1.

Recall that the target calculation function D(·) aims at maintaining the block production rate
constant. The probability f(T, n) with which n parties produce a new block with target T is
approximated by

f(T, n) ≈ qTn

2κ
.

As in the case of Bitcoin, to achieve the above goal Bitcoin Cash tries to keep qTn/2κ close to
f . To that end, the SMA function watches an epoch of m previous blocks, and based on their
difficulty as well as on how fast these blocks were generated, it computes the next target. More
specifically, say the last m blocks of a chain C with targets {Ti}i∈[m] were produced in Λ rounds. For
every block in the epoch and n participants, it holds that f(Ti, n) ≈ qTin/2

κ. For m consecutive
blocks, the average block generating rate f∗ = qn

∑
i∈[m] Ti/(m ·2κ), and the entire generating time

Λ = m/f∗ = m2 · 2κ/(qn
∑

i∈[m] Ti).
Consider the case where a number of parties

n(T1, . . . , Tm,Λ) =
m2 · 2κ

qΛ
∑

i∈[m] Ti

attempt to produce m blocks of target {Ti}i∈[m] in Λ rounds (in expectation). Such number of
players can be estimated as n(T1, . . . , Tm,Λ) = m2 · 2κ/(qΛ

∑
i∈[m] Ti); then the next target T ′ is

set so that n(T1, . . . , Tm,Λ) players would need 1/f rounds in expectation to produce the next
block of target T ′. Therefore, it makes sense to set

T ′ =
Λ

m2/f
·
∑
i∈[m]

Ti

because if the number of players is indeed n(T1, . . . , Tm,Λ) and remains unchanged, it will take
them 1/f rounds in expectation to produce next block. If the estimate of the initial number of
parties is n0, we will assume T0 is appropriately set so that f ≈ qT0n0/2

κ and then

T ′ =
n0

n(T1, . . . , Tm,Λ)
· T0.
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Based on the above, we can now give a formal definition of the SMA function. In the definition,
parameter τ serves as the “dampening filter” to deal with the case n0T0/n(T avg,Λ) /∈ [T/τ, τT ].
This mechanism is necessary given an efficient attack presented by Bahack [Bah13] for Bitcoin,
which also applies to Bitcoin Cash.

Definition 7 (SMA). For fixed constants κ, τ,m, n0, T0, the target calculation function DSMA :
Z∗ → R is defined as

DSMA(ε) = T0 and DSMA(r1, . . . , rv) =



1

τ
· T avg, if

n0 · T0

n(T avg,Λ)
<

1

τ
· T avg

τ · T avg, if
n0 · T0

n(T avg,Λ)
> τ · T avg

n0

(T avg,Λ)
· T0, otherwise

where n(T avg,Λ) = m·2κ
qΛT avg , with Λ = rv−1 − rv−m and T avg = 1

m ·
∑m

i=1D(r1, ..., rv−i).

Remark 1. At the start of the protocol execution—the first m blocks – parties cannot acquire
enough previous blocks for target recalculation. While several alternate approaches exist (e.g.,
maintain a static target or switch to other target recalculation function), we will assume a “safe
start”, i.e., there exist blocks with an ideal target value prior to the first round.

5.1 SMA: Analysis Overview

The difference between SMA and Bitcoin’s target recalculation is that the target variation (targets
that the adversary can query during a sliding window) is no longer bounded by the dampening
filter (τ). This is because in SMA the target is recalculated for every block; τ only sets restriction
on a single calculation.

To highlight some aspects of the proofs of security of the Bitcoin Cash backbone protocol
using SMA, we show that while the targets in an epoch keep varying, we can still always find
an appropriate block such that the difficulty accumulated during the epoch (when associated with
this block) is well bounded. I.e., even the adversary and an honest party join force, they cannot
accelerate this process too much; and even when honest parties work independently, they can still
efficiently produce enough blocks. The details can be found in Lemma 27.

Moreover, we would like to show that a good relation between the accumulated difficulty in
an epoch and its duration always holds, and therefore the target for the next block is good and
the block generating rate is close to f . Since the SMA function employs the average targets in
the epoch, the previous argument (which only takes into account single target value) collapses. In
order to absorb the new errors, We propose new conditions such as the following:

4λΓ

(λΓ + 1)2
· [1− (1 + δ)γΓf ]∆ > 1− ε and ε ≤ δ/8 ≤ 1/8 (C4)

where 4λΓ/(λΓ + 1)2 (cf. Theorem 22) helps to “revert” the discrepancy between the accumulated
difficulty and the next target. (Details in Lemma 28.)

We conclude that the Bitcoin Cash backbone protocol with the SMA function satisfies Consis-
tency and Liveness using the following parameters:

Theorem 17 (Consistency). For a typical execution in a (〈γ/(2 − δ), ` + 2∆〉, 〈Γ/(2 − δ), 2(1 +
δ)Γ2m/f〉)-respecting environment, Consistency is satisfied by setting the settled transactions to be
those reported more than εγ2m/2Γ blocks deep.
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Theorem 18 (Liveness). For a typical execution in a (〈γ/(2 − δ), ` + 2∆〉, 〈Γ/(2 − δ), 2(1 +
δ)Γ2m/f〉)-respecting environment, Liveness is satisfied for depth εγ2m/2Γ with wait-time (γ2 +
1)εm/f .

6 Comparison with the Bitcoin Cash Network

Our analysis shows that for a sufficiently long execution in a somewhat idealized network environ-
ment and without severe external disturbances, Bitcoin Cash would achieve the desired security
properties (with overwhelming probability). Comparison of our analysis with the existing Bitcoin
Cash network data reveals that the ASERT function performs better than the SMA function in
an environment where party fluctuation is large. Further, both SMA and ASERT suffer from
undersized parameters. In this section we expand on the above comparisons.

6.1 The Bitcoin Cash Network

Party fluctuation. To perform our comparison, we need to determine the fluctuation (ratio)
of the number of parties in the actual Bitcoin Cash network. We can extract it from the public
statistical data–the hashrate, which is the number of hash queries that all miners in the network
perform per second. In our model, the queries that every party can make in one round is bounded.
Thus, for the purpose of our comparison we assume the hashrate to be identical to the number
of parties, and its fluctuation ratio also reflects the the number of parties’. To be more precise,
the available hashrate does not reveal the entire Bitcoin Cash network, but instead the hashing
power invested in some well-known mining pools. Nonetheless, since most of the computational
power is concentrated in these mining pools, this hashrate can very closely approximate the entire
network’s.

In addition, instead of the the exact fluctuation ratio with respect to a short period of time
(e.g., 10 minutes), we adopt the ratio based on the daily average hashrate, which shows the average
queries per second in one day; this measure would correspond to parameter Γ in our analysis.
Since our analysis should be applied to a relatively long execution, this measure replacement seems
reasonable.5

Figure 2: The daily average hashrate of Bitcoin Cash from July 18 to August 16, 2020.

2.3

2.5

2.7

2.9

3.1

3.3

18-Jul 21-Jul 24-Jul 27-Jul 30-Jul 2-Aug 5-Aug 8-Aug 11-Aug 14-AugH
as

h
ra

te
 
(E

H
as

h
/s

)

Date ((Jul - Aug 2020)

Figure 2 shows the daily average hashrate in one month period (Jul 18 2020 – Aug 17 2020)6,
which we adopt as the representative case of the Bitcoin Cash network execution under the SMA

5We note that if we consider the fluctuation rate over 10-minute intervals, the overall party fluctuation will become
extremely pronounced (parameter Γ will exceed 4), making our analysis inapplicable.

6Source: https://bitinfocharts.com/comparison/hashrate-bch.html
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function. The maximum value in this period is 3.1783EHash/s (on Aug 07 2020) and the minimum
is 2.3865EHash/s (on Aug 06 2020), so it suffices to set Γ = 1.398 as the party fluctuation ratio.
Regarding the ratio during a small period of time, note that as we are discussing the average
hashrate, γ = 1.057, which satisfies γbΣ/σc > Γ, would be a suitable value.

We note that the assumed behavior may not hold when some type of external disturbance
occurs, such as the halving of the block reward or sharp gains and declines in BCH’s monetary
value, which might cause a large number of miners abruptly joining or dropping out of a mining
pool in a short period of time. As it turns out, these events do not happen very frequently (e.g.,
block reward halves about every 4 years), so we are comfortable extrapolating the execution of the
Bitcoin Cash network from what Figure 2 depicts.

Figure 3: The daily average hashrate of Bitcoin Cash from Dec 1 to Dec 30, 2020.
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Figure 3 shows the daily average hashrate in one month period (Dec 1 2020 – Dec 30 2020),
after the Nov. 2020 network update when the ASERT function was adopted. The maximum value
in this period is 1.9451EHash/s (on Dec 21 2020) and the minimum is 1.0349EHash/s (on Dec 24
2020). Therefore, Γ should be to 1.88. This fluctuation rate is relatively high, and we speculate
was caused by two reasons: (1) the network could not return to a quiet state soon after the update
happens, and (2) the price of Bitcoin Cash experienced substantial ups and downs during this
period. We thus set the value of γ = 1.099.

Network delay. Another important aspect to validate our analysis in a bounded-delay network
environment is the actual message delay in the network. It is shown in [DW13] that the delay in the
Bitcoin network mainly stems from its multi-hop broadcast (“diffuse” in our model terminology)
and block propagation mechanism (Bitcoin Cash employs a similar mechanism to Bitcoin), which we
now expand on. As a mining node would typically maintain a limited connections with other nodes,
when the node wants to broadcast one block after receiving and verifying it, the node will first send
an inv message containing the block hash to all its neighbors. If the neighbors do not have the
block locally, they will issue a getdata message to the sender of inv. Then the actual block transfer
begins. Thus, at each hop during the broadcast the message incurs a propagation delay consisting
of the transmission time and the local verification of the block. Decker and Wattenhofer [DW13]
evaluated the distribution of the block propagation time since the first block announcement, which
shows a median time of 6.5 seconds as well as a mean time of 12.6 seconds. For more recent data,
Bitcoin Monitoring 7 carried out by the German Federal Ministry of Education and Research shows
that 90% of the block propagation time is below 6 seconds. Thus, assuming a round duration of 6
seconds, it is reasonable to let the delay bound (∆) in our analysis approximately equal to 1 round.

7Source: https://dsn.kastel.kit.edu/bitcoin/
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Target variation. Our formulation bounds the target variation by a fixed parameter λ and the
parties’ fluctuation ratio. This is a reasonable idea, since the number of parties, accumulated
difficulty and number of blocks (chain growth) are correlated. In the real network, however, the
hash power invested in minor blockchains varies wildly, and as such it is unlikely that the number
of parties would stay high for a long period of time, and thus target values would seldom vary
more pronouncedly than the number of parties. Compared with other parameters, the criteria for
selecting λ does not seem as strict. As we can cover more executions if we set a larger value for λ,
we choose λ = 1.201 when applying our analysis. As a result, when compared with previous work
[GKL17, GKL20], our analysis can tolerate situations where targets vary more wildly (i.e., they
exceed the λΓ bound).

6.2 Conclusions

ASERT function. Based on the considerations above, for the purpose of our comparison, we
parameterize the real-world Bitcoin Cash network with network bounded-delay ∆ = 1 (round),
honest advantage δ = 0.99, quality of concentration ε = 0.123, long term party fluctuation ratio
Γ = 1.88, short term party fluctuation ratio γ = 1.099 and ideal block generating rate f = 0.01.

On one hand, the resulting probabilities with respect to the goodness parameters are very tight,
when considered in the real network parameters (i.e., m = 288 and Γ = 1.88). To be precise, in
a sliding window, the probability of the block generation rate exceeding the goodness bound is
below 10−12, and the probability of not returning to Cold is less than 10−9. Therefore, it is safe to
conclude that the ASERT function achieves a relatively stable block generation rate.

On the other hand, we cannot directly plug in in these parameter values to satisfy Condi-
tion (C2), since the party fluctuation is too pronounced, thus making it hard for the concentration
parameter ε to absorb the errors. Condition (C2), however, can be satisfied in the following two
scenarios: (1) party fluctuation ratio in a relatively quiet environment (e.g., Γ = 1.398 as shown in
Fig 2). Then all the requirements are satisfied and so does our analysis. (2) Balancing the block
generation rate bound and the sliding window length we consider (cf. Section 3.2), then all the
requirements are satisfied if the upper bound for goodness is (1 + Γ3)f .

Finally, we observe that the choice of the smoothing factor (m) is too low. While the current
value m = 288 can satisfy the basic requirements in Condition (C1), it is better to let m = 432
to increase the value of `, thus making it closer to the real execution. However, we note that such
value of m still fails to give a tight typical execution probability. This is because in order to satisfy
the (desired) blockchain properties, the length of a sliding window should be much larger (of the
order of years!) so that the martingale probability in Theorem 8 can be negligible.

SMA function. We consider the same network delay, honest advantage and quality of concen-
tration as those used for the ASERT evaluation. Afterwards, we parameterize the SMA function
with long-term party fluctuation ratio Γ = 1.398, short-term party fluctuation ratio γ = 1.057 and
target fluctuation parameter λ = 1.201. We obtain that Condition (C4) is satisfied under these
parameters.

Regarding the protocol parameters m and τ in use, m = 144 meets the lowest criteria to support
our analysis, τ = 2 may fail in some situations, which can be avoided by these two parameters.
More specifically, with regard to the epoch length m, from Condition (C3) we get an upper bound
for ` of about 640 seconds, which would not be desirable as it exceeds the expected block production
interval (600s). We would like that the actual value of ` amounts at least to a few blocks’ total
expected generation time. Thus,setting m = 432 (almost 3 days) would yield an ideal epoch
length. Regarding the dampening filter τ , it follows from our analysis that it should hold that
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τ ≥ 2(1 + δ)Γ2 ≈ 7.8. Thus, τ = 8 would be a suitable value.

ASERT vis-à-vis SMA The above evaluation of the SMA function reveals two shortcomings.
Under some circumstance, letting λ = 1.201 may fail to bound the target fluctuation during a
sliding window. Moreover, we can see that parameters plugged into Condition (C4) cannot be
increased, i.e., the protocol in our analysis cannot be secure under a respecting environment with
party fluctuation ratio Γ > 1.4; if we consider a larger value for λ, then the party fluctuation it can
tolerate is even smaller.

Compared with the ASERT function (notably, ASERT can work well when Γ = 1.88), SMA
performs considerably worse when party fluctuation rate is relatively high. Thus, we conclude that
ASERT is a better choice as a target recalculation function for blockchains with lesser hashing
power.

References

[Bah13] Lear Bahack. Theoretical bitcoin attacks with less than half of the computational power
(draft). Cryptology ePrint Archive, Report 2013/868, 2013. https://eprint.iacr.

org/2013/868.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on Computer and
Communications Security, CCS ’93, page 62–73, New York, NY, USA, 1993. Association
for Computing Machinery.

[Can00a] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryp-
tology, 13(1):143–202, 2000.

[Can00b] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. Cryptology ePrint Archive, Report 2000/067, 2000. https://eprint.iacr.org/
2000/067.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science,
FOCS ’01, page 136, USA, 2001. IEEE Computer Society.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In
Ernest F. Brickell, editor, Advances in Cryptology — CRYPTO’ 92, pages 139–147,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[DW13] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In
IEEE P2P 2013 Proceedings, pages 1–10, 2013.

[GKL14] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. Cryptology ePrint Archive, Report 2014/765, 2014. https:

//eprint.iacr.org/2014/765.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015, pages 281–310, Berlin, Heidelberg, 4 2015. Springer
Berlin Heidelberg.

28

https://eprint.iacr.org/2013/868
https://eprint.iacr.org/2013/868
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2014/765
https://eprint.iacr.org/2014/765


[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone proto-
col with chains of variable difficulty. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology – CRYPTO 2017, pages 291–323, Cham, 2017. Springer Inter-
national Publishing.

[GKL20] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. Full analysis of nakamoto con-
sensus in bounded-delay networks. Cryptology ePrint Archive, Report 2020/277, 2020.
https://eprint.iacr.org/2020/277.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical report, 1994.

[KP15] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain pro-
tocols. Cryptology ePrint Archive, Report 2015/1019, 2015. https://eprint.iacr.

org/2015/1019.

[McD98] Colin McDiarmid. Probabilistic methods for algorithmic discrete mathematicss, chapter
concentration, pages 195–248. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, 2005.

[Nak09a] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. http://www.

bitcoin.org/bitcoin.pdf.

[Nak09b] Satoshi Nakamoto. Bitcoin open source implementation of p2p currency, February 2009.
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
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A Mathematical Facts

Theorem 19 (Chernoff bound). Let Xi, . . . , XT be independent random variables with E[Xi] = pi
and Xi ∈ [0, 1]. Let X =

∑T
i=1 and µ =

∑T
i=1 pi = E[X]. Then, for all Λ > 0,

Pr[X ≥ (1 + Λ)µ] ≤ exp(− Λ2

2 + Λ
µ) and Pr[X ≤ (1− Λ)µ] ≤ exp(− Λ2

2 + Λ
µ).

Definition 8. [MU05, Chapter 12] A sequence of random variables X0, X1, . . . is a martingale with
respect to sequence Y0, Y1, . . ., if, for all n ≥ 0, (1)Xn is a function of Y0, . . . , Yn, (2)E[|Xn|] < ∞,
and (3) E[Xn+1|Y0, . . . , Yn] = Xn.
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Theorem 20. [McD98, Theorem 3.15] Let X0, X1, . . . be a martingale with respect to the sequence
Y0, Y1, . . .. For n ≥ 0, let V =

∑n
i=1 var(Xi −Xi−1|Y0, . . . , Yi−1) and b = max1≤i≤n sup(Xi −Xi−1

|Y0, . . . , Yi−1), where sup is taken over all possible assignments to Y0, . . . , Yi−1. Then, for any
t, v ≥ 0,

Pr[(Xn ≥ X0 + t) ∧ (V ≤ v)] ≤ exp
{
− t2

2v + 2bt/3

}
.

Fact 2. Suppose that x1, x2, . . . , xn are positive real numbers. Then,

x1 + x2 + · · ·+ xn
n

≥ n

1/x1 + 1/x2 + · · ·+ 1/xn
.

Theorem 21 (Cassel’s inequality). [WAT55] Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two
positive n-tuples with 0 < m ≤ ak

bk
≤M <∞ for each k ∈ {1, . . . , n} and constants m,M . Then,

(
n∑
k=1

wka
2
k)(

n∑
k=1

wkb
2
k) ≤

(M +m)2

4mM
· (

n∑
k=1

wkakbk)
2.

Theorem 22. Suppose that x1, x2, . . . , xn are positive real numbers. If maxi∈[n] xi < γ ·mini∈[n] xi,
then

x1 + x2 + · · ·+ xn
n

≤ (γ + 1)2

4γ
· n

1/x1 + 1/x2 + · · ·+ 1/xn
.

Proof. Let ai =
√
ni and bi = 1/

√
ni. {ai/bi} forms a tuple which is identical to {ni}. Since

maxi∈[n] Ti < γ ·mini∈[n] Ti, there exist appropriate constants m and M = γ ·m that satisfies the
condition in Theorem 21. Let wk = 1 for all k, then

(
n∑
k=1

nk)(
n∑
k=1

1

nk
) = (

n∑
k=1

wka
2
k)(

n∑
k=1

wkb
2
k) ≤

(M +m)2

4mM
· (

n∑
k=1

wkakbk)
2 =

(γ + 1)2

4γ
· n2.

By rearranging we obtain the desired inequality.

B Preliminaries (cont’d)

B.1 Model

We present our protocol analysis in the bounded-delay network, as in [GKL20]. The model extends
the static setting model with a fixed number of parties used in [GKL14, GKL15] for the analysis
of the Bitcoin backbone protocol, to the dynamic setting with a varying number of parties. These
models are in turn based on Canetti’s formulation of “real world” notion of protocol execution
[Can00a, Can00b, Can01] for multi-party protocols. We describe the parts that are common to
these two models and highlight the differences.

Round structure and protocol execution. As in previous formulations, which we follow almost
verbatim, we let the protocol execution proceed in rounds (note these are not message passing
rounds). An environment program denoted Z provides inputs to parties that execute the protocol
Π. Our adversarial model is both adaptive and rushing. Adaptive means that the adversary A is
allowed to take control of parties on the fly; while rushing means thatA gets to see all honest parties’
messages before deciding his strategy in any given round. The parties’ communication mechanism is
captured by a diffusion (“gossiping”) functionality. It allows the order of messages to be controlled
by A, i.e., there is no atomicity guarantees in message broadcast [HT94], and, furthermore, the
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adversary is allowed to “spoof” the source information on every message (i.e., communication is
not authenticated). Still, the adversary cannot change the contents of the message nor prevent
them from being delivered (note that in the bounded delay model, honest parties’ message delay
has a upper bound of ∆ rounds).

A system of interactive Turing machines (ITM’s) in the sense of [Can00b] is formed by a pair of
(Z, C) where C denotes a control program encoding the parties that may become active in a protocol
execution(parties come from a universe U of parties), and Z denotes an environment program that
interacts with other instances of programs that it spawns at the discretion of the control program
C. An execution is w.r.t. a program Π, an adversary A (which is another ITM) and the universe
of parties U . In addition, C maintains a flag for each instance of an ITM (abbreviated ITI in the
terminology of [Can00b]), that is called the ready flag and is initially set to false for all parties.
Observe that parties are unaware of the set of activated parties.

The joint hash function/network functionality. In order to ensure “fairness” to all miners, we
present the dual functionality that is available to all parties running the protocol and the adversary
and abstracts the hash function and the network.
� The hash function functionality. We adopt a joint random oracle [BR93] functionality to capture

the parties’ access to the hash function. It accepts queries of the form (compute, x) and (verify,
x, y). For the first type of query, assuming x was never queried before, a value y is sampled from
{0, 1}κ and it is entered to a table TH . If x was queried before the pair (x, y) is recovered from
TH . The value y is provided as an answer. For the second type of query, a membership test is
performed on the table. In each round, each honest party Pi is allowed to ask q queries, and is
given unlimited queries for “verification” for the function H(·). On the other hand, A is given a
number of queries that cannot exceed tr · q the upper bound on the number of corrupted parties
that may be activated in round r; no verification queries are provided to A (the adversary can
easily simulate those locally). The bound for the adversary is determined as follows. Whenever
a corrupted party is activated the bound is increased by q; whenever a query is asked the bound
is decreased by 1 (it is not necessary that the specific corrupted party makes the query). The
value q is a polynomial function of κ in synchronous model but 1 in bounded delay network.

� The diffusion functionality. Message passing and round bookkeeping is maintained by this
functionality. A round variable round is initialized to 0. For each party a string denoted by
Receive() is maintained and the party is allowed to fetch the contents of its corresponding Re-
ceive() at any time. The functionality records all messages of the form (Diffuse,m) it receives
from the parties. Completion of a round for a party is indicated by sending a special message
(RoundComplete). The adversary A is allowed to receive all the currently recorded Diffuse mes-
sages at any time and messages to the Receive() strings as desired. The round is completed
when the adversary submits its (RoundComplete) message. In such case, the functionality in-
spects the contents of all Receive() strings and includes any messages m that were diffused by
the parties but not contributed by the adversary to the Receive() tapes (in the bounded-delay
network, the adversary includes such messages ∆ rounds ago thus guaranteeing message delivery
up to ∆ rounds). It also flushes any diffuse records that are placed in the Receive() string of
all parties. The variable round is then incremented and a new round begins.

The dynamic setting. Given the functionalities as described above, the adversary can choose
the termination of the round thus deciding on the spot how many honest parties were activated
adaptively. In each round, the number of parties that are active in the protocol is denoted by nr
and is equal to the total number of parties that have submitted the (RoundComplete) indicator to
the diffusion functionality and have their internal flag ready set to true. Determining nr can only
be done by examining the view of all honest parties and is not a quantity that is accessible to any

31



of the honest parties individually. The number of corrupt parties controlled by A in a round r is
similarly denoted by tr. Note that the corrupt parties come from two sources—they are activated
as corrupted or adaptively corrupted (at any time)—and once an honest party is corrupted, it is
considered as controlled by the adversary in all subsequent rounds (if activated).

Parties, when activated, are able to read their input tape Input() and communication tape
Receive() from the diffusion functionality. If a party finds that its ready flag is false, it enters
a “bootstrapping” mode where it will diffuse a discovery message and synchronize (in the case of
Nakamoto consensus, the party will send a request for the latest blockchains, will collect all of them
until a time-out parameter is reached and then will pick the most difficult one to start mining).
When the synchronization phase terminates, the party will set its ready flag to true and after
this point it will be counted among the honest parties. An honest party goes “offline” when it
misses a round, i.e., the adversary issues a (RoundComplete) but that party misses the opportunity
to complete its computation. To record this action, whenever this happens we assume that the
party’s ready flag is set to false (in particular this means that a party is aware that it went offline;
note, however, that the party does not need to report it to anyone). Also observe that parties are
unaware of the set of activated parties. As in previous works, we assume, without loss of generality,
that each honest party has the same computational power.

The protocol class that we will analyze will not be able to preserve its properties for arbitrary
sequences of parties. Thus, we restrict the way the number of parties fluctuate both over a long
period of time and over a short period of time.

Definition 1. For γ,Γ ∈ R+, we call a sequence (nr)r∈N (〈γ, σ〉, 〈Γ,Σ〉)-respecting if it holds that
in a sequence of rounds S with |S| ≤ Σ rounds, maxr∈S nr ≤ Γ ·minr∈S nr and for any consecutive
sub-sequence rounds S′ 4 S with |S′| ≤ σ rounds, maxr∈S′ nr ≤ γ ·minr∈S′ nr.

Definition 1 is consistent with the notion introduced in [GKL17], except that there the party
fluctuation is expressed with respect to the number of honest parties. Note that the two fluctuations
are related by a constant (concretely, 2−δ; see Table 1). Yet, it turns out that expressing statements
in terms of honest-party fluctuation will considerably simplify them. Thus, in a few cases we will
slightly overload notation and keep using γ,Γ, while we are actually referring to honest-party
fluctuation. Furthermore, note the addition to the definition of the parameters for short-term
fluctuation.

An environment that is (〈γ, σ〉, 〈Γ,Σ〉)-respecting should satisfy γbΣ/σc ≥ Γ, i.e., the accumula-
tion of short-term fluctuation values could surpass the long-term fluctuation value. Further, note
that although the sequence can capture exponential growth, the total run time is bounded by a
polynomial (in κ), and thus the Σ/σ ratio is also polynomially bounded.

The term {viewP
Π,A,Z(z)}z∈{0,1}∗ denotes the random variable ensemble describing the view

of party P after the completion for an execution running protocol Π with environment Z and
adversary A, on input z ∈ {0, 1}∗. We will consider a “standalone” execution without any auxiliary
information, and restrict ourselves to executions with z = 1κ; thus, we will simply refer to the
ensemble by viewP

Π,A,Z .

Properties of protocols. In our theorems we will be concerned with properties of protocols Π
running in the above setting. Such properties will be defined as predicates over the random variable
viewΠ,A,Z by quantifying over all possible adversaries A and environments Z. Note that all our
protocols will only satisfy properties with a small probability of error in κ as well as in a parameter
k that is selected from {1, . . . , κ} (note that in practice one may choose k to be much smaller than
κ, e.g., k = 6).
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B.2 Blockchain Notation

We introduce the blockchain notations that we employ for Bitcoin Cash. Due to the hard fork,
Bitcoin Cash’s blockchain does not differ much from Bitcoin’s chain. We use similar notation to
that in [GKL17]. Let G(·) and H(·) denote cryptographic hash functions with output in {0, 1}κ. A
block with target T ∈ N is a quadruple of the form B = 〈r, st, x, ctr〉 where st ∈ {0, 1}κ, x ∈ {0, 1}∗,
and r, ctr ∈ N. The quadruple satisfies the predicate validblockTq (B) defined as

(H(ctr,G(r, st, x)) < T ) ∧ (ctr ≤ q).

In real-world situation, as showed above, the parameter q ∈ N is a bound on the size of register
ctr; in our treatment we remove this bound and allow ctr to be arbitrary. Instead, we use q to
denote the maximum allowed number of hash queries in a round. We do this for convenience and
our analysis applies in a straightforward manner to the case that ctr is restricted to the range
0 ≤ ctr < 232 and q is independent of ctr.

A blockchain, or simply a chain is a sequence of blocks. We call the rightmost block the head
of the chain, denoted by head(C). Note that the empty string ε is also a chain, and by convention
we set head(ε)= ε. Parties that would like to extend a chain C with head(C)= 〈r, st, x, ctr〉 should
compute a valid block B = 〈r′, st′, x′, ctr′〉 that satisfies st′ = H(ctr,G(r, st, x)) and r′ > r, where
r′ is called the timestamp of block B. In case C = ε, by convention any valid block of the form
〈r′, st′, x′, ctr′〉 may extend it. In either case we get an extended chain Cnew = CB that satisfies
head(Cnew) = B.

The length of a chain len(C) is its number of blocks. Consider a chain C of length ` and any
non-negative integer k. We denote by Cdk the chain resulting from “pruning” the k rightmost
blocks. Note that for k > len(C), Cdk = ε. If C1 is a prefix of C2 we write C1 � C2.

Given a chain C of len(C)= `, we let xC denote the vector of ` values that is stored in C and
starts with the value of the first block. Similarly, rC is the vector that contains the timestamps of
the blockchain C.

For a chain of variable difficulty, the target T is recalculated for each block based on the round
timestamps of the previous blocks. Specifically, there is a function D : Z∗ → R which receives an
arbitrary vector of round timestamps and produces the next target. The value D(ε) is the initial
target of the system. The difficulty of each block is measured in terms of how many times the block
is harder to obtain than a block of target T0. To be precise, the difficulty of a block with target T
will be equal to T0/T (We denote the difficulty as 1/T for simplicity in the full analysis section).
We will use diff(C) to denote the difficulty of a chain. This is equal to the sum of the difficulties of
all the blocks that comprise the chain.

B.3 Blockchain Properties

We define two properties of blockchain that it will establish. They are related to the protocol
application properties of Consistency and Liveness (cf. Section 4).

The common prefix property, parameterized by a value k ∈ N, considers an arbitrary environ-
ment and adversary, and it holds as long as any two parties’ chains are different only in their most
recent k blocks. It is actually helpful to define the property between an honest party’s chain and
another chain that may be adversarial. The definition is as follows.

Definition 9 (Common Prefix Property). The common prefix property Qcp with parameter k ∈ N
states that, at any round of the execution, if a chain C belongs to an honest party, then for any
valid chain C′ in the same round such that either diff(C′) > diff(C), or diff(C′) = diff(C) and head(C′)
was computed no later than head(C), it holds that Cdk � C′ and C′dk � C.
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The second property, called chain quality, expresses the number of honest-party contributions
that are contained in a sufficiently long and continuous part of a party’s chain. Because we consider
chains of variable difficulty it is more convenient to think of parties’ contributions in terms of the
total difficulty they add to the chain as opposed to the number of blocks they add (as done in
[GKL14]). The property states that adversarial parties are bounded in the amount of difficulty
they can contribute to any sufficiently long segment of the chain.

Definition 10 (Chain Quality Property). The chain quality property Qcq with parameters µ ∈ R
and ` ∈ N states that for any party P with chain C in viewΠ,A,Z , and any segment of that chain of
difficulty d such that the timestamp of the first block of the segment is at least ` smaller than the
timestamp of the last block, the blocks the adversary has contributed in the segment have a total
difficulty that is at most µ · d.

B.4 Ledger Properties

The (main) application of the protocol is a robust transaction ledger (cf. [GKL15]), aimed at
maintaining a ledger L of a serialized transaction sequence organized in the form of a blockchain.
We now introduce the distinction between L and L̃, where L denotes the settled ledger in the view
of the party, and L̃ denotes the settled ledger with a sequence of transactions appended that are
still not settled in the view of the party. Note that it always holds that L � L̃. The properties that
the protocol application must satisfy are as follows:

� Consistency: For any two honest parties P1, P2, reporting L1,L2 at rounds r1 ≤ r2, resp., it
holds that L1 is a prefix of L̃2.

� Liveness (Parameterized by u ∈ N, the “wait time” parameter): If a transaction tx is provided
to all honest parties for u consecutive rounds, then it holds that for any player P , tx will be in
L.

C Proof That All Executions Are Typical

Proof of Theorem 8: Since the length of the execution, L, is fixed we will prove the stated
bound for a fixed set of consecutive rounds S—or, with respect to the adversary, a fixed set
of consecutive queries J—and then apply a union bound over all such sets in the length of the
execution. Furthermore, we may assume |S| ≤ Σ = Θ(m). Note that ` < Σ/2 and we may
partition S into parts with size between ` and Σ. In the end, we sum over all parts to obtain the
desired bound.

Before we consider the random variables, we first propose some useful inequalities that hold for
any round r: [1 − f(Tmax

r , hr)] ≤ E[Yr|Er−1 = Er−1] ≤ E[Dr|Er−1 = Er−1] = phr, E[Y 2
r |Er−1 =

Er−1] ≤ phr/T
min
r , and var[Dr|Er−1 = Er−1] ≤ phr/T

min
r . Let us drop the subscript r for conve-

nience. Suppose that the h honest parties at round r query for targets T1, . . . , Th. Observe that all
these variables are determined by Er−1. We have

E[Yr|Er−1 = Er−1] =
∑
i∈[h]

1

Ti
· Ti

2κ

∏
i<j

[1− f(Tj , 1)] ≥
∑
i∈[h]

p
∏
j∈[h]

[1− f(Tj , 1)]

≥
∑
i∈[h]

p
∏
j∈[h]

[1− f(Tmax, 1)] =
∑
i∈[h]

p[1− f(Tmax, h)] = ph[1− f(Tmax, h)],
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where the third inequality holds because f(T, h) is increasing in T . For the upper bound on
variance,

var[Dr|Er−1 = Er−1] ≤
∑
i∈[h]

1

T 2
i

· Ti
2κ

=
∑
i∈[h]

p

Ti
≤ ph

Tmin

and E[Y 2
r |Er−1 = Er−1] is bounded like.

For starter, we fix an execution E0 just before the beginning of S (or J). We will prove that the
statements fail with exponentially small probability for an arbitrary E0. Note that E0 determines
the number of parties h0 and t0 at the beginning of S (or J) and the target T (J) associated with
the first query in J .

For each round i ∈ S, we define a Boolean random variable Fi equal to 1 exactly when all hi hash
values that were returned to the queries of the honest parties were above min{T : f(T, hi) ≥ 2γΓ3f};
define Zi = Yi · Fi+1 · · ·Fi+∆−1. Let G denote the event that the rounds in S are good. Given G,
for any i ∈ S, (Fi = 1) =⇒ (Di = 0) and so Qi ≥ Zi. Thus, for any d,

Pr
[
G ∧Q(S) ≤ d

]
≤ Pr

[
G ∧ Z(S) ≤ d

]
,

and we may focus on the right-hand side. Identify S with {1, . . . , |S|} and partition it with sets of
the form Sj = {j, j + ∆, j + 2∆, . . .} for j ∈ {0, 1, . . . ,∆− 1}. We will show that, for each part Sj ,

Pr
[
G ∧ Z(Sj) ≤ (1− ε)[1− 2γΓ3f ]∆ph(Sj)

]
≤ e−ϕ.

Let us fix a set Sj = {s1, s2, . . . , sν} with ν ≥ b|S|/∆c, and define the event Gt as the conjunction
of the events G and t = (1 − 2γΓ3f)∆ph(Sj). Note that |Sj | ≤ L and so t ranges over a discrete
set of size at most L and we can afford a union bound on it. Thus, it is sufficient to show that for
any such t,

Pr
[
Gt ∧ Z(Sj) ≤ [1− 2γΓ3f ]∆ph(Sj)− t

]
≤ e−ϕ.

To that end, consider the sequence of random variables

X0 = 0; Xk =
∑
i∈[k]

Zsi −
∑
i∈[k]

E[Zsi |Esi−1], k ∈ [ν].

This is a martingale with respect to sequence Es1−1(E0 = E0), . . . , Esv−1, E , because E[Xk|Esk−1] =
E
[
Zsk −E[Zsk |Esk−1]|Esk−1

]
+ E[Xk−1|Esk−1] = Xk−1 (recall basic properties of conditional expec-

tation [McD98]).
Specifically, the above follows from linearity of conditional expectation and the fact that Xk−1

is a deterministic function of Esk−1+∆−1 = Esk−1. Furthermore, given an execution E satisfying Gt,

ε
∑
i∈Sj

E[Zi|Esk−1 = Esk−1] ≥ ε
∑
i∈Sj

[1− 2γΓ3f ]∆phi = t.

Thus, our goal is to show Pr[−Xν ≥ t ∧Gt] ≤ e−ϕ.
We now provide the details relevant to Theorem 20. Consider an execution E satisfying Gt

and let B denote the event Esk−1 = Esk−1. Note that Z2
sk

= Y 2
sk
· Fsk+1 . . . Fsk+∆−1 and all these

random variables are independent given B. Since Xk −Xk−1 = Zsk −E[Zsk |Esk−1] and

Zsk −E[Zsk |B] ≤ 1

Tmin
sk

· phsk
phsk

≤ Γph(Sj)

phskT
min
sk
|Sj |
≤ Γph(Sj)

νf/(2(2− δ)γΓ3)
≤ 2(2− δ)γΓ4t

ε(1− 2γΓ3f)∆fν

def
= b,
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we see that the event G implies Xk −Xk−1 ≤ b. With respect to V =
∑

k var[Xk −Xk−1|Esk−1] ≤∑
k E[Z2

sk
|Esk−1], using the independence of the random variables and inequalities showed at the

beginning of the proof,∑
k∈[ν]

[Z2
sk
|B] ≤ (1− 2γΓ3f)∆−1

∑
k∈[ν]

(phsk)2

phskT
min
sk

≤ (1− 2γΓ3f)∆−1

f/[2(2− δ)γΓ3]
·
∑
k∈[ν]

(phsk)2.

Applying Fact 1(b) on this bound, we see that event Gt implies

V ≤ 2(2− δ)γΓ4[1− 2γΓ3f ]∆−1

f |Sj |
·
( ∑
k∈[ν]

phsk

)2
≤ 2(2− δ)γΓ4t2

ε2f(1− 2γΓ3f)∆+1ν

def
= b.

In view of these bounds (note that bt < εv), by Theorem 20,

Pr[−Xν ≥ t ∧Gt] ≤ exp
{
− t2

2v(1 + ε
3)

}
≤ exp

{
− ε2f [1− 2γΓ3f ]∆+1ν

2(2− δ)γΓ4(1 + ε
3)

}
≤ e−ϕ, (4)

where for the last inequality we used the condition on ` (recall that ν ≥ `/∆).
For the bound on D(S), ti will be convenient to work per query. Let J denote the queries in

S, ν = |J |, and Zi the difficulty of any block obtained from query i ∈ J . Define the martingale
sequence

X0 = 0; Xk =
∑
i∈[k]

Zi +
∑
i∈[k]

E[Zi|Ei−1], k ∈ [ν].

With similar calculations above we obtain that Gt (with t = εpν) implies

Xk −Xk−1 ≤
2γΓ2t

εf |S|
def
= b and V ≤ 2γΓ2t2

ε2f |S|
def
= v.

Applying Theorem 20 we obtain

Pr[Xν ≥ t ∧Gt] ≤ exp
{
− εt

2b(1 + ε
3)

}
≤ e−ϕ. (5)

We next focus on part (b). For each j ∈ J , let Aj be equal to the difficulty of the block obtained
with the j-th query as long as the target was at least T (J)/τ ; thus A(J) =

∑
j∈J Aj . If |J | = ν,

identify J with [ν] and define the martingale

X0 = 0; Xk =
∑
j∈[k]

Aj −
∑
j∈[k]

E[Aj |Ej−1], k ∈ [ν].

For all k ∈ [ν] we have Xk−Xk−1 ≤ τ/T (J), var[Xk−Xk−1|Ek−1] ≤ pτ/T (J), and E[Aj |Ej−1] ≤ p.
We may apply Theorem 20 with b = τ/T (J), v = bpν ≤ bt/ε, and t = max{εpν, 2(1

ε + 1
3)bϕ}. We

obtain

Pr
[∑
jinJ

Aj ≥ pν + t
]
≤ exp

{
− t

2b(1
3 + 1

ε )

}
≤ e−ϕ. (6)

Based on the three martingale inequalities (4)(5)(6), the probability of one partition S is not
typical is bounded by 1− (1− e−ϕ)3 ≤ 3e−ϕ. For a system that runs for L steps, the total number
of partitions is

(
L
2

)
. Thus, the probability for the entire execution is not typical is bounded by

3
(
L
2

)
e−ϕ.
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For part (c) and i ∈ {0, 1, 2, 3}, let Bi = 〈ri, sti, xi, ctri〉 and gi = G(ri, sti, xi). If a block
extends two distinct blocks, then a collision has occurred. To see this, suppose block B3 extents
two distinct blocks B1 and B2, then st3 = H(ctr1, g1) = H(ctr2, g2); implying a collision either
in H or in G, since B1 and B2 are distinct. The existence of an insertion or a copy implies a
collision as well. If the total running time of the system of ITM’s is L then it holds that there
are at most L queries posed to G, H. It follows that the probability of a collision occurring is(
L
2

)
2−κ+1 ≤ 2−κ+1+2 logL. Note that, for polynomially many rounds in κ, the probability that a

guessed block occurs is exponentially small in κ.
Recall that ϕ is a polylogarithmic function of κ (e.g., ϕ = O(log2 κ)). Combining probabilities

on both martingale and collision, the overall error probability is poly(L) · e−Ω(polylog(κ)).

D The SMA Target Recalculation Function (cont’d)

D.1 SMA: Full Analysis

In this section we present the analysis of the Bitcoin Cash protocol with SMA function. In order
to make this section self-contained, we state all the preliminaries. However, we omit some of the
proofs which generally follow those in Section 4.2.

For convenience, Table 2 summarizes the set of parameters introduced so far. Our security
parameter is κ, and note that ϕ = Θ(m) = polylog(κ).

Table 2: Summary of parameters (SMA).

� δ: Advantage of honest parties, ∀r(tr/hr < 1− δ).
� γ, σ,Γ,Σ: Determines how the number of parties fluctuates across rounds in a period, cf.

Definition 1 and Fact 1.
� f : Probability at least one honest party succeeds in a round assuming h0 parties and target
T0 (the protocol’s initialization parameters).

� m: the length of an epoch in number of blocks.
� τ : The dampening filter, cf. Definition 7.
� λ: The ratio of target range, with relation to target recalculation algorithm.
� ε: Quality of concentration of random variables, cf. Definition 14.
� κ: The length of the hash function output.
� ϕ: Related to the properties of the protocol.
� L: The total number of rounds in the execution.

Our probability space is over all executions of length at most some polynomial in κ. We will
denote by Pr the probability measure of this space. We also define the random variable E taking
values on this space and with a distribution induced by the random coins of all entities (adversary,
environment, parties) and the random oracle.

Recall that in our modeling of a bounded-delay network, each party’s query bound to the
random oracle (RO) per round is q = 1. Now suppose at round r exactly n parties query the RO
with a target T . Then the probability that at least one of them will succeed is

f(T, h) = 1− (1− pT )h ≤ phT, where p = 1/2κ.

As in prior work, we denote f0 = f(T0, h0) where T0 and h0 are the initial target and estimate
of number of honest parties. The objective of the target recalculation mechanism would be to
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maintain a target T for each party such that f(T, hr) ≈ f0 for all rounds r. For simplicity, we will
drop the subscript from f0, and will always specify the two arguments of f(·, ·) to avoid confusion.

During a round r of an execution E, the honest parties might be split and work on different
chains, and thus might query the RO on different targets. Denote by Tmin

r and Tmax
r the minimum

and maximum of these targets, respectively. We say r is a target-recalculation point of a valid
chain C, if there is a block with timestamp r (recall that the target is adjusted for every block).

Next, and following [GKL17] we define properties goodness and accuracy, which we will then
show most executions satisfy, and which will help achieve the desired application. In addition,

Definition 11 (Goodness). Round r is good if f/2γΓ ≤ phrT
min
r and phrT

max
r ≤ (1 + δ)γΓf . A

target-recalculation point r is good if the target T for the next block satisfies f/2Γ ≤ phrT ≤
(1 + δ)Γf . Finally, a chain is good if all its target-recalculation points are good.

Definition 12 (Accuracy). A block created at round u is accurate if it has a timestamp v such
that |u− v| ≤ `+ 2∆. A chain is accurate if all its blocks are accurate. A chain is stale, if for some
u ≥ `+ 2∆ it does not contain an honest block with timestamp v ≥ u− `− 2∆.

We already mentioned that an epoch a sequence of m blocks. Let u and v be the corresponding
initial and last target-recalculation points. Thus, the duration of an epoch is v − u.

For a given round r, we let Sr denote a set of chains that belong, or could potentially belong to
an honest party. Being explicit about this set of chains will help expressing a number of predicates
(see below). Specifically, Sr includes:

� Chain C that belongs to an honest party;
� Chain C with diff(C) > diff(C′) for some chain C′ of an honest party;
� chain C with diff(C) = diff(C′) for some chain C′ of an honest party and head(C) was computed

no later than head(C′).

Note that these chains should exist and be valid at round r. As in [GKL17], we now define the
following series of predicates.

Definition 13. For a round r, let:
� GoodChains(r) , “For all u ≤ r, every chain in Su is good.”
� GoodRounds(r) , “All rounds u ≤ r are good.”
� NoStaleChains(r) , “For all u ≤ r, there are no stale chains in Su.”
� Accurate(r) , “For all u ≤ r, all chains in Su are accurate.”
� Duration(r) , “For all u ≤ r and duration Λ of any epoch in C ∈ Su, 1

2(1+δ)Γ2 · mf ≤ Λ ≤
2(1 + δ)Γ2 · mf .”

Random variables. We are interested in estimating the difficulty acquired by honest parties
during a sequence of rounds. For a given round r, the following real-valued random variables are
defined in [GKL20]:

� Dr: “Sum of the difficulties of all blocks computed by honest parties.”
� Yr: “Maximum difficulty among all blocks computed by honest parties.”
� Qr: “Equal to Yr when Du = 0 for all r < u < r + ∆ and 0 otherwise.”

A round r such that Dr > 0 is called successful and one where Qr > 0 isolated successful.
Regarding the adversary, in order to overcome the fact that he can query the oracle for arbitrarily

low targets and thus obtain blocks of arbitrarily high difficulty, we would like to upper-bound the
difficulty he can acquire during a set J of queries. This is achieved by associating a set of consecutive
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adversarial queries J with the target of its first query. We denote this target T (J), and say that
T (J) is associated with J . We then define A(J) and B(J) to be equal to the sum of the difficulties
of all blocks computed by the adversary during queries in J for target at least T (J)/λΓ and T (J),
respectively – i.e., queries in J for targets less than T (J)/λΓ (resp. T (J)) do not contribute to
A(J) (resp. B(J)).

For simplicity, we write h(S) =
∑

r∈S hr for a set of rounds S and queries J (similarly, t(S),
D(S), Y (S), Q(S), A(J) and B(J)).

Regarding protocol executions, let Er−1 fix the execution just before round r. In particular, a
value Er−1 of Er−1 determines the adversarial strategy and so determines the targets against which
every party will query the oracle at round r and the number of parties hr and tr, but it does not
determine Dr or Qr. For an adversarial query j we will write Ej−1 for the execution just before
this query.

Furthermore, we are interested in the range of targets during an execution in a (〈γ, σ〉, 〈Γ,Σ〉)-
respecting environment. Intuitively, the range of target T is related to the number of parties n. It
is not hard to see that the ratio Tmax/Tmin should be larger than that on number of parties, or the
protocol would not be able to achieve the goal of maintaining a stable block generating rate (f ≈
pTn). In addition, recall that according to the target recalculation function T ′ = ∆

m2/f
·
∑

i∈[m] Ti,

the targets of two neighboring blocks will not differ by too much, thus forming a relatively “smooth”
oscillation target curve. Finally, we define a new variable λ ≥ 1 that helps bound the fluctuation
on the targets. Specifically, we assume that the targets during consecutive rounds |S| ≤ Σ satisfy
Tmax ≤ λΓ · Tmin).

In order to obtain meaningful concentration of random variables, we have to consider a suffi-
ciently long sequence with a number of rounds at least

` =
4(1 + 3ε)

ε2f [1− (1 + δ)γΓf ]∆+1
·max{∆, λΓ} · γΓ2 · ϕ. (7)

We will assume that ` is appropriately small compared to the duration of an epoch. Specifically,

2`+ 6∆ ≤ εm

2(1 + δ)Γ2f
. (C3)

In addition, we would like the advantage δ of the honest parties over adversarial parties to belarge
enough to absorb error factors. Thus, we require the following inequalities:

4λΓ

(λΓ + 1)2
· [1− (1 + δ)γΓf ]∆ > 1− ε and ε ≤ δ/8 ≤ 1/8. (C4)

Note that the chain-growth lemma still works here (cf. Lemma 6).

Typical executions. We have introduced the notion of typical executions in Section 4.2. Regarding
SMA, we note that Bitcoin Cash (as well as other cryptocurrencies) adopts strategies to reduce
the impact of bad events to the minimal extent, such as rearranging the blocks temporarily before
recalculating the target (as opposed to the Bitcoin implementation, which directly adopts the last
block’s timestamp). Since our definition automatically gets rid of these bad events, we will not
consider such mechanisms in our analysis.

We are now ready to specify the typical execution associated with SMA algorithm.

Definition 14 (Typical execution). An execution E is typical if the following hold:

(a) For any set S of at least ` consecutive good rounds,

(1− ε)[1− (1 + δ)γΓf ]∆ph(S) < Q(S) ≤ D(S) < (1 + ε)ph(S).
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(b) For any set J indexing a set of consecutive queries of the adversary and α(J) = 2(1
ε+ 1

3)ϕ/T (J),

A(J) < p|J |+ max{εp|J |, λΓα(J)} and B(J) < p|J |+ max{εp|J |, α(J)}.

(c) No insertions, no copies, and no predictions occurred in E.

The next proposition is a simple application of Definition 14 as well as the honest-majority-
environment assumption.

Proposition 23. Let E be a typical execution in a (〈γ/(2− δ), σ〉, 〈Γ/(2− δ),Σ〉)-respecting envi-
ronment. Let S = {r | (u ≤ r ≤ v)∧ (v− u ≥ `)} be a set of consecutive good rounds and J the set
of adversarial queries in U = {r | u−∆ ≤ r ≤ v + ∆}. The following inequalities hold:

(a) (1 + ε)p|J | ≤ Q(S) ≤ D(U) < (1 + 5ε)Q(S).
(b) T (J)A(J) < εm/4(1 + δ) or A(J) < (1 + ε)p|J | and λΓ · T (J)B(J) < εm/4(1 + δ) or B(J) <

(1 + ε)p|J |.
(c) If w is a good round such that |w − r| ≤ Σ for any r ∈ S, then Q(S) > (1 + ε)[1 − (1 +

δ)γΓf ]∆|S|phw/Γ. If in addition T (J) ≥ Tmin
w , then A(J) < (1− δ + 3ε)Q(S).

Proof. We only consider part (b): if εp|J | ≥ λΓα(J), Definition 14(b) applies directly. Otherwise,
p|J | < λΓα(J)/ε we get

T (J) ·A(J) <
2

ε2
· (1 + ε)(1 +

ε

3
)λΓϕ <

f`

2γΓ2
<

εm

4(1 + δ)γΓ2
.

This follows Equation 7 and Condition (C3).

We are now able to show that almost all Bitcoin Cash protocol executions polynomially bounded
(in κ) are typical. Formally:

Theorem 24. Assuming the Bitcoin Cash backbone protocol runs for L rounds, the event “E is
not typical” is bounded by poly(L) · e−Ω(polylog(κ)).

Next, we consider the validity of the predicates in Definition 13 over the space of typical exe-
cution in a (〈γ/(2 − δ), σ〉, 〈Γ/(2 − δ),Σ〉)-respecting environment, as well as implications among
them. Furthermore, we assume that all the requirements hold for the initialization parameters h0

and T0. (Some of the statements’ proofs require the execution to have a safe start [cf. Remark 1].)

Lemma 25. GoodRounds(r − 1) =⇒ NoStaleChains(r).

Proof. For the sake of a contradiction, consider a chain C ∈ Sr which has not been extended by the
honest party for at least ` + 2∆ rounds. Without loss of generality, let r denote the least round
with this property. Let B be the last block of C computed by the honest party (possibly the genesis
block) and let w be its timestamp. Set S = {u : w + ∆ ≤ u ≤ r −∆} and U = {u : w ≤ u ≤ r}.
Therefore, to reach a contradiction it suffices to show that the adversary’s accumulated difficulty
d < Q(S).

Let J denote the queries in U starting from the first adversarial query attempting to extend
B. We learn from Condition (C3) that targets the adversary can query during U is bounded by
T (J)/λΓ. Thus, d < A(J). If A(J) < (1 + ε)p|J |, then A(J) < Q(S) is obtained by Proposition
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23(a). Otherwise, A(J) < (1
ε + 1)λΓα(J) = 2(1

ε + 1)(1
ε + ε

3)λΓϕ/T (J). However, by considering
only the first ` rounds in S, h(S) ≥ hu`/γ. We have

Q(S) > (1− ε)[1− (1 + δ)γΓf ]∆ · phu`T (J)

γT (J)

>
(1− ε)[1− (1 + δ)γΓf ]∆f`

2γΓ2T (J)
≥ 2(1− ε)(1 + 3ε)λΓϕ

ε2T (J)
≥ A(J).

In either situation, we obtain the desired inequality d < Q(S).

Corollary 26. GoodRounds(r − 1) =⇒ Accurate(r).

Lemma 27. GoodRounds(r − 1) ∧GoodChains(r − 1) =⇒ Duration(r).

Proof. Assume—towards a contradiction—that Duration(r) is false. Without loss of generality,
assume w ≤ r associated with a chain C ∈ Sw and duration Λ is the smallest round that does not
satisfy

1

2(1 + δ)Γ2
· m
f
≤ Λ ≤ 2(1 + δ)Γ2 · m

f
.

For the upper bound, we will show that the honest parties can by themselves obtain m blocks.
Note that Lemma 25 implies that two honest blocks in this epoch exist with timestamps u and
v that v − u ≥ Λ − 2` + ∆. We define S = {r : u + ∆ ≤ r ≤ v + ∆} the time that the honest
parties can contribute to the difficulty. Assuming Λ > 2(1 + δ)Γ2m/f , Condition (C3) implies that
|S| ≥ Λ − 2` − 6∆ ≥ 2(1 + δ)(1 − ε)Γ2m/f . We denote r∗ ∈ S the timestamp of the block with
lowest target (i.e., highest difficulty) and Tr∗ its associated target. Thus we have

Q(S) > (1− ε)[1− (1 + δ)γΓf ]∆ · f |S|
2Γ2Tr∗

≥ (1 + δ)(1− ε)3 · m
Tr∗

>
∑
r∈[m]

1

Ti
.

For the first inequality, we used Definition 14(a) and that r∗ is a good target-recalculation point; the
lower bound for |S| above for the next and Condition (C4) for the last one. Result here contradicts
Chain Growth, since the honest parties at round v have already accumulated more than

∑
i∈[m] 1/Ti

difficulty on top of u.
For the sake of proving the lower bound, we are going to argue that even if the honest parties

and the adversary join forces they still cannot obtain m blocks. We denote u, v timestamps of
the the first and last block in the epoch, respectively. Then, the honest parties can contribute
difficulty during S = {u, . . . , v}, and queries are available for the adversary during S′ = {u − ` −
2∆, . . . , v + `+ 2∆}. Note that S′ contains all rounds that the adversary can contribute, since we
have Corollary 26 and then Accurate(r) holds. Similarly, we denote r∗ ∈ S′ the timestamp of
the block with highest target (i.e., lowest difficulty) and Tr∗ its associated target. We claim that
the adversary start with the first query for target Tr∗ (so that T (J) = Tr∗). Since r∗ is a good
target-recalculation point, it follows Fact 1(a) that ph(S) ≤ pΓhr∗ |S| ≤ (1 + δ)Γ2f |S|/Tr∗ . Thus,

D(S) < (1 + ε)ph(S) ≤ (1 + ε)(1 + δ) · Γ2f |S|
Tr∗

≤ (1 + ε) · m

2Tr∗
.

With respect too the adversary, if τT (J)B(J) < εm/4, then the total number of blocks is less than
m and we are done. Otherwise, by Proposition 23(b) we have

B(J) < (1 + ε)p|J | ≤ (1 + ε)(1− δ)ph(S′) ≤ (1 + ε)(1− δ)pΓhr∗ |S′|

≤ (1− δ2)(1 + ε)(1 +
2`+ 4∆

|S|
)|S| · Γ2f

Tr∗
≤ (1− δ)(1 + ε)2 · m

2Tr∗
.
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For the last inequality, note that since Condition (C4) we have ε ≤ δ/4 and Tr∗ is the maxmium
target in the epoch,

B(J) +D(S) <
(1 + ε) + (1− δ)(1 + ε)2

2
· m
Tr∗

<
m

Tr∗
≤
∑
r∈[m]

1

Ti
,

which means the total accumulated difficulty cannot produce m blocks.

Lemma 28. GoodRounds(r − 1) =⇒ GoodChains(r).

Proof. For starter, we recall our assumption that all the target recalculation points in the first
epoch are good. Therefore, it suffices to show that the next target-recalculation point will be good,
when given an epoch with m good recalculation points. We denote u, v timestamps of the epoch
beginning and ending, respectively (a.k.a. v = u + Λ < r). Let T ′ denote the target of the next
block, our goal is to show that f/2Γ ≤ phvT ′ ≤ (1 + δ)Γf .

We begin with the lower bound. If Λ ≥ Γm/f , i.e., T ′ ≥ Γ · T avg, we pick the block in
the epoch with lowest target and denote r∗ its timestamp and Tmin its associated target. Thus,
phvT

′ ≥ phr∗T
′/Γ ≥ phr∗T

avg ≥ phr∗T
min ≥ f/2Γ, because r∗ is assumed to be a good target-

recalculation point.
Now we assume Λ < Γm/f , which implies Λ ≤ (T ′/T avg)(m/f). It is clear that all the blocks

are computed in either S = {u, . . . , v} by the honest parties or S′ = {u− `− 2∆, . . . , v + `+ 2∆}
by the adversary. Let J denote the set of queries available to the adversary in S′. Note that, by
Condition (C3) and Lemma 27, |S′| = Λ + 2`+ 4∆ ≤ (1 + ε)Λ. We have

B(J) < (1− δ)(1 + ε)ph(S′) ≤ (1− δ)(1 + ε)pΓhv|S′| ≤ (1− δ)(1 + ε)2pΓhvΛ.

Similarly, D(S) < (1 + ε)ph(S) ≤ (1 + ε)pΓhvΛ. Assuming phvT
′ < f/2Γ and recalling Fact 2, we

obtain the contradiction

2ΓphvΛ ≤ 2Γphv ·
T ′

T avg
· m
f
<

m

T avg
≤
∑
i∈[m]

1

Ti
≤ D(S) +B(J) < (2 + 4ε− δ)ΓphvΛ ≤ 2ΓphvΛ.

Then we move to the upper bound. Note that the adversary can be silent, so here we only
consider the honest parties contributing difficulty during S = {u + ` + 3∆, . . . , v − ` − 3∆}. If
Λ ≤ m/Γf , then T ′ ≤ T avg/Γ. We pick the block in the epoch with highest target and denote r∗

its timestamp and Tmax its target. Thus, phvT
′ ≤ pΓhr∗T

′ ≤ phr∗T
avg ≤ phr∗T

max ≤ (1 + δ)Γf
where r∗ is a good target-recalculation point.

Next, we may assume Λ > m/Γf , which implies Λ ≥ (T ′/T avg)(m/f) and |S| = |Λ−2`−6∆| ≥
(1− ε)Λ. Assuming phvT

′ > (1 + δ)Γf , we obtain the following contradiction

phvΛ

(1 + δ)Γ
≥ phv

(1 + δ)Γ
· T ′

T avg
· m
f
>

m

T avg
≥ 4λΓ

(λΓ + 1)2

∑
i∈[m]

1

Ti

≥ 4λΓ

(λΓ + 1)2
·Q(S) >

4λ(1− ε)[1− (1 + δ)γΓf ]∆

(λΓ + 1)2
· phv|S| ≥

phvΛ

(1 + δ)Γ
.

The third inequality follows Theorem 22. For the next one, recall that C ∈ Sr and by Lemma 25
there is a block computed by an honest party among the first and last `+ 2∆ rounds of the epoch,
respectively. Thus this inequality follows by Chain Growth. The last inequality is a consequence
of Condition (C4).
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Corollary 29. GoodRounds(r − 1) =⇒ GoodRounds(r).

Proof. Consider any C ∈ Sr and let u denote its last recalculation point before r and T the
associated target. If r is a recalculation point, it follows directly by Lemma 28. Otherwise, we
learn from Lemma 25 that the maximum interval between two blocks is `+ 2∆, thus by Fact 1(a)
hu/γ ≤ hr ≤ γhu holds. Combining it with f/2Γ ≤ phuT ≤ (1 + δ)Γf we obtain the desired
inequality.

Theorem 30. Consider a typical execution in a (〈γ/(2− δ), `+ 2∆〉, 〈Γ/(2− δ), 2(1 + δ)Γ2m/f〉)-
respecting environment, and assume conditions C3 and C4 are satisfied. Then all predicates in
Definition 13 hold.

Theorem 30 follows directly follows from our safe-start assumption (Remark 1).

Blockchain properties. We now show that Bitcoin Cash satisfies the two properties common
prefix and chain quality (cf. Section 2), for a suitable respecting environment. First, a preliminary
lemma:

Lemma 31. For any round r of a typical execution in a (〈γ/(2 − δ), ` + 2∆〉, 〈Γ/(2 − δ), 2(1 +
δ)Γ2m/f〉)-respecting environment and any two chains C and C′ in Sr, the timestamp of head(C∩C′)
is at least r − 2`− 4∆.

Theorem 32 (Common-Prefix). For a typical execution in a (〈γ/(2− δ), `+ 2∆〉, 〈Γ/(2− δ), 2(1 +
δ)Γ2m/f〉)-respecting environment, the common-prefix property holds for parameter εγ2m/2Γ.

Proof. Suppose—towards a contradiction—common prefix fails for two chains C1 and C2 at rounds
r1 ≤ r2. It is easy to see that there exist a round r ≤ r2 and two chains C and C′ such that each
had at least k blocks after head(C ∩ C′). In view of Lemma 31, it suffices to show that these blocks
were computed within at least ` + 2∆ rounds. Suppose the honest parties query during a set of
rounds S of size `+ 2∆, the accumulated difficulty is D(S), and the number of blocks produced in
|S| is at most Tmax ·D(S) where Tmax denote the maximum target among blocks in |S|. For any
round r∗ associated with target Tmax, we have

Tmax ·D(S) < (1 + ε)pTmaxh(S) ≤ (1 + ε)pγTmaxhr∗ |S| < (1 + ε)εγ2m/4Γ.

For the last inequality, note that by Condition (C3) |S| < εm/4(1 + δ)Γ2f and by Theorem 30
pTmaxhr∗ ≤ (1+δ)γΓf . By proposition 23 the adversary contributed to less than (1+ε)εγ2m/2(1+
δ)Γ blocks, for a total of less than εγ2m/2Γ.

Theorem 33 (Chain-Quality). For a typical execution in a (〈γ/(2− δ), `+ 2∆〉, 〈Γ/(2− δ), 2(1 +
δ)Γ2m/f〉)-respecting environment, the chain-quality property holds with parameters ` + 2∆ and
µ = δ − 3ε.

Transaction ledger. We conclude this section by showing that a typical execution of the (ab-
straction of the) Bitcoin Cash protocol we are considering, in a (〈γ/(2−δ), `+2∆〉, 〈Γ/(2−δ), 2(1+
δ)Γ2m/f〉)-respecting environment, satisfies the two properties of a robust transaction ledger pre-
sented in Section 5. They are the direct consequence of the blockchain properties shown above,
following the approach in [GKL17, GKL20].

Theorem 17 (Consistency). For a typical execution in a (〈γ/(2 − δ), ` + 2∆〉, 〈Γ/(2 − δ), 2(1 +
δ)Γ2m/f〉)-respecting environment, Consistency is satisfied by setting the settled transactions to be
those reported more than εγ2m/2Γ blocks deep.
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Theorem 18 (Liveness). For a typical execution in a (〈γ/(2 − δ), ` + 2∆〉, 〈Γ/(2 − δ), 2(1 +
δ)Γ2m/f〉)-respecting environment, Liveness is satisfied for depth εγ2m/2Γ with wait-time (γ2 +
1)εm/f .

Proof. We claim that the chain C of any honest party has at least εγ2m/2Γ blocks that where
computed in the last εγ2m/(1− 2ε)f + 2∆ rounds. Denote by Tmin the lowest target among these
blocks and r∗ a round associated with this target. If S is its subset without the first and last ∆
rounds, by Chain-Growth Lemma, the length of the segment is at least

Tmin ·Q(S) > (1− ε)[1− (1 + δ)γΓf ]∆pTminh(S) ≥ (1− 2ε)f |S|
2Γ

≥ εγ2m

2Γ
.

Furthermore, if a transaction tx is included in any block computed by an honest party for the first
`+ 2∆ rounds, by Lemma 25, the chain C of any honest party contains tx in a block B. Thus, the
honest parties will have

`+ 4∆ +
εγ2m

(1− 2ε)f
≤ εm

2(1 + δ)Γ2f
+

εγ2m

(1− 2ε)f
≤ (γ2 + 1) · εm

f

as the total wait-time.
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