
Improved Circuit-based PSI via
Equality Preserving Compression

Kyoohyung Han1, Dukjae Moon1, and Yongha Son1

Samsung SDS, Korea
{kh89.han, dukjae.moon, yongha.son}@samsung.com

Abstract. Circuit-based Private Set Intersection (circuit-PSI) enables
two parties with input set X and Y to compute a function f over the
intersection set X ∩ Y , without revealing any other information. State-
of-the-art protocols for circuit-PSI commonly involves a procedure that
securely checks whether two input strings are equal and outputs an addi-
tive share of the equality result. More importantly, this procedure occu-
pies the largest portion, roughly 90% computational or communication
cost for circuit-PSI. In this work, we propose equality preserving com-
pression (EPC) protocol that compresses the length of equality check
targets while preserving equality using homomorphic encryption (HE)
scheme, which is secure against the semi-honest adversary. We then ap-
ply our EPC protocol to previous circuit-PSI protocols framework and
implement them. As a result, we achieve around 2x improvement on both
communication and computational cost at one stroke than previous re-
sults.

Keywords: Private Set Intersection, Circuit-based Private Set Intersec-
tion, Homomorphic Encryption

1 Introduction

A two-party functionality of private set intersection (PSI) enables two parties P0

and P1 having respective input set X and Y to compute the intersection X ∩ Y,
without revealing any other information beyond the original set cardinality |X|
and |Y | to each other.

There are many real-world applications related to PSI, and some of them only
requiring the intersection set may find an efficient solution from PSI alone. How-
ever, there is another variant of PSI that outputs only f(X ∩Y) for some target
function f rather than the intersection set X ∩Y, and this would be more desir-
able for other applications. One typical but a popular example is PSI-Cardinality
that computes cardinality of the intersection, where f(X ∩ Y) = |X ∩ Y |. In-
deed these kinds of PSI are receiving growing attention from industry, for ex-
ample, Google [21, 29] and Facebook [7] explored some variants PSI including
PSI-Cardinality-with-Sum that computes the cardinality and the sum of associ-
ated values over the intersection set.

This PSI-with-computation notion is generalized to the circuit-PSI function-
ality, which outputs the intersection information in secret-shared form, instead

of the intersection set itself. More precisely, for each element x ∈ X, circuit-PSI
outputs each party random bits s0 and s1 respectively, such that s0 ⊕ s1 = 1 if
and only if x ∈ X ∩ Y (of course 0 otherwise). This is used as a general-purpose
preprocessing, in the sense that two parties use the shares to perform target
computation on the intersection. Notable examples would be PSI-Threshold that
only reveals whether the cardinality of X ∩Y is larger than some threshold, and
private set union (PSU) that literally computes X ∪ Y .

The work of Pinkas et al. [35] proposed a novel construction of circuit-PSI
protocol which has linear communication complexity in the input set size. After
that, several following works [8,39] have proposed improved instantiation of the
framework and those works indeed shows the state-of-the-art performance for
circuit-PSI.

To generate final bits s0 and s1 in circuit-PSI, the framework involves O(N)
times of private equality share generation (ESG) that takes an input string from
each party and outputs Boolean shares of the equality result of two strings.
This is one of the main differences of circuit-PSI from plain PSI, where the
latter one typically uses private equality test that simply outputs the equality
result itself. For private equality test, there are many efficient method such
as oblivious pseudo-random functions (OPRFs) [17, 24, 39]. However it is not
directly applicable for ESG, and the most of circuit-PSI protocols perform ESG
by other costly methods such as generic two party computation (2PC). It results
in a huge performance gap between plain PSI and circuit-PSI, about 20 − 40x.
More importantly, the cost for ESG occupies the largest part of circuit-PSI,
about 96% and 91% of the total communication in circuit-PSI protocols of [35]
and [8] respectively. Recently reported work [39] applied Silent-OT [5] to reduce
the communication burden of ESG, but this communication reduction comes at
the cost of running time. Then it still takes over 20 times of running time than
plain PSI protocols, which means ESG is also the most heavy part of circuit-
PSI [39].

1.1 Our Contribution

Our work starts with an observation that all known methods for ESG have com-
plexity linear in `, the bit-length of strings. Some works [35,39] simply exploited
two party GMW protocol [19] by evaluating equality check circuit composed
of ` − 1 AND gates, and it naturally results in complexity linear in `. After
then [8, 16] proposed more efficient protocol that has improved communication
burden, but it still suffered from linear complexity in `.

– With a purpose of reducing workload of ESG, we propose a functionality
what we call equality preserving compression (EPC) that converts two large
integers into smaller integers, while preserving the equality condition. Then
we construct a homomorphic encryption (HE) based efficient protocol real-
izing EPC functionality with semi-honest security. Asymptotically it com-
presses `-bit input integers into O(log `)-bits, with Õ(`) computational and
communication complexity.

2

– We then combine our EPC into the circuit-PSI framework of [35], which
achieves semi-honest security. Our EPC protocol perfectly preserve equality,
in other words with zero failure probability, and hence the correctness anal-
ysis for of previous circuit-PSI protocols remain exactly same. Moreover it
provides concrete improvement since it changes the previously heaviest ESG
part to be executed logarithmic sized input. Table 1 shows experimental
results that apply our EPC protocol to previous works.

N = 220 Time (s) Comms. (MB)

[39]-I 31.3 2674

w/ EPC 25.0 1019

Improve 1.25x 2.62x

[39]-II 154 255

w/ EPC 53.0 383

Improve 2.9x 0.66x

[8] 43.7 1158

w/ EPC 23.4 555

Improve 1.86x 2.08x

Table 1. Application of EPC on the previous circuit-PSI protocols for N = 220 size
input sets. Time is measured on LAN network setting.

1.2 Related Works

Plain PSI. The early proposal of PSI is based on Diffie-Hellman (DH) [28], and
this still serve as a basis of modern PSIs with considerably low communication
cost but high computational cost. Recently many OPRF-based (plain) PSI pro-
tocols [9, 24, 32, 33, 39] have been reported with rather low computational cost,
at the cost of communication burden.

PSI-with-functionality. Toward PSI with additional functionality, Google [21,
29] provides PSI-with-computation protocol stem from DH-based PSI, which is
tailored for specific target functionality that reveals computing cardinality of the
intersection and summing all associated values of the intersection sets. After then
Facebook [7] further developed this to a protocol that letting two parties have
additive shares of intersected elements, with a purpose of supporting general
computation over the intersection set.

Circuit-PSI. As a more generalized concept, circuit-PSI is firstly proposed
by [20] and then continuous improvements have been reported [12, 34, 36]. In

3

particular [34] has a similarity with our paper, as their main idea is to cut-off
the length of item while preserving equality, with a purpose of reducing the
cost for equality check. However their technique is not applicable to currently
best framework of circuit-PSI due to Pinkas et al. [35] based on oblivious pro-
grammable PRF (OPPRF). As OPPRF-based circuit-PSI framework shows the
best performance, whose details are presented later in Section 3. We note that,
despite the similarity of their names, construction of OPPRF is quite different
to OPRF, and hence OPRF-based PSI protocol does not implies OPPRF-based
circuit-PSI protocol. Indeed, we are aware of only one work [39] that constructs
plain PSI and circuit-PSI from the same underlying idea. There is another con-
cept of PSI-with-computation [16] different to circuit-PSI, which improves the
efficiency of PSI-with-computation while additionally reveals the cardinality of
intersection set as well as the desired function evaluation f(X ∩ Y).

HE in PSI field. There are also HE-based PSI approaches [10,11], which mainly
focused on extremely unbalance-sized set cases. The first work [11] considered
plain PSI, and the main idea is to solve private set membership (PSM) problem
by HE after cuckoo/simple hashing, which is quite different to our use of HE.
The following work [10] extended this protocol to PSI having associated value
and strengthened the security to malicious setting, but HE is applied in the
similar sense to the previous work. The authors of [10] leaved a short mention
on circuit-PSI as a combination of their HE-based PSM protocol with the final
equality share generation. As the circuit-PSI protocol was not the main interest
of the paper, the authors merely mentioned that the final task can be done by
2PC without detailed analysis.

1.3 Roadmap

In Section 2, we recall the preliminaries including oblivious transfer and homo-
morphic encryption, and in Section 3, we present the state-of-the-art circuit-PSI
framework due to [35]. In Section 4, we propose an equality preserving com-
pression functionality concept and efficient protocol for that. Then in Section
5, we combine our proposed EPC protocol with the OPPRF-based circuit-PSI
protocol to improve efficiency, and provide experimental results in Section 6.

2 Preliminary

2.1 Notations

We write vectors as bold lowercase letters, and matrices as bold uppercase letters.
The i-th component of a vector v is denoted by vi, and i, j-th entry of a matrix
M is denoted by mi,j . For an integer k, a set {1, · · · , k} is denoted by [k]. The
logarithm function log is assumed to have base 2 unless specially denoted by
logw with base w. For any statement T that can be determined by true or false
(Boolean), we denote 1(T) be the truth value for the equality, i.e., it is 1 if T is
true and 0 else.

4

2.2 Oblivious Transfers

An 1-out-of-n oblivious transfer (OT) of `-bit input messages (n, 1)-OT` takes
as input n messages m1, · · · ,mn ∈ {0, 1}` from the sender and a choice index
c ∈ [n] from the receiver, and outputs mc to the receiver and nothing to the
sender. We also use a notion of 1-out-of-2 correlated-OT (COT) of `-bit input
messages (2, 1)-COT`, where the sender inputs a correlation d ∈ {0, 1}` and the
receiver inputs a choice bit b ∈ {0, 1}. Then the functionality outputs to the
sender r and d+ r for a randomly chosen r ∈ {0, 1}`, and to the receiver b ·d+ r.
We write m times of (n, 1)-(C)OT` calls by (n, 1)-(C)OTm` .

There are protocols called OT-extension (OTe) that efficiently extend small
numbers of base OTs to large numbers of OTs. Assuming that such small num-
bers of base OTs are done, the most typical IKNP OTe protocols execute (2, 1)-
OT` and (2, 1)-COT` with communication λ+ 2` [22] and λ+ ` [3] bits per one
call, respectively, and KK OTe protocol executes (n, 1)-OT` with communica-
tion 2λ + n` [23]. Recently another method named Silent OT-extension [5] is
proposed, which greatly reduces communication overhead of IKNP-style OT-
extension, at the cost of increased running time. For sufficiently many OT and
COT calls, for example more than 220 calls, Silent OTe allows one to execute
(2, 1)-OT` and (2, 1)-COT` with nearly 2`+ 1 and `+ 1 bit communication per
one call, respectively.

Boolean shares and Gate evaluations. For a bit x ∈ {0, 1}, we say x0 ∈
{0, 1} and x1 ∈ {0, 1} satisfying x = x0⊕x1 be 2-party additive Boolean shares,
or simply Boolean shares of x. Consider two bits x and y are shared as xi and yi
by two party P0 and P1. Boolean shares of XOR evaluation x⊕ y can be easily
evaluated as xi ⊕ yi by each party’s own, and we elaborated two methods for
computing Boolean shares of AND evaluation.

In the first method [14,37], two parties execute (4, 1)-OT1 with the sender’s
k = (k1, k0) ∈ {0, 1}2-th message mk = (xi ⊕ k1) ∧ (yi ⊕ k0) ⊕ r for some
random bit r ∈ {0, 1}, and the receiver’s choice index c = (x1−i, y1−i) ∈ {0, 1}2.
As a result the receiver outputs mc = (x ∧ y) ⊕ r and the sender outputs r,
which are Boolean shares of x∧ y. This can be generalized to perform ` parallel
evaluations of AND gates with (4`, 1)-OT`. It can be easily calculated that ` = 2
is the optimal choice, which requires λ + 16 bit communication per one AND
gate evaluation.

The second method [13,19] is done by (2, 1)-COT2
1. For the underlying idea,

observe that (2, 1)-COT1 with the sender’s input correlation bit d and the re-
ceiver’s input choice bit b essentially computes Boolean shares of b∧d. To evaluate
AND gate, two parties execute a correlated-OT with input xi and y1−i to have
Boolean shares of a = xi∧y1−i, and then with input yi and x1−i to have Boolean
shares of b = x1−i ∧ y1−i. Then the party Pi outputs xi ∧ yi ⊕ ai ⊕ bi and the
other party P1−i outputs x1−i ∧ y1−i ⊕ a1−i ⊕ b1−i, which are Boolean shares of
x ∧ y = (x0 ⊕ x1) ∧ (y0 ⊕ y1).

5

2.3 RLWE-based Homomorphic Encryption

A homomorphic encryption (HE) scheme is an encryption scheme that supports a
ring-structured plaintext M, and homomorphic arithmetic operations between
ciphertexts that acts on inner plaintext. We especially exploit a ring learning
with errors (RLWE) based HE scheme, BFV scheme [15].

For simplicity, we restrict our description here for RLWE-based HE using
power-of-2 cyclotomic rings of integers which is sufficient for our paper. Let
R := Z[X]/(Xn + 1) be a polynomial quotient ring where n is a power-of-2
integer. This scheme supports a plaintext space Rp := R/pR = Zp[X]/(Xn+ 1)
for some plaintext modulus p, and the corresponding ciphertext space is R2

q for
some q � p.

BFV Scheme. We will briefly review the BFV homomorphic encryption scheme.
The IND-CPA security of BFV is based on the hardness assumption of the RLWE
problem. For more details, we refer to [4, 15].

Key Generation. Given a security parameter λ > 0, fix integers n, P (P be a
positive integer that will be used in the evaluation key generation), and distri-
butions Dkey, Derr and Denc over R in a way that the resulting scheme is secure
against any adversary with computational resource of O(2λ).

1. Sample a ← Rq, s ← Dkey, and e ← Derr. Then the secret key is defined
as sk = (1, s) ∈ R2, and the corresponding public key is defined as pk =
(b, a) ∈ R2

q, where b = [−a · s+ e]q.
2. Sample a′ ← Rq and e′ ← Derr. Then the evaluation key is defined as

evk = (b′, a′) ∈ R2
q, where b′ = [−a′ · s+ e′ + Ps′]q for s′ = [s2]q.

Encryption. Given a public key pk and a plaintext m ∈ R, Sample r ← DEnc and
e0, e1 ← Derr. Then compute Enc(pk, 0) = [r ·pk+(e0, e1)]q and EncBFV(pk,m) =
[Enc(pk, 0) + (∆BFV · [m]p, 0)]q,where ∆BFV = bq/pe.

Decryption. Given a secret key sk ∈ R2 and a ciphertext ct ∈ R2
q, Dec

BFV(sk, ct) =⌊
p
q [〈sk, ct〉]q

⌉
.

The ciphertext of BFV scheme is (b(x), a(x)) satisfying b(x) = −a(x) · s(x) +
e(x). The e(x) part is called as noise term of ciphertext. We note that infinite
norm of noise term of ct in decryption function should be bounded by q

2p for
correctness.

Addition. Given ciphertexts ct1 and ct2 in R2
q, their sum is defined as ctAdd =

[ct1 + ct2]q.

Multiplication. Given ciphertexts ct1 = (b1, a1) and ct2 = (b2, a2) in R2
q and an

evaluation key evk, their product is defined as ctMult =
[
(d0, d1) +

⌊
P−1 · d2 · evk

⌉]
q
,

where (d0, d1, d2) is defined by
[⌊

p
q (b1b2, a1b2 + a2b1, a1a2)

⌉]
q
.

6

Batching. As BFV scheme support a plaintext space Rp, multiple data in Zp can
be encrypted in one ciphertext. This method is called batching, and this method
can be applied with following condition:

p = 1 mod 2n. (1)

In this case, operations between plaintext in Znp goes to Single instruction mul-
tiple data (SIMD) operation which means component-wise addition and multi-
plication.

Security Notions. For security, we consider the standard IND-CPA security that
requires two ciphertexts of different messages are (computationally) indistin-
guishable given an encryption oracle. The IND-CPA security of RLWE-based
HE literally comes from the hardness of ring learning with errors (RLWE) prob-
lem. For concrete parameter setting of IND-CPA security, the bit-size of cipher-
text modulus log q and polynomial ring dimension n, and error distribution Derr
should be selected to secure against various lattice reduction attacks.

3 Circuit-based PSI

The definition circuit-based PSI (circuit-PSI) functionality to generate Boolean
additive shares is given as Figure 1. After circuit-PSI, the results can be used
for one’s desired function evaluation. In the rest of this section, we describe the
abstract framework of [35] which continues to the following improvements [8,39].
Then we especially review the equality share generation methods of each works
which occupies the largest part of the total cost, from which we can observe
the input bit-length ` equality share generation plays the most crucial role for
complexity.

Parameters: A receiver with an input set X of size N and a sender with an input
set Y of size N.

Functionality: The functionality sends to the receiver an injective indexing function
ι : X → [M] for some M ≥ N and a vector s0 ∈ {0, 1}M , and to the sender a vector
s1 ∈ {0, 1}M such that s0,i ⊕ s1,i = 1(ι−1(i) ∈ X ∩ Y) for i ∈ ι(X), and s0,i ⊕ s1,i = 0
for i /∈ ι(X).

Fig. 1. FCPSI. (Ideal) Functionality of circuit-PSI

3.1 The OPPRF-based Circuit-PSI Framework

Let the receiver R holds a set X and the sender S holds a set Y of the same size
N. The framework consists of the following three main stages.

7

Step 1. Hashing. For ε > 0, each party creates a hash table withM = (1+ε)·N
bins, but with different hashing method. The receiver applies cuckoo hashing
with d hash functions h1, · · · , hd : {0, 1}∗ → [M] on input X. More precisely,
for a suitable choice of ε, there is a cuckoo hashing algorithm that stores every
element x ∈ X in hj(x)-th bin for some j ∈ [d] with overwhelming probability,
while ensuring that at most one element is stored in each bin. This yields a
simple representation of the cuckoo hash table: TX [hj(x)] = x. Note that the
mapping from x ∈ X to hj(x) determines the indexing function ι in the circuit-
PSI definition of Figure 1.

On the other hand, the sender creates a simple hash table with the same
hash functions on input Y, which stores each y ∈ Y in every bin hj(x) for every
j ∈ [d]. Naturally each bin can hold more than one element, and hence the i-
th bin of the simple hash table TY [i] is indeed a set. It is known that that for
M = O(N) hash table size, the number of elements in each bin is O(log(N)).

Since hj(x) 6= hj(y) for some j implies x 6= y, two parties only need to
compare each elements of the same bin of each hash tables. Since the cuckoo hash
table TX ensures at most one element of x ∈ X per each bin, circuit-PSI reduces
to the problem that securely outputs an additive share of 1(TX [i] ∈ TY [i]) for
each bin i, which is essentially a private set membership (PSM) problem. Here the
receiver has to fill the empty bin in TX with dummy value to prevent additional
information leakage.

Step 2. Bin Tagging. This step further reduces the aforementioned PSM
problem into an equality share generation (ESG) problem between two parties,
where each party inputs a vector v and v∗ of length M respectively, and is given
as output a Boolean vector of additive share of 1(vi = v∗i).

This is realized by a functionality called oblivious programmable pseudo-
random function (OPPRF) [25] where the sender obliviously computes a PRF
F on receiver’s input while the sender can program F with values (yi, zi) so
that F (yi) = zi. The formal definition of OPPRF is given as Figure 2. [35] is
the first work that applies OPPRF functionality for this purpose, and then [8]
and [39] developed more efficient OPPRF protocols to improve the performance
of circuit-PSI.

Parameters: A sender with input L = {(yi, zi)} where yi ∈ {0, 1}∗ and zi ∈ {0, 1}`,
and a receiver with input X = {xi} with xi ∈ {0, 1}∗.

Functionality: The functionality samples a random function F : {0, 1}∗ → {0, 1}`
such that F (y) = z for each (y, z) ∈ L, and sends F (X) := {F (x) : x ∈ X} to the
receiver.
After then, upon an input y of the sender, the functionality outputs F (y) to the sender.

Fig. 2. FOPPRF. (Ideal) Functionality of oblivious programmable PRF

8

To convert PSM problem to ESG problem, two parties execute a protocol
for OPPRF functionality with the following input. The sender who has a simple
table samples a random tag value vi ∈ {0, 1}` for each i-th bin, and generate
the input set L obtained by concatenating each y ∈ Y with the tag of the bins
where y is stored, namely

L =
{(
y||hj(y), vhj(y)

)}
y∈Y,j∈[d] = {(y′||i, vi)}i∈[M],y′∈TY [i] .

The receiver feeds its input set by T̃X = {TX [i]||i}i∈[M] . After the execution of
OPPRF protocol, the receiver assigns

v∗i = F (TX [i]||i) ∈ {0, 1}`

in each hash address i to construct a vector v∗ of length M. From the definition
of OPPRF functionality, it holds that vi = v∗i if the element TX [i] is in the
set TY [i], otherwise v∗i is a random element. Therefore the original PSM-related
problem is translated into equality share generation problem between v from the
sender and v∗ from the receiver.

Failure Probability of OPPRF. Note that there is a failure probability of
2−` where the random element v∗i is same to vi despite TX [i] is not in TY [i]. The
length of tag ` should be chosen so that the overall failure probability is smaller
than 2−σ where σ is statistical security parameter. Since there are M bins, it
should hold that 2−σ > 1− (1− 2`)M , which is sufficient with ` > σ + dlogMe.
One exception is OPPRF of [8] that requires ` > σ + dlog 4Me, and this comes
from different structure of their OPPRF.

Step 3. Equality Share Generation. In this step two parties finally generate
Boolean shares of 1(vi = v∗i), whose definition is formally given as Figure 3.

Parameters: A sender with an input string a and a receiver with an input string b.

Functionality: The functionality outputs bits s0 and s1 such that s0 ⊕ s1 = 1(a = b)
to each party respectively.

Fig. 3. FESG. (Ideal) Functionality of equality share generation

There are several protocols performing this step in semi-honest model. As
our main interest is to improve this step, we review them in the next subsection.
We remark that this step occupies the most of computational or communication
cost among three steps, such as 96% of the total protocol cost in Table 3 of [35],
91% in Table 2 of [8]. The breakdown for each step is not given in [39], but
as it used the same method to generate equality share generation with [35], we
strongly predict that Step 3 occupies the largest part of the total cost among
three steps also for [39].

9

3.2 Protocols for Equality Share Generation

Our paper aims to reduce the huge burden of equality share generation (ESG).
For that, we briefly review known methods for generate equality shares below,
and Table 2 shows the summary. We would like to remark that the bit-length `
plays crucial role for complexity.

GMW Protocol. One can directly use evaluate the equality check circuit on
`-bit string composed of ` − 1 AND gate evaluations. Circuit-PSI protocols of
[35] and [39] exploited this method, while performing AND gate evaluations by
(2, 1)-COT2`−2

1 using IKNP OTe or Silent OTe. IKNP OTe comes at the fastest
execution time but huge communication cost, and Silent OTe shows opposite
performance; slow but light.

CGS Protocol. Proposed in [8], this method uses oblivious transfer in more
direct way than GMW protocol. Roughly speaking, it divides given `-bit input
strings into d-length substrings, and perform (2d, 1)-OT1 to generate equality
share of each substring. Then the final equality result is obtained by evaluating
`/d − 1 AND gates of all equality share. The circuit-PSI protocol of [8] takes
d = 4 and exploites KK OTe with n = 16, where equality shares of substring is
generated by (16, 1)-OT1 and AND gate evaluation is done with (16, 1)-OT2. A
detailed description of the protocol including ` 6= 0 mod d case can be found in
Appendix A.1.

OSN Protocol. Recently, [16] proposed another method for ESG which has a
downside that it always reveals the cardinality of the intersection set |X ∩ Y |.
It is based on oblivious switching network (OSN) protocol [30] that requires

(2, 1)-OTM logM
2` . The authors of [16] exploited IKNP OTe to execute such OT

calls. We note that although OSN protocol seems to require less numbers of
(2, 1)-OT calls than GMW protocol (2M` vs. M logM) the running time of OSN
protocol is quite slower than GMW protocol due to its complicated structure [16].

Required OT Approx Comm. Running Time

IKNP-GMW (2, 1)-COT2`
1 2λ` Fast

KK-CGS (16, 1)-OT
3`/8
≤2 0.75(λ+ 12)` Medium

IKNP-OSN (2, 1)-OTlogM
2` logM(λ+ 4`) Medium

Silent-GMW (2, 1)-COT2`
1 4` Slow

Table 2. Known methods for ESG and (amortized) costs for one `-bit input.

10

Remark 1. One may wonder whether other combination of OT extension and
ESG protocol (e.g. KK-GMW or Silent-OSN) is possible or even better. Re-
garding this we show that other combinations are possible, but Table 2 is the
best four combinations regardless of input length `. See Appendix A.3 for more
details.

3.3 Applications of Circuit-PSI

Below we present some typical but popular applications of circuit-PSI. We would
like to remark that the overheads for these applications are significantly small
compared to circuit-PSI cost, as also remarked in [35].

Private Intersection Cardinality and Threshold. These applications would
be most direct consequences of circuit-PSI. The cardinality of intersection set
(PSI-Ca) can be obtained by evaluating a Hamming distance circuit that re-
quires less than M AND gates on circuit-PSI outputs. Moreover, by augmenting
one comparison circuit to the Hamming distance circuit (less than M + logM
AND gates), we can let the parties know whether the cardinality is larger than
some threshold t (PSI-Th).

Private Sum over Intersection. Assume the sender having set X additionally
holds an associated values {vx ∈ G : x ∈ X} for some additive group G, and
we want to let the receiver having set Y knows the sum of associated values
over the intersection set, namely V =

∑
x∈X∩Y vx. This is sometimes called

PSI-Sum1. For that we adapt a method of [16]: The sender samples r ∈ GM
that sums to

∑
ri = 0. Then two parties execute OT upon the choice bit s1,i

from the receiver, and two messages ri for s0,i choice and ri + vι−1(i) for 1− s0,i
choice from the sender, where vι−1(i) = 0 for i /∈ ι(X). The receiver adds all
received value to have

∑
ri + V = V, without knowing any other information

since each summand is masked by random value ri. This can be easily tweaked
to let the sender know V =

∑
x∈X∩Y vx, by letting the sender samples r such

that
∑
ri = R for a sender-side chosen R ∈ G. Then from the same protocol the

receiver ends with R+ V , and finally sends back the value to the sender so that
the sender recover V = (R+ V)−R.

Remark 2. Circuit-PSI can handle the case where both parties hold associated
value sets so that parties perform further computations over those sets. How-
ever it is somewhat complicated as it requires some modification of OPPRF
application (of Step 2. Bin Tagging). Thus we simply refer Section 6 of [35] for
details.

1 Some protocols [16, 21] outputs both cardinality and summation. It should be re-
marked that circuit-PSI based protocol can selectively exposes cardinality or sum-
mation, or even both.

11

Private Set Union. Circuit-PSI also leads to private set union (PSU), where
the receiver obtains X ∪Y . Note that by assuming the receiver holds Y (and the
sender holds X), PSU is equivalent to let the receiver know X\Y . We can also
adapt a method of [16] for PSU as follows: Two parties first run circuit-PSI on
each input X and Y so that the result equality share is related to X, i.e., two
parties obtain s0,x and s1,x for each x ∈ X. Then the set X\Y can be obtained
from OT between two parties, with a choice bit s1,x from the receiver, and two
messages x for s0,x choice and ⊥ for 1− s0,x choice from the sender. Note that
the receiver obtains x if x ∈ X\Y , and ⊥ otherwise, and the sender knows no
information about which element of X is sent to the receiver.

4 Equality Preserving Compression

The final equality share generation procedure occupies the largest part of the
total cost, and the input bit-length ` of equality share generation plays an im-
portant role. In this section, we present a procedure that converts the equality
share generation target inputs into another values whose size is asymptotically
logarithm of the original input bit-length, while the equality results remain un-
changed. More formally, we define the 2-party functionality equality preserving
compression (EPC) FEPC that takes an integer v ∈ Zt from the sender and an-
other integer v∗ ∈ Zt from the receiver. The functionality outputs each party a
random integer r and r∗ in another modulus ring Zp, where it holds that v = v∗

in Zt if and only if r = r∗ in Zp for p < t.

Parameters: A sender with an input v ∈ Zt and a receiver with an input v∗ ∈ Zt,
and the target size p.

Functionality: The functionality sends a random r ∈ Zp and r∗ ∈ Zp to the sender
and receiver respectively, such that v = v∗ in Zt if and only if r = r∗ in Zp.

Fig. 4. FEPC. (Ideal) Functionality of equality preserving compression

4.1 A Basic Protocol

Our protocol starts from the following simple observation on word decomposi-
tion. For any base w, the w-base decomposition of v and v∗ by v =

∑u−1
i=0 vi ·wi

and v∗ =
∑u−1
i=0 v

∗
i · wi where u := dlogw te and vi, v

∗
i ∈ [0, w) satisfies

v = v∗ ⇐⇒ D :=

u−1∑
i=0

(vi − v∗i)2 = 0 in Z. (2)

Note that D ≤ u · (w− 1)2 ≈ logw t · (w− 1)2, which has much smaller size than
the original size t.

12

Based on this idea, we consider a simple protocol that privately computes
D and output a random element r ∈ Zp and r∗ := r + D ∈ Zp by Figure 5.
However the correctness may fails without any condition on the word base w,
since it may happens that r = r∗ ∈ Zp despite of v 6= v∗ if D is divisible by p.
To avoid this, the word base w has to be chosen so that D is always less than p,
namely

p > u · (w − 1)2. (3)

We note that u · (w − 1)2 = O(log t), this protocol asymptotically realizes FEPC

for p = O(log t).

Parameters: A sender with input v ∈ Zt and a receiver with input v∗ ∈ Zt and
the target size p.

Protocol:

1. Sender generates a HE secret key sk, and decomposes in w-base v ∈ Zt to
{vi}0≤i<u for u = dlogw te. After that sender encrypts each vi using sk, and
sends them to receiver.

2. Receiver picks a random integer r ∈ Zp, and decomposes v∗ ∈ Zt to {v∗i }0≤i<u.
Then receiver homomorphically compute r +

∑u−1
i=0 (vi − v∗i)2, and sends the

resulting ciphertext back to sender.
3. Sender decrypts the received ciphertext using sk, to obtain r∗ = r+

∑u−1
i=0 (vi−

v∗i)2 ∈ Zp.

Fig. 5. A basic protocol for FEPC functionalities

4.2 Optimizations and Full Protocol

We provide several optimizations of the basic protocol of Figure 5. A full protocol
description that puts everything together is presented by Figure 6.

Batching by RLWE-HE. As RLWE-based HE supports batching several ele-
ments into one ciphertext and SIMD operation, we can batching n times of FEPC

calls. As a downside, this requires a restriction on the choice of target size p by
p = 1 mod 2n (1), which necessarily requires p > 2n.

Removing Ciphertext Multiplications. In RLWE-based HE, homomorphic
multiplication takes much larger time than scalar multiplication. To remove ho-
momorphic multiplications, we let the sender additionally sends one more cipher-
text which is an encryption of

∑u−1
i=0 v

2
i . In this case, the receiver can computes

D by

D =

u−1∑
i=0

v2i − 2 ·
u−1∑
i=0

vi · v∗i +

u−1∑
i=0

v∗2i .

13

As the receiver knows v∗i values, it can compute
∑u−1
i=0 v

∗2
i part and then the

receiver only needs to perform scalar multiplications to obtain an encryption of
D.

Remark 3. This opens possibility to apply additive homomorphic encryption
(AHE) schemes such as Paillier scheme [31], but RLWE-based AHE is still better
for our PSI usage. See Appendix B for more detailed argument.

Realizing Function Privacy. For the security proof, we need to ensure the
function privacy from the return ciphertext from receiver to sender. For that we
apply randomization and noise flooding method, whose detail will be presented in
the next subsection. Concretely this can be realized by letting receiver randomize
the resulting ciphertext by homomorphically adding a fresh encryption of zero,
and add large enough error to apply noise flooding method before send the
computation result back to sender.

4.3 Security and Cost Analysis

In this section, we will discuss about security of our protocol with correctness
proof. We also analyze the computational and communication costs. Before that,
we need to recall some details of RLWE-based HE scheme. We will focus on BFV
scheme [15], but it does not mean that our method is restricted to this scheme.

Randomizing BFV Ciphertexts. Recall that a BFV encryption of a message
m(x) is of the form(

−a(x) · s(x) +
q

p
·m(x) + e(x), a(x)

)
∈ R2

q.

As secret key owner can recover not only m(x) but also e(x). For this reason, we
need to add additional noise e∗(x) such that |e∗i | > 2σ ·B for the function privacy
of homomorphic encryption scheme. Here B is upper bound of e(x)’s coefficients
and σ is the statistical security parameter. This method is called noise flooding
and this idea is firstly proposed by [18].

Noise Analysis. For the concrete choice of homomorphic encryption parame-
ter, we need to analyze the noise term in our HE-based EPC protocol. Here we
will consider the infinity norm ||f(x)|| which is defined as maxi |fi| and the ex-
pansion factor of ring R is defined as δR = max{||f(x) ·g(x)||/(||f(x)|| · ||g(x)||) :
f(x), g(x) ∈ R}. In addition, we assume that the noise term of ctxtk,i in Figure 6
is bounded by Bfresh.

Lemma 1 (Noise growth during homomorphic constant multiplica-
tion). For the given BFV ciphertext (b(x), a(x)) with noise term e(x) such that
||e(x)|| < B, the result ciphertext of homomorphic constant multiplication has
noise term e∗(x) such that ||e∗(x)|| < δR · p ·B + δR · p2.

14

Parameters: A sender with input v ∈ ZM
t and a receiver with input v∗ ∈ ZM

t

and the target size p.

Protocol:

1. [Setup] Two parties agree on a proper HE parameter (n, q) that supports
plaintext space Zn

p , and satisfies IND-CPA security. Then the sender samples
a key pair (sk, pk), and sends the public key pk to the receiver. The sender pads
v by 0 and the receiver pads v∗ by 1, until they have length divisible by n, say
γ · n. Two parties also agree on word base w satisfying p > dlogw te · (w− 1)2,
and define u = dlogw te .

2. [Encryption] Sender performs the following for 0 ≤ k < γ:
(a) Decompose each vnk+j into

∑u−1
i=0 vj,i · w

i for 1 ≤ j ≤ n.
(b) Batch them into mk,i = (vj,i)1≤j<n ∈ Zn

p for 0 ≤ i < u.
(c) Define mk,u = (

∑u−1
i=0 v

2
j,i)1≤j<n ∈ Zn

p

(d) Encrypt {mk,i} into {ctxtk,i} using sk and send those ciphertexts to the
receiver.

3. [Compute D and Masking] Receiver performs the following for 0 ≤ k < γ:
(a) Decompose each v∗nk+j into

∑u−1
i=0 v

∗
j,i · wi for 1 ≤ j ≤ n.

(b) Batch them into m∗k,i = (v∗j,i)1≤j<n ∈ Zn
p for 0 ≤ i < u.

(c) Define m∗k,u = (
∑u−1

i=0 v
∗2
j,i)1≤j<n ∈ Zn

p

(d) Compute a ciphertext ctxtk,d = ctxtk,u ⊕
∑u−1

i=0

(
ctxtk,i � 2m∗k,i

)
⊕m∗k,u

(e) Sample a random vector r∗k ∈ Zn
p .

(f) Generate an encryption ctxtfp,k (using pk) of zero of error size Bfp which
is large enough for function privacy.

(g) Send back ctxtk := ctxtk,d ⊕ ctxtfp,k ⊕ r∗k to the sender.

4. [Decryption] Sender decrypts ctxtk to have rk ∈ Zn
p for 0 ≤ k < γ.

5. [Finalize] Sender outputs r ∈ ZM
p by concatenating every rk and cutting the

last γ · n−M dummy elements. Receiver outputs r∗ ∈ ZM
p by performing the

same with r∗k.

Fig. 6. A full protocol ΠBEPC for M batch calls of FEPC functionalities

Proof. In case of homomorphic constant multiplication, it can be done by mul-
tiplying a constant polynomial c(x) to each a(x) and b(x). And each coefficient
of c(x) is bounded by the plaintext modulus p. For the a∗(x) = c(x) · a(x) and
b∗(x) = c(x) · b(x),

15

b∗(x) + a∗(x) · s(x) =
⌊q
t

⌉
· (m(x) · c(x)) + e(x) · c(x)

=

⌊
q

p

⌉
· ([m(x) · c(x)]p + p · I(x)) + e(x) · c(x)

=

⌊
q

p

⌉
· [m(x) · c(x)]p +

(
q

p
+ ε

)
· p · I(x) + e(x) · c(x)

=

⌊
q

p

⌉
· [m(x) · c(x)]p + ε · p · I(x) + e(x) · c(x) mod q

Therefore, ||e∗(x)|| = ||ε · p · I(x) + e(x) · c(x)|| ≤ δR · p2 + δR · p ·B. ut

Furthermore, homomorphic addition between two ciphertext with noise bound
B1 and B2 returns ciphertext with noise bound B1 + B2 + 2p. Finally, homo-
morphic addition between ciphertext with noise bound B and plaintext returns
ciphertext with noise bound B + 2p.

From now on, we can analyze the noise term in our HE-based EPC proto-
col. This analysis gives a method for concrete HE parameter choices. If we see
Figure 6, the receiver have to compute following (at 3-(d)):

ctxtk,d = ctxtk,u ⊕
u−1∑
i=0

(
ctxtk,i � 2m∗k,i

)
⊕m∗k,u.

By Lemma 1, the noise term of output ciphertext ctxtk,d will be bounded by
B∗ = 2u · (δR · p · Bfresh + δR · p2) + Bfresh + 4p. After that we need to add
encryption of zero of error size Bfp = 2σB∗ for statistic security parameter
σ for the function privacy. At last, receiver needs to add random vector r∗k to
the ciphertext. So, for the correct BFV decryption at the decryption phase, the
ciphertext modulus q should satisfies the following inequality:

q

p
> (2σ + 1) ·

(
2u · (δR · p ·Bfresh + δR · p2) +Bfresh + 4p

)
+ 2p.

Recall that we have u = O(log t) for the target size p = O(log t), and therefore
we asymptotically have q = O(log4 t) where t is input size.

Theorem 1. The protocol ΠBEPC of Figure 6 realizes M times of FEPC func-
tionality calls in a semi-honest model if

q > p · (Bfp +B∗ + 2p)

where B∗ = 2u · (δR · p · Bfresh + δR · p2) + Bfresh + 4p and Bfp = 2σB∗ for a
statistical security parameter σ.

Proof. It is already explained that the condition for q provides the correctness
and the function privacy required for our protocol.

16

For the sake of simplicity, we forget batching for a while and assume each
parties has integer v and v∗ in Zt. During the protocol execution, the receiver
has input v∗ and a random output r∗, and its view consists of the public key pk
and the ciphertexts of vi (decomposed value) and

∑
v2i . This can be simulated

by replacing all ciphertexts to encryptions of zero, which is indistinguishable
from the real execution thanks to the IND-CPA security of HE.

The sender has input v and its view is a ciphertext of D + r and it outputs
the plaintext D + r ∈ Zp by decrypting the ciphertext. This can be simulated
by encrypting the output r′ ∈ Zp of ideal functionality, since from the function
privacy the sender cannot know any other information than the decryption result,
and the distribution of D + r is identical to the distribution of r′ (uniform over
Zp). ut

Asymptotic cost analysis. As the ciphertext modulus q is determined as
above, we can estimate the total costs. Let γ = dM/ne and u = logw t by follow-
ing notations of ΠBEPC. For computational cost, our protocol requires γ(u + 2)
encryptions, γu homomorphic constant multiplications, 2γ(u+ 3) homomorphic
additions, and γ decryptions for M numbers of EPC calls. Such HE operations
including homomorphic constant multiplication can be done by O(1) numbers of
Rq operations that is roughly translates into O(n log n log q) bit operations [4].
By approximating γn ≈M, we conclude that amortized computational cost per
EPC call is O(log t · log n · log q) bit operations as u = O(log t). In case of secure
RLWE parameters, n ∝ log q roughly holds for the fixed computational security
parameter λ. Since q = O(log4 t), we conclude that the computational cost per
one EPC is Õ(log t). Toward communication cost, the sender sends γ(u + 1)
fresh ciphertexts to the receiver and the receiver returns γ ciphertexts after HE
oepration to the sender. The size of fresh ciphertexts is γ(u + 1)(n log q + λ)
and the size of returned ciphertexts is 2γn log q. Then the total communication
cost is γn(u + 3) log q + γ(u + 1)λ bits. We again approximate γn ≈ M and
divide the total cost by M to see amortized cost for one EPC call. Then it re-
sults in approximately (u+ 3) log q ≈ (logw t+ 3) log q bits communication and
asymptotically Õ(log t) for one EPC call.

5 Application to Circuit-PSI Framework

Our equality preserving compression (EPC) of the previous section can be seam-
lessly augmented to the OPPRF-based circuit-PSI framework described in Sec-
tion 3 as Figure 7.

Since EPC perfectly preserve equality (without failure probability), all pre-
vious works’ analysis for correctness (or failure probability) are still valid. More-
over, as Theorem 1 shows that EPC is secure against semi-honest adversary, the
semi-honest security ΠCPSI is also guaranteed.

Theorem 2. The protocol ΠCPSI of Figure 7 realizes the FCPSI functionality in
a semi-honest model in the hybrid model of FOPPRF,FEPC and FESG.

17

Parameters: A receiver with an input set X of size N and a sender with an input
set Y of size N, and compression target bit-length `c.

Protocol:

1. [Hashing] Both parties agree on hash functions h1, · · · , hd, and table size param-
eter ε. The receiver construct a cuckoo hash table TX from X, and the sender
constructs a simple hash table TY from Y using hash functions h1, · · · , hd into
M = (1 + ε) ·N bins. The receiver define the address mapping X to TX by ι.

2. [Bin Tagging] The sender samples uniformly random tags v ∈ ZM
2` and sends

L = {(y′||i, vi)}i∈[M],y′∈TY [i] to FOPPRF. The receiver sends T̃X = {TX [i]||i}i∈[M]

to FOPPRF, and receives v∗ ∈ ZM
2` from FOPPRF.

3. [Equality Preserving Compression] The sender sends v and the receiver sends
v∗ to FEPC, and receives r ∈ ZM

2`c and r∗ ∈ ZM
2`c from FEPC respectively.

4. [Equality Share Generation] For 1 ≤ i ≤ M, the sender sends ri and the
receiver sends r∗i to FESG, and receives s0,i ∈ {0, 1} and s1,i ∈ {0, 1} from FESG

respectively.

Fig. 7. ΠCPSI. Protocol of our circuit-PSI: OPPRF-based framework + EPC

For the asymptotic complexity view, the overall cost remains same since EPC
itself takes Õ(`) complexities. However, EPC changes the input bit-length of the
most heavy equality share generation (ESG) part from ` to `c = O(log `), which
brings concrete performance gain.

About the choice of `c. Observe that EPC cost increases with smaller the
output length `c but ESG cost decreases with `c, and hence there would be a
balancing point of `c.

For more detailed discussion, we have to consider the concrete cost since
the asymptotic total cost is always O(`) regardless of the choice of `c. One
plausible way is to measure the communication costs along with `c that can
be objectively calculated than computational costs. However it may leads to
inadequate conclusion, in particular when ESG is performed by Silent OT which
has extremely low communication cost but high computational cost.

There is another point that makes the problem difficult. Observe that EPC
output length `c is determined by HE plaintext modulus p as `c = dlog pe. How-
ever plaintext modulus p has to satisfy HE batching condition p = 1 mod 2n,
and the choice of `c is somewhat restrictive.

For reasons mentioned above, we postpone the discussion of `c choice to later
experimental Section 6 where we discuss with the concrete numbers.

Offline tag encryption. The tag vector v sampled by the sender in the bin
tagging step is independent to the input set of the protocol, so it can be sampled
before the input set is known, in other words in offline phase. This observation

18

brings negligible improvement in the original framework without equality pre-
serving compression, as it only shifts the random v sampling time to offline.
Meanwhile, it has a notable effect when combined with our equality preserving
compression, as the server can perform the encryption phase of ΠBEPC in offline
phase. Then the online phase of the protocol performs only HE operations, which
leads to faster online execution.

6 Performance Evaluation

In this section, we consider concrete instantiation of our circuit-PSI protocol of
Section 5 and evaluate the performance. More precisely, we first discuss concrete
parameter selections of sub-protocols, especially with respect to the compression
target `c. Then we evaluate the performances of several combinations of our
EPC protocol and previous ESG protocols reviewed in Section 3.2. Finally we
provide full circuit-PSI protocol costs evaluation by attaching previous hashing
and OPPRF steps, and some consequences of our protocols.

Throughout this section, we assume computational security parameter λ =
128 and statistical security parameter σ = 40. For experiments, we use a single
machine equipped with 3.50GHz Intel Xeon processors with 128GBs of RAM
and the network setting is simulated via local host that has 30Gbps bandwidth
in default (denoted by LAN). All experiments are executed with a single thread
on each party in order to be consistent with previous works.

6.1 Parameter Selections

OPPRF output length (EPC input length) `. For circuit-PSI on input set
size N, OPPRF output strings will be fed as input of EPC. We take the length
` = σ + dlogMe for failure probability less than 2−σ (See Section 3) where
M = (1 + ε) · N is cuckoo/simple hash table size with d hash functions. We
use ε = 0.27 and d = 3 by following previous works [35, 39], and then OPPRF
output length is given by ` = σ + 1 + dlogNe.

HE Parameters for EPC for output length `c. First of all we fix HE
ring dimension n = 212 which is the minimal one supporting depth-1 scalar
multiplication. Upon the choice of n, HE plaintext modulus p is taken by some
prime integer that satisfying p = 1 mod 2n (1) for batching. Here note that
HE plaintext modulus p determines compression target length `c = dlog pe. The
minimal prime satisfying p = 1 mod 2n is p = 40961, and hence the minimal
possible `c is dlog(40961)e = 16. For larger `c > 16, there would be several primes
p such that p = 1 mod 2n having bit-length `c, and we choose maximal p among
them for each `c. HE ciphertext modulus q is determined as following: An initial
modulus is taken q′ by the minimal one where our protocol is correct, and then
the final modulus q is augmented by σ-bit margin on q′ for function privacy. It
empirically holds that log q ≈ σ + 2 log p+ log n. Finally we take the word-base
w by the maximal one satisfying the correctness condition p > u · (w − 1)2 (3)

19

where u = d`/ logwe. Table 3 shows some resulting parameters for some input
size N and `c. All HE parameters (n, q) satisfies at least λ = 128-bit security
according to [1].

EPC output `c

16 18 20 22 28

p 40961 188417 1032193 4169729 268369921

log q 84 88 92 96 108

N = 216 w 65 154 385 834 7327

(` = 57) u 10 8 7 6 5

N = 220 w 62 145 360 772 7327

(` = 61) u 11 9 8 7 5

Table 3. EPC Parameters for input set size N and EPC output length `c: w is the
word-decompose base, and u is the length of decomposition. Note that HE parameters
are independent to set size N .

6.2 Combinations of EPC and ESG

Recall that we review ESG protocols as Table 2 in Section 3.2: IKNP-GMW, KK-
CGS, IKNP-OSN, Silent-GMW2. In this section we discuss applications of EPC
on top of them3. More precisely, for an input set size N, we have M = (1+ε) ·N
numbers of bit strings of length ` = σ + 1 + dlogNe to generate equality share.
We then apply EPC protocol with compression target `c, and then execute ESG
protocol with `c bit strings.

Communication costs. Table 4 and Table 5 shows communication costs of
each EPC and ESG combination with several choice of `c, where ‘None’ rows
mean previous approaches that ESG protocol is directly fed with ` bit strings.

As the most interesting consequence, note that IKNP-OSN and KK-CGS
shows similar communication cost before applying EPC, but EPC makes huge
difference between them. It is natural because IKNP-OSN enjoys less benefit
from EPC than other protocols as it has linear cost in λ + 4`c rather than `c
alone. We also note that EPC rather increases communication cost for Silent-
GMW, due to extremely small communication cost of Silent OTe. However this
does not mean EPC is useless for Silent-GMW, as it provides much faster running
time.

3 We emphasize again that, although it is possible to consider other OTe-ESG combi-
nation, our choices are the best one regardless of input length `c. See Appendix A.3
for detailed argument.

20

`c EPC IKNP-GMW KK-CGS IKNP-OSN

N = 216

(` = 57)

16 11.20 49.60 (22%) 26.28 (42%) 41.68 (26%)

18 9.92 53.44 (18%) 29.01 (34%) 41.67 (23%)

20 9.43 58.07 (16%) 28.64 (32%) 42.45 (22%)

None - 143.4 60.34 56.51

N = 220

(` = 61)

16 187.3 801.7 (23%) 428.6 (43%) 797.2 (23%)

18 168.1 864.4 (19%) 473.5 (35%) 803.1 (21%)

20 161.1 939.3 (17%) 468.4 (34%) 821.5 (19%)

None - 2457 1032 1181

Table 4. Communication cost of EPC and ESG combinations in MB. For each column
named with ESG protocol, the numbers are the sum of EPC and ESG protocol cost.
The percentage in parenthesis is the portion of EPC cost.

`c EPC Silent-GMW

N = 216

(` = 57)

16 11.20 11.80 (95%)

22 9.231 10.14 (91%)

28 8.861 9.933 (90%)

None - 2.222

N = 220

(` = 61)

16 187.3 196.8 (95%)

22 152.8 166.1 (92%)

28 137.6 154.6 (89%)

None - 38.10

Table 5. Communication cost of EPC and Silent-GMW combinations in MB. For
‘Silent-GMW’ column, the numbers are the sum of EPC and Silent-GMW protocol
cost. The percentage in parenthesis is the portion of EPC cost.

Timing costs. We proceed to compare timing costs of EPC and ESG combi-
nations based on implementation results. Note that from communication table
4, IKNP-OSN even shows similar cost with IKNP-GMW when `c = 16, where
both protocol shows the smallest communication cost. As IKNP-GMW is ex-
pected to show much faster running time than IKNP-OSN, IKNP-OSN seems
no advantage in both communication and timing cost. Therefore we can rule out
IKNP-OSN for the final candidates of ESG.

To implement our EPC protocol, we make use BFV [6,15] implementation of
Microsoft SEAL [40]. To implement ESG protocols, we use an open source OT
library libOTe [38]4. Table 6 shows the experimental results. As EPC reduces
total number of OTs for ESG (which was linear in ESG input length `), our
EPC combination reduces timing costs for all ESG protocols, especially also for
Silent-GMW.

4 Actually libOTe does not support KK OT extension [23], and we adapt the library.

21

`c EPC IKNP-GMW KK-CGS Silent-GMW EPC `c

N = 216

(` = 57)

16 0.383 0.798 (47%) 1.076 (35%) 2.130 (18%) 0.383 16

18 0.351 0.797 (44%) 1.155 (30%) 2.127 (12%) 0.257 22

20 0.301 0.809 (37%) 1.119 (27%) 3.515 (6%) 0.211 28

None - 1.161 2.310 6.698 - None

N = 220

(` = 61)

16 6.391 10.81 (59%) 15.04 (42%) 38.24 (17%) 6.391 16

18 5.510 10.44 (53%) 15.47 (36%) 38.78 (11%) 4.318 22

20 4.929 10.48 (47%) 15.87 (31%) 68.25 (5%) 3.351 28

None - 17.07 35.18 139.4 - None

Table 6. Timing cost of EPC and ESG combinations in second. For each column
named with ESG protocol, the numbers are the sum of EPC and ESG protocol cost.
The percentage in parenthesis is the portion of EPC cost.

Best `c for each ESG protocol. IKNP-GMW and KK-CGS has best per-
formance for both communication and computational cost when `c = 16, which
is the minimal possible choice for `c. The communication cost of Silent-GMW
rather decreases with larger `c, but the running time increases with larger `c.
As the running time of `c = 16 and 22 are similar for Silent-GMW, we conclude
`c = 22 is the best EPC output length for Silent-GMW.

6.3 Circuit-PSI

To complete circuit-PSI protocols, we only need to attach hashing and OPPRF
protocols before EPC and ESG protocols. We use Microsoft Kuku [27] library
for cuckoo/simple hashing, and we find that OPPRF proposals of [39] and [8]
showed almost same best performance. Since the works’ implementations are not
publicized, we implement [8]’s OPPRF using libOTe [38], and implement [39]’s
OPPRF by adapting [33] implementation5. For underlying OPRF for OPPRF,
we implement [24] OPRF, which is also based on libOTe [38].

Previous best protocols. The previous best protocols are also due to [39]
and [8] what we denote RS-C and CGS-C circuit-PSI protocol, respectively. [39]
performs ESG in two ways by IKNP-GMW and Silent-GMW, and we distinguish
two circuit-PSI protocols by IKNP-RS-C and Silent-RS-C, respectively. [8] per-
forms ESG by KK-CGS-C.

Performance comparison. We provide results of applying EPC to the previ-
ous best protocols by Table 7. Note that previous best protocols already used
the best candidates of ESG discussed in Section 6.2; IKNP-GMW, KK-CGS
and Silent-GMW, and hence we cannot make further improvement from select-
ing other ESG protocol combination. ‘Improve’ rows show EPC brings overall

5 Available : https://github.com/cryptobiu/PaXoS_PSI

22

https://github.com/cryptobiu/PaXoS_PSI

improvement of all protocols except communication cost of Silent-RS-C [39]. It
implies that EPC always provides better performance for IKNP-RS-C and KK-
CGS-C regardless of network environment . For Silent-RS-C, it originally takes
154+255 ·8/x seconds and Silent-RS-C with EPC takes 53+383 ·8/x on x Mbps
bandwidth. Then EPC improves Silent-RS-C for bandwidth larger than around
10 Mbps.

N = 216 Time (s) Comm. (MB)

OPPRF ESG Total OPPRF ESG Total

IKNP-RS-C [39] 0.82 1.16 1.98 13.6 143 157

w/ EPC (`c = 16) 0.82 0.78 1.60 13.6 49.6 63.2

Improve - 1.48x 1.23x - 2.88x 2.48x

Silent-RS-C [39] 0.82 6.70 7.52 13.6 2.22 15.8

w/ EPC (`c = 22) 0.82 2.13 2.95 13.6 10.1 23.7

Improve - 3.14x 2.54x - 0.21x 0.66x

KK-CGS-C [8] 0.58 2.31 2.89 7.92 60.3 68.2

w/ EPC (`c = 16) 0.58 1.08 1.66 7.92 26.3 34.2

Improve - 2.13x 1.74x - 2.29x 2x

N = 220 Time (s) Comm. (MB)

OPPRF ESG Total OPPRF ESG Total

IKNP-RS-C [39] 14.2 17.1 31.3 217 2457 2674

w/ EPC (`c = 16) 14.2 10.8 25.0 217 802 1019

Improve - 1.58x 1.25x - 3.06x 2.62x

Silent-RS-C [39] 14.2 139.4 154 217 38.1 255

w/ EPC (`c = 22) 14.2 38.8 53.0 217 166 383

Improve - 3.59x 2.9x - 0.22x 0.66x

KK-CGS-C [8] 8.45 35.2 43.7 126 1032 1158

w/ EPC (`c = 16) 8.45 15.0 23.4 126 429 555

Improve - 2.34x 1.86x - 2.4x 2.08x

Table 7. Application of EPC on the previous best circuit-PSI protocols.

Performance of circuit-PSI applications with EPC. Circuit-PSI leads to
several useful protocol: PSI-Ca, PSI-Th, PSI-Sum and PSU (See Section 3.3
for definitions and details). We remark that they already show highly efficient
performance for each functionality even before our EPC optimization, and our
EPC brings further improvement on the performances. Table 8 provides resulting
performances of circuit-PSI based protocols and some comparisons with non-
circuit-PSI based protocols. Compared with the Diffie-Hellman based protocol

23

called Private Join & Compute (PJC) [21] that supports PSI-Ca and PSI-Sum,
our circuit-PSI based protocols have significantly faster running time but shows
latter larger communication burden. For PSU, circuit-PSI based protocol (with
our EPC) has definitely better performance than non-circuit-PSI based one [26].
Note that from ‘(Base) Circuit-PSI’ row, the base circuit-PSI consists of the
most of portion of total cost as also pointed out in [35].

N = 216 N = 220

Time (s) Comm. (MB) Time (s) Comm. (MB)

PSI-Ca
[21] (PJC) 48.9 5.1 776 84

Ours 1.88 35.8 24.8 582

PSI-Sum
[21] (PJC) 48.9 5.1 776 84

Ours 1.85 36.1 24.7 585

PSU
[26] 12.8 131 243 2476

Ours 1.85 36.6 24.8 594

(Base) Circuit-PSI 1.66 34.2 23.4 555

Table 8. Cost of circuit-PSI application with EPC optimization, denoted by ‘Ours’,
where the base circuit-PSI protocol is chosen by KK-CGS-C. In PSI-Sum, the associate
values are assumed by 32-bit, same to [21].

References

1. Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. Homomorphic Encryption Security Standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada, November 2018.

2. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty Computation with Low Communication,
Computation and Interaction via threshold FHE. In EUROCRYPT, pages 483–
501. Springer, 2012.

3. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More
Efficient Oblivious Transfer and Extensions for Faster Secure Computation. In
ACM CCS, pages 535–548, 2013.

4. Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and Vincent Zucca. A full
RNS variant of FV like somewhat homomorphic encryption schemes. In Inter-
national Conference on Selected Areas in Cryptography, pages 423–442. Springer,
2016.

5. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient Two-Round OT Extension and Silent Non-Interactive
Secure Computation. In ACM CCS, pages 291–308, 2019.

24

6. Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In CRYPTO, pages 868–886. Springer, 2012.

7. Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik
Taubeneck, and Vlad Vlaskin. Private Matching for Compute. IACR Cryptol.
ePrint Arch., 2020:599, 2020.

8. Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-PSI with Linear Com-
plexity via Relaxed Batch OPPRF. Cryptology ePrint Archive, Report 2021/034,
2021. https://eprint.iacr.org/2021/034.

9. Melissa Chase and Peihan Miao. Private Set Intersection in the Internet Setting
From Lightweight Oblivious PRF. In CRYPTO, pages 34–63. Springer, 2020.

10. Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully
homomorphic encryption with malicious security. In ACM CCS, pages 1223–1237,
2018.

11. Hao Chen, Kim Laine, and Peter Rindal. Fast Private Set Intersection from Ho-
momorphic Encryption. In ACM CCS, pages 1243–1255, 2017.

12. Michele Ciampi and Claudio Orlandi. Combining Private Set-Intersection with
Secure Two-party Computation. In SCN, pages 464–482. Springer, 2018.

13. Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY-A framework for
efficient mixed-protocol secure two-party computation. In NDSS, 2015.

14. Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider,
Shaza Zeitouni, and Michael Zohner. Pushing the Communication Barrier in Secure
Computation using Lookup Tables. In NDSS, 2017.

15. Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic
Encryption. IACR Cryptol. ePrint Arch., 2012:144, 2012.

16. Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal
Singh. Private Set Operations from Oblivious Switching, 2021.

17. Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
Oblivious key-value stores and amplification for private set intersection. In
CRYPTO, pages 395–425. Springer, 2021.

18. Craig Gentry et al. A Fully Homomorphic Encryption Scheme. PhD thesis, Stand-
ford University, 2009.

19. O. Goldreich, S. Micali, and A. Wigderson. How to Play ANY Mental Game.
In STOC, page 218–229, New York, NY, USA, 1987. Association for Computing
Machinery.

20. Yan Huang, David Evans, and Jonathan Katz. Private Set Intersection: Are garbled
circuits better than custom protocols? In NDSS, 2012.

21. Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. On Deploying
Secure Computing: Private Intersection-Sum-with-Cardinality. In EuroS&P, pages
370–389. IEEE, 2020.

22. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending Oblivious
Transfers Efficiently. In CRYPTO, pages 145–161. Springer, 2003.

23. Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transfer-
ring short secrets. In CRYPTO, pages 54–70. Springer, 2013.

24. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
Batched Oblivious PRF with Applications to Private Set Intersection. In ACM
CCS, pages 818–829, 2016.

25. Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
Practical Multi-party Private Set Intersection from Symmetric-key Techniques. In
ACM CCS, pages 1257–1272, 2017.

25

https://eprint.iacr.org/2021/034

26. Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set
union from symmetric-key techniques. In ASIACRYPT, pages 636–666. Springer,
2019.

27. Microsoft Kuku. https://github.com/microsoft/Kuku. Microsoft Research, Red-
mond, WA.

28. Catherine Meadows. A more efficient cryptographic matchmaking protocol for use
in the absence of a continuously available third party. In S&P, pages 134–134.
IEEE, 1986.

29. Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-
sided Malicious Security for Private Intersection-Sum with Cardinality. In
CRYPTO, pages 3–33. Springer, 2020.

30. Payman Mohassel and Saeed Sadeghian. How to hide circuits in MPC an effi-
cient framework for private function evaluation. In EUROCRYPT, pages 557–574.
Springer, 2013.

31. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT, pages 223–238. Springer, 1999.

32. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight
Private Set Intersection from Sparse OT Extension. In CRYPTO, pages 401–431.
Springer, 2019.

33. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: fast,
malicious Private Set Intersection. In EUROCRYPT, pages 739–767. Springer,
2020.

34. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
Set Intersection Using Permutation-based Hashing. In USENIX Security, pages
515–530, Washington, D.C., August 2015. USENIX Association.

35. Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Ef-
ficient Circuit-based PSI with Linear Communication. In EUROCRYPT, pages
122–153. Springer, 2019.

36. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient
Circuit-based PSI via Cuckoo Hashing. In EUROCRYPT, pages 125–157. Springer,
2018.

37. Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. CrypTFlow2: Practical 2-party secure
inference. In ACM CCS, pages 325–342, 2020.

38. Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious Transfer
Library. https://github.com/osu-crypto/libOTe.

39. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and Circuit-PSI
from Vector-OLE. In EUROCRYPT. Springer, 2021.

40. Microsoft SEAL (release 3.5). https://github.com/microsoft/SEAL, April 2020.
Microsoft Research, Redmond, WA.

26

https://github.com/microsoft/Kuku
https://github.com/osu-crypto/libOTe
https://github.com/microsoft/SEAL

A Details of ESG Protocols

A.1 CGS Protocol

Given two `-bit strings a and b, [8] proposed another protocol for generat-
ing equality share of a and b. The full detail is given by Figure 8. It requires
(2d, 1)-OT1

1 for generating equality shares of substrings, and then AND gate
evaluations of them.

Parameters: A receiver with an `-bit string a and a sender with an `-bit string b,
and an optimization parameter d.

Protocol:

1. Two parties agree on `1 and `2 such that ` = d`1 + `2 with 0 < `2 ≤ d.
2. For 0 ≤ i < `1, two parties run (2d, 1)-OT1

1 as following
(a) The sender computes bi =

∑d
k=1 bdi+k·2k and samples a random bit ri ∈ {0, 1}.

Then defines j-th message mj = 1(bi = j)⊕ ri for 0 ≤ j < 2d.
(b) The receiver defines the choice index ai =

∑d
k=1 adi+k · 2k, and obtain the

corresponding message si ∈ {0, 1}.
3. Two parties run (2`2 , 1)-OT1

1 as following
(a) The sender computes b`1 =

∑`2
k=1 bd`1+k · 2k, and samples a random bit r`1 ∈

{0, 1}. Then defines j-th message mj = 1(b`1 = j) for 0 ≤ j < 2`2 .
(b) The receiver defines the choice index a`1 =

∑`2
k=1 ad`1+k · 2k, and obtain the

corresponding message si ∈ {0, 1}.
4. Two parties privately compute Boolean shares of

∏`1
i=0(ri ⊕ si).

Fig. 8. ΠCGS. Protocol of equality share generation from [8]

A.2 OSN Protocol

The original description of the protocol in [16] does not exactly correspond to
circuit-PSI definition in rigorous sense: Instead of Boolean shares, it outputs a
permutation π over one party’s set X, and a vector e ∈ {0, 1}N such that ei = 1
if and only if xπ(i) ∈ X ∩ Y to the other party. Note that the cardinality of
intersection is unavoidably revealed as a Hamming weight of e. Nevertheless,
one can privately convert the outputs into equality shares using (2, 1)-OTM1 (by
Figure 9), and hence it is fine to understand this protocol as a sort of (cardinality-
revealing) ESG.

A.3 Combination of ESG Protocol and OT Extension

Table 9 lists up possible combinations of ESG protocols and OT extensions,
with required number of OT and communication cost where some small terms

27

Parameters: A receiver with a set X of size n and a permutation π, and a sender
with a vector e ∈ {0, 1}n
Protocol:

1. For 0 ≤ i < n, two parties run (2, 1)-OT1
1 as following

(a) The receiver samples a random bit s0,i ∈ {0, 1} and defines m0 = s0,i and
m1 = 1− s0,i.

(b) The sender uses a choice bit ei and obtain the corresponding message s1,i :=
mei ∈ {0, 1}.

Fig. 9. Conversion of [16]’s output to equality shares

are omitted. Below we explain some candidates are strictly worse than the other
regardless of input bit-length `. This justifies that we only have to consider four
ESG protocols in Table 2.

IKNP OTe. GMW protocol is strictly better than CGS protocol. However it
is ambiguous to say which one is better between GMW and OSN protocol, and
we leave both IKNP-GMW and IKNP-OSN protocol as possible candidates.

KK OTe. CGS protocol (with d = 4) is strictly better than GMW protocol,
and we can rule out KK-GMW protocol. OSN protocol can be executed with KK

OTe with parallel (2, 1)-OTm` call by (2d, 1)-OT
m/d
d` . However, the communication

cost becomes larger when OSN protocol is executed by IKNP OTe. Thus we also
rule out KK-OSN candidate.

Silent OTe. Same to IKNP OTe case, GMW protocol is strictly better than
CGS protocol. Different to IKNP OTe case, GMW protocol is strictly better
than OSN protocol, since OSN protocol has logM times larger communication
cost. Thus we only leave Silent-GMW protocol.

B Comparison with Paillier Additive HE

As our protocol only perform scalar multiplications, one may consider to use
another additive HE (AHE), for example Paillier [31] scheme. Paillier scheme
supports plaintext space ZP for some integer P , and the corresponding ciphertext
space is ZP 2 . Here P is typically taken quite large (≥ 21024) to ensure certain
security level, and a naive application of Protocol ΠEPC outputs huge random
numbers in ZP . This can be circumvented by applying well-known smudging
technique [2] where we take a sufficiently large random masking r so that r
statistically hides the information of d, and each party take the final modulus
reduction by p on each output d+ r and r.

28

OT extension Base Protocol Required OT Comm.

IKNP

GMW (2, 1)-COT2`
1 2λ`

CGSd=1 (2, 1)-OT`
1 + (2, 1)-COT2`

1 3λ`

OSN (2, 1)-OTlogM
2` logM(λ+ 4`)

KK

GMW (16, 1)-OT
`/2
2 (λ+ 12)`

CGSd=4 (16, 1)-OT
`/4
1 + (16, 1)-OT

`/8
2 0.75(λ+ 12)`

OSN (4, 1)-OT
logM/2
4` logM(λ+ 8`)

Silent

GMW (2, 1)-COT2`
1 4`

CGSd=1 (2, 1)-OT`
1 + (2, 1)-COT2`

1 7`

OSN (2, 1)-OTlogM
2` 4` logM

Table 9. Cost for ESG Candidates for several OT extensions.

However, we argue that RLWE-based AHE is still better for circuit-PSI pur-
pose, where the encryption target message size is much less than 32-bit. RLWE-
based AHE can supports plaintext space ZNp for rather small p, and the corre-
sponding ciphertext space is taken R2

q where log q = O(log p). Then the amor-
tized encryption cost per one message is 2 log q. For our interest message size,
RLWE ciphertext modulus q ≈ 2100 suffices so that one message is encrypted
into less than 200 bits,. However Paillier AHE encrypts a message into a quite
large ciphertext of 2 logP ≥ 2048 bits, and the amortized cost is less inefficient
than RLWE-base AHE.

29

	Improved Circuit-based PSI via Equality Preserving Compression

