
P/poly Invalidity of the Agr17 Functional Encryption

Scheme?

Yupu Hu1, Jun Liu1, Baocang Wang1, Xingting Dong1, and Yanbin Pan2

1 State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China

yphu@mail.xidian.edu.cn; jliu6@stu.xidian.edu.cn; bcwang@xidian.edu.cn; xtdong67@163.com

2 Key Laboratory of Mathematics Mechanization, NCMIS, Academy of Mathematics and Systems

Science, Chinese Academy of Sciences, Beijing 100190, China

panyanbin@amss.ac.cn

Abstract. Functional encryption (FE) is an advanced topic in the research of cryptography,

and the Agr17 FE scheme is one of the major FE schemes. It took the BGG+14 attribute-

based encryption (ABE) scheme as a bottom structure, which was upgraded into a ‘partially

hiding predicate encryption’ (PHPE) scheme and combined with a fully homomorphic en-

cryption (FHE) scheme. However, there is a remaining problem, the implementation of the

modulus reduction, in the Agr17 FE scheme. First, a modulus reduction is necessary for

the polynomial-time computability of the scheme. Second, the detailed steps of the modulus

reduction were absent in the scheme (including its conference version and full version). In-

stead, the authors only pointed out several reference works. The author’s meaning seemed

to be that the modulus reduction of the Agr17 FE scheme can be obtained by directly using

or simply generalizing these reference works. Third, these reference works only described

various modulus reductions of FHE schemes, without the hint of how to generalize them

into the modulus reduction of FE schemes. Finally, any modulus reduction of FHE can not

be simply generalized into the modulus reduction of the Agr17 FE scheme due to the fol-

lowing two facts: (1) The Agr17 FE scheme has two moduli, which are the modulus of the

FHE ciphertext and of the ABE ciphertext, both are originally superpolynomial in size for

processing P/poly functions. (2) Both moduli need to be scaled down to polynomial size,

and both of them need to be reduced to the same new modulus, otherwise, the correctness

of the scheme will fail.

In this paper, we demonstrate that the Agr17 FE scheme is P/poly invalid. More specif-

ically, we show that, when processing P/poly functions, the Agr17 FE scheme cannot be

implemented again after its modulus reduction. To show the soundness of our demonstra-

tion, we present the statements in two stages. At the first stage, we show that the modulus

reduction of the Agr17 FE scheme should be a double modulus reduction, which includes two

? Supported by National Natural Science Foundations of China (61972457, U19B2021); Key Research and

Development Program of Shaanxi (2020ZDLGY08-04); Innovation Scientists and Technicians Troop

Construction Projects of Henan Province.

2 Y. Hu et al.

modulus reductions for the FHE ciphertext and ABE ciphertext, respectively. This double

modulus reduction has the following three key points: (1) The modulus reduction for the

FHE ciphertext should be seen as a series of Boolean operations, and converted into ‘at-

tribute quasi-homomorphic operations’. (2) The modulus reduction for the ABE ciphertext

is a learning-with-errors (LWE) -based modulus reduction, which is an ordinary modulus

reduction. (3) The two modulus reductions should obtain the same new modulus, otherwise,

the scheme would not be implemented again. At the second stage, we show that the modulus

reduction for the ABE ciphertext will destroy the structure of ABE so that the subsequent

decryption would not be executed. The reason lies in that the decryption of ABE is an LWE

decryption with conditions rather than an ordinary LWE decryption, and the modulus re-

duction will destroy the conditions of decryption. Besides, to show such invalidity cannot

be easily crossed by revising the scheme, we design a ‘natural’ revised version of the Agr17

scheme. The key point is to change the small modulus inner product into an arithmetic

inner product, which can be obtained by the modulus inner product of the ABE ciphertext.

The revised scheme is valid, i.e., the decryption can be implemented correctly. However, the

revised scheme is insecure because the decryptor knows much more secret information, and

hence the scheme can be broken by collusion attacks with much less cost.

Keywords: learning with errors · attribute-based encryption · functional encryption.

1 Introduction

1.1 Problems and Contributions

The scenario of functional encryption (FE) is that an encryptor transforms a plaintext into a

ciphertext, and a decryptor can only transform the ciphertext into a function value of the plaintext

(rather than the plaintext). FE is an advanced topic in the research of cryptography. Since Boneh

et al. proposed the formal definition [1], FE has made great progress [2–20]. The Agr17 FE scheme

is one of the major FE schemes. It took the BGG+14 attribute-based encryption (ABE) scheme as

a bottom structure [21], which was upgraded into a ‘partially hiding predicate encryption’ (PHPE)

scheme and combined with a fully homomorphic encryption (FHE) scheme. Subsequent LLW21

FE scheme [20], which is of the more optimized sampling characteristics and the similar structure,

is an improved work of the Agr17 FE scheme.

However, the implementation of the modulus reduction is a remaining problem in the Agr17

FE scheme.

First, a modulus reduction is necessary. The Agr17 FE scheme needs to traverse all possible

errors, while the size of the errors has the same order of magnitude as the size of the modulus.

Therefore, only by reducing the modulus to polynomial size, can the exhaustion of errors be

completed in polynomial time, thus leading to a polynomial-time computable scheme.

P/poly Invalidity of the Agr17 Functional Encryption Scheme 3

Second, the detailed steps of the modulus reduction were absent in the scheme (including

its conference version and full version). Instead, the authors only pointed out several reference

works [22–24]. The author’s meaning seemed to be that the modulus reduction of the Agr17 FE

scheme can be obtained by directly using or simply generalizing these reference works.

Third, these reference works only described various modulus reductions of FHE schemes, with-

out the hint of how to generalize them into the modulus reduction of FE schemes. We have tried

many methods to ‘naturally’ extend various modulus reductions of FHE to FE but all failed.

Finally, any modulus reduction of FHE can not be simply generalized into the modulus reduc-

tion of the Agr17 FE scheme due to the following two facts: (1) The Agr17 FE scheme has two

moduli, which are the modulus of the FHE ciphertext (we call it an inner modulus or implicit

modulus) and of the ABE ciphertext (we call it an outer modulus or explicit modulus), both are

originally superpolynomially large for processing P/poly function. Concretely, because both of the

two moduli are employed to process P/poly function, the sizes of the accumulated errors should be

superpolynomially large. (2) Both moduli need to be reduced to polynomially large, and both of

them need to be reduced to the same new modulus, otherwise, the correctness of the scheme will

fail. The reason is that the restrictions on operations when hiding attributes are extremely strict

in the BGG+14 ABE scheme. Next, we will recount these two facts.

In this paper, we demonstrate that the Agr17 FE scheme is P/poly invalid, i.e., this scheme

cannot be executed for P/poly functions. More specifically, this scheme cannot be implemented

after its modulus reduction in the decryption phase. To show the soundness of our demonstration,

we present the statements in two stages.

At the first stage, we show that a single modulus reduction is not feasible since the subsequent

inner products will be impossible to achieve. Therefore, the modulus reduction of the Agr17 FE

scheme should be a double modulus reduction, which includes two modulus reductions for the

FHE ciphertext and ABE ciphertext, respectively. This double modulus reduction has the following

three key points: (1) The modulus reduction for the FHE ciphertext should be seen as a series of

Boolean operations, and converted into ‘attribute quasi-homomorphic operations’. (2) The modulus

reduction for the ABE ciphertext is a learning-with-errors (LWE)-based modulus reduction, which

is an ordinary modulus reduction. (3) The two modulus reductions should obtain the same new

modulus, otherwise, the scheme would not be performed further.

At the second stage, we show that the modulus reduction for the ABE ciphertext will destroy

the structure of ABE so that the subsequent decryption would not be executed. Note that for a

general LWE decryption, the modulus reduction for the ciphertext is feasible, although with some

limitations, e.g., some values should be small. However, the decryption of the BGG+14 ABE scheme

is an LWE decryption with conditions rather than an ordinary LWE decryption. The conditions

are embedded into the structure of the ABE ciphertext. Consequently, the modulus reduction will

destroy the structure of the ABE ciphertext, and hence the conditions of decryption.

4 Y. Hu et al.

Besides, to show such invalidity cannot be easily crossed by revising the scheme, we design a

‘natural’ revised version of the Agr17 scheme. The key point is to change the small modulus inner

product into an arithmetic inner product, which can be obtained by the quasi-homomorphic oper-

ations of the ABE ciphertext. The revised scheme is valid, i.e., the decryption can be implemented

correctly. However, the revised scheme is insecure because the decryptor knows much more secret

information, and hence the scheme can be broken by collusion attacks with much less cost.

1.2 Organization

The remainder of the paper is organized as below. The BGG+14 ABE scheme, which is the bottom

structure of the Agr17 FE scheme, is presented in Sect. 2. There are several annotations regarding

the details of the BGG+14 scheme. Particularly, we explain why the modulus of this scheme

should be superpolynomially large when processing P/poly functions and the limitations on the

operations when partially hiding attributes. In Sect. 3, the Agr17 FE scheme is described, including

our annotations on the special processing idea about the modulus reduction. Sect. 4 introduces

the core contribution of this paper, which is to demonstrate the P/poly invalidity of the Agr17

FE scheme. First, we state that the modulus reduction should be a double modulus reduction

when processing P/poly functions, and we propose the technical details of the double modulus

reduction. Then, we state that the modulus reduction for the ABE ciphertext will destroy the

structure of ABE so that the subsequent operations would not be executed further. In Sect. 5,

we present a ‘natural’ revised version of the Agr17 scheme and state that this revised version is

insecure although the decryption can be executed correctly.

2 Bottom Structure of the Agr17 FE Scheme: BGG+14 ABE Scheme

2.1 Notations and Operations

Let (m,n, q) denote three positive integers such that q = nΘ(dmax) where q is prime, m = ndlog2qe,

and dmax has been well explained. Let Z denote the set of integers. For two positive integers

(m′,m′′), (Zm′ ,Zm′×m′′ ,Zm′q ,Zm′×m′′q) have been well defined. Note that the output of the oper-

ation ‘modq’ is within {d− q2e, d−
q
2e + 1, . . . , d q2e}, rather than {0, 1, . . . , q − 1}. For a ∈ Zq, the

meanings of A ∈ Zm′×m′′q and aA ∈ Zm′×m′′q are clear. Let G denote the following special matrix

G =


1 2 · · · 2dlog2qe−1

1 2 · · · 2dlog2qe−1

. . .

1 2 · · · 2dlog2qe−1

 ∈ Zn×mq .

For any α ∈ Zq, there is a unique Boolean matrix G(α) ∈ Zm×m such that

αG = GG(α)(modq).

P/poly Invalidity of the Agr17 Functional Encryption Scheme 5

For any B ∈ Zn×mq , there is a unique Boolean matrix G(B) ∈ Zm×m such that

B = GG(B)(modq).

Then, the following three algorithms are well known.

– TrapGen(n,m, q): Input (n,m, q) and output (A,T), where A ∈ Zn×mq is a uniform matrix,

T ∈ Zm×m is a small Gaussian matrix, AT = 0 ∈ Zn×mq , and T is of full rank. T is not of full

rank regarding the modulus q. T is called a trapdoor of A.

– Encode(A, s): Input (A, s) ∈ Zn×mq × Znq and output ψ = AT s + e ∈ Zmq , where e ∈ Zm is

a small Gaussian vector. s is the encoded vector, ψ is the encoding of s, and e is the error

vector. We say ψ = Encode(A, s).

– ReKeyGen(A,B,T,D): Input (A,B,T,D) and output R, where A,B ∈ Zn×mq are uniform

matrices, T ∈ Zm×m is a trapdoor of A, R ∈ Z2m×m is a small Gaussian matrix, and D =

[A,B]R ∈ Zn×mq . In fact,

R =

R0

R1

 ,Ri ∈ Zm×m, i = 0, 1,

then R1 is the pre-sampled matrix, and R0 is the co-sampled matrix. The trapdoor matrix T

satisfies that AR0 = D−BR1.

2.2 Arithmetic Representation and Big Modulus Representation of Boolean

Functions

In order to make the BGG+14 ABE scheme available, Boolean functions need to be expressed as

mod q functions, i.e., big modulus functions. This can be easily achieved by firstly transforming each

Boolean operation into an arithmetic operation and then transforming the arithmetic operation

into a big modulus operation. For example, for two bit variables x1 and x2,

x1 · x2(mod2) = x1 · x2 = x1 · x2(modq),

x1 + x2(mod2) = x1 + x2 − 2x1 · x2 = x1 + x2 − 2x1 · x2(modq).

Then, by generalizing these transformations, each operation of a Boolean function can be converted

into an operation under a big modulus. Therefore, Boolean functions are described as modq func-

tions, except that the variables are in F2 rather than Zq.

2.3 Quasi-homomorphic Operations of the BGG+14 ABE Scheme

Let x = (x1, x2, · · · , xl) denote an l-dimensional attribute, where each xi is a bit variable. Take

l matrices B1,B2, · · · ,Bl ∈ Zn×mq . Take another l matrices x1G + B1, x2G + B2, · · · , xlG +

6 Y. Hu et al.

Bl ∈ Zn×mq . For any P/poly Boolean function f(x), there are some ‘small-size linear combination

operations’ for the above matrices, resulting in a new matrix

f(x) ·G + Bf ∈ Zn×mq ,

where Bf is independent of x. Recalling Sect. 2.2, any Boolean operation can be viewed as oper-

ations in Zq, and any Boolean function can be viewed as a function in Zq. Furthermore, for this

special function in Zq, the result of each operation belongs to [−2, 2]. We consider the following

four simple cases.

Case I. If f(x) = αxi where α is a constant, then the ‘small-size linear combination operation’

is

(xiG + Bi)G
(α) = αxiG + BiG

(α)(modq),

where Bf = BiG
(α).

Case II. If f(x) = xi + xj , then the ‘small-size linear combination operation’ is

(xiG + Bi) + (xjG + Bj)(modq) = (xi + xj)G + (Bi + Bj)(modq),

where Bf = Bi + Bj .

Case III. If f(x) = xi · xj where i ≤ j, then the ‘small-size linear combination operation’ is

xj(xiG + Bi)− (xjG + Bj)G
(Bi) = xixjG + (−BjG

(Bi))(modq),

where Bf = −BjG
(Bi).

Case IV. If f(x) = α · xj1 · xj2 · · · · xjk , j1 ≤ j2 ≤ · · · jk and α is a constant, then the ‘small-size

linear combination operation’ is

k∑
i=1

(
k∏

h=i+1

xjh

)
· (xjiG + Bji) ·Gi = α · xj1 · xj2 · · · · xjk ·G + (−BjkGk),

where G1,G2, · · · ,Gk are Boolean matrices in Zm×m and are defined recursively as below:

G1 = Gα,

Gi = G(−Bji−1
Gi−1), i = 2, 3, · · · , k,

where Bf = −Bjk ·G is also independent of x.

Finally, we affirm that iterations of ‘small-size linear combination operations’ are still ‘small-

size linear combination operations’, provided the time of iterations is at the polynomial level.

Thus, we draw the conlusion by repeating the aforementioned four operations: any P/poly Boolean

function f can execute ‘small-size linear combination operations’ on the above matrices, resulting

in f(x)G + Bf .

Next, we do the following encoding:

c1 = Encode(x1G + B1, s),

P/poly Invalidity of the Agr17 Functional Encryption Scheme 7

c2 = Encode(x2G + B2, s),

· · · ,

cl = Encode(xlG + Bl, s).

By executing the same ‘small-size linear combination operation’ (only plus a transpose) on the

codeword (c1, c2, · · · , cl), we will obtain

cf = Encode(f(x)G + Bf , s).

We call such ‘small-size linear combination operations’ on (c1, c2, · · · , cl) as quasi-homomorphic

operations about the Boolean function f . Here, we need to emphasize two design techniques of the

BGG+14 scheme: (i) Case III indicates that when executing the quasi-homomorphic operations of

multiplication, the accumulation form of errors is approximately the multiplication of an original

error by a binary matrix, rather than the multiplication of two original errors. This decelerates the

accumulation of errors to a large extent. (ii) Case III is a particular case of Case IV, whereas Case

IV is not repeated operations of Case III. This design technique makes that when executing the

quasi-homomorphic operations of continuous multiplication, the accumulation of errors by applying

Case IV once is much smaller than by applying Case III multiple times.

When multiplying an original error by a random binary matrix, the size of the resulting error

is about
√

m
2 times the size of the original error. Hence, when executing the quasi-homomorphic

operations of multiplication, the size of the resulting error is at least about
√

m
2 times the size of

one original error, and this statement also holds when executing the quasi-homomorphic operations

of continuous multiplication, i.e., Case IV. Continuous multiplications are uncommon for a P/poly

function, and even two adjacent operations are both multiplications in a P/poly function, they do

not necessarily can be merged into a continuous multiplication. In other words, quasi-homomorphic

operations of continuous multiplication, i.e., Case IV, have a limited inhibitory effect on the ac-

cumulation of errors. To sum up, it is possible for the BGG+14 scheme that when executing the

quasi-homomorphic operations for P/poly functions, the size of the final error reaches superpoly-

nomial. Therefore, the modulus q of the BGG+14 scheme has to be superpolynomially large for

processing P/poly functions.

2.4 BGG+14 ABE Scheme[21]

- Generating master key (mpk,msk): The key generator runs TrapGen(n,m, q) to obtain (A,T),

then he randomly picks Bi ∈ Zn×mq , i = 1, 2, · · · , l,D ∈ Zn×mq . The output is

mpk = (A,B1, · · · ,Bl,D),msk = T.

- Generating secret key skf for the Boolean function f : The key generator firstly generates Bf .

Note that Bf is generated by the method in Sect. 2.3. The attribute is randomly chosen, and

8 Y. Hu et al.

the resulting Bf is independent of this attribute. Then, he runs ReKeyGen(A, y0G+Bf ,T,D)

to obtain R ∈ Z2m×m. The output is

skf = R.

- Encryption: The plaintext m is anm-dimensional Boolean vector. The attribute x = (x1, x2, · · · ,

xl) is sent to the encryptor. The encryptor randomly picks s ∈ Znq , and computes (Encode(A, s),

Encode(x1G + B1, s), Encode(x2G + B2, s), · · · , Encode(xlG + Bl, s), Encode(D, s)). The ci-

phertext is

C = (cin, c1, c2, · · · , cl, cout)

= (Encode(A, s),Encode(x1G + B1, s), · · · ,Encode(xlG + Bl, s),Encode(D, s) + dq
2
em)

= (AT s + ein, (x1G + B1)T s + e1, · · · , (xlG + Bl)
T s + el,D

T s + eout + dq
2
em).

- Decryption: By using his own f and the attribute x = (x1, x2, · · · , xl), the decryptor executes

the quasi-homomorphic operation to obtain

cf = Encode(f(x)G + Bf , s)

= (f(x)G + Bf)T s + ef (x).

Then, by using skf = R, the decryptor computes

cout −RT

cin

cf

 = DT s−DT s + dq
2
em + ((y0 − f(x))G)

T
s + e′

= dq
2
em + ((y0 − f(x))G)T s + e′.

When f(x) = y0, the plaintext m can be obtained by using “Rounding”; When f(x) 6= y0,

gibberish is returned. Generally, y0 = 1.

2.5 Hiding Attribute in the BGG+14 ABE Scheme

The so-called ‘hiding attribute’ means that the encryptor only knows the attribute and the decryp-

tor does not know it. The key issue is whether the decryptor can execute the quasi-homomorphic

operation of f when he does not know some part of the attribute.

It can be easily seen that when f is a modq linear function, the decryptor can finish the quasi-

homomorphic operation without knowing the attribute x. However, from Sect. 2.2, any Boolean

function is not a modq linear function. In other words, as a modq function, any Boolean func-

tion contains modq additions and modq multiplications. When executing multiplications, i.e., the

quasi-homomorphic operation of multiplications, one attribute bit can be secret, while another one

has to be visible to the decryptor.

To support the analysis of this article, we extend f and give the following two cases.

P/poly Invalidity of the Agr17 Functional Encryption Scheme 9

Case V. Suppose that the decryptor knows t′G+B′, vG+B′′, and the bit v, while the decryptor

does not know the bit t′, f(t′, v) = t′ · v ·2k′(modp), where the modulus p < q, then the ‘small-size

linear combination operation’ is

v(t′G + B′) ·G(2k
′
(mod p)) − (vG + B′′) ·G(B′G(2k

′
(mod p))) = f(t′, v) ·G + Bf ,

where Bf = −B′′ ·G(B′G(2k
′
(mod p))) is independent of (t′, v). Although the decryptor can execute

the quasi-homomorphic operation of f(t′, v), he does not know the value of f(t′, v). When v = 0

he knows that f(t′, v) = 0; When v = 1 he knows that f(t′, v) is either zero or 2k
′
(modp).

Case VI. Suppose that the decryptor knows aG + B′ and bG + B′′, but he does not know the

two arithmetic values a and b between (−p2 ,
p
2), where f(a, b) = a + b(modp) and the modulus

p < q. Then, there are no ‘small-size linear combination operations’ of aG + B′ and bG + B′′,

such that the result is f(a, b) · G + Bf , where Bf is independent of (a, b). In other words, the

extension structures of the BGG+14 scheme do not support the quasi-homomorphic operation

of f(a, b). The reason is that a + b(modp) has to be converted into a series of modq operations

to complete the quasi-homomorphic operation. It is impossible that these modq operations only

include modq additions while excluding modq multiplications. Furthermore, for modq multipli-

cations, the quasi-homomorphic operation cannot be executed when the values on both sides are

unknown.

3 The Agr17 FE Scheme

3.1 Overview of the Agr17 FE Scheme[19]

For a plaintext u, the encryption process can be divided into two steps: (1) u is encrypted to an

FHE ciphertext u∗ by the encryption algorithm of an FHE scheme; (2) u∗ is taken as the public

part of the attribute, and t, the secret key of the FHE scheme, is taken as the hidden part of

the attribute. Then, for the attribute (u∗, t), a public ‘formal plaintext’ m is encrypted to an

‘ABE ciphertext’ C by the BGG+14 ABE scheme. Finally, the obtained ‘ABE ciphertext’ C is the

ciphertext of the Agr17 FE scheme.

Now, the decryptor knows the following four items: (1) The ciphertext C of the Agr17 FE

scheme. In fact, this item is the ‘ABE ciphertext’ C = (cin, c1, · · · ,cl, cout), where (c1, · · · , cl) =

(Cu∗ ,Ct), Cu∗ is the ‘ABE ciphertext’ of u∗ (the public part of the attribute), and Ct is the ‘ABE

ciphertext’ of t (the hidden part of the attribute); (2) The FHE ciphertext u∗. In fact, this item is

exactly the public part of the attribute; (3) The public ‘formal plaintext’ m; (4) The secret key of

the Agr17 scheme, which is corresponding to the Boolean function f . In fact, this item is the secret

key of the BGG+14 scheme, which is corresponding to the composite function Df∗ where f∗ is

the homomorphic operation of f and D is the FHE decryption algorithm. In other words, there is

Df∗(u∗, t) = D(f∗(u∗), t) = f(u). The decryptor knows neither the plaintext u nor the secret key

10 Y. Hu et al.

of the FHE scheme t. Under such a limitation, the decryptor needs to solve the functional value

f(u) of the plaintext u.

The rough decryption process of the decryptor is as follows. He executes the ‘functional decryp-

tion’ (i.e., ‘attribute decryption’) on the ciphertext C by using his secret key of the Agr17 scheme,

i.e., the secret key of the BGG+14 scheme. If the resulting formal plaintext is m, then f(u) = 1,

otherwise, f(u) = 0.

Note that the ciphertext C includes two parts C = (Cu∗ ,Ct). Therefore, the detailed decryption

process of the decryptor includes the following three steps.

First, Cu∗ is transformed into a new ciphertext Cf∗(u∗) by the homomorphic operation of f ,

where Cf∗(u∗) is the ‘ABE ciphertext’ of the new attribute f∗(u∗). In other words, this step is the

‘quasi-homomorphic operation of the homomorphic operation of f ’ (cf. Sect. 2.3).

Second, Cf∗(u∗) and Ct are performed calculations to obtain the final ciphertext CD(f∗(u∗),t) =

Cf(u), where Cf(u) is the ‘ABE ciphertext’ of the final corresponding attribute f(u). In other

words, this step is the ‘quasi-homomorphic operation of the homomorphic decryption operation’

(cf. Sect. 2.3).

Finally, the decryptor executes the ‘attribute decryption’ on the final ciphertext Cf(u) by using

his secret key of the BGG+14 ABE scheme. If the resulting formal plaintext is m, then the final

attribute is f(u) = 1, otherwise, f(u) = 0.

3.2 Homomorphic Decryption of the Agr17 FE Scheme

Denote the modulus in the early stage of the homomorphic decryption operation as Q. According

to the rough description in the Agr17 FE scheme, the homomorphic decryption operation should

be the following Algorithm I or Algorithm II.

Algorithm I: Step 1. Executing the inner product of f∗(u∗) and t under the modulus Q. Step

2. Executing mod2.

Algorithm II: Step 1. Executing the inner product of f∗(u∗) and t under the modulus Q. Step

2. Checking whether the result is close to zero or close to Q/2. Obtaining zero if it is close to zero

and one if it is close to Q/2.

We know that Algorithm I is in fact equivalent to Algorithm II. Concretely, multiplying Algo-

rithm II by two can obtain Algorithm I. Nevertheless, neither Algorithm I nor II can be implemented

because the decryptor in the Agr17 FE scheme executes the quasi-homomorphic operation of Al-

gorithm I or II, rather than executes Algorithm I or II directly. Since the decryptor does not know

t, he cannot obtain the inner product after the quasi-homomorphic operation of Step 1. Instead, he

can only obtain the quasi-homomorphic result of the inner product. Under this circumstance, the

quasi-homomorphic operation of Step 2 cannot be implemented as Step 2 is not modq addition

(cf. Sect. 2.3 and Sect. 2.5, q is the modulus of the BGG+14 scheme). Based on the modulus

P/poly Invalidity of the Agr17 Functional Encryption Scheme 11

reduction technique of FHE, the homomorphic decryption operation of the Agr17 scheme employs

an ‘outflanking tactic’, i.e., the following Algorithm III.

Algorithm III: Step 1. Executing the modulus reduction on f∗(u∗) such that the modulus Q

can be scaled down to a modulus p with polynomial size, and hence f∗(u∗) is transformed into

a new FHE ciphertext f∗∗(u∗). Step 2. Executing the inner product of f∗∗(u∗) and t under the

small modulus p. Step 3. Exhaustion. Multiplying this inner product by each i ∈ {1, 2, · · · , p− 1}

under the modulus p. Step 4. For each product, executing the attribute decryption with a secret

key of the BGG+14 scheme, and checking whether the formal plaintext is m, i.e., checking whether

the product is one. Step 5. So far, the decryptor already knows the result of Step 2. Therefore,

the decryptor executes mod2 on the result of Step 2, and obtains f(u). Or, the decryptor checks

whether the result of Step 2 is close to zero or p/2. If it is close to zero, he obtains f(u) = 0,

otherwise, f(u) = 1.

According to our understanding of the Agr17 FE scheme, the quasi-homomorphic operation

of each step in Algorithm III can be finished under the BGG+14 scheme without knowing t.

The key point is that the original ‘mod2 operation’ is replaced by the ‘modulus reduction and

exhaustion’. Of course, there are still several detailed questions remaining to be answered, but

they are not essential. For example, why the modulus reduction of t is not necessary? The answer

is that t is represented by bit components. Then, why the modulus reduction of f∗(u∗), which

can also be represented by bit components, is necessary? This is due to a basic property of the

FHE modulus reduction, which is that the modulus reduction of t is not necessary, while that of

f∗(u∗) is obligatory. The decryptor knows f∗(u∗), and hence the quasi-homomorphic operation of

the modulus reduction on f∗(u∗) can be implemented.

3.3 Multiple Keys of the Agr17 FE Scheme

In order to provide multiple secret keys under the premise of security, the Agr17 scheme extended

the BGG+14 scheme. k matrices D(1),D(2), · · · ,D(k) ∈ Zn×mq are randomly chosen, where k is

polynomially large, but large enough. All of the decryptors do not know {D(1),D(2), · · · ,D(k)},

yet each decryptor knows his sum matrix
∑
i∈∆ D(i)(modq), where ∆ is a subset of {1, 2, · · · , k}.

Each decryptor has a distinct subset ∆. Each decryptor regards his sum matrix
∑
i∈∆ D(i)(mod q)

as the matrix D in the BGG+14 scheme.

In the encryption phase, cout is extended to the following form:

cout = (Encode(D(1), s) + dq
2
em(1),

Encode(D(2), s) + dq
2
em(2),

· · · ,

Encode(D(k), s) + dq
2
em(k)).

12 Y. Hu et al.

The encryptor publishes {m(1),m(2), · · · ,m(k)}. When executing decryption, the decryptor who

knows D =
∑
i∈∆ D(i) and ∆ knows m =

∑
i∈∆ m(i)(mod2), and he knows

∑
i∈∆

(Encode(D(i), s) + dq
2
em(i))

=Encode

(∑
i∈∆

D(i), s

)
+ dq

2
e

(∑
i∈∆

m(i)(mod2)

)

=Encode(D, s) + dq
2
em.

4 Invalidity of the Agr17 FE Scheme

4.1 Our Finding: Double Modulus Reduction

Now, we focus on the homomorphic decryption operation of the Agr17 FE scheme, i.e., Algorithm

III in Sect. 3.2. Step 1 is the modulus reduction. Although it has been described in the Agr17

scheme [19] and elaborated in Sect. 3 in this paper, we find a problem: there are two moduli before

the modulus reduction, one is the modulusQ at the early stage of FHE, and the other is the modulus

q at the early stage of the BGG+14 ABE scheme. We call Q and q as an inner modulus and outer

modulus, which are used for FHE and the quasi-homomorphic operations of FHE, respectively.

Operations under the inner modulus can be represented as a series of Boolean operations, and hence

the quasi-homomorphic operations can be implemented, which can be represented by operations

under the outer modulus. The modulus reduction stated in the Agr17 scheme should be interpreted

as the inner modulus reduction. In addition, the inner modulus reduction should be implemented

by a series of operations under the outer modulus, i.e., the inner modulus reduction should be

transformed into quasi-homomorphic operations. Therefore, the outer modulus keeps unchanged

during the inner modulus reduction.

Next, Step 2 of Algorithm III is conducted, which is the inner product of t and f∗∗(u∗) under

the small modulus p. Note that t and f∗∗(u∗) are represented as bit components, each of which has

an encoding. Thus, Step 2 of Algorithm III can be divided into the following two half steps. Step

2.1. Multiplying each bit of t, the corresponding bit of f∗∗(u∗) and some power of two under the

modulus p, i.e., Case V in Sect. 2.5. Step 2.2. Executing addition under the modulus p on these

modp products, i.e., Case VI in Sect. 2.5. Since the quasi-homomorphic operations are infeasible

for Case VI, Step 2 of Algorithm III cannot be finished. Of course, this step is viable if p = q, and

this is supported by the BGG+14 scheme (cf. Sect. 2.5).

Another serious obstacle is that when f ia a P/poly function, f∗ is also a P/poly function,

and hence Q and q are both superpolynomially large (cf. the last paragraph in Sect. 2.3). This

means that the outer modulus q cannot be equal to the small modulus p, which is polynomially

large. Instead, another modulus reduction is needed. Then, whether the inner modulus Q and outer

P/poly Invalidity of the Agr17 Functional Encryption Scheme 13

modulus q can be reduced to the small modulus p with a polymonial size in a single step? It can

be seen from the structure of the BGG+14 scheme that this is impossible.

Based on the above analysis, Step 1 of Algorithm III, i.e., the modulus reduction, must be

divided into two steps: the inner modulus reduction Q → p and the outer modulus reduction

q → p.

4.2 The Inner Modulus Reduction: Q → p

The inner modulus reduction is simple, which can be viewed as a series of Boolean operations. The

inner modulus Q is reduced to the small modulus p, and meanwhile the homomorphic function

f∗(u∗) is replaced by a new homomorphic function f∗∗(u∗). We have the following notes for the

inner modulus reduction.

Note I: Obviously, its actual operation is a series of quasi-homomorphic operations of Boolean

operations, which transform the ‘ABE ciphertext’ Cf∗(u∗) into a new ABE ciphertext Cf∗∗(u∗).

Specifically, before the inner modulus reduction, there is

Cf∗(u∗) =


cf∗1 (u∗)

cf∗2 (u∗)
...

cf∗
k∗ (u

∗)

 =


Encode(f∗1 (u∗)G + Bf∗1

, s)

Encode(f∗2 (u∗)G + Bf∗2
, s)

...

Encode(f∗k∗(u
∗)G + Bf∗

k∗
, s)

 .

After the inner modulus reduction, there is

Cf∗∗(u∗) =


cf∗∗1 (u∗)

cf∗∗2 (u∗)

...

cf∗∗
k∗∗ (u

∗)

 =


Encode(f∗∗1 (u∗)G + Bf∗∗1

, s)

Encode(f∗∗2 (u∗)G + Bf∗∗2
, s)

...

Encode(f∗∗k∗∗(u
∗)G + Bf∗∗

k∗∗
, s)

 ,

where f∗∗(u∗) is another homomorphic operation of f(u). Different from f∗(u∗), f∗∗(u∗) is the

message under the small modulus p, and satisfies the modp decryption equation

(< f∗∗(u∗), t > modp) mod 2 = f(u) or Rounding(< f∗∗(u∗), t > modp).

Of course, in the actual modp decryption phase, mod2 or Rounding cannot be executed after fin-

ishing < f∗∗(u∗), t > mod p. Instead, the decryption process executes exhaustion and the attribute

decryption.

Note II: Due to Note I, the outer modulus should keep unchanged during the inner modulus

reduction.

4.3 Invalidity of the Outer Modulus Reduction q → p

The ciphertext C = (cin,Cu∗ ,Ct, cout) is transformed into (cin,Cf∗(u∗),Ct, cout) by the quasi-

homomorphic operations of homomorphic operations, and then into (cin,Cf∗∗(u∗),Ct, cout) by the

14 Y. Hu et al.

quasi-homomorphic operations of the inner modulus reduction. Next, the outer modulus reduction

is conducted.

Complied with the structure of the BGG+14 scheme, the outer modulus reduction is an LWE

modulus reduction. The so-called LWE modulus reduction refers to the following two steps: (1)

Executing the operation p
q ×(·)(mod p) on the ciphertext; (2) Executing the operation p

q ×(·)(mod

p) on the matrix used for encoding. Only when these two steps are completed, can the subsequent

LWE decryption operation be completed. Because the decryptor does not know the FHE secret

key t, he does not know the matrix used for encoding in the ciphertext Ct and cannot execute

the outer modulus reduction for Ct. It is required that Ct is constructed to a message under the

small modulus p in the encryption phase. Besides, in order to make the Agr17 scheme proceed as

smoothly as possible, we suppose that (cin,Ct, cout) are all messages under the small modulus p,

rather than the modulus q. This means the trapdoor T is also constructed according to the small

modulus p.

Now, the outer modulus reduction is only conducted for Cf∗∗(u∗):

(1)
p

q
×Cf∗∗(u∗)(modp);

(2)
p

q
×


f∗∗1 (u∗)G + Bf∗∗1

f∗∗2 (u∗)G + Bf∗∗2

...

f∗∗k∗∗(u
∗)G + Bf∗∗

k∗∗

 (modp).

These two steps can be completed, but the subsequent decryption would not be executed. The rea-

son lies in that the decryption of the BGG+14 scheme is an LWE decryption with conditions rather

than an ordinary LWE decryption, and the outer modulus reduction will destroy the conditions of

decryption.

5 Our ‘Natural’ Revised Version and Its Insecurity

5.1 Revised Version and Efficiency

Our revised version keeps the original Agr17 scheme for the front part until the inner modulus

reduction is finished and the corresponding ABE ciphertext of f∗∗(u∗) is obtained. Then, we con-

sider the arithmetic inner product < t, f∗∗(u∗) > of the FHE secret key t and the FHE ciphertext

f∗∗(u∗), i.e., the inner product without the modulus, rather than the inner product under the small

modulus p < t, f∗∗(u∗) > (modp). Note that this arithmetic inner product is much larger than

the small modulus p, but is still polynomially large. Therefore, this arithmetic inner product can

be viewed as the inner product under the big modulus q: < t, f∗∗(u∗) >=< t, f∗∗(u∗) > (modq),

and then the quasi-homomorphic operations can be implemented.

P/poly Invalidity of the Agr17 Functional Encryption Scheme 15

Then, guessing possible results of this arithmetic inner product, which is polynomially many.

For each non-zero possible result a, multiplying a−1(modq) by the corresponding ABE ciphertext

< t, f∗∗(u∗) > (modq). The quasi-homomorphic operations of this step are viable.

Next, for each non-zero possible result a, considering the function a−1 < t, f∗∗(u∗) > (modq)

of the attribute (t, u∗), asking for the decryption key for this funtion and conducting the decryption.

So far, the decryptor knows exactly the arithmetic inner product < t, f∗∗(u∗) >, for which he

executes modp and then mod2 (or ‘Rounding’). In this way, the decryption is finished, indicating

that the revised version is effective.

Efficiency: In the revised version, the number of the decryption keys is much larger than the

small modulus p, which is the number of the decryption keys in the original Agr17 scheme. This

means the efficiency of the revised version is considerably lower than the original Agr17 scheme.

5.2 Insecurity of the Revised Version

In the revised version, the decryptor knows the arithmetic inner product < t, f∗∗(u∗) >. Never-

theless, it is only required that the decryptor knows < t, f∗∗(u∗) > (modp) in the original Agr17

scheme. Consequently, the revised version leaks more information about the secret key t.

Note that t and f∗∗(u∗) are both represented by bit components, while the arithmetic inner

product < t, f∗∗(u∗) > is actually the sum of the product of each bit of t, the corresponding bit

of f∗∗(u∗), and the corresponding power of two. Therefore, Boolean linear equations of t can be

obtained by executing mod2 on the arithmetic inner product. Then, the decryptors can solve t by

collusion attacks with much less cost and break the revised scheme.

References

1. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.)

TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-

3-642-19571-6 16

2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO

2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-

8 13

3. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B.

(ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001).

https://doi.org/10.1007/3-540-45325-3 32

4. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles).

In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006).

https://doi.org/10.1007/11818175 17

5. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.)

TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). https://doi.org/10.1007/978-

3-540-70936-7 29

16 Y. Hu et al.

6. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic con-

structions. In: STOC 2008. pp. 197–206. ACM (2008) https://doi.org/10.1145/1374376.1374407

7. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In:

Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010).

https://doi.org/10.1007/978-3-642-13190-5 27

8. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert,

H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).

https://doi.org/10.1007/978-3-642-13190-5 28

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control

of encrypted data. In: CCS 2006. pp. 89–98. ACM (2006). https://doi.org/10.1145/1180405.1180418

10. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Sym-

posium on Security and Privacy 2007. pp. 321–334. IEEE (2007). https://doi.org/10.1109/SP.2007.11

11. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations,

and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer,

Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 9

12. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption:

attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EURO-

CRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-

3-642-13190-5 4

13. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates

from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.

21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 2

14. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R., Canetti,

R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidelberg (2012).

https://doi.org/10.1007/978-3-642-32009-5 14

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption for circuits. In: STOC 2013.

pp. 545–554. ACM (2013). https://doi.org/ [DOI: 10.1145/2488608.2488677

16. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from

multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499.

Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 27

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishabil-

ity obfuscation and functional encryption for all circuits. In: FOCS 2013. pp. 40–49. IEEE (2013).

https://doi.org/10.1109/FOCS.2013.13

18. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro,

R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015).

https://doi.org/10.1007/978-3-662-48000-7 25

19. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and attacks. In:

Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 3–35. Springer, Cham (2017).

https://doi.org/10.1007/978-3-319-63688-7 1

20. Lai, Q., Liu, FH., Wang, Z.: New lattice two-stage sampling technique and its applications to functional

encryption – stronger security and smaller ciphertexts. In: Canteaut, A., Standaert, FX. (eds.) EURO-

P/poly Invalidity of the Agr17 Functional Encryption Scheme 17

CRYPT 2021. LNCS, vol. 12696, pp. 498–527. Springer, Cham (2021). https://doi.org/10.1007/978-3-

030-77870-5 18

21. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,Vaikuntanathan, V., and

Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE, and compact garbled

circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556.

Springer, Heidelberg (2014) https://doi.org/10.1007/978-3-642-55220-5 30

22. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without boot-

strapping. In: ITCS 2012. pp. 309–325. ACM (2012). https://doi.org/10.1145/2090236.2090262

23. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-

simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.

LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-

4 5

24. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS 2014. pp. 1–12.

ACM (2014). https://doi.org/10.1145/2554797.2554799

