Platypus: A Central Bank Digital Currency
with Unlinkable Transactions and Privacy Preserving Regulation

Karl Wiist Kari Kostiainen Srdjan Capkun
CISPA Helmholtz Center Department of Computer Science Department of Computer Science
for Information Security* ETH Zurich ETH Zurich

Abstract

Due to the popularity of blockchain-based cryptocurrencies,
the increasing digitalization of payments, and the constantly
reducing role of cash in society, central banks have shown an
increased interest in deploying central bank digital currencies
(CBDC:s) that could serve as a replacement of cash. While
most recent research on CBDCs focuses on blockchain tech-
nology, it is not clear that this choice of technology provides
the optimal solution. In particular, the centralized trust model
of a CBDC offers opportunities for different designs.

In this paper, we depart from blockchain designs and
instead build on ideas from traditional e-cash schemes.
We propose a new style of building digital currencies that
combines the transaction processing model of e-cash with the
account model of managing funds that is commonly used in
blockchain solutions. We argue that such a style of building
digital currencies is especially well-suited to CBDCs. We
also design the first such digital currency system, called
Platypus, that provides strong privacy, massive scalability,
and expressive but simple regulation, which are all critical
features for a CBDC. Platypus achieves these properties
by adapting techniques similar to those used in anonymous
blockchain cryptocurrencies like Zcash and applying them
to the e-cash context.

1 Introduction

Recent research on digital currencies has mostly focused on
blockchains such as Bitcoin [29] instead of traditional e-cash
systems such as [15]. This is mostly due to the popularity of
blockchains for permissionless digital currencies, i.e., digital
currencies that do not rely on a trusted central authority.
Inspired by the popularity of blockchains, several central
banks, such as Swedish central bank [36] and the Bank of
England [9], have expressed interest in creating a digital
version of their currency. The People’s Bank of China [40]
has already deployed a digital yuan into trial use. Recently,

*Work done while at ETH Zurich

several central banks, together with the Bank of International
Settlements, have outlined the principles and core features
of such a central bank digital currency (CBDC) [8].

A central bank digital currency has a different trust model
and different requirements from permissionless cryptocurren-
cies. Namely, the central bank is generally a trusted authority
and the consensus process should not be open to everyone.
Nevertheless, decentralized ledgers have often been proposed
for such central bank digital currencies [4, 17, 38], since they
offer benefits over traditional e-cash such as increased robust-
ness due to the distributed consensus, as well as transferability
due to the ledger based system. While traditional e-cash [15]
provides privacy for the sender, it leaks the transaction
amounts since the coins need to be deposited immediately for
double-spending protection. In ledger based systems, coins
are not deposited, but instead value is transferred, which
allows for private transactions such as in Zerocash [35].

However, e-cash systems have several advantages com-
pared to ledger-based systems. Namely, e-cash systems are
easier to scale, mainly because they do not require byzantine
agreement between independent parties due to their central-
ized nature. This has particular implications on their sharding
potential. For example, depositing coins can easily be sharded
based on the serial number of the deposited coin. Since the
coins are signed by the central authority, there is no need to
check (potentially cross-shard) if the coin was produced as
an output of a previous transaction (such as in ledger based
systems), and instead it suffices to check that the coin is
signed by the central authority and that the serial number has
not been seen before. Further, the requirements for clients
can potentially be reduced compared to ledger based systems,
since in ledger based systems, clients keep up to date with
the whole ledger or use a lightweight client, which reduces
their privacy [23] without the use of additional mechanisms
that requires additional trust assumptions [27,39].

We want to leverage the different trust model of central
bank digital currencies and combine the benefits of ledger-
based digital currencies and traditional e-cash schemes.
Namely, we assume an authority that is trusted for the

integrity of the currency (e.g. double-spending protection)
but is not trusted for privacy, a setting that has been proposed
by several central banks [8, 16]. We want to make use of the
performance benefits from traditional e-cash schemes, but
combine them with a transaction mechanism inspired by
anonymous ledger based cryptocurrencies like Zerocash [35]
that provides anonymity for the sender and recipient as well
as secrecy of the transaction amounts. In addition, the mech-
anism should be easy to extend with regulation mechanisms
for e.g. money laundering protection similar to [22,38].

To achieve these goals, as the first main contribution of this
paper, we propose a new style of building digital currencies
that combines the transaction processing model of e-cash pay-
ments with the account model of managing users’ funds that
is commonly used in ledger-based systems like Ethereum [37].
We argue that this style of building digital currencies is partic-
ularly well-suited to CBDCs and allows us to achieve strong
privacy, massive scalability, and simple but expressive regu-
lation, which are all desirable features for a CBDC.

As the second main contribution of this paper, we design
the first digital currency system, called Platypus, that follows
this design pattern. Platypus is also inspired by previous
anonymous blockchain-based cryptocurrencies such as
Zerocash [35]. In Platypus, each participant owns an account
that is represented by a commitment, called account state
commitment, to a serial number and a balance and which is
signed by the central bank. A transaction then consists of
updating the commitments of both, the sender and recipient,
for which both of them release the serial number of their
current account state, prove in zero-knowledge that they are
in possession of an account state, signed by the central bank,
with this serial number and that the sum of the balances of
the account states of both parties stays invariant.

Such a design provides advantages over anonymous ledger-
based designs as well as over UTXO-based designs (e.g.
Zcash). The main advantage over ledger-based designs lies in
the scalability of such an approach. Since transactions do not
need to be ordered on a ledger and the system is centralized,
transaction validation can be sharded almost arbitrarily using
standard database techniques such as two-phase commit [26]
and thus there is no inherent limit on its throughput. In
addition, the requirements for clients are reduced immensely.
In systems like Zcash, clients need to download and decrypt
every transaction stored on the ledger if they want to benefit
from Zcash’s privacy guarantees. If a currency is to be widely
used, as expected from a CBDC, downloading and decrypting
every transaction quickly becomes infeasible for most users,
who may want to use this currency on a mobile device.

Another advantage of the account-based design is sim-
plified enforcement of regulatory rules. If enrollment in the
system is bound to real identities, this account based design
can simplify regulatory rules similar to those proposed by
Garman et al. [22] and Wiist et al. [38]. In particular, it
enables enforcement of regulatory rules that, e.g., limit the

amount of funds that a particular user can posses at a time (as
mentioned e.g. by the Bank of England [9]), or that require
disclosure of the user’s identity if a certain limit for receiving
funds within a period of time is exceeded. However, in
contrast to [22], this enforcement can be done more efficiently,
and in contrast to [38], it preserves full unlinkability.

This design also provides advantages over more traditional
e-cash schemes like the original proposal by Chaum [15] and
optimizations using similar principles [11, 12], in which a
bank issues blinded coins to a user, who then spends them at
one or more merchants, who deposit them back in the bank.
Namely, one of the main advantages is that our account-based
approach does not require spending of individual coins,
which has two important effects.

First, this leads to a more compact scheme, since the
transaction size does not increase with the transaction
value. In traditional e-cash schemes, each coin is spent
individually, which means that the transaction size depends
on the transaction value whereas the size can stay constant
in an account-based design.

Second, this improves privacy: In traditional e-cash
systems, the amount that a merchant receives always leaks,
since they need to deposit the received coins at the bank. In
the case of an online e-cash system, this immediately leaks all
transaction values of the merchant, in an offline system, this
leaks the amount that is received between two deposits. Thus,
traditional e-cash systems only provide payer privacy, but not
recipient privacy or value privacy. With our account-based
design, the size of a transaction is independent of its value
and the funds are immediately deposited in the blinded
account of the recipient. This ensures the anonymity of the
sender and recipient, the confidentiality of the transaction
value, and the unlinkability of transactions.

Contributions. In this paper, we make the following
contributions:

e A new pattern of building digital currencies that
combines the transaction processing model of e-cash
with the account-based fund management commonly
used in blockchain solutions.

* A new digital currency design called Platypus that
provides unlinkable transactions, good scalability, and
privacy-preserving regulation mechanisms which are
all critical features for a CBDC.

* A security analysis that shows that Platypus provides
integrity and strong privacy guarantees.

* Two implementations and evaluation that show that Platy-
pus is highly scalable and transaction creation is fast.

2 Overview

In this section we provide an overview of Platypus. We start
by explaining our motivation and goals, followed by the trust
assumptions and our system model. After that, we explain

the main ideas of Platypus.

2.1 Motivation & Goals

Recently, multiple central banks together released a report
detailing the principles, motivations and risks of CBDCs [8].
This serves as a good basis for making technical decisions for
the design of such a digital currency since it directly provides
the view of the involved central banks. In the following,
we will summarize some of the main motivations and goals
included in this report.

One of the main motivations outlined in [8] is continued
access to central bank money, i.e. the function of a CBDC
as a form of a “digital banknote”. Currently, both, access and
the use of cash are declining in many jurisdictions, which
creates the risk that some businesses and households lose
access to risk-free central bank money. A CBDC could step
in to fill this void to ensure the confidence in a currency.

Cash does not only provide risk-free central bank money,
but it also provides very strong privacy guarantees. In a
cash payment, third parties neither learn the identities of the
parties nor the value. This is a property that should also be
mirrored by a CBDC [4, 8]. A working paper from the Swiss
National Bank [16] explicitly mentions “mass surveillance”
as one of the potential threats of a CBDC, which exemplifies
the need for strong privacy guarantees.

Another motivation presented in [8] is to increase resilience
and the diversity of payment systems. A CBDC can act
as a back-up system for other means of payments which
improves operational resilience. In addition, digital payment
systems in most jurisdictions are currently sets of fragmented
closed-loops that are not interoperable which creates a risk
of concentration into monopolies. A CBDC could act as a
bridge between such fragmented closed-loop systems.

Further, a CBDC could improve financial inclusion and
simplify cross-border payments if the CBDCs of multiple
countries are interoperable. Lastly, even though this is not one
of the main motivations of [8], a CBDC could be beneficial
for monetary policy to e.g. provide so-called “helicopter
drops” that distribute funds to the public, which could be
combined with a form of “programmable monetary policy”,
such as an expiration date for spending these funds.

CBDC:s also create some risks for financial stability [4, 8].
In particular, it can lead to a form of bank runs, since it
provides a convenient way (in contrast to paper money)
of storing their funds as central bank money. One of the
potential mitigations for this risk is to explicitly design the
currency as a cash-like system that, e.g., enforces limits on
how much currency can be held by a single party at a time.
Because of this, allowing the enforcements of such limits is
one of the central regulatory goals for such a digital currency.

Another regulatory requirement for CBDCs is the enforce-
ment of anti-money-laundering (AML) legislation [4, 8].
However, this partially conflicts with the goal of improved

Central Bank

<

Regulator

—

ArOYNI)

e m D

. Public
N Transaction Log
G
Q(. ~
G

Alice Bob

Figure 1: Platypus System model. Platypus consists of a
central bank that is responsible for transaction validation, a
regulator that issues certificates to clients and receives trans-
action information relevant for compliance with regulatory
rules, as well as clients that participate in the system. The
central bank also publishes a log of all transactions.

payment privacy. This conflict can be solved by allowing
anonymous payments up to a given limit per unit of time
above which the recipient needs to disclose their identity to a
regulator. This idea has also been proposed by the European
Central Bank in the form of “anonymity vouchers” [20] as
well as by previous work [22,38].

Based on these motivations and ideas, we focus on a CBDC
that can be used as a digital alternative to cash since this is the
main use case considered by central banks [8]. Other settings
for CBDC:s exist, e.g., replacement of a settlement layer or to
replace bank transfers. In such settings other properties may
become relevant, such as offline receiving that we discuss
in Appendix B.

Given our focus, our main goal is to provide a digital
currency that is maintained by a central bank and provides
fully anonymous transactions, i.e., where the transaction
values are secret, the sender and recipient cannot be identified
and transactions are unlinkable to previous or future
transactions. In addition, this solution should make use of
the benefits allowed by the trust model in which a central
authority is trusted for integrity (as proposed, e.g., in [16])
and should provide significant performance benefits over
other anonymous digital currencies such as Zerocash [35].

As a secondary goal, we want this digital currency to be
easily and efficiently extendable with regulation mechanisms
similar to those described by Garman et al. [22] and Wiist et
al. [38] to make it viable for the use as the digital equivalent
of a country’s native currency.

2.2 System Model & Trust Assumptions

Motivated by the considerations in Section 2.1, we consider
the setting in which a central bank wants to issue and
maintain a digital currency, as shown in Figure 1. Such a
centralized design is proposed by a working paper of the

Swiss National Bank [16] and suggested as one possible
option in a report from a group of central banks [8].

In addition to this central bank, we assume that there
exists a regulator (e.g., a government agency), which is
responsible for enforcing regulatory legislation, such as,
anti-money-laundering (AML) legislation. While such a
regulator is not necessary for the functioning of the core
protocol, it would likely be an integral part in any deployment
of a CBDC in practice (see Section 4).

Of course, as any digital currency, our system also
contains clients that can act as payment senders and payment
recipients. We assume that these clients are considered
untrusted, i.e., they may behave arbitrarily.

Since central banks are responsible for monetary policy,
we assume that the central bank is trusted for the integrity
of the currency and the regulator trusts the central bank to
comply with regulatory requirements. The central bank is
responsible for the issuance of new money and preventing
double-spending is in its own interest as double-spending
would effectively increase the currency in the system.

However, based on our considerations in Section 2.1 and
the potential threat of mass surveillance [16], we assume
that the central bank is not trusted for privacy, i.e. it might
be interested in deanonymizing the sender or recipient of a
transaction or recover transaction values.

We consider full protection against network-based
deanonymization attacks (e.g., linking an IP address to
multiple transactions) to be out of scope of this paper. To
protect against such attacks, clients can use protections such
as anonymity networks like Tor [2] if desired. However, to
provide some resilience against such attacks, we design the
system such that the recipient and sender of a transaction can-
not be easily linked together by the central bank, even without
the use of anonymity networks and provide some discussion
about network-based transaction linking in Appendix B.
In the normal case (cooperating recipient) this is achieved
by only having the recipient communicate with the central
bank. For other cases, and to simplify account recovery (see
Appendix B), the central bank publishes transactions in a
publicly accessible log, which clients can use to look up
their previous transactions. This log can be mirrored by third
parties, similar to block explorers in blockchain systems.

Finally, we assume that clients communicate with each
other through secure channels and that all cryptographic prim-
itives used are secure according to the standard definitions
for their security: we assume that commitments are compu-
tationally binding and hiding, that signatures are unforgeable,
that the zero-knowledge proof systems are zero-knowledge
and provide soundness, and that encryption is CPA-secure.

2.3 Platypus Design

Platypus uses a hybrid between an account model and an
e-cash design, in which each participant is responsible for

keeping track of their own account state which is kept as ob-
jects similar to coins in an e-cash system. However, in contrast
to e-cash, where a client usually has multiple coins that can be
used in a transaction, a client has a single account state which
is consumed in every transaction and a new account state is
created. This account state state; (the state after the i-th trans-
action involving the account) consists of a commitment to the
account balance bal; and to a serial number serial;. The ac-
count state is produced by a previous transaction and is signed
by the central bank. To sign these account states, the central
bank uses its secret key skc (corresponding to public key pkc).
For enforcement of regulatory policies, the account state may
contain additional information as described in Section 4.
Figure 2 shows how a transaction is processed in the
normal case where both the sender and recipient have already
participated in the system. In step @ Alice initiates a
transaction, in which she sends a value of v, to the recipient,
Bob, by creating a sender account update. Alice creates a
commitment, called transaction commitment, to the value
v1x using a random blinding factor blindt,, denoted by
comm, = comm(v7x, blindry). She then creates a new state
state‘?+1 that commits to a fresh pseudorandomly (based on
her longterm key) chosen serial number seriaI?H and a value
baI?H = bal! — vr, where bal! is the balance committed
to in her current account state state’. Alice then creates a
zero-knowledge proof zkpf-‘+ | that proves that the balance
of her new account state is equal to the balance of her old
account state minus the transaction value vt, and that the
account state belongs to her. Namely, providing comm-y,
serial?, and statef‘+ 1» she creates a zero-knowledge proof

zkpf‘H that proves the following:

1. She owns an account state that has a valid signature from

the central bank and that has a serial number serial?'.

2. The balance of this state minus the value committed to in

commrTy is equal to the balance committed to in state?+l .

Note that, for this zero-knowledge proof, both the previous
account state statef‘ and the central bank’s signature are
secret values, i.e. they are not revealed in this transaction.
This ensures that this transaction is not linkable to the
previous transaction in which state was created and which
contains statef' and the bank’s signature.

This zero-knowledge proof zkpﬁrl, as well as the trans-
action commitment commry, the serial number of the old
state serial‘?, and the new account state state‘;‘+1 are then sent
to the recipient, Bob. She also provides the random value
blindTy required to open the commitment commty, such that
Bob can use it to create a zero-knowledge proof for his own
account update. The zero-knowledge proof additionally needs
to prove compliance with regulatory rules, if a regulation
mechanism as described in Section 4 is in place.

To complete the transaction (step (2)), Bob then creates
a creating a receiver account update, for which he proceeds
similarly to Alice, with the difference that his zero-knowledge
proof zkpf 1 Teuses the transaction commitment commy

Sender

P
e o

VTx; blindT,, commn,,

Recipient

Central Bank
- N

11

9
®

®

/

seriald, stated . zkp? 3
@ ! i+ 2KPiy R commr,, serial, statef! |, Pub.llc
zkpf |, serial?, state?, zkp® Transaction Log
@ J+1 j+1 R @ P
B Tx
6} 1:0541

Figure 2: Platypus Base Transaction. @ Transaction Initiation. The sender, Alice, creates the transaction commitment as well
as the proofs for the update of her account state commitment and sends all of this to the recipient Bob, together with the blinding
value of the transaction commitment. @ Transaction Completion. Based on this, Bob creates the proofs for the update of his
account state commitment and sends the new account state commitments and both proofs to the central bank. (3) Transaction
Execution. The central bank verifies the proofs, checks that the revealed serial numbers have not been used before, and based
on this either accepts or rejects the transaction. If the bank accepts, it signs the new account states and sends the signatures
back to Bob. Simultaneously, the central bank also publishes the full transaction (i.e. everything received from Bob plus the
new signatures) on a public transaction log. @ Payment Acceptance. If the signatures are valid, Bob accepts the payment and
forwards the signature on Alice’ state to her, which completes the payment (4) Payment Completion.).

and proves that his account balance in his new state statef 1
increases by exactly vy compared to his previous state
statef with serial number serial? .

If Bob has not yet participated in the network (i.e. does not
have an account state state? yet), his proof changes slightly.
Namely, instead of revealing a serial number and proving
that his balance increases by vy, he creates a new account
state statelf and proves that its balance is equal to vy. He
may also first need to enroll for regulatory purposes (see
Sction 4). Once Bob has created the proof zkpf 1> he sends
the transaction commitment commy, Alice’ and his serial
numbers (serial?, seria|§3), both of their new states (state?H,
state®,), and both zero-knowledge proofs (zkpf, |, zkp?, ;)
to the central bank.

The central bank then executes the transaction (step @)
by verifying both zero-knowledge proofs and checking that
neither of the serial numbers (serialf‘, serialf) have been used
in previous transactions. If this is the case, the central bank
adds both serial numbers to the set of used serial numbers,
signs the two new states (state‘;‘H, statef 1) with their private
key skc and sends the signatures 67, | = Sign(skc,statef,)
and 6%, | = Sign(skc,state?,) back to Bob, who checks if
the signatures are valid and, if so, accepts the payment (step
@). Bob then forwards G?+1 to Alice, who updates her stored
state information, which completes the payment (step @).

The central bank keeps a record of all recent (i.e., for
some specified time interval chosen by the central bank)
transactions, which they publish in a publicly accessible
way. In particular, for each transaction, the bank publishes all

values received from Bob, as well as the bank’s signatures on
the new account states. This allows Alice to check the set of
recently published transactions for the serial number of her
old account state to find and receive the transaction containing
the signed new states, even if Bob does not forward this infor-
mation to her. Note that the published set of transactions does
not need to be ordered (in contrast to a ledger or blockchain)
and can be mirrored by arbitrary parties. To enable efficient
account backups and recovery, the states resulting from a
transaction may additionally store encrypted (with a key of
the owner) information about the contents of the transaction.
We describe backups and account recovery in Appendix B.
While the design of Platypus already allows for a high
performance compared to distributed ledger designs because
it does not require running a byzantine consensus protocol,
the centralized and account-based design of Platypus also
simplifies sharding, since standard database sharding tech-
niques can be used and the verification of the zero-knowledge
proofs can be separated from checking and updating the
serial numbers of the used account states. We describe the
sharding potential in more detail in Appendix B as well.

3 Platypus Base Transaction Details

In this section, we describe the details of the base transactions
in Platypus, i.e., the creation of transactions without regu-
lation mechanisms. We defer the explanation of regulation
mechanisms to Section 4 to improve readability and to make
the system design easier to understand.

Platypus makes use of zero-knowledge proofs in its transac-
tions. These zero-knowledge proofs can be instantiated with
different proof techniques, but the statements that are proven
are independent of these techniques which is why we do not
specify them here. In Section 6.1, we show how the base trans-
actions can be implemented with two different techniques
(namely, X-protocols and zk-SNARK(Ss), as well as a SNARK-
implementation that includes the regulation mechanism.

Some of these proof-techniques (including that by
Groth [24] used in our implementation) require a trusted
setup to generate a common reference string, which has been
criticized in the context of decentralized cryptocurrencies like
Zcash, and extraordinary efforts were made to keep it secure
when Zcash was originally launched [31]. It is important to
note here that, at least in most constructions including [24],
a compromise of this trusted setup does not affect the
zero-knowledge property of the proofs. Instead it “only”
affects soundness, which in the context of digital currencies
allows the creation of money, but does not affect privacy. In
our context, i.e. a CBDC, the central bank already has the
competence to create money and is trusted for the integrity
of the currency, which means that it can therefore be trusted
to perform the setup without any additional assumptions. Of
course, in practice, it may be preferable to nevertheless run
a distributed trusted setup between multiple parties.

3.1 System Setup

To set up the system, the central bank creates a private/public
key pair (skc,pkc) that is used for signing account state
commitments and publishes its public key pkc. In addition,
if a proof system is used that requires the setup of a common
reference string (see above), the central bank runs the trusted
setup procedure (possibly in conjunction with other parties).
In addition, the central bank sets a parameter bal,ax Which
is a maximum limit on account balances to prevent value
overflows and can be set to a value larger than all realistic
values for account balances. Similarly, the entity responsible
for regulation generates the parameters required by the
regulation, which we describe in Section 4.

When a user U enrolls in the system, they use a fresh
random value to create a secret key sky that they can later use
to pseudorandomly derive serial numbers and blinding values
for their account states using pseudorandom functions f,,
and gy, . Using pseudorandomly derived values (as opposed
to fresh random values) simplifies the creation of backups for
an account (see Appendix B) and prevents possible attacks
that could destroy funds [34].

3.2 Transaction Creation

Here, we describe how a transaction between a sender (Alice)
and a recipient (Bob) is created. We assume that clients keep

all values secret unless mentioned otherwise and that they
communicate through secure channels.

The following description assumes that Alice already has
an account in the system and Bob may have an account.
Alice’ current account state is represented by a commit-
ment state} = comm(serial?, bal?,blind?), and similarly
Bob’s current account state is represented by statef =
comm(serial?, baI?, inndf) if he already has an account. In
addition, both are in possession of a signature from the central
bank on their account state, denoted by 6% = Sign(skc, state!!)
and 67 = Sign(skc,state?), respectively. The commitment
can be created using any hiding and binding commitment
scheme. The steps correspond to the steps shown in Figure 2.

(D) Transaction Initiation:

(i) To create a transaction to Bob with value vy, Alice,
chooses a fresh random value blindt, and creates a
commitment comm, = comm (v, blindty).

(i) Alice also derives pseudorandom values
serial, |,blind?,; from her secret key as
seriald, | = fu,(serial?) and blind?, | = g, (blind})
and creates a new account state statef‘+1 =
comm(serial?, |, bal! — vy, blind,).

(iii)) Alice then creates a non-interactive zero-knowledge
proof zkp’?ﬂ that proves the following statement:
Given public values

serial?‘,comme7 state?ﬂ, balmax, pkc
I know secret values
ska,bal? balf | blind?, 67, vr,, blindry, serial?, |, blind?, |
such that
True = Vrfy(pkc,comm(serial? bal? blind?),6%) A

commTy, = comm (VTx, blindry) A
state?, | = comm(serial, |, bal?, |, blind, |) A

balmax > balf, | A

bal?, | = balf — v A
serial, | = fu, (serialf)

(iv) Alice then sends vrx, blindT., commr,, serial?, statef! |,
zkp?, | to Bob.

(2) Transaction Completion:

(i) After receiving the partial transaction from Alice, Bob
derives pseudorandom values serialjj-3 1 blind? 1 from
his secret key as serialfﬂ = foky (serialf) and innde =
sk (blind?) and uses them to create a new account state
state}f+l = comm(serialfﬂ, balf + V14, blindfﬂ).

(i) If Bob already has an account, Bob creates a non-
interactive zero-knowledge proof zkpf 1 that, similar
to Alice’ proof (with the difference of proving that his
balance increased by the transaction value), proves the
following statement:

Given public values
serial?, COMMTy, stateﬁrl ,balmax, Pkc

I know secret values

B ..B . B B . -_|B .
skg,bal},bal},;,blind}, 67, vy, blindry, serial 7, blind

such that

True = Vrfy(pkc,comm(serialf, baI?, innd?),cf) A

commTy, = comm(vTx, blindTy) A
B -_|B B .
state;,; = comm(serial, |, bal}, ;,blind} ;) A
balmax > bal%, | A
B B
ba|j+] = ba|] +VTX A
serial?, | = fy, (serial?)

(iii) If Bob does not have an account yet, Bob instead creates
a non-interactive zero-knowledge proof zkpf that proves
the following statement':

Given public values
commy, statelf, balmax, pkc
I know secret values
skp, VTx, blinde,serialli?7 innd?
such that
commT, = comm(v1x, blindry) A

statef = comm(serial?, vr,, blind%) A

balmax =Vrx A

serial? = fskz(0)
(iv) Finally, Bob sends the values commy, serial?, state’i“ﬂ,
zkply 1, serialf, statefﬂ, zkpr to the central Bank
(except for serialf if j=0).

@ Transaction Execution:

(1) The central Bank checks that none of the serial numbers
seriald, serialf appear in its stored set of previously used
serial numbers and that both zero-knowledge proofs
zkpﬁrl, ka?—&-l verify. If this is not the case, then the
central bank rejects the transaction and informs Bob.

(ii) Otherwise, the central bank accepts the transaction and
adds both serial numbers to the set of previously used

serial numbers, signs the new account states as 67, | =
Sign(skc,statef!, ;) and o7, = Sign(skc,state?,)

and sends them to Bob. In addition, the central bank
publishes the transaction (i.e. all values received from
Bob plus 6, | and 6%, |) on a publicly available log.

(4) Payment Acceptance: Bob checks that the signatures
received from the central bank are valid, accepts the payment
and stores (5]]3 1 to update his account if this is the case, and
forwards G’;‘H to Alice. Otherwise, he rejects the payment
and informs Alice.

@ Payment Completion: Alice checks that the signature
received from Bob is valid. Otherwise, or if she has not
received a signature from Bob after a timeout, she inspects the
central bank’s public transaction log to retrieve the transaction

Note that this can be restricted to special enrollment transactions for
regulatory purposes (see Section 4)

and the signature on her new account state. She then stores
Gf‘H to update her account and the payment is completed.

4 Regulation in Platypus

As described in Section 2.1, several aspects of a CBDC
require the possibility to enforce regulatory policies. In
particular, a CBDC should enable rules that ensure the
financial stability of a system, e.g., to prevent bank runs, as
well as rules that allow enforcement of anti-money-laundering
legislation or allow the detection of tax evasion [4, 8].

The design of Platypus explicitly simplifies the implemen-
tation of such compliance policies through its account-based
design. This account-based design allows storing additional
information within an account state, which enables efficient
zero-knowledge proofs through which the account holder can
prove compliance with a given rule. In particular, it improves
efficiency over previous designs such as that of Garman et
al. [22] that require proofs over the state of the whole system
(inclusion of several UTXO in a Merkle tree) instead of a
proof of a signature. In contrast to the design by Garman et
al., which only allows proofs on the state of the sender, it also
allows proofs about the state of the recipient. In addition, it
improves privacy compared to designs like PRCash [38] that
require linking several transactions together for efficiency.

In this section, we describe a general framework for en-
abling such regulatory policies. In Appendix A, we describe
in detail two meaningful examples for such policies that are
in line with the goals of a CBDC as stated by several central
banks [8]. Namely, the first example puts limits on how much
currency a user can hold without declaring it to authorities.
The second example limits how much currency a user can
receive anonymously within a given time period. The goals
of this second example are similar to that of the anonymity
vouchers as proposed by the European Central Bank [20] as
well as the previous proposals by Garman et al. [22] and Wiist
et al. [38]. In Appendix A, we also show that our regulation
mechanism ensures compliance with the enforced policies.

4.1 General Regulation Framework

Meaningful compliance rules need to be bound to a recog-
nized identity. Otherwise, a user could establish a large num-
ber of pseudonymous identities to circumvent these rules. This
requires an entity responsible for establishing these identities.

In addition, many practical rules do not simply prevent
someone from taking an action but instead require them to
disclose information under certain conditions. We therefore
also assume the existence of a government agency that is re-
sponsible for receiving such information and operating on it,
e.g., within the legal system. For simplicity, we assume that
these roles are taken on by a single entity that we call the regu-
lator. However, in practice, the responsibilities could be split,
e.g., one entity could be responsible for establishing identities

and a separate agency could hold the responsibility for each
compliance rule. As part of the system setup, the regulator
creates one key pair for issuing certificates, another key pair
that is used for encryption, and publishes both public keys.

Enrollment. To enable regulation, users need to explicitly
enroll in the system and establish identities. To do this, and
to later be able to prove their identity, each user generates
a random secret value, called secret identity from which their
public identity is derived, i.e., essentially a private/public key
pair with the sole purpose of identifying the user. The user
then needs to receive a certificate, i.e., a signature from the
regulator on the user’s public identity, as well as potentially
some other individual parameters used for rule enforcement.
For example, the certificate could contain a holding limit that
is individual to each user. This can be useful to, e.g., allow
retail businesses to hold a larger amount of currency than
users can hold in private accounts.

To issue this certificate, the user proves knowledge of
the secret identity corresponding to his public identity,
which is then combined with the other individual regulation
parameters and signed by the regulator after confirming
the real identity of the user. The method by which the real
identity is established is out of scope of this paper, but this
could for example be done by the user physically going
to an office of the responsible government agency. The
user’s certificate and secret identity can then later be used
in zero-knowledge proofs for anonymous identification. To
ensure that this identity cannot be used for multiple accounts,
the public identity is always included in the account state
commitment and the user proves equality of the public
identities committed to in the old and new account states.

General Proof Structure. In addition to the individual pa-
rameters that can be stored within the certificate and that are
persistent over a longer time-period, information that poten-
tially changes with each transaction can also be committed to
in the account state commitment of the user. This then allows
the user to create proofs involving the values of this informa-
tion when creating a transaction. This can be useful to keep
track of information involving the user’s transaction history.

In addition to the zero-knowledge proof of the base pro-
tocol (see Section 3), the user also proves in zero-knowledge
that they comply with the regulation rules including that they
know a private identity for which they have a certificate from
the regulator. If the compliance rule requires revealing some
information to the regulator under certain conditions, the user
encrypts his public identity, as well as potentially additional
information, under the regulators public key and proves in
zero-knowledge that this encryption was correctly performed.
Two example policies that illustrate regulation proofs are
discussed in Appendix A.

5 Security Analysis

In this section, we analyze the security of Platypus, in
particular its integrity and privacy guarantees.

5.1 Transaction Integrity

We first discuss the integrity of our system. Since Platypus
is a digital currency system, this entails that only authorized
parties should be able to spend funds or create funds and
funds should not be spendable more than once. In particular,
the system should provide transaction unforgeability and
balance invariance, two properties that we define below and
for which we show that our system provides them.
Transaction unforgeability essentially ensures that only au-
thorized parties can create transactions that spend their respec-
tive funds and that the transaction values and intended recip-
ients cannot be changed by an adversary. Balance invariance
ensures that an adversary cannot spend funds multiple times
or increase the supply of the currency. We capture the first of
these properties with the following transaction forgery game:

Definition 5.1 (Transaction Forgery Game). Given an
account-based e-cash system, the game consists of an
interaction between an adversary A4 and a challenger C with
access to an oracle O that simulates honest parties in the
system. The game proceeds as follows:

1. C initializes the system with a security parameter A,
which is used by the system to in turn initialize all used
primitives, such as the signature scheme or the zero-
knowledge proof system. C also initializes the oracle O.

2. A can then generate arbitrary private keys and associated
accounts with a balance chosen by A4, which O enrolls
in the system by signing the associated account states.

3. A can also ask O to initialize additional clients with
balances chosen by 4. O initializes them with the
specified balance by signing an according account
state and then sends the signed account state and serial
number for each of them to the adversary.

4. A can use his accounts to create arbitrary transactions,
interact arbitrarily (i.e. send or receive transactions)
with any account managed by the oracle, or can ask the
oracle to create transactions between accounts managed
by the oracle which are created and forwarded to the
adversary. All transactions created in interaction with
O are added to a query set Q.

5. For each of these transactions, the adversary can then
decide to submit them to O for execution, where O acts
as central bank, performs the same checks as the central
bank and either accepts or rejects the transaction.

6. The adversary wins the game if they can create a
transaction that is accepted by the oracle (simulating the
central bank) in the transaction execution step that does
not appear in the query set Q and is either

e a transaction in which A4 controls neither the
sender nor the recipient account

* a transaction in which A controls the recipient
account, but not the sender account and no trans-
action with the same sender serial number and the
same transaction value, and for which the adversary
controls the recipient account, exists in Q

Claim 5.1 (Transaction Unforgeability). No computationally
bounded adversary A without access to the simulation
trapdoor of the zero-knowledge proof system can win the
transaction forgery game with non-negligible probability.

Proof. Assume such an adversary A4 exists. Then there are
two possible cases to distinguish: Either 1) the adversary
forges a valid account update for the sender that is not part
of any transaction in Q, or 2) he reuses a valid sender account
update from a transaction Txg € Q.

In Case 1, 4 either a) creates a valid account update for an
account not controlled by 4 without knowing the respective
secret values, b) gains knowledge of the secret values, or c)
creates a valid account update for a non-existing account.

In case 1a), 4 must be able to create a zero-knowledge
proof that is accepted by the central bank without knowing the
secrets, thus violating our assumption that the zero-knowledge
proof system is sound. In 1b) 4 must be able to compute the
sender’s secret values based on previously seen transactions,
in particular the blinding value used to create the previous
account state. Since this blinding value is only used for the
account state commitment, which is never opened, such an ad-
versary could be used to distinguish commitments to two dif-
ferent pairs of serial numbers and account balances, which vi-
olates our assumption that the commitment scheme is hiding.

In case lc), A4 either needs to produce a signature from
the central bank on a forged account state or they need to
produce a proof of knowledge of such a signature without
having knowledge of it. Since we assume that the proof
system is sound and signatures are unforgeable, A4 cannot
produce either of them and thus cannot spend funds from
such an invalid account state.

Now consider case 2. Then 4 either a) does not control
the recipient account for the transaction Txp from Q, or b)
controls the recipient account for Txg. In case 2a) 4 does
not know the blinding value used to create the transaction
commitment and needs to either find a transaction Tx'Q € Q for
which the transaction commitment is the same as in Txp (to
reuse its recipient state update) which is negligible, or 4 needs
to create a recipient account update that uses the transaction
commitment from Txg which is analogous to case 1.

In case 2b) A controls the recipient account of Txg and
therefore needs to create a transaction Tx' with a different
recipient account update that changes the transaction value. In
this case, the adversary knows the blinding value used to cre-
ate the transaction commitment since he controls the recipient
account used in Txg. However, since the commitment scheme

is binding, A4 cannot open the commitment to any value other
than the originally committed value, and since we assume
the proof system to be sound, 4 can therefore not create
any recipient account update that changes the recipient’s
balance by any other value. Thus, 4 cannot create any such
transaction Tx’ without violating either the binding property
of the commitment scheme or soundness of the proof system.

Since all possible cases violate at least one assumption,
Platypus provides transaction unforgeability. O

Claim 5.2 (Balance Invariance). No computationally
bounded adversary without access to the simulation trapdoor
of the zero-knowledge proof system can create a transaction
that increases the available funds in the system or spends
funds more than once.

Proof. There are multiple cases to distinguish. An adversary
can either 1) attempt to use the same sender account state in
multiple transactions, 2) attempt to use a sender account state
that never resulted from a transaction accepted by the central
bank, or 3) attempt to create a transaction that increases
the balance of the recipient account state by more than it
decreases the balance of the sender account state.

First, let us consider the case where an adversary attempts
to use the same account state multiple times as sender in a
transaction. Similar to traditional e-cash schemes like [15]
as well as Zerocash [35], double spending is prevented using
serial numbers that uniquely define an account state and can
only be used once. Once the serial number serial? has been
revealed for one account state state?, the same account state
can no longer be used for future updates, since reusing the
account state would require proving that the same account

state commitment opens to a different serial number serial’ ?.
If the adversary can create such a proof, then either the proof
system is not sound or the commitment scheme used to
create the state commitment is not binding, both of which
contradict our assumptions. No client can therefore use the
same account state for more than one transaction.

Now consider the case where an adversary creates a
transaction that uses a sender account state that has never
been the result of a transaction accepted by the central bank.
This would immediately allow the adversary to win the
transaction forgeability game and thus is not feasible.

Lastly, consider the case where an adversary attempts to cre-
ate a transaction that increases the account balance of the re-
ceiver by more than the value subtracted from the account bal-
ance of the sender. Since the value of each transaction is com-
mitted to using the transaction commitment commr,, which
is created using a hiding and binding commitment scheme, no
computationally bounded party can open the commitment to a
transaction value other than what was committed to originally.
Since the proof of the transaction sender proves that their ac-
count balance was decreased by exactly the committed value
and the proof of the transaction recipient proves that their bal-
ance was increased by exactly this value, and since we assume

that the proof system is sound, the account balance of the re-
cipient is increased by exactly the amount that the balance of
the sender is decreased. Therefore, the transaction does not
increase the total amount of funds available in the system. [J

5.2 Transaction Privacy

Here, we consider the privacy guarantees provided by
Platypus. In particular, we consider privacy towards parties
other than the regulator and show that accepted transactions
in our system are indistinguishable. In Appendix A we
discuss what additional information the regulator receives.
We do not consider network-level attacks on anonymity here,
as they are out of scope of this paper, but we provide a short
discussion of such attacks in Appendix B.

We capture the privacy guarantees with the following
transaction indistinguishability game:

Definition 5.2 (Transaction Indistinguishability Game).
Given an account-based e-cash system, the game consists of
an interaction between an adversary A4 and a challenger C
with access to an oracle O that simulates honest parties in
the system. The game proceeds as follows:

1. C initializes the system with a security parameter A,
which is used by the system to in turn initialize all used
primitives, such as the signature scheme or the zero-
knowledge proof system. C also initializes the oracle O.

2. A can then generate arbitrary private keys and associated
accounts with a balance chosen by A4, which O enrolls
in the system by signing the associated account states.

3. A4 can also ask O to initialize additional clients with
balances chosen by A. O initializes them with the
specified balance by signing an according account state
and then sends the account state and serial number for
each of them to the adversary.

4. A can use his accounts to create arbitrary transactions,
interact arbitrarily (i.e. send or receive transactions) with
any account managed by the oracle, or can ask the oracle
to create transactions between accounts managed by the
oracle which are created and if they result in a valid trans-
action, they are executed (i.e. the states of the involved
parties are updated) and forwarded to the adversary.

5. Inthe challenge phase, 4 chooses parameters (i.e. sender,
recipient, value) for two transactions Txg and Tx;, such
that the adversary controls neither the sender nor the re-
cipient account and the transaction value does not exceed
the sender’s balance and sends these parameters to C.

6. C chooses a bit b € {0,1} u.a.r., executes the transaction
Txp and sends the resulting transaction to 4

7. A then outputs a bit »’ and wins the game if b = b’

Claim 5.3 (Transaction Indistinguishability). No compu-
tationally bounded adversary A can win the transaction
indistinguishability game with non-negligible advantage.

Proof. Assume that all used cryptographic primitives

10

are secure according to their respective notions, i.e. the
pseudorandom function is indistinguishable from a truly
random function, the commitments to different values are
indistinguishable, the zero-knowledge proof system provides
zero-knowledge (i.e. we have access to a simulation oracle .§
that can simulate indistinguishable proofs for any statement),
and the encryption scheme provides CPA-indistinguishability.

We now show that no adversary A4 can succeed in winning
the game with non-negligible advantage using a hybrid
argument. To that end consider two set of distributions
0, T),...,T) and T, T}, ..., T for the challenge transac-
tions Txg and Txj, respectively in which we gradually replace
fields in the transactions through an idealized version. That is,
Tk0 (for k € {0,1}) is the distribution for the real transaction
Tx, Tkl replaces the sender zero-knowledge proof zkp, with
a simulated proof (from .5), Tk2 additionally replaces the
sender serial number serial4 with the output of a truly random
number, Tk3 also replaces the sender’s account state statey
with a commitment to randomly chosen account parameters,
and Tk4 replaces the encrypted regulation information with
the encryption of a random value. The same is repeated for
the recipient’s part of the transactions for the distributions
Tks7 ceey Tkg, and finally Tk9 also replaces the transaction
commitment ¢t with a commitment to a random value.

To9 and T19 are therefore distributions in which all fields in
the transaction have been replaced with random values (sam-
pled according to the distribution resulting from truly random
inputs to the respective functions) and the zero-knowledge
proofs are simulated based on these random values. A special
case is the serial number, which is replaced by the output of a
truly random function with a previous serial number as input.
However, since all previous serial numbers are unique for
transactions accepted by the central bank, the output is also
truly random. Therefore T09 and T19 are the same distributions
and thus indistinguishable for any adversary.

Assume that we have an arbitrary adversary A4 that wins our
game with non-negligible advantage, i.e. that can successfully
distinguish TO0 and TIO. Thus, for some non-negligible func-
tion p, we have |Pr[A(Ty) =1] —Pr[A(T) = 1]| > p())
Due to the triangle inequality, we also have:

|Pr[A(] Pr[A(1y) = 1]
; Prla(r) = 1] -Pr[a) = 1]
iy AT =1]=Pra(1}) =1]|

+\Pr[;) =1] —Pr[a(1y) =1]|
Since the last term is zero (as TO9 and T19 are the same distri-
bution), at least one of the other terms must be non-negligible,
ie. [Prla(Ti")=1] =Pr[A(T{) =1]| > p'(A) for some
i€{l,...,9},k € {0,1} and some non-negligible function
p'. Since the only difference between these two distributions

is that one of them replaces one of the fields with a value that
is indistinguishable (according to the respective notion of
the used primitive), this leads to a contradiction. Therefore,
Platypus provides transaction indistinguishability.

O

5.3 Availability of Funds

While we do not consider network-level attacks on availabil-
ity, our system should ensure that a client cannot be prevented
from using their funds by a third party. For example, Ruffing
et al. [34] described an attack on Zerocoin [28], in which an
attacker invalidates coins from another user by creating and
immediately spending coins with the same serial number as
that of an honest user, which prevents the honest user from
using their funds. Since Platypus also uses serial numbers to
prevent double-spending, we need to consider similar attacks.
In particular, we make the following claim:

Claim 5.4. No computationally bounded adversary can
invalidate the account state of another client.

Proof. First, note that in order to prevent a client from
creating a transaction that updates their account state, either
some information necessary to create the account state update
needs to be withheld from the client, or the adversary needs
to cause the central bank to reject the transaction. We assume
that the client does not lose access to their long term keys
and private information and thus they can always retrieve all
necessary information from the central bank’s transaction log.

Since the central bank will always accept a valid trans-
action unless it reuses a previously seen serial number, the
adversary can only make the central bank reject an account
update from a client by creating a transaction that uses the
same serial number as used by the honest client (as in [34]).

To invalidate a user’s account state with serial number
seriaI,U, the adversary needs to create an account update that
reveals the same serial number and they need to prove that
this serial number was committed to in a valid account state
for which they know the corresponding secret key. Thus,
the adversary needs to create a series of account states that
at some point results in the same serial number seriaI,U, i.e.
they need to find a secret key sk’ and an index j, such that
fy(0) = serial{ = f3i (0) (where f* is the k-times iterated
composition of f, and k is bounded by an arbitrary but fixed
value n (polynomial in the security parameter)).

Since fy is a pseudorandom function, s0 is /i,) = ok for
arandomly chosen key (x,k) where k € Z, (by induction). A
successful adversary as described above would therefore need
to find a key for the pseudorandom function family % that
produces the given input/output pair which is infeasible. [

11

6 Evaluation

In this section, we describe our implementation of Platypus as
well as performance results. To evaluate the performance of
Platypus, we created two different implementations, one us-
ing zk-SNARKSs and another using X-protocols and measured
their performance for generating and verifying transactions.

6.1 Implementation

As mentioned above, we created two different implemen-
tations of Platypus, one based on zk-SNARKSs and another
based on X-protocols. The former covers base transactions as
well as the two regulation policies described in Appendix A,
while the latter only includes the base transactions.

Since constraints for zk-SNARKS can easily be defined
in a higher level language, the implementation based on
zk-SNARKS offers a better extendability and ease of imple-
mentation compared to the version based on X-protocols,
which requires hand-crafting the zero-knowledge proofs to
achieve a good performance. For this reason, a zk-SNARK im-
plementation of Platypus is more likely to be used in practice
and is the focus of our evaluation. Nevertheless, to show the
feasibility of implementing Platypus in other proof systems,
we provide an implementation of the base transaction.

Implementation based on zk-SNARKSs. Our zk-SNARK
implementation of Platypus uses the gnark [1] library using
the BN256 curve with the Groth16 proof system [24]. For
the signatures and commitments, we use the EdDSA [10]
signature and MiMC [3] hash gadgets as provided by
the library. To provide public key encryption for our
regulation mechanism, our implementation uses Elgamal
encryption [18]. Our implementation includes the base
transactions as well as the regulation mechanisms to limit
holding and receiving funds completely anonymously which
can be toggled individually. The gnark library is parallelized
and uses all CPU cores for proof generation and verification.

Implementation based on X-protocols. Our second
implementation of Platypus only covers the base transaction.
It uses Pedersen commitments [32] over elliptic curves
for all commitments and randomizable signatures [33] for
the signatures that the central bank issues on account state
commitments. These randomizable signatures make use
of bilinear maps and allow the blinding and unblinding of
signatures on committed values to allow a party to efficiently
prove that they have a signature of some value without
revealing this value. The commitments and signatures are
combined with X-protocols that are used for proofs about the
equality and range of committed values. Our implementation
uses the RELIC toolkit [6] for the elliptic curve and bilinear
map operations with the BN-P256 curve as the base curve for
the type-3 pairing that the randomizable signatures require.
The RELIC toolkit and our implementation is not parallelized
and thus only uses a single core of the CPU.

Table 1: Performance of Platypus. This table shows proving and verification time for both of our implementations, as well
as the time required for the trusted setup and the number of R1CS constraints for the SNARK-based implementation. All
measurements are averaged over 100 runs and rounded to two significant figures.

Trusted Setup [s] Proof Generation [s] Verification [s] # R1CS constraints Tx Size [B]
Base Tx () - 0.029 0.028 - 7244
Base Tx (SNARK) 2.0 0.16 0.0011 28789 672
Tx with holding limit (SNARK) 6.5 0.54 0.0012 92558 800
Tx with receiving limit (SNARK) 6.6 0.54 0.0012 94615 800
Tx with both limits (SNARK) 7.6 0.62 0.0012 113453 864

6.2 Results

We measured the proving and verification time for both of
our implementations, i.e., of the base transaction for the
Y-protocol implementation, and of the base transaction and
regulated transactions for the zk-SNARK implementation
with receiving and holding limits (see Appendix A for more
detail on the policies). We also measured the time required
for the trusted setup, which is a one-time operation only run
during system setup. As can be seen in Table 1 this setup is
quite fast with less than ten seconds for all configurations.
Table 1 shows the results of our measurements as well
as the number of R1CS constraints for our zero-knowledge
proofs in the SNARK-based implementation and the sizes of
transactions for both implementations. We performed these
measurements on a machine with an Intel® Core™ i7-7700
CPU (3.60GHz) with 4 cores and 16GB of RAM. The results

for proof generation and proof verification are per proof, i.e.

both the sender and the recipient have to perform a proof
generation and the central bank needs to perform two proof
verifications per transaction. However, the client side proof
generation can be done in parallel after communicating the
values used to create the transaction commitment beforehand
(i.e. blindty and v1y), i.e. the transaction sender and recipient
can compute their proofs simultaneously. Our results show
that this can be done efficiently. Transaction sizes are based on
256-bit serial numbers and commitments and show the size of
the transaction before execution, i.e. when they are submitted
to the central bank. After execution (i.e. in the log), they

additionally include two signatures, i.e. additional 128 bytes.

In particular, even with both regulation mechanisms in
place, the proof generation takes only 0.6 seconds using the
SNARK-based implementation (see Table 1). This makes
it feasible to perform the complete transaction within one
second, which is often considered an important limit for

usability [30] and which makes it usable for retail payments.

In addition, our numbers show that the overhead of adding
additional regulation mechanisms is small. Concretely, using
two regulation mechanisms instead of just one only adds less
than a tenth of a second to the proof time (while verification
time stays constant) which shows that Platypus can easily
support enforcement of multiple regulatory rules.

Proof generation is more performant in the implementation
based on X-protocols with only 0.029 seconds to create a

12

proof for the base transaction. However, while proof verifi-
cation is constant for the SNARK-proofs independent of the
statement, the verification time of the X-protocol proofs grows
at the same rate as the size of the statement, which reduces the
throughput on the verification side and would only become
worse with additional regulation mechanisms added. For the
base transaction, one machine with four CPU cores could
handle the verification of around 140 proofs per second (35
per core), i.e., only 70 transactions. In contrast, the SNARK
based implementation can handle the verification of roughly
700 proofs per second on a single machine, independent of the
size of the proof statement, which corresponds to 350 trans-
actions. This includes signing of the new account state which
requires less than 0.2ms. Similarly, while the transaction size
is quite small for the SNARK implementation, it is an order
of magnitude larger for the X-protocol implementation.
Even though CBDC:s are not intended to replace all other
forms of payments, only to complement them [8], it is in-
teresting to consider the feasibility of such a system for all
payments in an economic area. Data from the European Union
show that in 2016, the EU population performed 163 billion
payments [19] for a population of just below 450 million peo-
ple [21]. This corresponds to a volume of slightly more than
five thousand transactions per second on average, or if we as-
sume that all of these payments take place within only 8 hours
of each day (to exclude times with a low transaction volume),
a volume of about 15.5 thousand transactions per second.
Thus, to handle all transactions in the EU, a deployment of
Platypus would require the equivalent of approximately 45 of
our test machines, which is a modest requirement for such a
large economic area. Put differently, assuming the same trans-
action volume per person and again assuming that all trans-
actions are concentrated on 8 hours per day, a single machine
would offer enough computational resources to handle the
transactions of a small country like Switzerland (= 300 trans-
actions per second) or Israel (= 320 transactions per second).

7 Related Work

E-Cash Systems. With e-cash [15], Chaum introduced the
first design for an anonymous digital currency, in which a
user can withdraw a coin from a bank by generating a coin
identified by a serial number and receiving a blind signature

on it, which ensures that the bank does not see the serial
number. The user later unblinds this signature, which allows
them to use the coin for payments. A merchant receiving a
payment deposits the coin at the bank, at which point the bank
checks if the serial number has already been used. If that is the
case, the bank rejects the payment, otherwise it is accepted.
E-cash makes withdrawal and spending of a coin unlink-
able, but it reveals to the bank the total transaction volume of a
client (based on their withdrawals) and the value of each trans-
action for every merchant (based on their deposits). It also re-
quires users to store information linear in the number of coins
that they own. Later designs [11, 13] reduce the overhead.
Camenisch et al. later also proposed an e-cash system that
offers a form of regulation [12], limiting the amount that can
be spent anonymously by a user per merchant. However, in all
previous e-cash designs, the merchant still reveals the value
of their received coins to the bank when depositing them.
Baldimtsi et al. [7] used techniques for double-spending de-
tection for a transferable e-cash design, in which a coin can be
transferred to different users without interaction with the bank.
Once a coin gets deposited, the bank then checks for double-
spending and identifies the offending party. This removes the
issue that the merchant needs to reveal the transaction value
to the bank for all received funds. Unfortunately, such a trans-
ferable e-cash scheme necessitates that coins grow in size
depending on how often they were used, which makes spend-
ing less efficient than other e-cash schemes. This also affects
linkability, since coins of a different size (i.e. coins that have
been used a different number of times) are distinguishable.

Blockchain-based Systems. Several proposals for anony-
mous cryptocurrencies exist in the blockchain space.
Zerocash [35] and its instantiation Zcash is currently consid-
ered to provide the strongest privacy guarantees. All of the
transaction information is completely hidden and transactions
are unlinkable, similar to the guarantees provided by Platypus.
Garman et al. later showed how Zerocash can be extended
with accountability mechanisms [22] that put restrictions
on the transaction sender. One of the main drawbacks of
Zerocash and the proposal by Garman et al. are the heavy
client requirements which are difficult to remove or reduce
in a decentralized setting [39]. This is particular due to the
transaction receiving mechanism, which requires decrypting
every transaction included in the blockchain as well as the
requirement to prove knowledge of the path of a transaction
output in a Merkle tree, which requires clients to keep this
tree up to date. The second also makes scaling more difficult,
since adding new transaction outputs to this tree requires all
transactions to be serialized. In contrast, Platypus can take
advantage of the changed trust assumptions to provide better
scalability and to reduce the requirements for clients.

Other recent research has proposed schemes to provide reg-
ulation in a semi-centralized blockchain setting. PRCash [38]
provides a design that uses lightweight zero-knowledge proofs
to efficiently enable a receiving limit per time interval (epoch)

13

for anonymous transactions. However, PRCash is based on
a transaction design called mimblewimble [25] that does not
provide full unlinkability for transactions and the regulation
mechanism requires linking several transactions within an
epoch. Platypus therefore provides better privacy and at the
same time improves scalability through its centralized design.
In addition, Platypus simplifies regulation compared to the
designs of [22] and [38] due to its account-based design, since
it does not require the inclusion of multiple UTXOs in proofs.

Finally, parallel work by Androulaki et al. [5] proposed
an auditable anonymous token management system for use
in a permissioned blockchain targeted towards enterprise
networks. In contrast to Platypus, which is account based,
their design uses a UTXO model, in which the UTXOs are
represented as Pedersen commitments [32]. They then use
a combination of a permissioned blockchain and a potentially
distributed certifier to authorize payments. Transactions
are committed to the blockchain after proving that the
spender has a signature on each spent UTXO and later the
newly created UTXOs get signed by the certifier using
randomizable signatures [33]. In addition, the scheme allows
for a set of auditors, each of which is responsible for auditing
a different set of participants and which can access all
information of their assigned participants. Platypus instead
allows for fully anonymous transactions as long as specified
conditions are not violated and is extendible with different
regulatory rules which the account-based design simplifies.
The regulation mechanisms enabled by Platypus make it
more suitable for the use as central bank digital currency
in which most transactions should be equivalent to cash
with respect to their privacy properties [8]. In contrast, the
auditability provided by the design from Androulaki et al. [5]
is targeted at business-to-business usecases in which each
business has their own auditor who should be able to access
all of the transaction information of the business.

8 Conclusion

Despite the prominence of blockchain-based digital curren-
cies, they may not be the best technology choice for issuing
a CBDC. Given the trust model of CBDCs (central authority)
and the desirable features of a CBDC (privacy, performance,
scalability, regulation), we argue that a traditional e-cash
scheme can be a more suitable starting point for designing CB-
DCs. With our solution Platypus we have shown that an e-cash
like system can provide all these features at the same time.
We have also proposed a new style of building digital
currencies that combines e-cash style transaction processing
with the account-model that is common in blockchain systems
like Ethereum [37] and with privacy techniques inspired
by Zerocash [35]. We draw a parallel to Zerocoin [28] that
was the first work to apply techniques from e-cash systems
to a blockchain-based solution. After its publication, many
researchers leveraged the same underlying design pattern

and proposed improved solutions such as Zerocash [35]. In
a similar spirit, we adopt techniques from blockchain-based
solutions into an e-cash system and we hope that our work can
also inspire other researchers to design new e-cash solutions
that leverage the design pattern proposed in this paper, extend
our work, and ultimately provide better CBDC designs.

References

(1]
(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

(12]

gnark Library. https://github.com/ConsenSys/gnark.
Tor Browser. https://www.torproject.org/.

Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab
Roy, and Tyge Tiessen. Mimc: Efficient encryption and
cryptographic hashing with minimal multiplicative complexity.
In International Conference on the Theory and Application
of Cryptology and Information Security, 2016.

Sarah Allen, Srdjan Capkun, Ittay Eyal, Giulia Fanti, Bryan A
Ford, James Grimmelmann, Ari Juels, Kari Kostiainen, Sarah
Meiklejohn, Andrew Miller, Eswar Prasad, Karl Wiist, and
Fan Zhang. Design choices for central bank digital currency:
Policy and technical considerations. Technical report, The
Brookings Institution, 2020.

Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria
Dubovitskaya, Kaoutar Elkhiyaoui, and Bjorn Tackmann.
Privacy-preserving auditable token payments in a permis-
sioned blockchain system. In Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, 2020.

D. F. Aranha and C. P. L. Gouvéa. RELIC is an Efficient
Llbrary for Cryptography. https://github.com/relic-
toolkit/relic.

Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and
Markulf Kohlweiss. Anonymous transferable e-cash. In
Public Key Cryptography, 2015.

Bank of Canada, European Central Bank, Bank of Japan,
Sveriges Riksbank, Swiss National Bank, Bank of Eng-
land, Board of Governors of the Federal Reserve, and
Bank for International Settlements. Central bank digi-
tal currencies: foundational principles and core features.
https://www.bis.org/publ/othp33.htm, 2020.

Bank of England. Central Bank Digital Currency: Opportuni-
ties, challenges and design. https://www.bankofengland.
co.uk/-/media/boe/files/paper/2020/central-bank-
digital-currency-opportunities-challenges—-and-
design.pdf, 2020.

Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe,
and Bo-Yin Yang. High-speed high-security signatures.
Journal of cryptographic engineering, 2(2), 2012.

Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya.
Compact e-cash. In Advances in Cryptology - EUROCRYPT
2005, volume 3494 of Lecture Notes in Computer Science,
2005.

Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya.
Balancing accountability and privacy using e-cash. In
International Conference on Security and Cryptography for
Networks, 2006.

14

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Sébastien Canard, David Pointcheval, Olivier Sanders, and
Jacques Traoré. Divisible e-cash made practical. In JACR
International Workshop on Public Key Cryptography, pages
77-100. Springer, 2015.

D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash.
In Proceedings on Advances in Cryptology, CRYPTO ’88,
1990.

David Chaum. Blind signatures for untraceable payments. In
Advances in Cryptology: Proceedings of Crypto 82, 1983.

David Chaum, Christian Grothoff, and Thomas Moser. How
to issue a central bank digital currency. SNB Working Papers,
2021.

George Danezis and Sarah Meiklejohn. Centrally banked
cryptocurrencies. In 23nd Annual Network and Distributed
System Security Symposium, NDSS, 2016.

T. Elgamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions on
Information Theory, 31(4), 1985.

Henk Esselink and Lola Herndndez. The use of cash by house-
holds in the euro area. ECB Occasional Paper, (201), 2017.

European Central Bank. Exploring anonymity in central bank
digital currencies. https://www.ecb.europa.eu/paym/
intro/publications/pdf/ecb.mipinfocusl91217.en.
pdf, 2019.

eurostat. Population Development and Projections.
https://ec.europa.eu/eurostat/web/population-
demography-migration-projections/visualisations

(retrieved 2021-04-10).

Christina Garman, Matthew Green, and Ian Miers. Account-
able privacy for decentralized anonymous payments. In
International Conference on Financial Cryptography and
Data Security, 2016.

Arthur Gervais, Srdjan Capkun, Ghassan O Karame, and
Damian Gruber. On the privacy provisions of bloom filters in
lightweight bitcoin clients. In Proceedings of the 30th Annual
Computer Security Applications Conference, 2014.

Jens Groth. On the size of pairing-based non-interactive
arguments. In Annual international conference on the theory
and applications of cryptographic techniques, 2016.

Tom Elvis Jedusor. Mimblewimble. http://mimblewimble.
org/mimblewimble.txt.

Butler Lampson and Howard E Sturgis. Crash recovery in a
distributed data storage system. 1979.

Sinisa Matetic, Karl Wiist, Moritz Schneider, Kari Kostiainen,
Ghassan Karame, and Srdjan Capkun. BITE: Bitcoin
lightweight client privacy using trusted execution. In 28th
USENIX Security Symposium (USENIX Security 19), pages
783-800, 2019.

Tan Miers, Christina Garman, Matthew Green, and Aviel D
Rubin. Zerocoin: Anonymous distributed e-cash from bitcoin.
In 2013 IEEE Symposium on Security and Privacy, 2013.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. 2008.

https://github.com/ConsenSys/gnark
https://www.torproject.org/
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.bis.org/publ/othp33.htm
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.mipinfocus191217.en.pdf
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.mipinfocus191217.en.pdf
https://www.ecb.europa.eu/paym/intro/publications/pdf/ecb.mipinfocus191217.en.pdf
https://ec.europa.eu/eurostat/web/population-demography-migration-projections/visualisations
https://ec.europa.eu/eurostat/web/population-demography-migration-projections/visualisations
http://mimblewimble.org/mimblewimble.txt
http://mimblewimble.org/mimblewimble.txt

[30] Jakob Nielsen. Usability engineering. Morgan Kaufmann,

1994.

Morgen Peck. The Crazy Security Behind the Birth of Zcash,
the Inside Story. IEEE Spectrum, 2016.

(31]

[32] Torben Pryds Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In Advances in

Cryptology — CRYPTO 91, 1992.

[33] David Pointcheval and Olivier Sanders. Short randomizable
signatures. In Cryptographers’ Track at the RSA Conference,

2016.

[34] Tim Ruffing, Sri Aravinda Thyagarajan, Viktoria Ronge, and
Dominique Schroder. (short paper) burning zerocoins for fun
and for profit-a cryptographic denial-of-spending attack on
the zerocoin protocol. In 2018 Crypto Valley Conference on

Blockchain Technology (CVCBT), 2018.

Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from bitcoin.
In Security and Privacy (SP), 2014 IEEE Symposium on, 2014.

(35]

[36] Sveriges Riksbank. The Riksbank’s e-krona pilot. https://
www.riksbank.se/globalassets/media/rapporter/e-

krona/2019/the-riksbanks-e-krona-pilot.pdf, 2020.

[37] Gavin Wood. Ethereum: A secure decentralised generalised

transaction ledger. 2014.

[38] Karl Wiist, Kari Kostiainen, Vedran Capkun, and Srdjan
Capkun. Prcash: Fast, private and regulated transactions for
digital currencies. In International Conference on Financial

Cryptography and Data Security, 2019.

[39] Karl Wiist, Sinisa Matetic, Moritz Schneider, Ian Miers, Kari
Kostiainen, and Srdjan Capkun. Zlite: Lightweight clients
for shielded zcash transactions using trusted execution. In
International Conference on Financial Cryptography and

Data Security, 2019.

Wolfie Zhao. Chinese State-Owned Bank Offers Test Interface
for PBoC Central Bank Digital Currency. Coindesk. 2020.
https://www.coindesk.com/chinese-state-owned-
bank-offers-test-interface-for-pboc-central-
bank-digital-currency (retrieved 2021-04-14).

(40]

A Regulation Details

In this appendix, we provide detailed descriptions of two
example regulation policies, namely limits on how much
money can be held in one account and how much money can
be received within a given time period. We also show that our
regulation mechanism ensures compliance with the policies
that are in place.

A.1 Holding Limits

One compliance rule that is of particular interest for financial
stability in an economic system, specifically to prevent bank
runs, consists of limiting the amount of money that can be

15

held in a CBDC [8, 9]. In addition, such a holding limit can
be useful to authorities to prevent evasion of wealth tax.

A holding limit can be designed in different ways. The
simplest way is to enforce a hard global limit on the amount
that can be held by a single account. The only regulation
mechanism required to enforce this is the establishment of
real identities and proving the possession of a certificate.
In addition to this, the value bal,,.x that is used in the base
transaction (see Section 3) and used to prevent overflows is
set to the holding limit required by the regulatory rule which
will prevent any balance from exceeding this limit.

A more flexible option could allow different holding limits
for different users, for example to allow business accounts to
hold more digital currency than private accounts. To do this,
this individual holding limit is included as a parameter in the
user’s certificate. In each transaction, the user then proves
in zero-knowledge (i.e. without revealing the limit) that their
new balance does not exceed this limit, in addition to proving
their identity.

Lastly, it is possible to have soft limits instead of hard
limits that allow holding a larger amount of currency with the
requirement of revealing this information to the regulator. To
enable this, the user’s certificate again includes an individual
holding limit as before, but the proof in the transaction
changes. Instead of proving that they have not exceeded
the limit in the transaction, the user encrypts their public
identity and their account balance with the regulator’s
public key if they have exceeded the limit, or fixed dummy
values otherwise. These encrypted values are added to the
transaction. The user then proves in zero-knowledge that
they have either not exceeded the holding limit and encrypted
the dummy values or that they have exceeded the limit and
encrypted their public identity and their account balance.

Creating the proof in this way leaks no information to third
parties, only to the regulator. The regulator can decrypt the en-
crypted information and disregard it if it contains the dummy
values or keep it otherwise. However, to third parties all trans-
actions are indistinguishable and they do not learn whether
a transaction contains real information or dummy values.

A.2 Receiving Limits

Another example for a compliance rule that is commonly
suggested for CBDCs is a limit on how much money can
be received or spent by a party within a given amount of
time [4,8,20,22,38]. Such a limit serves to emulate reporting
requirements for cash transactions that are required for com-
pliance with anti-money-laundering legislation or to prevent
tax evasion. Since it is easy to quickly create a large number
of digital transactions, these limits should cover a certain
amount of time instead of only applying to a single transac-
tion to ensure that they cannot be circumvented by simply
splitting a large transaction into multiple smaller transactions.

In the following, we describe how such limits can be

https://www.riksbank.se/globalassets/media/rapporter/e-krona/2019/the-riksbanks-e-krona-pilot.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2019/the-riksbanks-e-krona-pilot.pdf
https://www.riksbank.se/globalassets/media/rapporter/e-krona/2019/the-riksbanks-e-krona-pilot.pdf
https://www.coindesk.com/chinese-state-owned-bank-offers-test-interface-for-pboc-central-bank-digital-currency
https://www.coindesk.com/chinese-state-owned-bank-offers-test-interface-for-pboc-central-bank-digital-currency
https://www.coindesk.com/chinese-state-owned-bank-offers-test-interface-for-pboc-central-bank-digital-currency

added for receiving currency, but the same techniques
could also be directly applied for sending currency. Similar
to the “anonymity vouchers” proposed by the european
central bank [20] and proposed limits in previous work on
blockchain-based digital currencies [22,38], we focus on soft
limits that allow for fully anonymous transactions if the total
received value for each user is below a given threshold within
a fixed time interval, but require reporting if the threshold
is exceeded.

Similar to the previous example, the user starts with
enrolling in the system where they receive a certificate that

includes a receiving limit in addition to the user’s public key.

The system additionally defines epochs, the time intervals for
which the limits are defined. The length of these epochs is

a parameter of the deployed system and can be arbitrary, e.g.

a day, a week, or even a year, without affecting the linkability
of transactions (in contrast to PRCash [38]).

For each user, the account state includes two additional
pieces of information, namely, the last epoch in which the
user’s account was updated and the cumulative sum of all
funds that the user received within that epoch.

Similar to the holding limits above, each transaction
includes an encryption (with the regulator’s public key) of
either the total received value in the current epoch and the
recipients identity or dummy values. The user then proves
(in zero-knowledge) that the total value that they’ve received
in the current epoch is below the limit or that their correct
identity and the correct value were encrypted. This proof
makes use of the epoch and sum committed to in the account
state commitment. The user is within the limit if either the
stored epoch is not the same as the current epoch and the
transaction value is below the limit, or if the stored sum plus
the transaction value is below the limit. Lastly, the user also
proves that their new account state correctly updates the
epoch and the sum of received values. Since the user proves
all of this in zero-knowledge, neither the value nor the stored
epoch or identity are revealed and the transactions cannot be
linked to any other transactions of the same user.

A.3 Regulation Integrity

Since Platypus includes regulation mechanisms, we also need
to consider the integrity of this mechanism. In particular, we
make the following claim:

Claim A.l1. No client can create a transaction that is
non-compliant with a regulation mechanism.

Proof. This follows directly from the soundness of the
zero-knowledge proof system. A transaction will only be
valid if the transacting parties prove compliance with the
regulatory rules that are in place. For example, if a receiving
limit is in place, the recipient proves that either the received
amount is within the limit or that the encrypted values
attached to the transaction are correct encryptions of their

16

identity and the received value with the public key of the
regulator. Since the central bank will only sign updated
account states if the corresponding transaction is valid, and by
our assumptions, the regulator trusts the central bank to verify
this, no client can create a transaction that is non-compliant
with the regulation mechanisms that are in place. O

A.4 Privacy towards the Regulator

For any transaction in which the client is not required by
the regulation mechanism to include additional encrypted
information, the regulator only receives dummy values from
decrypting the fields storing regulatory information. Since the
dummy values are fixed, the regulator does not gain any addi-
tional information from them and thus, these transaction are
indistinguishable for the regulator (analogous to Section 5.2).

Of course, since this is the explicit goal of the regulation
mechanism, the regulator can decrypt encrypted regulatory
information included in a transaction and can thus distinguish
them from other transactions and learn additional information
about the client, their account and their account history,
depending on what information the regulation mechanism
requires.

B Discussion

Network level attacks on privacy. As mentioned in Sec-
tion 2.2, full protection against network level deanonymiza-
tion attacks is out of scope for this paper. Nevertheless,
we designed Platypus to provide some resilience against
such attacks. In particular, the sender of the transaction
communicates with the central bank through the recipient in
the standard case, such that the central bank cannot link the
sender and recipient based on the network connections. In ex-
ceptional cases, in which the recipient stops cooperating with
the sender and does not return the signature on the sender’s
new account state, the sender can access the public transaction
log, or a mirror of this log, to retrieve recent transactions.
While these two mechanisms provide some protection
against simple deanonymization attempts, they do not fully
protect against all adversaries, in particular if the adversary
can see other traffic in the network. If a client is worried
about such network level attacks, they can mitigate the risk by
using anonymous communication networks such as Tor [2].

Backups and Account Recovery. The account state model
that Platypus uses, requires users to have knowledge of their
current account state. To enable efficient backups and account
recovery, values such as the blinding value of the account
state commitment or the serial number are pseudorandomly
generated from the user’s secret key. To create a backup, the
user can simply store this secret key as well as their key and
certificate used for regulation.

To recover the account from a backed up secret key, the user
needs to retrieve their most recent account state. There are two
possibilities to do this. As first option, the user can estimate a
time interval in which their most recent transaction took place
and retrieve all transactions from that time from the public
transaction log. They can then use their secret key and gener-
ate serial numbers from it using the pseudorandom generator
until they find one that matches a serial number from the log.
The second option is that the user generates a list of potential
serial numbers (pseudorandomly derived from their secret
key), which they then use to query the public transaction log
in binary search until they find the latest matching transaction.

The main drawback of the first option is that the user
potentially needs to download a large amount of data, if
they are unsure in which time interval their latest transaction
took place. The drawback of the second option is that some
of their transactions can potentially be linked if the central
bank is monitoring and correlating queries to the transaction
log. Since the number of transactions that could be linked
with this approach is only logarithmic in the number of total
transactions from the user and no other information about
these transactions is revealed, it is unlikely that this presents
an issue for most users in practice.

Once the user has retrieved their account state, they need to
find their account balance and other values that their account
state commits to (i.e. the values used for the regulation
mechanism). Without these values they cannot create new
transactions. The account balance is much smaller than the
serial number and the blinding value and could therefore in
principle be brute forced. However, this is inconvenient and
can become infeasible if a significant amount of additional
information (for the regulation mechanism) is also part of the
account state. An easier solution is to add a memo field (sim-
ilar to Zcash) in addition to each account state commitment
as part of every transaction, which stores this information
encrypted with a long-term key known to the user. The user
can then simply include this key in their backup and use it to
retrieve all relevant values when performing account recovery
after retrieving it together with the account state commitment.

Sharding in Platypus. As mentioned in Section 2, the
centralized and account-based design of Platypus simplifies
sharding, as it enables the use of standard database sharding
techniques.

Figure 3 shows an example of how transaction validation
can be sharded. The verification of the zero-knowledge proofs
can be performed in separate compute nodes independently
from checking and updating the serial numbers of the used ac-
count states. While we show each shard here as one database
node, each shard can, of course, also be replicated individually.
Each database shard is assigned a specified subset of all serial
numbers. For example, when using 4 shards, each shard could
be assigned a quarter of all possible serial numbers based on
the two most significant bits of the serial number. The com-
pute nodes are independent of the transactions. When submit-

17

Figure 3: Sharding Potential in Platypus. The central bank
can shard both computation and the storage of serial numbers
internally. A client can connect to an arbitrary compute node
(e.g. through a load balancer) which validates transactions
independently from other compute nodes. The compute node
then uses a two-phase commit to check and update serial
numbers in the database shards corresponding to the serial
numbers of the sender and recipient.

ting a transaction, a client can connect to any compute node of
the central bank (e.g. through a load balancer), which verifies
the zero-knowledge proofs. If the proofs verify, the compute
node checks in the database shards if the account states with
the provided serial numbers have been invalidated already.
Since the serial numbers are pseudorandom, most transac-
tions will be cross-shard transactions if there are at least two
database shards. However, since Platypus uses an account-
based design, each transaction will never require more than
two shards, one for checking the serial number of the sender
and one for checking the serial number of the recipient. This
is in contrast to UTXO-based systems in which an arbitrary
number of shards could be involved in each transaction.

To check the serial numbers in the database shards, the
compute node acts as a coordinator in a two-phase commit
protocol [26] between the database shards. Each database
shard checks if the serial number already exists in the
database. If this is the case in one of the shards, the coordina-
tor sends an abort to both shards. Otherwise, they both add the
respective serial number to the set of used serial numbers and
return a success to the compute node. Finally, the compute
node signs the new account states, returns the signatures to the
client and publishes the transaction on the public transaction
log. Since the transaction log does not require ordering, this
step can be done concurrently by separate compute nodes
without requiring any consensus protocol between them.

Offline Recipient. Most designs of blockchain based cryp-
tocurrencies allow a recipient to be offline when receiving
funds. The sender only needs the recipients public key to
create a full transaction. One limitation of Platypus is that
creating a transaction requires interaction between both par-
ticipants, i.e. the recipient needs to be online to receive funds.
This is similar to other e-cash schemes [7, 11, 12, 14, 15],
in which the sender and recipient always need to interact.
Involving the recipient in the transaction creation is necessary
for two main reasons. First, it enables an account based
design with full anonymity. Without involvement of the
recipient, some other party would need to be able to update

the recipients account and thus the account would be linkable
to a public key of the recipient by that party. Second, and
most importantly, this is a requirement for enabling regulatory
rules affecting the recipient (similar to [38]), that allow full
anonymity, even with respect to the regulator, as long as the
transaction conform to some constraints.

As an example, consider a simple holding limit (as
described in Section 4) that puts a fixed limit baly,, on the
amount that each party can hold. Let us now assume that
there is some mechanism that allows the central bank to
check compliance with such a rule without violating any
of the privacy properties and without interaction with the
recipient. If a sender Alice now creates a transaction of value
v1x With Bob as the recipient, there are two options, which
both leak information about Bob’s funds to Alice: Either
the transaction is accepted, or it is rejected. In the first case,
Alice knows that previous to the transaction, Bob owned less
than bal.x — VTx, in the second case, Alice now knows that
Bob owned more than bala — v1x.

We argue that not enabling offline receiving is a small
drawback compared to the advantages of Platypus for our
use cases. Recall that Platypus is intended as a “cash-like”
CBDC, which is the main goal for many central banks [8, 16].
In such a setting, interaction between the recipient and the
sender is the standard case, e.g. for credit card payments
or for actual cash payments. Most payments are for retail
payments, in which the device of the user interacts with a
payment terminal or the user interacts with an online shop,
or for peer-to-peer payments between friends, in which their
devices can interact. Nevertheless, online receiving does
not necessarily require the user to be active, but only their
device. For example, if Alice wants to send some funds to
Bob and Bob’s device is not online, Alice can already initiate
the transfer on her device. The device can then, without
initiating the actual transaction at that point, contact Bob’s
device in the background until it becomes available. At that
point, the device can initiate the actual transaction and then
the payment can complete since both are online.

18

	Introduction
	Overview
	Motivation & Goals
	System Model & Trust Assumptions
	Platypus Design

	Platypus Base Transaction Details
	System Setup
	Transaction Creation

	Regulation in Platypus
	General Regulation Framework

	Security Analysis
	Transaction Integrity
	Transaction Privacy
	Availability of Funds

	Evaluation
	Implementation
	Results

	Related Work
	Conclusion
	Regulation Details
	Holding Limits
	Receiving Limits
	Regulation Integrity
	Privacy towards the Regulator

	Discussion

