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Abstract. This paper continues author’s previous ones about compression of points on
elliptic curves Eb : y2 = x3 + b (with j-invariant 0) over a finite field Fq. More precisely, we
show in detail how any two (resp. three) points from Eb(Fq) can be quickly compressed to
two (resp. three) elements of Fq (apart from a few auxiliary bits) in such a way that the
corresponding decompression stage requires to extract only one cubic (resp. sextic) root in
Fq (with several multiplications and without inversions). As a result, for many q occurring
in practice the new compression-decompression methods are more efficient than the classical
one with the two (resp. three) x or y coordinates of the points, which extracts two (resp.
three) roots in Fq. We explain why the new methods are useful in the context of modern
real-world pairing-based protocols. As a by-product, when q ≡ 2 (mod 3) (in particular, Eb

is supersingular), we obtain a two-dimensional analogue of Boneh–Franklin’s encoding, that
is a way to sample two “independent” Fq-points on Eb at the cost of one cubic root in Fq.
Finally, we comment on the case of four and more points from Eb(Fq).

Key words: batch point compression, Boneh–Franklin’s encoding, conic bundle struc-
ture, cubic and sextic roots, elliptic curves of j-invariant 0, Freeman’s transformation, gen-
eralized Kummer varieties, high 2-adicity, rationality problems, recursive proof systems.

1 Introduction

Nowadays, pairing-based cryptography [1] can be certainly considered as an independent
fruitful area of public-key cryptography, which is interesting from both mathematical and
practical points of view. There are countless pairing-based protocols, many of which have
found applications in the real world. It is worth noting protocols based on composite-order
groups such as Boneh–Goh–Nissim’s (BGN) somewhat homomorphic encryption [2] or Boneh–
Sahai–Waters’s fully collusion resistant traitor tracing [3]. It is also impossible not to mention
succinct non-interactive zero-knowledge (NIZK) proofs among which the most popular one is
possibly Groth16 [4]. And their recursive compositions are constructed via chains of elliptic
curves as first suggested in [5].

Unfortunately, composite-order subgroups of Eb(Fq) must be very large to be protected
against sub-exponential factorization algorithms. By virtue of Hasse’s inequality (see, e.g.,
[1, Theorem 2.9]) we have #Eb(Fq) ≈ q, hence pairing computation on Eb turns out to be
very cumbersome as confirmed in [6]. Fortunately, with the help of so-called Freeman’s trans-
formation [7] (cf. [8, §9-10]) we can almost always rewrite a protocol in the composite-order
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setting to the prime-order one operating with point vectors from En
b (Fq) for a smaller q and

some n ∈ N. In this case, an instance of the subgroup decision problem is a (prime-)order
subgroup of En

b (Fq). For the majority of protocols it is sufficient to take n = 2, but there are
some protocols (such as Katz–Sahai–Waters’s predicate encryption [7, §7]) needing n = 3.

As said, e.g., in [9, §2.2] for the sake of efficiency of recursive proofs one needs to leverage
pairing-friendly elliptic curves defined over highly 2-adic fields Fq, that is the number q − 1
should be divided by a non-small power 2m, where m ∈ N. More precisely, this allows to
apply the fast Fourier transform (FFT) in order to speed up the polynomial arithmetic over
Fq. To be definite, we will suppose that high 2-adicity takes place if m > 3, but in practice
usually 20 < m < 60. Our choice follows from the fact that (as is known, e.g., from [1, §5.1.7])
for q ≡ 1 (mod 8) it is problematic to express a square root in Fq via one exponentiation.
Of course, we can always utilize Tonelli–Shanks’s algorithm, namely [1, Algorithm 5.14] (cf.
[10]), but it has a greater computational complexity.

Recall that curves Eb are ordinary (a.k.a. non-supersingular) only if q ≡ 1 (mod 3) or,
equivalently, a primitive cubic root ω := 3

√
1 lies in Fq. Since only curves Eb possess order

6 automorphism (of the form [−ω](x, y) = (ωx,−y)), according to [1, §3.2.5] such pairing-
friendly ordinary curves are preferred in pairing-based cryptography. To our knowledge, at
the moment, the most popular curves are BLS12-381 [11, §4.2.1] for a general use and BLS12-
377 [9, Table 2] for one layer proof composition, where the numbers after the hyphen equal
dlog2(q)e. Moreover, the field Fq of the latter curve (in contrast to the former one) is highly
2-adic with m = 46. Among other things, the pages [12], [13] specify 2-cycles of curves of
j-invariant 0 (over highly 2-adic fields) among which only one is pairing-friendly.

In compliance with [14, Examples IV.1.3.5-6] elliptic curves are not rational. Therefore
from the geometric point of view the most compact representation of them is on the affine
plane A2

(x,y), for example in the Weierstrass form. Consequently, any point from En
b (Fq) ⊂ F2n

q

is obviously represented with the help of 2ndlog2(q)e bits. In particular, for n = 2 (resp. n = 3)
and log2(q) ≈ 380 we obtain ≈ 1520 (resp. ≈ 2280) bits, which is quite a lot. In comparison,
with the same 128-bit security level classical (i.e., non-pairing-friendly) elliptic curves are
defined over 256-bit fields Fq. And many widespread cryptosystems on such curves (e.g.,
ECDH or ECDSA) don’t require simultaneous compressing several points, so it is sufficient
to manipulate only 512 bits.

At the same time, by virtue of Hasse’s inequality Fq-points on Eb can be compressed
to about half with regard to the information theory. There is the classical compression-
decompression method representing a point as its x (resp. y) coordinate in addition to one
(resp. two) bits to uniquely recover the initial y (resp. x) coordinate via extracting in Fq
the square (resp. cubic) root. In comparison with standard arithmetical operations in Fq, the
latter one is very costly, because even for thoroughly chosen q it consists in one exponentiation
in Fq. As a result, after compressing Fq-point vectors of length n = 2 (resp. n = 3) we obtain
≈ 760 (resp. ≈ 1140) bits at the price of n exponentiations in the decompression stage.

Apart from τ6 := [−ω] there are on Eb the automorphisms

τ2 := τ 36 : (x, y) 7→ (x,−y), τ3 := τ 46 : (x, y) 7→ (ωx, y)

of orders 2 and 3 respectively. For any n ∈ N and m ∈ {2, 3, 6} consider the diagonal subgroup
Gn,m := 〈(τm, . . . , τm)〉 ' Z/m of the automorphism group on En

b . Notice that it is Frobenius
invariant even if ω 6∈ Fq. Further, introduce the Fq-quotient GKn,m := En

b /Gn,m, which is
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called generalized Kummer variety [15, §7], because for m = 2 this is a (usual) Kummer
variety [15, Example 8.1]. Also, we need the notation of the quotient Fq-cover ϕn,m : En

b →
GKn,m, which, as usual [14, Theorem I.4.4], gives the function field extension Fq(GKn,m) ↪→
Fq(En

b ). Whenever m = 2 or ω ∈ Fq, by virtue of Artin’s theorem (see, e.g., [16, Theorem
VI.1.8]) ϕn,m is a Galois cover whose the Galois group equals Gn,m. Therefore ϕn,m is a
Kummer cover due to [16, Theorem VI.6.2]. All of the above is illustrated with the famous
examples ϕ1,2(x, y) = x and ϕ1,3(x, y) = y.

We see that GK1,m are obviously rational curves. More generally, there is the analogous
notion of (geometrically) rational variety as defined in [14, Example II.8.20.1]. Rationality
of the surfaces GK2,3, GK2,6 is a classical fact. According to [17, §2] the threefold GK3,6

is also rational and there are [18, Questions 1.3, 1.4] about rationality of GK4,6, GK5,6. In
turn, the varieties GKn,m are never rational for n > m in accordance with [15, Example 8.10],
[17, Remark 2.9]. In fact, we are interested in Fq-rationality of GKn,m. In a cryptographic
context this concept [19, Definition 6.1] first arose in so-called torus-based cryptography for
compressing Fq-points of algebraic tori. By the way, since pairing values can be interpreted as
such points, this compression technique is known to be useful in pairing-based cryptography.

For the Kummer covers ϕn,m computing an inverse image ϕ−1n,m(P ) of a point P ∈
ϕn,m

(
En

b (Fq)
)

can be implemented by means of extracting in Fq some root of degree m.
Suppose that GKn,m is an Fq-rational variety and there are explicit formulas of a birational
Fq-isomorphism ψn,m : GKn,m

∼99K An and its inverse ψ−1n,m : An ∼99K GKn,m. As is customary
in algebraic geometry, the arrow 99K (resp. ∼99K) means a (bi)rational map rather than an
(iso)morphism, that is the map may be undefined at some points. Treating them separately,
we thus get a new compression-decompression method for all Fq-points on En

b . Indeed, the
compression (resp. decompression) stage consists in evaluating the map χn,m := ψn,m ◦ ϕn,m

at a general point Q ∈ En
b (Fq) (resp. finding χ−1n,m(R), where R := χn,m(Q)).

For the surface GK2,3 (resp. GK2,6) Fq-rationality is explicitly established in §2 (resp.
[20, §2-3]), although these results can’t be considered very important for pure mathematics
because of their simplicity. Besides, it turns out that Fq-formulas of ψ±13,6, derived in [17, §2]
for b = −1, are still valid for any b ∈ F∗q . However if the field Fq is not highly 2-adic, to
compress points from E2

b (Fq) (resp. E3
b (Fq)) we apply in §4 slightly another approach based

on Fq-rationality of GK1,3 (resp. GK2,3). Nevertheless, since the varieties GKn,3 are not
rational for n > 2, we can only hope for breakthroughs concerning Fq-rationality of GK4,6,
GK5,6. At the same time, cryptographers rarely come across protocols, obtained by Freeman’s
transformation, manipulating Fq-point vectors of length greater than three.

We know that under the condition q ≡ 2 (mod 3) a curve Eb is supersingular and every
element of Fq has a unique cubic root in Fq. Moreover, in accordance with [21, Theorem 3.3.15]
the group Eb(Fq) ' Z/(q + 1). Although ϕn,3 are no longer Galois covers, we still can find the
inverse image under ϕn,3 via extracting a cubic root in Fq. In particular, ϕ−11,3 : Fq → Eb(Fq) and

ϕ−12,3 : GK2,3(Fq)→ E2
b (Fq) are true maps. The former is widely known as Boneh–Franklin’s

encoding [1, §8.3.2]. The latter gives rise to the new encoding χ−12,3 : F2
q → E2

b (Fq), because

points of a (possibly reducible) Fq-curve, where ψ−12,3 is not defined, as usual, can be easily

processed independently. Thus χ−12,3 allows to generate in constant time two “independent”

Fq-points on Eb twice as efficient as ϕ−11,3 applied two times. “Independency” means that the
discrete logarithm between these points is unknown to anyone.
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As far as we know, at the moment, supersingular curves are not preferable in the pairing
context, because of their small embedding degrees (6 3 in a large characteristic [1, §4.3]). The
only exception is a recent verifiable delay function (VDF) developed in [22], where pairings are
combined with isogenies. However this and other isogeny-based protocols (such as SIDH [23]
or CSIDH [24]) deal with many supersingular curves. Of course, (C)SIDH has one starting
curve, which may be of j-invariant 0, but these protocols don’t require to (often) sample
points on it. We hope that in the near future advanced isogeny-based protocols will appear
for which the task of efficient regular sampling on the starting curve is important.

An idea of batch compressing points on an elliptic Fq-curve is not new. It has already
arisen in [25] for any number n ∈ N of points (and not necessarily for j-invariant 0) under
the name multiple point compression similarly to double one in [26]. The methods of these
papers compress to n+ 1 elements of Fq (i.e., the representation is not optimal), however
their decompression stages don’t need to extract any roots. If n is large, then this approach
is expected to be the best trade-off between compactness and efficiency. Nevertheless, for
small n our approach is the best if bandwidth/memory is more critical than speed.

2 Derivation of formulas

By analogy with [27, Theorem 9], we have

Lemma 1. There is (up to a birational Fq-isomorphism) the affine model

GK2,3 = (y21 − b)t3 − (y20 − b) ⊂ A3
(t,y0,y1)

for which the corresponding quotient map has the form

ϕ2,3 : E2
b 99K GK2,3 (x0, y0, x1, y1) 7→

(x0
x1
, y0, y1

)
.

Theorem 1. The generalized Kummer surface GK2,3 is Fq-rational.

Proof. We borrow the approach used for proving [27, Theorem 12]. It is based on the theory
of conic bundles (see, e.g., [27, §1.4]), but the reader can verify the formulas below (e.g., in
Magma [28]) without knowledge of this theory. There is the natural conic bundle structure

π : GK2,3 → A1
t (t, y0, y1) 7→ t.

In other words, GK2,3 can be seen as an Fq(t)-conic. In a diagonal form,

GK2,3 = −y20 + t3y21 + b(1− t3).

Therefore the degenerate (i.e., reducible or, equivalently, singular) fibers of π lie over t ∈
{0,∞} ∪ {ωi}2i=0, where ∞ := (1 : 0) ∈ P1. More precisely, for these t we see that π−1(t) =
L+
t ∪ L−t , where

L±0 :=

{
t = 0,

y0 = ±
√
b,

L±∞ :=

{
t =∞,
y1 = ±

√
b,

L±
ωi :=

{
t = ωi,

y1 = ±y0.
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First, after the transformation

τ :=

{
z0 := y0,

z1 := ty1,
τ−1 =

{
y0 := z0,

y1 := z1/t

we obtain the cubic surface

GK ′2,3 := τ(GK2,3) = −z20 + tz21 + b(1− t3) ⊂ A3
(t,z0,z1)

.

We then blow down [14, §V.3] one of the components τ(L±1 ) by means of the transformation

θ :=


y0 :=

z0 − z1
1− t

,

y1 :=
z0 − tz1

1− t
,

θ−1 =

{
z0 := −ty0 + y1,

z1 := −y0 + y1,

coming to
S := θ(GK ′2,3) = ty20 − y21 + b(t2 + t+ 1) ⊂ A3

(t,y0,y1)
.

Further, simultaneous blowing down some pair of components over t ∈ {ω, ω2} has the form

η :=


z0 :=

(t+ 1)y0 + y1
t2 + t+ 1

,

z1 :=
ty0 + (t+ 1)y1
t2 + t+ 1

,

η−1 =

{
y0 := (t+ 1)z0 − z1,
y1 := −tz0 + (t+ 1)z1,

which gives the simpler surface

T := η(S) = tz20 − z21 + b ⊂ A3
(t,z0,z1)

.

Note that the maps τ , θ, η respect the conic bundle π, that is they can be seen as Fq(t)-
isomorphisms of conics. That’s why we avoid the tautology t := t in their description. Finally,
the projection pr : T ∼99K A2

(z0,z1)
is a desired map, because t = (z21 − b)/z20 .

For the compositions ψ2,3 := pr ◦ η ◦ θ ◦ τ and χ2,3 := ψ2,3 ◦ ϕ2,3 Magma [28] says that

χ2,3 : E2
b 99K A2

(z0,z1)
χ2,3 =


z0 :=

x1(2x
2
0y1 − x0x1(y0 − y1)− 2y0x

2
1)

y20 − y21
,

z1 :=
x30y1 + 2x0x1(x0y1 − y0x1)− y0x31

y20 − y21
,

ψ−12,3 : A2
(z0,z1)

∼99K GK2,3 ψ−12,3 =



t :=
z21 − b
z20

,

y0 :=
z30z1 − 2z0(z0 − z1)(z21 − b)− (z21 − b)2

z30
,

y1 := −z
2
0(z0 − 2z1) + (2z0 − z1)(z21 − b)

z21 − b
.
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Let’s consider the cases when the denominators equal zero. Obviously, t ∈ {0,∞} ⇒
x0x1 = 0, and

y20 − y21 = 0 ⇔ ∃k ∈ Z/6: (x1, y1) = [−ω]k(x0, y0).

In turn, it is readily checked that z0 = 0 (i.e., z1 = ±
√
b under the condition t 6= 0) if and

only if (t, y0, y1) ∈ Im(%±) for the sections of π given by

%± : A1
t 99K GK2,3 %± :=


y0 := ±

√
b(2t+ 1),

y1 :=
±
√
b(t+ 2)

t
.

3 New method for two points

We need the auxiliary sets

V ′ :=
{

(x, y) ∈ Eb | xy = 0
}
∪
{

(0 : 1 : 0)
}
⊂ Eb[2] ∪ Eb[3],

V := Eb×V ′ ∪ V ′×Eb.

Formally, for two points Pi = (xi, yi) from Eb(Fq) \ V ′ the new compression map has the form

com2,3 : E2
b (Fq) \ V ↪→ F2

q ×[0, 5]×[0, 2]

com2,3(P0, P1) :=


(x0, y0, k, 0) if ∃k ∈ Z/6: P1 = [−ω]k(P0),

(t, x1, k, 1) if
(
t, (−1)ky0, (−1)ky1

)
∈ Im(%+),

(z0, z1, n, 2) otherwise,

where (z0, z1) = χ2,3(P0, P1) and n ∈ [0, 2] is the position number of the element x1 ∈ F∗q in

the set
{
ωix1

}2
i=0
∩ F∗q with respect to some order in F∗q . For example, in the case of a prime q

this can be the usual numerical one. The set [0, 5]×[0, 2] clearly requires 5 bits for representing
its elements. Since in discrete logarithm cryptography points of small orders don’t occur, we
omit the definition of the compression map on V (Fq) for the sake of simplicity, although it
can be easily defined if desired.

The corresponding decompression map is given as follows:

com−12,3 : Im(com2,3)
∼−→ E2

b (Fq) \ V

com−12,3(z0, z1,m, `) =


(z0, z1, x1, y1) if ` = 0 and (x1, y1) = [−ω]m(z0, z1),

(z0z1, y0, z1, y1) if ` = 1 and
(
(−1)my0, (−1)my1

)
= %+(z0),

(tx1, y0, x1, y1) if ` = 2 and (t, y0, y1) = ψ−12,3(z0, z1),

where for ` = 2 the initial x1 = 3
√
g1 (for g1 := y21 − b) can be determined with the help of

m = n. According to [29, Equalities (2), (3)] and similar ones for other q 6≡ 1 (mod 27) this
cubic root can be extracted at the cost of one exponentiation in Fq (in particular, without
inverting the denominator of g1, namely (z21 − b)2).
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Since the projective or Jacobian coordinates [1, §2.3.2, §10.7.9] are preferred in practice,
the decompression stage doesn’t require finding inverse elements at all. By definition, in these
coordinates the curve Eb possesses the equations

Eb : Y 2Z = X3 + bZ3, Eb : Y 2 = X3 + bZ6

respectively. And there are the birational isomorphisms

σ : Eb
∼99K Eb (X : Y : Z) 7→

(
X

Z
,
Y

Z

)
, (X : Y : Z) 7→

(
X

Z2
,
Y

Z3

)
respectively. By the way, in both cases,

σ−1 : Eb
∼99K Eb (x, y) 7→ (x : y : 1).

If the compression stage starts from the projective or Jacobian coordinates, then even in
the classical method it is necessary to compute one inverse in Fq. Indeed, given two points
(Xi : Yi : Zi) ∈ Eb(Fq) with Zi 6= 0 one needs the value v := (Z0Z1)

−1 in order to get Z−10 =
vZ1 and Z−11 = vZ0. This famous trick is clearly generalized to any number of inversions. In
turn, in the compression stage of the new method instead of the two inversions v, (y20 − y21)−1

only one is also enough, because

χ2,3 ◦ σ×2 =
(num0

den
,
num1

den

)
: Eb

2
99K A2

(z0,z1)

for some polynomials numi, den ∈ Fq[Xi, Yi, Zi]
1
i=0 trivially obtained from the formulas of

χ2,3. To determine the position number n one needs to know Z−11 , hence we should in fact
invert Z1 ·den. Finally, it is worth emphasizing that all of the above is equally valid for the
degenerate cases ` ∈ {0, 1}.

4 Folklore method for two points and its variation for

three ones

First, we put fi := x3i + b and gi := y2i − b. Since the numbers 2, 3 are relatively prime, the
roots y0 =

√
f0 and x1 = 3

√
g1 can be extracted simultaneously, that is at the cost of a sixth

root in Fq. Indeed, for h := f 3
0 g

2
1 it is sufficient to compute α := 6

√
h =
√
f0 3
√
g1, because 3

√
g1 =

f0g1/α
2 and

√
f0 = α/ 3

√
g1. Moreover, by analogy with [20, §3], whenever q 6≡ 1 (mod 8),

q 6≡ 1 (mod 27), the value α can be expressed via one exponentiation in Fq.
Thus there is the compression map

E2
b (Fq) \ V ↪→ F2

q ×[0, 5] (P0, P1) 7→ (x0, y1, n),

where n ∈ [0, 5] is the position number of the element y0x1 ∈ F∗q in the set
{

(−1)iωj ·
y0x1

}1,2
i=0,j=0

∩ F∗q with respect to some order in F∗q . As above, n is used in the decompression

stage for recovering the original y0, x1.
Notice that at the heart of this method is Fq-rationality of E2

b /G = Eb/G1,2×Eb/G1,3,
where G := G1,2×G1,3 ' Z/6. We call it folklore, because it doesn’t require an algebraic
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Galois group compression decompression

classical method with x0, x1 G2
1,2

one inversion

two
√
·

classical method with y0, y1 G2
1,3 two 3

√
·

folklore method with x0, y1 G1,2×G1,3 one 6
√
·

new method with z0, z1 G2,3 one 3
√
·

Table 1: Worst-case complexity for compressing Eb
2
(Fq) (with respect to the projective or

Jacobian coordinates)

geometry technique, so perhaps someone already knows it. However the significant drawback
of the method consists in the fact that (in contrast to com2,3) it doesn’t work over highly
2-adic fields Fq. The same drawback exists for author’s other method [20, §2-3] based on
Fq-rationality of GK2,6. Since the folklore one has a slightly simpler definition, we conclude
that it is more preferred for use when possible.

Similarly, one can apply the folklore method ideology to the new method with z0, z1 in
order to compress three points Pi = (xi, yi) from Eb(Fq) \ V ′. As earlier, consider the set

V := E2
b×V ′ ∪ Eb×V ′×Eb ∪ V ′×E2

b .

It is about the compression map

E3
b (Fq) \ V ↪→ F3

q ×[0, 5]×[0, 2]×[0, 1] (P0, P1, P2) 7→ (z0, z1, x2, n, s),

where (z0, z1,m, `) = com2,3(P0, P1) and in the non-degenerate case ` = 2 the number n ∈
[0, 5] is the position of the element x1y2 ∈ F∗q . In turn, for ` ∈ {0, 1} we put n := m and the
additional sign bit s is utilized to recover y2 (regardless of P0, P1). Since for these ` the latter
points are obtained without root computations, the overall complexity doesn’t go beyond one
exponentiation in Fq.

Besides, pay attention that for ` = 2 the root 6
√
h (where h := g21f

3
2 ) can still be found at

the cost of one exponentiation in Fq even if the inverse of the denominator of h (i.e., of g21)
is unknown. By analogy with

√
· (see, e.g., [30, §5]) and 3

√
·, in [31, §2] we explain how to

do this for q ≡ 3 (mod 4), q ≡ 2 (mod 3), or, equivalently, q ≡ 11 (mod 12). We invite the
reader to independently check that this trick is easily generalized to other q 6≡ 1 (mod 8),
q 6≡ 1 (mod 27).

Thus we completely justified Tables 1, 2, which contain a complexity comparison (all
the operations are carried out in Fq) of the compression-decompression methods for two and
three points respectively. As is customary, the addition, subtraction, and multiplication op-
erations in Fq are omitted, because they are much cheaper. Let us stress that arguments of
this paper, related to avoiding the inversion operation, are equally valid for author’s previous
compression-decompression methods. In other words, the number of inversions in [27, Theo-
rem 13] and [20, Tables 1, 2] can be actually reduced to only one in the compression stage
(at the price of several multiplications).
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Galois group compression decompression

classical method with x0, x1, x2 G3
1,2

one inversion

three
√
·

classical method with y0, y1, y2 G3
1,3 three 3

√
·

folklore-classical method with x0, x1, y2 G2
1,2×G1,3 one 6

√
· and one

√
·

folklore-classical method with x0, y1, y2 G1,2×G2
1,3 one 6

√
· and one 3

√
·

new method with z0, z1, x2 G2,3×G1,2 one 6
√
·

Table 2: Worst-case complexity for compressing Eb
3
(Fq) (with respect to the projective or

Jacobian coordinates)
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