
High-Performance Hardware Implementation of
CRYSTALS-Dilithium

Luke Beckwith, Duc Tri Nguyen, Kris Gaj
George Mason University, USA

{lbeckwit, dnguye69, kgaj}@gmu.edu

Abstract—Many currently deployed public-key cryptosystems
are based on the difficulty of the discrete logarithm and integer
factorization problems. However, given an adequately sized quan-
tum computer, these problems can be solved in polynomial time
as a function of the key size. Due to the future threat of quantum
computing to current cryptographic standards, alternative algo-
rithms that remain secure under quantum computing are being
evaluated for future use. One such algorithm is CRYSTALS-
Dilithium, a lattice-based digital signature scheme, which is
a finalist in the NIST Post Quantum Cryptography (PQC)
competition. As a part of this evaluation, high-performance im-
plementations of these algorithms must be investigated. This work
presents a high-performance implementation of CRYSTALS-
Dilithium targeting FPGAs. In particular, we present a design
that achieves the best latency for an FPGA implementation to
date. We also compare our results with the most-relevant previous
work on hardware implementations of NIST Round 3 post-
quantum digital signature candidates.

Index Terms—Post-Quantum Cryptography, Digital Signature,
Number Theoretic Transform, FPGA

I. INTRODUCTION

Current public key cryptographic standards, such as RSA
and ECC, rely on the difficulty of the integer factoriza-
tion and the discrete logarithm problem. However, with a
sufficiently large quantum computer, Shor’s algorithm [1]
can be applied to solve these problems in superpolynomial
run time [2]. While there is no known quantum computer
capable of running Shor’s algorithm to break current public-
key standards, the process of selecting, standardizing, and
deploying a new public-key cryptosystems may take a sub-
stantial amount of time. In 2016, NIST announced the Post-
Quantum Cryptography (PQC) standardization process aimed
at developing new public-key standards resistant against quan-
tum computers. In July 2020, NIST selected seven third-
round finalists, including two lattice-based digital signature
schemes: CRYSTALS-Dilithium and FALCON. All remaining
candidates are currently being evaluated in terms of their
security, key and ciphertext/signature size, performance in
both software and hardware, and several other criteria. While
software implementations are relatively easy to develop and
benchmark, hardware implementations require a lot of time
and design effort to determine their efficiency in terms of
speed, area, power, and energy. FPGA implementations of
PQC submissions are necessary to provide insight into the
cost and performance of these algorithms in hardware.
Contributions. In this work, we present a high-performance
FPGA implementation of CRYSTALS-Dilithium designed at

the Register Transfer Level (RTL) using Verilog. In particular,
we make the following contributions:
• We present the first combined architecture capable of

performing key generation, signature generation, and sig-
nature verification and selecting between security levels
at runtime.

• Our design achieves the lowest latency for all operations
while maintaining a smaller area than existing high-
performance implementations.

• We present a new signature generation implementation
approach based on splitting the signature generation re-
jection loop into a two-stage pipeline to balance latency
and area utilization.

II. PREVIOUS WORK

The existing hardware and software/hardware implementa-
tions of digital signatures schemes qualified to Round 3 of
the NIST PQC standardization process are summarized in
Table I. It is worth noting that GeMSS and FALCON are
also candidates still under consideration, but they lack any
reported hardware implementations and thus are not included
in our comparisons. Hardware design may focus either on
maximizing performance or minimizing the area and power
the design consumes. These approaches lead to substantial
differences in hardware architecture, and thus both types
of implementations are important to measure an algorithm’s
performance in hardware. Therefore, the implementations in
Table I are split into High-Speed or Lightweight. However,
the dividing line is not always apparent as designs may seek
to make area/performance trade offs. These labels are to help
differentiate the results of various implementations, but should
not be considered absolute.

There are currently two existing full hardware designs for
Dilithium. In [3], a high-performance design for Dilithium
version 2 [10] is described. The authors report area for
individual modules instantiated for level 3 and performance
for security levels 1-4. They utilized a 2 × 2 NTT butterfly
arrangement to calculate two layers of the NTT at a time.
This NTT module is duplicated several times within the key
generation, sign, and verify modules to improve performance
through parallelization. Another implementation, [6], describes
a mid-range implementation for version 3.1 of Dilithium,
which focuses on achieving the best performance possible with
reasonable resource utilization. This design consists of three
top-level modules each capable of performing all operations

TABLE I: Hardware implementations reported for Round 3
digital signature schemes

Algorithms High-Speed Lightweight

Lattice-based

CRYSTALS-Dilithium [3] [4], [5]∗, [6]

Multivariate

Rainbow [7]∗∗ –

Symmetric-based

Picnic [8] –
SPHINCS+ [9] –

∗extended version of [4]
∗∗only for Round 1 and Round 2 parameter sets

at a single security level, as well as individual module which
only perform a single operation at a single security level.

III. BACKGROUND

A. Number Theoretic Transform

The Number Theoretic Transform (NTT) is a form of
the Fast Fourier Transform (FFT) which can be efficiently
performed over the ring Rq = Zq[x]/(x

n + 1) in O(n log n),
where n is power of 2 and q ≡ 1(mod 2n). Polynomial
multiplication can be efficiently calculated using the NTT as
follows: a × b = NTT−1(NTT (a) ◦ NTT (b)), where ◦ is
point-wise multiplication of the polynomial coefficients. This
approach reduces the complexity of polynomial multiplication
from O(n2) to O(n log n). By default, Dilithium uses Number
Theoretic Transform (NTT) as a part of MatrixVectorMul
(matrix-by-vector) A · s and InnerProd (vector-by-vector)
s · s′ multiplication. With (s, s′) ∈ Rq and A ∈ Rk×l

q , where
k × l denote the dimensions of matrix A.

B. Dilithium Overview

Dilithium is a member of the Cryptographic Suite for Alge-
braic Lattices (CRYSTALS) along with the Key Encapsulation
Mechanism (KEM) Kyber. The core operations of Dilithium
are the arithmetic of polynomial matrices and vectors. Unlike
many other Module Learning with Errors (M-LWE) cryptosys-
tems, all polynomials in Dilithium are uniformly sampled,
which greatly simplifies polynomial generation. As described
in [11], Dilithium is a Fiat-Shamir with Aborts [12], [13] style
signature scheme, and bases its security upon the M-LWE
and Shortest Integer Solution (SIS) problems. The M-LWE
problem can be briefly described as follows: Let A ∈ Rk×l

q be
uniformly chosen, s1 ∈ Rl

q , and s2 ∈ Rk
q . Then, the standard

M-LWE problem is to distinguish (A,A ·s1+s2) from (A, u)
where u is a uniformly chosen vector. The SIS problem can
be briefly described as follows: Let A be a uniformly chosen
Rk×l

q matrix, then find a non-zero vector x ∈ Rl
q such that the

norm of x is less than β for some β and A · x = 0.
The three core algorithms of Dilithium are key gener-

ation, signature generation, and signature verification. Key
generation creates a public and secret key pair composed of
polynomials and byte-array seeds. These keys are used for

Algorithm 1: Dilithium Key Generation

Input: ζ ∈ {0, 1}256
Output: pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

1 (ρ, σ,K)← H(ζ)
2 A←ExpandA(ρ) s1, s2 ←ExpandS([(σ, 0), (σ, l)])
3 t← A · s1 + s2
4 (t0, t1)← Power2Round(t, d)
5 tr ← {0, 1}256 := H(ρ||t1)

signature creation and verification. To generate the signature,
the inputs are the private key and message of the sender. Then,
the receiver can use the public key of the sender and the
message to verify the signature.

As seen in Algorithm 1, key generation closely resembles
the description of the M-LWE problem with (A, t) serving
as the public key with two optimizations: the seed ρ is used
instead of the actual A matrix, and only the upper bits of t
are included. This second change nearly halves the size of the
key, but requires that a small hint is added to the signature.
The only modifications to the secret key are the inclusion of
the lower bits of t and two byte-arrays K, tr used in sign.

Algorithm 2: Dilithium Signature Generation
Input: sk = (ρ,K, tr, s1, s2, t0),M ∈ {0, 1}∗
Output: σ = (ĉ, z, h)

1 A←ExpandA(ρ) µ← H(tr||M) ρ′ ← H(K||µ)
2 k ← 0 abort← 1
3 while abort do
4 abort← 0
5 y ←ExpandMask(ρ′, k)
6 w ← A · y
7 w1 ←HighBitsq(w, 2γ2)
8 ĉ← H(µ||w1)
9 c←SampleInBall(ĉ)

10 z ← y + c · s1
11 r0 =LowBits(w − c · s2, 2γ2)
12 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then
13 abort← 1
14 else
15 h←MakeHint(−c · t0, w − c · s2 + c · t0, 2γ2)
16 if ||c · t0||∞ ≥ γ2 or

∑
hi > ω then

17 abort← 1
18 k = k + l

In Algorithm 2, signature generation is described. This is
the most complex and costly operation of Dilithium. The goal
when signing is to generate a polynomial pair (c, z = y+cs1)
using the secret key and message. However, since the z is
closely related to the s1, the algorithm must check that the
signature does not leak information about this secret value.
This is done by checking that the max norm of the polynomial
is within an acceptable predefined range. If it is not, the
signature must be rejected, and a new attempt is made. The
max norm of a vector is represented as ||x||∞ and is the

Algorithm 3: Dilithium Signature Verification
Input: pk = (ρ, t1), M ∈ {0, 1}∗, σ = (ĉ, z, h)
Output: Valid or Invalid

1 A←ExpandA(ρ)
2 µ← H(H(ρ‖t1)‖M)
3 c←SampleInBall(ĉ)
4 (w1, w0)←UseHint(h,A · z − c · t1 · 2d)
5 if ||z||∞ < γ1 − β & ĉ = H(µ||w1) &

∑
hi ≤ ω then

6 return Valid
7 return Invalid

coefficient in the polynomial vector with the largest absolute
value. As discussed in key generation, a hint is also needed to
ensure the signature can be verified. The hint specifies which
coefficients of t1 require a carry bit during the verification
algorithm. This adds another rejection condition, since there
is a maximum number of hints that the signature can support.
Depending on the security level, between 3 and 5 attempts are
required on average to generate a valid signature.

In Algorithm 3, verification attempts to recreate the ĉ seed
using the message, public key, and signature. Presuming all
inputs are valid, w1 can be recreated as follows:

w = A · z − c · t = A · (y + c · s1)− c · (A · s1 + s2)

=⇒ w = A · y − c · s2

The higher order bits of this value can then be hashed with µ
which is generated using the public key and message. Since
s2 and c have small coefficients, it will not contribute to the
upper bits and the hash will match the value generated in
sign. In practice, the polynomials are not sent directly in their
polynomial form but are instead serialized into a byte array to
more efficiently pack the keys and signatures.

C. Dilithium Parameters

First submitted to the PQC competition as [14], Dilithium
has gone through several parameter modifications during the
NIST PQC standardization process. The current version de-
tailed in [11] was adjusted to better fit the NIST security
levels than the previous round 2 submission [10], primarily
by adjusting the k, l dimension parameters. The parameters
for the current version can be seen in Table II. All versions
of Dilithium make use of the SHAKE128 and SHAKE256
operation modes of the Keccak hash function, standardized in
[15]. These functions are used for two applications: generation
of pseudorandom data for all uniform sampling of polynomials
and for hashing. SHAKE128 is used for sampling of the A
matrix and SHAKE256 for all other sampling and hashing.

IV. HARDWARE DESIGNS

We present architectures for key generation, signature gen-
eration, and signature verification. All operations are supported
at security levels 2, 3, and 5, as defined in Bai et al. [11] and
Table II. This section will discuss the main subcomponents
used to implement the Dilithium algorithms and the high-level

TABLE II: Dilithium parameters for version 3.1 at all security
levels 2, 3, 5.

Parameter Value
2 3 5

q [modulus] 223 − 213 + 1
d [dropped bit from t] 13
τ [# of +/- 1’s in c] 39 49 60

ω [max # of 1’s in hint] 80 55 74
(k, l) [Vector Dimensions] (4,4) (6,5) (8,7)

η [secret range] 2 4 2

implementation and scheduling of the design. The high-level
block diagram is shown in Fig. 3.

Within Dilithium, there is a substantial amount of data
dependence between operations, which allows little room for
high-level parallelization. To improve performance: 1. We
optimize our polynomial arithmetic units as much as possible
to decrease the latency of any individual operation; 2. We split
the rejection loop in the signature generation unit into a two-
stage pipeline similar to the work performed in Beckwith et
al. [16]. We also parallelize the other submodules as needed
to minimize the stall and wait delays in polynomial arithmetic
modules.

A. Polynomial Arithmetic

In our design, the polynomial arithmetic unit, PolyArith,
is responsible for polynomial multiplication (including the
NTT), addition, and subtraction. The NTT operation is used
to accelerate the polynomial multiplication operation as ap-
propriate. For multiplication, Barrett reduction is used as it
can be implemented efficiently in hardware through the use
of shifts and additions in place of constant multiplication. Our
design utilizes four butterfly units, each capable of performing
the basic arithmetic operation as well as the Cooley-Tukey and
Gentlemen-Sande butterfly operations. This design choice was
centered around the NTT as it is the most costly and complex
polynomial operation. With four butterflies, our design can
make use of a 2 × 2 butterfly arrangement, which reduces
the cost of memory access in the NTT by processing two
layers at once. Between every layer, the NTT pipeline must
be stalled to wait for the write back to complete. Our 2 × 2
arrangement reduces the number of write-back conflicts and
is further combined with coefficient rearrangement, reducing
stall lengths. This is an optimal tradeoff, as it provides better
performance than processing a single layer at once but does
not utilize excessive resources. The next viable arrangement
would be to use 16 butterflies in a 4×4 arrangement. However,
this would increase the area by a factor of 4 and only provide
minimal performance improvement as our 2 × 2 approach
removes almost all stalls. Since the butterfly hardware is
reused for all polynomial arithmetic, four coefficients are
processed in parallel for all operations.

1) 2× 2 NTT: Our design for the 2× 2 NTT unit, shown
in Fig. 1, builds upon the pipelined NTT design by Nguyen et
al. [17], [18], which processed 4 coefficients per clock cycle
and 2 NTT layers at once. The ideal cost of Forward and
Inverse NTT is n

4 ·
logn
2 clock cycles, where n is the degree

TAddr Wb_TAddr
Addr_FIFO

 [0, 16, 32, 48, 1, 17, 33, 49, 2, 18, 34, 50, 3, 19, 35, 51,
 4, 20, 36, 52, 5, 21, 37, 53, 6, 22, 38, 54, 7, 23, 39, 55,
 8, 24, 40, 56, 9, 25, 41, 57, 10, 26, 42, 58, 11, 27, 43, 59,
 12, 28, 44, 60, 13, 29, 45, 61, 14, 30, 46, 62, 15, 31, 47, 63]

RAddr

TAddr
 [0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60,
 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61,
 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62,
 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63]

Read
Address

Write
Address

Dout
Wb_Data6

6 6

Address
Resolver

buttefly units
RAM:

Wb_Data
Din

6
Wb_TAddr

Forward NTT ROM:

Inverse NTT ROM:

6

4xFIFOFin Fout

Fin Fout

Fin Fout

6

Fig. 1: 2× 2 NTT with Address Resolver, 4×FIFO for data, Addr FIFO for indices

of the polynomial. The BRAM stores 4 coefficients per row
and uses n/4 rows. In case of Dilithium n = 256. Thus, the
polynomial configuration is 64×4 coefficients, corresponding
to the 64 × 96-bit RAM. Instead of multiplying with n−1

in the last stage of Inverse NTT, we incorporate the divide-
by-2 technique [19] into the four 2 × 2 butterfly units at
every level of the Inverse NTT. Each butterfly unit is deeply
pipelined and uses DSP units to improve critical path. Please
note that the Forward and the Inverse NTT use Decimation-
In-Frequency (DIF) and Decimation-In-Time (DIT) variant of
NTT, respectively. Hence, all butterfly units in our design must
support both DIF and DIT, so that a single 2× 2 NTT unit is
capable of performing both Forward and Inverse NTT.

2) Address Resolver: The Address Resolver unit, shown
in Fig. 1, is responsible for converting the Representation
Address (RAddr) in the NTT algorithm to True Address
(TAddr) at the first time read in RAM. It does so by using
two 64× 6 ROMs to map the address or by passing the input
without any change when performing an operation which does
not need any address resolving. Contents of the respective
ROMs, Forward NTT ROM and Inverse NTT ROM, are shown
Fig. 1. To determine the contents of ROMs, we examined the
order of indices before and after the NTT transform, such
that the conversion between RAddr and TAddr guarantees
that the RAM words RAddr refers to are always correct.
The construction of the mapping tables depends only on the
parameter n and the writeback pattern of the FIFO buffer,
which are fixed at runtime. We decided to use ROM-based
approach since the entire ROM content is able to fit in a single
6-input LUT. It should be noted that the ROM content can also
be computed on the fly using the Algorithm 4. With Address
Resolver unit, we completely eliminate the execution time
of a shuffle and re-ordering at the cost of the negligible amount
of extra memory.

3) FIFO buffer: One challenge in DIT and DIF NTT is to
satisfy the distance between indices for all NTT levels. Hence,
we improved from the NTT design by Nguyen et al. [17],
[18] by allocating five linear shift register-based FIFO units to
prepare addresses and data for the next NTT levels. As shown
in Fig. 1, the tiles inside FIFO units are 24-bit and 6-bit for
FIFO data and address, respectively. The Addr_FIFO unit is
responsible for delaying TAddr by 4 clock cycles (which is
the depth of the pipeline). The remaining 4 registered-based
FIFOs (sharing the same unit) are responsible for transposing

Algorithm 4: Address Resolver ROM calculation
Input: Representation address (RAddr) i
Output: True address (TAddr)

1 if mode = Forward NTT then
2 return (i mod 4)× 16 + i/4
3 else if mode = Inverse NTT then
4 return (i mod 16)× 4 + i/16
5 else
6 return i

a 4× 4 matrix of intermediate data. This transpose operation
must be executed before data enters the butterfly unit in
Forward NTT (DIF) and after it exits this unit in Inverse
NTT (DIT). The same 4×FIFO unit is used for both of these
operations. Internally, this unit is composed of registers and an
output MUX. It is capable of storing data in rows and reading
them in columns, and vice versa.

B. BRAM Configuration

As discussed in previous sections, the polynomial arithmetic
modules process four coefficients per clock cycle. Thus, the
bandwidth requirement is 96 = 4 × 24 bits. The smallest
true dual port BRAM configuration that can accommodate
this width in today’s Xilinx FPGAs is composed of three 36-
kbit BRAMs, each configured as 1024x36 memory [20]. This
configuration can efficiently store two vectors of polynomials
at the security level 5, with the 4 · 24/3 · 36 = 89% utilization
of each memory row. This structure allows us to efficiently
utilize BRAM for polynomial storage, leading to lower BRAM
utilization than previously reported implementations.

C. Polynomial Samplers

In Dilithium, the polynomials composing the vectors and
matrices are independently sampled using a constant seed
value and an appended incriminating nonce value as the
input to either SHAKE128 or SHAKE256. This allows par-
allel sampling of polynomials if multiple Keccak cores are
used. A single Keccak core consumes a substantial amount
of resources as shown in Table III. However, Dilithium
requires a large amount of pseudorandom data to perform
polynomial sampling. For example, at security level 5, the
matrix A has dimension 8 × 7, with each sample requiring
24 bits of pseudorandom data, which amounts to at least

8 × 7 × n × 24 = 56 × 256 × 24 = 344-kbit in total,
not taking into account the rejection rate of each sampling.
Producing that amount of pseudorandomness quickly becomes
the performance bottleneck in high-performance designs. To
improve the performance of sampling, we propose to use three
Keccak cores. Two of them are primarily used for sampling of
the matrix A and the third is used for the remaining hashing
and sampling. The Keccak cores are taken from the existing
implementation [21], which has a 64-bit datapath. In addition,
we add multiple rejection lanes for vectors and matrices to
process the pseudorandom data in parallel. The number of
rejection lanes is chosen to be the minimum number that
maximizes utilization of the corresponding Keccak core. For
example, sampling a coefficient of A requires 24 bits, while
Keccak is capable of producing 64-bits per cycle. Therefore
three rejection lanes are used, so that their combined through-
put (72-bits/cc) is higher than the Keccak core’s throughput.
This prevents the Keccak core from having to stall during
sampling. Either 2 or 3 coefficients are processed per clock
cycle, allowing the Keccak core to operate at maximum
throughput. A similar approach is used for the y vector. The
only exception to this approach is the c polynomial which
must be sampled using the Fisher-Yates shuffle [11].

V. OPERATION SCHEDULING

Thoroughly designed and optimized scheduling of opera-
tions is crucial for efficient hardware implementations. Cre-
ating a high-performance design with an acceptable design
area is only possible with high utilization of components and
constant progress on the critical path of the operation. As
such, we have highly optimized our operation scheduling to
maximize utilization of the polynomial arithmetic units, which
are the core of our design and are responsible for the majority
of the operations in Dilithium.

A. Key Generation

The schedule of operations for key generation can be seen in
Fig. 2. The longest path for key generation is the computation,
packing, and hashing of the polynomial vector t. As such,
our schedule aims to minimize any delays in the computation
of t by immediately sampling s1 and matrix A so the NTT
transform of vector ŝ1 and t̂ = Â · ŝ1 can be performed as
soon as possible. t is then encoded and hashed in parallel
with the addition operation so no additional time is needed
to calculate tr. Pack_t1 and Pack_t0 correspond to the
function Power2Round called in line 4 of Algorithm 1.

B. Signature Generation

The schedule for the signature generation is split into two
sections: the precomputation stage in Fig. 4 and the rejection
loop stage, where multiple signature attempts are run in
parallel, in Fig. 5. Our design can be thought of as executing
three unique stages: 1. Precomputation is the stage where the
secret key values are unpacked and transformed into the NTT-
domain 2. Stage0 computes the y and w vectors, and 3. Stage1
uses the results of Stage0 to generate the z vector and the hint.

The purpose of this design is to reduce the latency between
signature attempts. Initially, Precomputation and Stage0 are
run in parallel as shown in Fig. 4. After they complete their
respective calculation, Stage0 and Stage1 run in parallel acting
as a 2-stage pipeline. Whenever Stage1 completes, it checks
if any component of the signature has violated a rejection
condition and, if so, it restarts with the new results from
Stage0. If not, Stage1 signals Stage0 to halt and unloads
the signature. The computation of the ŷ and w vectors was
determined to be the best place to split the pipeline because it
minimizes the number of polynomials that must be handed off
to the next stage of the pipeline while maintaining a reasonably
well balance pipeline for all security levels. For security level
3 and 5 the vector NTT and matrix multiplication operations
become the dominant operations and thus splitting the number
of these operations evenly between the two stages keeps the
pipeline balanced.

We found that splitting computations into two stages gives
better average-case performance for signature generation. The
straightforward approach would be to linearly accelerate op-
erations in the rejection loop by improving the performance
of the individual operations. For example, this acceleration
could be done by using multiple polynomial arithmetic units to
perform computations on different elements of a single vector
to achieve lower latency. However, there are two drawbacks
to the linear acceleration approach. First, it substantially
complicates the BRAM utilization since more parallel access
to vector coefficients is required. A single vector would
need to be split between multiple BRAM modules, making
it more difficult to efficiently utilize BRAM. Second, some
operations are not possible to parallelize, such as the sampling
of c. In the linear approach, both the polynomial arithmetic
units would have to stall during this operation. The linear
approach does have a better best-case performance where the
signature is accepted on the first attempt. However, the average
number of repetitions required for the rejection loop is 3.85-
5.1 depending on the security level [11]. Therefore, the shorter
latency for the rejection loop in the pipelined approach gives
better average-case and worst-case performance.

C. Signature Verification

The verification schedule is shown in Fig. 6. The longest
path for verification is the calculation and hashing of w. Sim-
ilarly to key generation, z and t1 are immediately unpacked
in parallel with the generation of A so that calculation of w′

and w′′ can be performed as soon at the polynomial arithmetic
unit completes the NTT operations. Once w is calculated, the
hint is applied to the higher-order bits so that it can be hashed
with µ and compared with the challenge seed c′ to determine
if the signature is valid.

VI. RESULTS

All results were generated using Xilinx Vivado 2020.2.
Maximum clock frequencies were determined using the Min-
erva hardware optimization tool [22]. The critical path of the

4000
cycles

0 1000 2000 5000

3000

Fig. 2: Schedule of Key Generation for security level 2

PolyArith0

PolyArith1

Decomposer

Encoder

SampleC Keccak1

Keccak0

Keccak2

SampleA

SampleS

RAM0

RAM3

RAM2

RAM4

RAM1

RAM5RAM6

64

64

64

64

64

64

SampleY

UseHint

MakeHint
AXI

Stream
In

Decoder

AXI
Stream
Out

Fig. 3: Block diagram for the combined architecture of
CRYSTALS-Dilithium. Bus widths are 96 bits unless shown
otherwise.

design is within the interconnect for the shared Keccak mod-
ules. Since our design targets high performance, we primarily
report our results for Virtex Ultrascale+. However, we also
include selected results for the Artix-7 and Kintex-7 FPGAs
to perform fair comparison with previous work.

The detailed resource utilization of our implementations is
summarized in Tables III and IV. Table III reports the area
breakdown of the submodules used in our design and the
percentage of the total LUTs they consume in the combined
architecture. The entry ”Other” represents the entire control
logic of the top-level module and minor components of the
datapath not listed explicitly in the table. Table IV shows the

TABLE III: Resource utilization of submodules in the com-
bined architecture

Submodule Resource Utilization % of Total
(LUT)LUT FF DSP BRAM

96× 1024 RAM 0 0 0 3× 6 0
96× 4096 RAM 0 0 0 11 0

MakeHint 2,389 740 0 0 4.5
UseHint 6,453 2,808 0 0 12.1
Encoder 1,626 461 0 0 3.1
Decoder 2,189 239 0 0 4.1

Decomposer 1,437 680 0 0 2.7
NTT/PolyArith 4, 509× 2 3, 146× 2 16 0 16.9

SampleA 1,793 619 0 0 3.4
SampleS 1,755 396 0 0 3.2
SampleY 2,220 630 0 0 4.2
SampleC 1,856 868 0 0 3.5
Keccak 5, 483× 3 4, 451× 3 0 0 30.1
Other 6,002 1,231 0 0 11.3

Combined
Architecture 53,187 28,318 16 29 100.0

TABLE IV: Resource utilization of top-level modules imple-
menting major operations of CRYSTALS-Dilithium for all
security levels

Module LUT FF DSP BRAM
Keygen 29,021 18,952 8 18.5

Sign 42,440 24,419 16 29
Verify 39,341 22,743 8 20

Combined 53,187 28,318 16 29

results for both our combined architecture and the individual
modules that only perform one major operation.

There is a substantial amount of resource sharing possible
between the implementations of three major operations, with
the combined architecture only consuming 48% of the sum of
the LUTs of the individual modules. The limited area increase
over the most complex signature generation module is due to
specific units only being required for certain operations, such
as the secret sample, SampleS, which is only utilized by key
generation. However, many modules such as the Keccak cores,
polynomial arithmetic modules, and RAMs can be fully shared
between the different operations.

0 2000

4000

To Rejeciton
Loop

cycles

Fig. 4: Schedule of the precomputation stage of Signature Generation at security level 2

4000cycles 6000

10000

Rejection
Loop

8000

From
Precomp

Fig. 5: Schedule of the signature rejection loop for Signature Generation at security level 2

The performance results and comparison with existing im-
plementations is detailed in Table V. For this work (TW) and
the paper by Land et al. [6], we list the best and average
execution time for each of the major operation. The grouping
by security level is based on the NIST-defined PQC security
levels. In Dilithium, the clock cycle cost of each operation
generally increases by 50% as the security level increases
due to the larger vector dimensions. The one exception to
this rule is the average case for signature generation, which
largely depends on the average number of attempts needed to
generate a valid signature. According to the specification [11],
on average, level 2 requires 4.25 attempts, level 3 5.1 attempts,
and level 5 3.85 attempts. In our pipelined design, each

additional attempt requires 5.8K cycles for security level 2,
8.1K cycles for level 3, and 10.8K cycles for level 5.

Ricci et al. [3] report the number of clock cycles for all
security levels but the maximum clock frequency and area
only for security level 2. The area is reported individually for
each operation, so we will compare against the area results for
our individual modules. Compared to this high-performance
implementation, our implementation achieves performance im-
provements with a lower utilization in all metrics except for
BRAM in key generation and verification. In terms of latency,
we achieve 1.9-3.7× improvement in clock cycles and 1.5-
3.7× better results in terms of latency in microseconds. Our
designs utilize 38%-46% fewer LUTs, 25%-72% fewer FFs,

3000cycles 0 1000 2000 4000

5000

6000

c' == c''

Fig. 6: Schedule of Signature Verification for security level 2

TABLE V: Full hardware implementations of digital signature schemes qualified as finalists to Round 3 of the NIST PQC
standardization process. TW denotes This Work. Notation for FPGA families - A7: Artix-7, K7: Kintex-7, VUS+: Virtex
UltraScale+

Design Algorithm Max Freq.
(MHz) LUT FF DSP BRAM Keygen Verify Sign Familycycles µs cycles µs cycles µs

Security Level 1
[8] Picnic-L1-FS 91 90,535 23,516 0 52.5 - - 29,600 326 31,300 344 A7
[3] Dilithium-II1 - - - - - 12,600 - 10,546 - 18,338 - VUS+
[9] SPHINCS+-128f-simple 250 & 5003 47,991 72,505 1 11.5 - - - 16 - 1,010 A7

Security Level 2
[6] Dilithium-II 163 27,433 10,681 45 15 18,761 115 19,687 121 29,057/76,613 178/470 A7
[3] Dilithium-III1,2 350/333/158 54,183/68,461/61,738 25,236/86,295/34,963 182/965/316 15/145/18 18,193 52 15,032 97 21,033/- 63/- VUS+

TW Dilithium-II 256 53,907 28,435 16 29 4,875 19 6,582 26 10,945/29,876 43/117 VUS+
Security Level 3

[6] Dilithium-III 145 30,900 11,372 45 21 33,102 228 32,050 221 45,068/123,218 310/850 A7
[9] SPHINCS+-192f-simple 250 & 5003 48,398 73,476 1 17 - - - 19 - 1,170 A7
[3] Dilithium-IV1 - - - - - 22,981 - 20,221 - 22,362/- - VUS+

TW Dilithium-III 256 53,907 28,435 16 29 8,291 32 9,724 39 16,178/49,437 63/193 VUS+
Security Level 5

[6] Dilithium-V 140 44,653 13,814 45 31 50,982 363 52,712 377 70,376/145,912 503/1,042 A7
[9] SPHINCS+-256f-simple 250 & 5003 51,009 74,539 1 22.5 - - 21 - 2,520 A7

TW Dilithium-V 116 53,187 28,318 16 29 14,037 121 14,642 126 24,358/55,070 210/475 A7
[8] Picnic-L5-FS 125 167,530 33,164 0 99 - - 146,600 1,173 154,500 1,236 K7

TW Dilithium-V 173 54,468 28,639 16 29 14,037 81 13,642 85 23,358/55,070 141/318 K7
TW Dilithium-V 256 53,907 28,435 16 29 14,037 55 13,642 57 23,358/55,070 95/215 VUS+

1Uses Round 2 parameter set 2Area reported separately for Key Generation, Sign, and Verify 3 Split frequency domain: Keccak at 500 MHz, other units at
250 MHz

and 96%-98% fewer DSP. Our implementation of signature
generation also uses 80% fewer BRAMs.

Our area and performance improvements are enabled by
our efficient NTT design and optimized operation scheduling.
The NTT design reported in [3] requires 48 DSP units for the
forward NTT and 84 for the inverse NTT, while our design
utilizes only 8. This allows our design to use multiple instances
without drastically increasing the area. Our splitting of the
rejection loop in signing also leads to a much lower area.
Ricci et al. [3] duplicate modules so that there are 18 parts
running in parallel, including 11 NTT instances. This requires
a large amount of BRAM to buffer data between modules and
leads to a much larger implementation of signature generation.
One benefit of this level of parallelization and DSP usage is
that it does allow a high clock frequency, however our lower
clock cycle count still leads to better latency in time units.

Compared to the mid-range implementation by Land et
al. [6], our design achieves substantially better performance

at the cost of moderate increases in LUTs and FFs. Since this
design includes results reported for modules that perform all
operations at a single security level, we will compare with our
combined module implemented for Artix-7. As our combined
module is capable of selecting between all operations at all
security levels at runtime, we will compare with with their
level 5 implementation.

The design by Land et al. [6] employs some parallelization,
such as the use of multiple butterfly units in their NTT, but
does not use as much parallelization as our design. They
also utilize different operation modes of FPGA DSPs in their
design, such as pre-addition and Single Instruction Multiple
Data (SIMD) addition. This allows their NTT to achieve an
impressive maximum frequency of 311 MHz, but also results
in very high DSP usage. However, this high frequency NTT
core is not able to improve overall performance since it reside
in the same clock domain as the rest of the design, forcing it
to run at a lower clock rate. Our polynomial arithmetic unit

is optimized so that it is not the critical path of the design,
but also seeks to minimize DSP usage and cycle latency.
This allows our design to achieve higher NTT performance
in the application of Dilithium with a much lower DSP count.
In particular, their NTT requires 533/536 clock cycles for
the forward and inverse operation while our design is able
to complete the same operations in 300/294 cycles. The
additional cycles on top of the ideal of 256 cycles come from
the pipeline depth. Further, their approach does not reorder
the coefficients during the forward and inverse NTT. This
means that they must split their coefficients across multiple
true dual port BRAM to have sufficient memory bandwidth.
Our reordering process means we only need a single simple
dual port BRAM, which greatly simplifies the mapping of
coefficients to memory leading to lower BRAM usage.

We achieve between 2.6 − 3.6× improvement in terms of
clock cycles and 2.2 − 3× lower latency in microseconds.
These improvements come at the cost of 19% more LUTs and
100.5% more FFs, but our design uses 64.6% fewer DSP units
and 6.5% fewer BRAMs. Our DSP unit utilization is lower
because we chose to use LUTs to implement simple arithmetic
operations like addition and subtraction. Our number of LUTs
also increases due to certain decisions supporting paralleliza-
tion, such as the use of multiple Keccak cores. However, these
design choices enable much more parallelization, which has
allowed our design to obtain much lower latency with only a
moderate area increase.

Software implementations of Dilithium for embedded de-
vices are substantially slower than hardware. For exam-
ple, a recent optimized implementation on Cortex-M4 takes
1.35M/3M/1.26M clock cycles for key Generation, Signing,
and Verifying at security level 2 [23]. Their implementation
was tested on an STM32F407 with a 24 MHz clock, so
our hardware implementation has 2961×/1071×/2042× lower
latency.

In comparison with high-end CPUs, the highly optimized
NEON implementation on ARMv8 Apple M1 Firestorm core
at 3.2 GHz, reported by Becker et al. [24] for Dilithium-III
takes 51/36µs for Key generation and Verifying. Our hardware
implementation is 1.60×/0.92× faster in two mentioned above
operations. Due to rejected loop in Singing operation, it takes
149µs for average case in Apple M1, while our hardware is
0.77× and 2.36× faster in average and best case, respectively.

Table V also provides some basic insights into the compar-
ison between Dilithium and other digital signature schemes
in terms of performance in hardware. In particular, the Picnic
implementation at security level 5 [8] has substantially lower
performance than the Dilithium algorithms. While it consumes
no DSP units, it requires approximately 3× more LUTs and
BRAMs.

Multiple SPHINCS+ implementations for different param-
eter sets are reported in [9]. We selected the parameters with
the best performance to compare to our design since we target
high performance. While this implementation uses more FFs
than our design, its LUTs utilization is comparable, and its use
of BRAMs and DSPs is substantially smaller. The verification

algorithm is also very efficient. However, signature generation
is substantially slower than Dilithium which may cause issues
in certain applications.

These results suggest that the lattice-based Dilithium cryp-
tosystem is more efficient in hardware than Picnic and
SPHINCS+. However, more investigation is required for a
definitive ranking.

VII. CONCLUSIONS

This paper presents a high-performance implementation of
CRYSTALS-Dilithium, which achieves the best-known latency
and a smaller area than the best previously reported high-
performance design. The implementation includes both a com-
bined module capable of performing three major operations
at all security levels and individual modules supporting one
operation each. In all modules, each of the three NIST security
levels can be selected at run-time. The rejection loop latency in
the signature generation is optimized by splitting it into a two-
stage pipeline, which minimizes the average-case signature
generation time.

REFERENCES

[1] P. Shor, “Algorithms for quantum computation: Discrete
logarithms and factoring,” in Proceedings 35th An-
nual Symposium on Foundations of Computer Science,
Santa Fe, NM, USA: IEEE Comput. Soc. Press, 1994,
pp. 124–134.

[2] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Per-
alta, R. Perlner, and D. Smith-Tone, “Report on Post-
Quantum Cryptography,” National Institute of Standards
and Technology, Tech. Rep. NIST IR 8105, Apr. 2016,
NIST IR 8105.

[3] S. Ricci, L. Malina, P. Jedlicka, D. Smekal, J. Hajny,
P. Cibik, and P. Dobias, “Implementing CRYSTALS-
Dilithium Signature Scheme on FPGAs,” Cryptology
ePrint Archive 2021/108, Jan. 2021.

[4] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan,
“Sapphire: A Configurable Crypto-Processor for Post-
Quantum Lattice-based Protocols,” IACR Transactions
on Cryptographic Hardware and Embedded Systems,
vol. 2019, no. 4, Aug. 2019.

[5] ——, “Sapphire: A Configurable Crypto-Processor for
Post-Quantum Lattice-based Protocols (Extended Ver-
sion),” Cryptology ePrint Archive 2019/1140, Sep.
2020.

[6] G. Land, P. Sasdrich, and T. Guneysu, “A Hard Crystal -
Implementing Dilithium on Reconfigurable Hardware,”
Cryptology ePrint Archive 2021/355, Mar. 2021.

[7] A. Ferozpuri and K. Gaj, “High-speed FPGA Imple-
mentation of the NIST Round 1 Rainbow Signature
Scheme,” in 2018 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), Cancun,
Mexico: IEEE, Dec. 2018, pp. 1–8.

[8] D. Kales, S. Ramacher, C. Rechberger, R. Walch,
and M. Werner, “Efficient FPGA Implementations of
LowMC and Picnic,” in The Cryptographers’ Track at
the RSA Conference 2020, CT-RSA 2020, San Fran-
cisco: Springer, Feb. 2020.

[9] D. Amiet, L. Leuenberger, A. Curiger, and P. Zbinden,
“FPGA-based SPHINCS+ Implementations: Mind the
Glitch,” en, in 2020 23rd Euromicro Conference on
Digital System Design (DSD), Kranj, Slovenia: IEEE,
Aug. 2020, pp. 229–237.

[10] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-
Dilithium: Algorithm Specifications and Supporting
Documentation,” NIST Round 2, Mar. 2019.

[11] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-
Dilithium: Algorithm Specifications and Supporting
Documentation (Version 3.1),” Tech. Rep., Feb. 2021.

[12] Ö. Dagdelen, M. Fischlin, and T. Gagliardoni, “The
Fiat–Shamir Transformation in a Quantum World,” in
Advances in Cryptology - ASIACRYPT 2013, ser. LNCS,
vol. 8270, Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 62–81.

[13] V. Lyubashevsky, “Fiat-Shamir with Aborts: Applica-
tions to Lattice and Factoring-Based Signatures,” in
Advances in Cryptology – ASIACRYPT 2009, vol. 5912,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 598–616.

[14] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, “CRYSTALS – Dilithium:
Digital Signatures from Module Lattices,” Cryptology
ePrint Archive 2017/633, 2017, p. 17.

[15] National Institute of Standards and Technology, FIPS
PUB 202: SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions. Aug. 2015.

[16] L. Beckwith and W. Diehl, “New Directions for
NewHope: Improving Performance of Post-Quantum
Cryptography through Algorithm-level Pipelining,” in
2020 International Conference on Field-Programmable
Technology (ICFPT), Maui, HI, USA: IEEE, Dec. 2020,
pp. 120–128.

[17] D. T. Nguyen, V. B. Dang, and K. Gaj, “A High-Level
Synthesis Approach to the Software/Hardware Code-
sign of NTT-Based Post-Quantum Cryptography Al-
gorithms,” in 2019 International Conference on Field-
Programmable Technology (ICFPT), Tianjin, China:
IEEE, Dec. 2019, pp. 371–374.

[18] ——, “High-Level Synthesis in Implementing and
Benchmarking Number Theoretic Transform in
Lattice-based Post-Quantum Cryptography using
Software/Hardware Codesign,” in 16th International
Symposium on Applied Reconfigurable Computing,
ARC 2020, Apr. 2020.

[19] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and
L. Liu, “Highly Efficient Architecture of NewHope-
NIST on FPGA using Low-Complexity NTT/INTT,”

IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 49–72, Mar. 2020.

[20] “7 Series FPGAs Memory Resources User Guide,”
2019.

[21] CERG, SHAKE, https://github.com/GMUCERG/SHAK
E, 2021.

[22] F. Farahmand, A. Ferozpuri, W. Diehl, and K. Gaj,
“Minerva: Automated hardware optimization tool,” in
2017 International Conference on ReConFigurable
Computing and FPGAs, ReConFig 2017, Cancun:
IEEE, Dec. 2017, pp. 1–8.

[23] D. O. C. Greconici, M. J. Kannwischer, and D.
Sprenkels, “Compact Dilithium Implementations on
Cortex-M3 and Cortex-M4,” en, IACR Transactions
on Cryptographic Hardware and Embedded Systems,
pp. 1–24, Dec. 2020. [Online]. Available: https://tches.
iacr.org/index.php/TCHES/article/view/8725 (visited
on 08/01/2021).

[24] H. Becker, V. Hwang, M. J. Kannwischer, B.-Y. Yang,
and S.-Y. Yang, “Neon NTT: Faster Dilithium, Kyber,
and Saber on Cortex-A72 and Apple M1,” Cryptology
ePrint Archive 2021/986, Jul. 2021.

https://github.com/GMUCERG/SHAKE
https://github.com/GMUCERG/SHAKE
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://tches.iacr.org/index.php/TCHES/article/view/8725

	Introduction
	Previous Work
	Background
	Number Theoretic Transform
	Dilithium Overview
	Dilithium Parameters

	Hardware Designs
	Polynomial Arithmetic
	22 NTT
	Address Resolver
	FIFO buffer

	BRAM Configuration
	Polynomial Samplers

	Operation Scheduling
	Key Generation
	Signature Generation
	Signature Verification

	Results
	Conclusions

