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Abstract

Piecewise constant codes form an expressive and well-understood class of codes. In this work, we
show that many piecewise constant codes admit exact coverings by polynomial-cardinality collections of
hyperplanes. We prove that any boolean function whose “on-set” has been covered in just this manner
can be evaluated by two parties with malicious security. This represents an interesting connection
between covering codes, affine-linear algebra over prime fields, and secure computation. We observe
that many natural boolean functions’ on-sets admit expressions as piecewise constant codes (and hence
can be computed securely). Our protocol supports secure computation on committed inputs; we describe
applications in blockchains and credentials. We finally present an efficient implementation of our protocol.

1 Introduction

Piecewise constant codes, introduced in Cohen, Lobstein, and Sloane [CLS86], are a large and tractable class
of codes, with well-understood covering radii. Many of the smallest known (n,K)R-covering codes—that is,
the smallest subsets S ⊂ {0, 1}n the radius-R Hamming balls around whose elements nonetheless cover the
cube—arise from piecewise constant constructions. Indeed, the (5, 7)1-code of [CLS86, Fig. 2], the (11, 192)1-
code of [CLS86, Fig. 7], and the infinite family of (2R + 4, 12)R codes of [CLS86, Fig. 6] (for example) all
represent our current best-known upper-bounds; some of these—though far from all—are known to be tight.

Piecewise constant codes have a rich combinatorial structure. Each such code S ⊂ {0, 1}n is expressed
with the aid of a positive integer partition n = n0 +· · ·+nt−1, and a certain multidimensional, (n0 +1)×· · ·×
(nt−1 + 1)-sized integer array; the piecewise constant codes S (with respect to this particular partition) are
identified exactly by “filling in” certain cells within this array. Crucially, the covering radius of the resulting
code can be straightforwardly read off from the placement of the filled cells (this is much more feasible in
practice than determining it “directly”).

In this paper, we show that many piecewise constant codes can be computed securely, and discuss
applications in cryptography. To do this, we first describe a connection between piecewise constant codes
and affine-linear algebra over prime fields. In particular, we show that “compact” piecewise constant codes
admit expressions by means of hyperplane intersections. We proceed in the following way. We isolate a
certain key structure within the multi-dimensional array associated to a piecewise constant code, which
we call a “quasicube”. In a central lemma (Lemma 3.8 below), we show that the subset C ⊂ {0, 1}n
represented by any particular quasicube can be also be expressed as a hyperplane “intersection pattern”
C = H ∩ {0, 1}n, for an appropriate hyperplane H ⊂ Fnq over any sufficiently large prime field (in fact,
it’s enough that q have n bits). It follows immediately (see Theorem 3.10) that every “compact” piecewise
constant code S ⊂ {0, 1}n—specifically, every code whose cell representation can be covered by polynomially
many quasicubes (and, as a special case, every code with only polynomially many filled cells)—can be

represented as a polynomial-cardinality union S =
⋃m−1
i=0 Hi ∩ {0, 1}n of intersection patterns. We also give

evidence that this characterization is tight, in the sense that subsets S ⊂ {0, 1}n which don’t admit compact
representations of this form also lack efficient hyperplane representations (see Example 3.22).
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Piecewise constant codes are abundant. In Subsection 3.2, we show that many familiar boolean functions’
on-sets are actually expressible as (compact) piecewise constant codes; that is, they satisfy the hypothesis
of Theorem 3.10. Applying that theorem, we derive efficient hyperplane representations of a number of
function families. These include those decided by depth-2 OR-of-ANDs circuits (Theorem 3.12), symmetric
functions (Theorem 3.14), integer comparators (Example 3.19), set disjointness assessors (Example 3.13),
and, of course, the indicator functions of piecewise constant codes (Example 3.20). We discuss a variety of
further concrete examples (see e.g. Examples 3.15, 3.17, and 3.18). Our list, of course, is only partial.

1.1 Core cryptographic protocool

In Section 4, we present our core cryptographic protocol. We show that any boolean function f : {0, 1}n →
{0, 1} whose on-set has been expressed as a union f−1(1) =

⋃m−1
i=0 Hi∩{0, 1}n of intersection patterns can be

computed by two parties with malicious security. Our protocol is efficient when the covering cardinality m
is polynomial in n; specifically, it requires O(n ·m) communication, O(n+m) communication, and O(logm)
rounds. Our techniques involve the use of public-key primitives of prime order q; our protocol can be securely
instantiated under the DDH assumption alone.

We now sketch the rough idea of our main protocol, which we specify explicitly in Protocol 4.18. The
parties P0 and P1, with input x0 and x1 in {0, 1}n/2, say, begin by additively Fq-secret-sharing each of their
input bits individually. Each party, for each of its input bits, sends one additive share of that bit to the
opposite party in the clear, and moreover gives the other party a random homomorphic encryption of the
remaining share (under an additively shared, jointly owned public key). Each party moreover proves—using
a protocol of Groth and Kohlweiss [GK15, Fig. 1]—that its inputs are indeed bits.

Upon completing this initial exchange, the parties hold complementary additive shares of each of the input
bits (x0, . . . , xn−1) of the joint argument x ∈ {0, 1}n; they also hold random encryptions of the other party’s
vector of shares. At this point, they may evaluate the hyperplanes H0, . . . ,Hm−1 covering f−1(1), both on
their plaintext shares and, simultaneously, on their ciphertexts representing the other party’s shares. In this
way, they obtain additive sharings of the resulting output scalars, as well as encryptions of the opposite
party’s shares of these outputs (which serve to “check the other party’s work”).

The hypothesis that f−1(1) =
⋃m−1
i=0 Hi∩{0, 1}n, now, implies exactly that f(x) = 1 if and only if at least

one of the parties’ now-held output sharings would yield zero if it were reconstructed. We observe that, to
determine whether any such reconstruction to zero would take place, the parties may securely multiply their
m shared outputs. Assuming that the resulting output is moreover multiplied by a further shared random
scalar, its equality with zero reflects exactly whether f(x) = 1 (and nothing more). We thus turn to the
problem of secure iterated modular multiplication (featuring consistency with pre-held ciphertexts).

Interestingly, two-argument secure two-party multiplication has received extensive recent attention, in
connection with threshold ECDSA signing; indeed, it plays a central role in the two-party signing protocol
of Doerner, Kondi, Lee and shelat [DKLs18], and is also used in Lindell, Nof and Ranellucci [LNR18, § 6.1].
Specifically, the underlying multiplication protocol [DKLs18, Prot. 8]—which is private, but cannot guarantee
consistency with already-held ciphertexts—yields, together with a higher-level protocol [LNR18, Prot. 4.7],
an overall protocol which guarantees privacy and consistency with prior ciphertexts.

The fact that our parties need to conduct Θ(m) secure multiplications—as opposed to just one (or a
constant number)—raises significant new challenges. We observe that the parties may multiply theirm shared
outputs in a tree-like manner, in O(logm) rounds, using a subtle recursive application of the multiplication
procedures [DKLs18, Prot. 8] and [LNR18, Prot. 4.7]. Indeed, in each round, they may vectorize a number
of multiplications, handling a single layer of the tree. On the one hand, we use an arbitrary-order variant
of [DKLs18, § VI. D.] to atomically handle each full layer’s underlying scalar multiplications. On the other
hand, we adapt and extend [LNR18]’s two-multiplicand consistency protocols to our hierarchical setting.
We observe that the product protocol [LNR18, Prot. A.3] acts asymmetrically on its arguments (and, in
particular, requires that the parties hold openings only of one of its multiplicands). Our protocol accordingly
asymmetrically treats the parties’ even-indexed and odd-indexed tree nodes; in particular, after assuming
by induction that openings exist for each even-indexed multiplicand, we perform the reconstruction steps
[LNR18, Prot. 4.7 (2) (c) – (4) (a)] only at those adjacent leaf-pairs whose parent node occupies an even index
in its layer. Our approach significantly bests the efficiency of the näıve strategy (in which reconstruction
takes place at every leaf-pair). We believe that the resulting protocol, Protocol 4.8, is of independent interest.
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Our techniques appear to generalize readily to the multiparty setting. Because of the additional logistical
complexity which that setting imposes, we have declined to treat it explicitly.

1.2 Commitment-consistent secure computation

Interestingly, our protocol—because of its close link with public-key operations—offers commitment-
consistency essentially for free. Commitment-consistent—or “committed”—two-party computation offers
both malicious security and mutual assurance that the parties’ inputs are consistent with explicit prior com-
mitments. This capability is powerful; for example, Jarecki and Shmatikov [JS07, § 1] observe that a “secure
committed 2PC protocol is a much more useful tool than a standard 2PC protocol”, because such a protocol
“makes it easy to ensure that multiple instances of these protocols are executed on consistent inputs, for
example as prescribed by some larger protocol.” Our protocol works with any off-the-shelf homomorphic
commitment (or encryption) scheme defined over a group of prime order. We believe that our protocol is the
first to offer this capability. (One may of course obtain homomorphic commitment-consistency generically,
by encoding the commitment function within an explicit circuit; this task is unfeasible in practice.)

Commitment-consistency is discussed sporadically throughout the secure multiparty computation liter-
ature. Lindell and Rabin [LR17] note that an initial “input commitment” phase is “the norm in all known
protocols”, though mention in a footnote that “In some cases, it is more subtle and the inputs are more
implicitly committed; e.g., via oblivious transfer. However, this is still input commitment.” We argue, here,
that the explicitness of the commitment makes a difference. That is, protocols which guarantee consis-
tency against external, explicitly supplied commitments are significantly more powerful than those which do
not. The reason is exactly that articulated by Jarecki and Shmatikov [JS07, § 1]: When a protocol solicits
commitments only implicitly, and “freshly”, during each execution—as opposed to drawing them from an
external source—there is no way to guarantee consistency across executions (or with any larger protocol).

We survey possible applications of commitment-consistency below.

1.2.1 Secure computation over private account balances

A private payment scheme specifies a privacy-preserving representation of value, as well as a protocol by
which this value may be transferred, which itself moreover guarantees both privacy (regarding amounts
transferred, the identities of transactors, or both) and soundness (e.g., conservation of value). Zerocash
[BSCG+14] and Monero [NMt16] are classic examples in the “UTXO model”; an “account-based” approach
was developed in Zether [BAZB20] and Anonymous Zether [Dia21]. Private payment protocols work natu-
rally with blockchains (which serve to preserve their state and effect transaction verification).

In a key illustration of the utility of its commitment-consistency, our protocol allows two parties to run
secure computations over hidden monetary values enshrined within some larger, ongoing private payment
protocol. This feature is perhaps especially appealing in account-based systems like Anonymous Zether,
where users’ holdings are “consolidated” into single accounts (as opposed to being spread throughout multiple
UTXOs).

We note that many existing zero-knowledge proof constructions explicitly target committed values; ex-
amples include those of Groth–Kohlweiss [GK15], Bünz et al. [BBB+18], and Diamond [Dia21]. These latter
techniques, naturally, appear routinely in blockchains, where their commitment-consistency plays a central
role. Philosophically, our work extends this latter tradition to the setting of two-party computation, and
promises analogous applications.

1.2.2 Secure computation over credentials

Direct anonymous attestation is a powerful and complex cryptographic paradigm, in which platforms are
issued credentials by certain authorities, and may unforgeably and anonymously attest to these credentials.
Each credential, more specifically, contains a secret identifier, together with a number of attributes; a platform
can selectively disclose its credential’s attributes in any given presentation. We refer to Camenisch, Drijvers,
and Lehmann for a comprehensive treatment [CDL16].

It remains currently unfeasible for two holders of such credentials to securely compute over the attributes
concealed within their credentials (while mutually assuring each other of consistency with these credentials).
Our protocol’s commitment-consistency makes this capability almost immediate.
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In fact, our protocol is moreover compatible with the unlinkability property central to these schemes;
more precisely, each party may couple its execution of our protocol with a standard verifiable presentation
of its credential (successive such presentations can be linked only when the presenter wants them to be).
For example, in the direct anonymous attestation scheme of [CDL16], a “credential” is essentially a vector
of scalars, together with a “BBS+” signature over that vector (this signature can be procured even when
some or all of the vector’s underlying quantities are hidden). A presentation of such a credential reveals
some of its underlying vector’s components, and moreover proves knowledge of its associated signature. It
is straightforward to attach to such a presentation further commitments, which provably contain precisely
those messages which were hidden during the presentation. These latter commitments can be linked to the
inputs of a secure computation, using our protocol.

1.3 Concrete efficiency

In Subsection 4.4, we describe a concrete implementation of our full protocol, in which f is specialized, for
the sake of example, to a certain integer comparator function (see Example 3.19). Our protocol is practical,
and runs over a WAN in about as much wall time as a private cryptocurrency transaction takes to generate
(see e.g. [Dia21, § I] for an overview). Specifically, on the function f : {0, 1}64 → {0, 1} which compares
two 32-bit unsigned integers, our protocol runs in about 2.5 seconds of wall time over a WAN, and requires
exchanging about 1,500 kilobytes. The majority of our protocol’s bandwidth burden is inherited from the
multiplication subprotocol [DKLs18, Prot. 8]. We give further details in Subsection 4.4.

1.4 Prior work

Exact hyperplane coverings have appeared occasionally throughout the combinatorics literature. A classic
work of Alon and Füredi studies the particular set S = {0, 1}n−{(0, . . . , 0)}, and shows that no fewer than n
hyperplanes (over any field) can cover this set; as n hyperplanes clearly suffice, this result is tight. A recent
work of Aaronson, Groenland, Grzesik, Johnston, and Kielak [AGG+21] studies various questions around
exact hyperplane coverings. For example, they estimate the worst-case number of hyperplanes required to
cover any set S ⊂ {0, 1}n, as S ranges throughout all such sets (and n is fixed). Though they focus on
hyperplanes over R, their results largely carry over to the case of finite fields.

An important progenitor of our work appears in the form of Wagh, Gupta, and Chandran [WGC19,
Alg. 3]. That protocol allows two semi-honest parties and a non-colluding, semi-honest third server to
compare a secret-shared integer with a fixed public integer. Though they do not express it in these terms,
their method actually entails covering the on-set of the fixed-threshold comparator function with affine
hyperplanes, and evaluating these hyperplanes “over secret-share”, before handing the resulting outputs to
the third party, who reconstructs them and reports whether a zero is present. That protocol of course lacks
malicious security, and requires a third party; moreover, it treats only one function.

Jarecki and Shmatikov [JS07] describe a maliciously secure, commitment-consistent two-party protocol.
Their protocol works only with a Camenisch–Shoup-style commitment scheme, itself based on Paillier-like
groups of unknown order. The protocol of Frederiksen, Pinkas and Yanai [FPY18] internally invokes an
additively homomorphic commitment scheme (of known prime order); on the other hand, it does so only to
construct random commitments, which are formed into multiplication triples during an initial preprocessing
phase. That protocol does not obviously support the use of externally committed inputs.

2 Definitions and Notation

By the “natural numbers”, represented by the symbol N, we shall mean the positive integers. That a number
q has n bits means that it resides in {2n−1, . . . , 2n − 1}. Bertrand’s postulate, a corollary of a weak form of
the prime number theorem, implies that primes q ∈ {2n−1, . . . , 2n − 1} necessarily exist for each n (see e.g.
Montgomery and Vaughan [MV06, § 2.2]).

2.1 Linear and affine algebra

We refer to Cohn [Coh82] for preliminaries on algebra.
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We write q for an odd prime, and Fq for the finite field of order q (see e.g. [Coh82, § 6.3]). We have
the standard notions of vector spaces over Fq (see e.g. [Coh82, § 4.1]) and of Fq-homomorphisms, or maps,
between vector spaces (see [Coh82, § 4.2]). A hyperplane is an affine-linear functional H : Fnq → Fq (see Cohn
[Coh82, § 4.8]). Each hyperplane admits an expression H : (x0, . . . , xn−1) 7→ α·x0 + · · · + αn−1 · xn−1 + α,
for appropriate field elements α0, . . . , αn−1, α in Fq. We often identify hyperplanes H with their nullsets{
x ∈ Fnq

∣∣H(x) = 0
}
⊂ Fnq .

By an intersection pattern over Fq, or an Fq-intersection pattern, we will mean a (possibly empty) set
S ⊂ {0, 1}n of the form S = H ∩ {0, 1}n for some hyperplane H ⊂ Fnq (see e.g. [AGG+21, p. 5]).

The following basic result occasionally allows us to replace affine-linear algebra with linear algebra:

Lemma 2.1. For each x ∈ {0, 1}n, there exists an invertible affine Fq-linear map ox : Fnq → Fnq which maps
{0, 1}n to itself, and which sends x to the origin.

Proof. We write the coordinates of x as (x0, . . . , xn−1). The map ox defined on y = (y0, . . . , yn−1) ∈ Fnq by:

ox(y) :=

({
1− yi if xi = 1

yi if xi = 0

)n−1

i=0

clearly satisfies the desired properties.

We work in the arithmetic complexity model, in which each field operation takes constant time (see for
example von zur Gathen and Gerhard [vzGG13, § 2]).

2.2 Boolean function complexity

We refer to Wegener [Weg87] and Vollmer [Vol99] for facts about the complexity of boolean functions. For
each natural number k, Σk and Πk denote the function families decided by polynomially-sized, unbounded
fan-in, layered circuits with an OR or an AND gate at the top (respectively) and k alternating layers of
gates subsequently, and with negations only applied to the inputs (see [Weg87, § 11 Def. 1.1]). The class
AC0 is defined as

⋃∞
i=0 Σk∪Πk (see [Vol99, Def. 4.5]). The class NC1 denotes the class of function families

decided by polynomially-sized, bounded fan-in, O(log n)-depth circuits (see [Vol99, Def. 4.1]). The fact
that unbounded fan-in gates can be converted into log-depth trees of bounded fan-in gates implies that
AC0 ⊂ NC1 (see [Vol99, Prop. 1.17]).

2.3 Coding theory

We refer to Cohen, Honkala, Litsyn, and Lobstein [CHLL97] for preliminaries on covering codes. A code

is a subset S ⊂ {0, 1}n. A subcube is a set of the form C =
{

(x0, . . . , xn−1) ∈ {0, 1}n
∣∣∣ ∧k−1

i=0 xci = yi

}
,

where {c0, . . . , ck−1} ⊂ {0, . . . , n − 1} is a subsequence and y0, . . . , yk−1 are binary constants. The Ham-
ming distance between elements x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) of {0, 1}n is d(x,y) :=
|{i ∈ {0, . . . , n− 1} | xi 6= yi}|. The weight of an element x ∈ {0, 1}n is w(x) := d(x,0). The radius-r
Hamming ball around a point x ∈ {0, 1}n is the set Br(x) = {y ∈ {0, 1}n | d(x,y) ≤ r}. A code S ⊂ {0, 1}n
is an r-covering code if

⋃
x∈C Br(x) = {0, 1}n. A code S ⊂ {0, 1}n’s covering radius R is the smallest r for

which it’s an r-covering code. An (n,K)R code is a K-element code S ⊂ {0, 1}n with covering radius R.
Piecewise constant codes were introduced in Cohen, Lobstein and Sloane [CLS86], and are further dis-

cussed in [CHLL97, § 3.3]; we recall their definition here. By a partition of a natural number n, we shall
mean a partition of the set {0, . . . , n − 1} into nonempty subsets. We define the refinement relation on
partitions in the obvious way. We slightly abuse notation by referring to partitions only by the sizes of their
constituent subsets; that is, we describe any given partition of n using the notation n = n0 + · · · + nt−1,
identifying all partitions which differ by a permutation of {0, . . . , n − 1} (this latter notation matches the
classical number-theoretic notion of partition). Given a natural number n and a partition n = n0 +. . .+nt−1,
we correspondingly split each element x ∈ {0, 1}n into segments x0 ‖ · · · ‖ xt−1 of appropriate lengths.

Definition 2.2. S ⊂ {0, 1}n is piecewise constant with respect to the partition n =
∑t−1
i=0 ni if, provided S

contains any word x0 ‖ · · · ‖ xt−1 with w(x0) = w0, . . . , w(xt−1) = wt−1, then S contains all such words.
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Each piecewise constant code S ⊂ {0, 1}n—with respect to the partition n = n0 + . . .+nt−1—say, can be
represented with the aid of a certain (n0 +1)×· · ·×(nt−1 +1) multidimensional array, some of whose cells are

“filled in” (see e.g. [CLS86, Fig.s 3.1 and 3.2]). Indeed, each multi-index (w0, . . . , wt−1) ∈
∏t−1
i=0{0, . . . , ni} in

the array represents exactly those words x0 ‖ · · · ‖xt−1 ∈ {0, 1}n satisfying w(x0) = w0, . . . , w(xt−1) = wt−1.

Definition 2.3. S’s cell representation is the subset S ⊂
∏t−1
i=0{0, . . . , ni} consisting of those multi-indices

(w0, . . . , wt−1) for which S contains any, and hence every, word x0‖· · ·‖xt−1 ∈ {0, 1}n with
∧t−1
i=0 w(xi) = wi.

Each cell (w0, . . . , wt−1) ∈
∏t−1
i=0{0, . . . , ni} represents exactly

∏t−1
i=0

(
ni
wi

)
words in {0, 1}n. The cardinality

of S is thus
∑

(wi)
t−1
i=0∈S

∏t−1
i=0

(
ni
wi

)
. The covering radius of a piecewise constant code S ⊂ {0, 1}n is exactly

the “covering radius” of S ⊂
∏t−1
i=0{0, . . . , ni}, where the latter space is given the “Manhattan distance” (we

refer to [CHLL97, § 3.3] for details). It is often computationally feasible to determine this latter radius.
It is sometimes convenient to go in the “opposite direction”. We record the following definition here:

Definition 2.4. Fix a partition n = n0 + · · · + nt−1 and an arbitrary subset C ⊂
∏t−1
i=0{0, . . . , ni}. The

pullback C ⊂ {0, 1}n of C is defined by C :=
{
x0 ‖ · · · ‖ xt−1 ∈ {0, 1}

∣∣ (w(x0), . . . , w(xt−1)) ∈ C
}

.

Informally, C ⊂ {0, 1}n is the union, over those cells (w0, . . . , wt−1) ∈ C, of the codewords x ∈ {0, 1}n
represented by (w0, . . . , wt−1).

2.4 Basic security definitions

We give basic security definitions, following Katz and Lindell [KL21]. In experiment-based games involving
an adversary A, we occasionally use the notation A (EA(λ)) to denote the output of A within the game
EA(λ) (as distinguished from whether A wins the experiment).

Two distribution ensembles {X0(a, λ)}a∈{0,1}∗;λ∈N and {X1(a, λ)}a∈{0,1}∗;λ∈N are computationally indis-

tinguishable (see [KL21, § 8.8] and [Lin17, § 6.2]) if, for each nonuniform PPT distinguisher D, there is a
negligible function µ for which, for each a ∈ {0, 1}∗ and λ ∈ N,

|Pr[D(X0(a, λ)) = 1]− Pr[D(X1(a, λ)) = 1]| ≤ µ(λ).

The distributions {X0(a, λ)}a∈{0,1}∗;λ∈N and {X1(a, λ)}a∈{0,1}∗;λ∈N are statistically indistinguishable if there

is a negligible function µ for which, for each a ∈ {0, 1}∗ and λ ∈ N,∑
v∈{0,1}∗

|Pr [X0(a, λ) = v]− Pr [X1(a, λ) = v]| ≤ µ(λ).

Statistical indistinguishability implies computational indistinguishability.
We recall the definition of a group-generation algorithm G, which, on input 1λ, outputs a cyclic group

G, its prime order q (with bit-length λ), and a generator g ∈ G (see [KL21, § 9.3.2]). We recall the notions
whereby the discrete logarithm problem is hard relative to G (see [KL21, Def. 9.63]) and the decisional
Diffie–Hellman problem is hard relative to G (see [KL21, Def. 9.64]).

An encryption scheme is a triple of algorithms Π = (Gen,Enc,Dec); given a keypair (pk, sk) ← Gen(1λ)
and a message m, we have an encryption procedure A← Encpk(m; r) and a decryption m := Decsk(A) (see
[KL21, Def. 12.1] for more details). We define the security of encryption schemes, following [KL21, Def. 12.5]:

Definition 2.5. The multiple encryptions experiment PubKLR−cpa
Π,A (λ) is defined as:

1. A keypair (pk, sk)← Gen(1λ) is generated and a uniform bit b ∈ {0, 1} is chosen.

2. The adversary A is given pk and oracle access to LRpk,b(·, ·).

3. A outputs a bit b′ ∈ {0, 1}.

4. The output of the experiment is defined to be 1 if and only if b = b′.

We say that Π = (Gen,Enc,Dec) has indistinguishable multiple encryptions if, for each nonuniform PPT

adversary A, there exists a negligible function µ for which Pr[PubKLR−cpa
Π,A (λ) = 1] ≤ 1

2 + µ(λ).
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An encryption scheme is Fq-homomorphic, where q is prime, if its key-space is an order-q group, and, for
each key pk, the encryption function (m; r) 7→ Encpk(m; r) is an Fq-vector space homomorphism.

Example 2.6. Given a group (G, q, g) ← G, we have the resulting El Gamal encryption scheme Π (see
[KL21, Cons. 12.16]), which is Fq-homomorphic. If the decisional Diffie–Hellman problem is hard relative to
G, then Π has indistinguishable multiple encryptions (see [KL21, Thm. 12.6 and Thm. 12.18]).

A commitment scheme is a pair of probabilistic algorithms (Gen,Com); given public parameters params←
Gen(1λ) and a message m, we have the commitment A := Comparams(m; r), as well as a decommitment
procedure effected by sending m and r (see [KL21, § 6.6.5] for more details). We recall the notions whereby a
commitment scheme is hiding and binding (see [KL21, Def. 6.13]). A commitment scheme is Fq-homomorphic
if, for each params, its commitment function (m; r) 7→ Comparams(m; r) is an Fq-vector space homomorphism.

2.5 Secure two-party computation

We record security definitions for secure two-party computation. Our setting is essentially that of Lindell
[Lin17, § 6.6.2]; we recall the details here mainly for self-containedness. We have the notions of functionalities
F and protocols Π. In our two-party setting, a round consists of a single message sent from one party to
the other. We adopt a space-saving device whereby we stipulate in advance that throughout the paper, if,
during any protocol, any hybrid sub-functionality returns a failure value to any honest party at any time,
that party immediately aborts. We also omit mention of such things as session identifiers when possible.

We recall the general definition of maliciously secure two-party computation (see [Lin17, § 6.6.1]):

Definition 2.7. We fix a functionality F , a protocol Π, a real-world adversary A, a simulator S, and a
corrupt party C ∈ {0, 1}. We consider the distributions:

• RealΠ,A,C (x0,x1, λ): Generate a run of Π with security parameter λ, in which the honest party P1−C
uses the input x1−C and A controls PC ’s messages. Return the outputs of A and P1−C .

• IdealF,S,C (x0,x1, λ): Run S(1λ, C,xC) until it outputs x′C , or else outputs (abort) to F , who halts.
Give x′C and x1−C to F , and obtain outputs v0 and v1. Give vC to S; if S outputs (abort), then F
outputs (abort) to P1−C ; otherwise, F gives v1−C to P1−C . Return the outputs of S and P1−C .

We say that Π securely computes F in the presence of one static malicious corruption with abort, or that
Π securely computes F , if, for each corrupt party C ∈ {0, 1} and real-world nonuniform PPT adversary A
corrupting C, there is an expected polynomial-time simulator S corrupting C in the ideal world such that

{RealΠ,A,C (x0,x1, λ)}x0,x1,λ

c≡ {IdealF,S,C (x0,x1, λ)}x0,x1,λ
,

where the elements x0 and x1 of {0, 1}∗ are required to have equal lengths.

Our most important functionality captures the commitment-consistent computation of some fixed boolean
function f : {0, 1}n → {0, 1}. We adopt the convention whereby P0 “owns” the even-indexed inputs and P1

“owns” the odd-indexed inputs.

FUNCTIONALITY 2.8 (Ff—main functionality).
The functionality works with players P0 and P1, and a function f : {0, 1}n → {0, 1}, where n is even.

• Upon receiving (commit; xν), from Pν , where xν ∈ {0, 1}n/2, Ff sends (received) to P1−ν .

• Upon receiving (evaluate) from both parties, Ff interleaves x0 and x1 to obtain the input
x ∈ {0, 1}n, evaluates v := f(x), and outputs (evaluate, v) to both P0 and P1.

2.6 Zero-knowledge proofs

We present definitions for zero-knowledge proofs, following the monograph of Hazay and Lindell [HL10, § 6].
We fix a binary relation R ⊂ {0, 1}∗ × {0, 1}∗, whose elements (x,w) satisfy |w| = poly(|x|) for some

polynomial poly. If (x,w) ∈ R, we call x a statement and w its witness. The zero-knowledge proof of
knowledge ideal functionality, or ZKPOK functionality, works as follows:

7



FUNCTIONALITY 2.9 (FRzk—ZKPOK ideal functionality for the relation R).
A relation R is fixed.

• Upon receiving a message of the form (prove, x;w), FRzk stores (prove, x,R(x,w)) in memory.

• Upon receiving a message of the form (verify, x), FRzk checks whether (prove, x,R(x,w)) is in
memory. If it is, FRzk returns (verify, R(x,w)); otherwise, FRzk returns (verify, 0).

This functionality appears in e.g. [HL10, § 6.5.3], though we use a slightly nonstandard syntax.
The ZKPOK ideal functionality can be instantiated with the aid of so-called Σ-protocols. We begin with

the following abstract three-move protocol template (see [HL10, Prot. 6.2.1]):

PROTOCOL 2.10 (General three-move protocol template for the relation R).
P and V both have a statement x. P has a witness w such that (x,w) ∈ R.

1: P sends an initial message a to the verifier V .
2: V sends a random λ-bit string e to q.
3: P sends a reply z.
4: V chooses to accept or reject based only on the data (x, a, e, z).

We have the formal notion of Σ-protocols [HL10, Def. 6.2.2], which we reproduce here:

Definition 2.11. A protocol Π of the form Protocol 2.10 is said to be a Σ-protocol for the relation R if the
following conditions hold:

• Completeness. If P and V follow the protocol on inputs (x,w) and x, respectively, where (x,w) ∈ R,
then V always accepts.

• Special soundness. There exists a polynomial-time extractor X which, given any x and accepting
transcripts (a, e, z) and (a, e′, z′) on x for which e 6= e′, outputs a witness w for which (x,w) ∈ R.

• Honest verifier zero knowledge. There exists a polynomial-time simulator M which, on inputs λ
and x, outputs a random transcript (a, e, z) distributed exactly as in an interaction between P and V.

We recall the random oracle model and the Fiat–Shamir transform (see e.g. [KL21, Cons. 13.9]). In
order to make a protocol Π of the form of Protocol 2.10 non-interactive, P and V proceed in the following
way. P submits the initial message a to the random oracle, and obtains a challenge e; the proof consists of
(a, e, z). When verifying the proof, V recomputes e from a using a second oracle query.
Σ-protocols made non-interactive in this way securely instantiate the ZKPOK ideal functionality:

Theorem 2.12. Fix a relation R and a Σ-protocol Π for R. The non-interactive protocol obtained upon
applying the Fiat–Shamir transform to Π securely instantiates the ideal ZKPOK functionality FRzk.

Proof. Though this theorem is essentially accepted folklore, it is not easy to prove, and it is difficult to find
a complete proof. The theorem essentially follows from a combination of the ideas of Pointcheval and Stern
[PS00, Thm. 1] and Hazay and Lindell [HL10, Thm. 6.5.6].

Using a generalized version of the Schnorr protocol, we obtain Σ-protocols for a number of important
relations. We fix an Fq-vector space homomorphism φ : G0 → G1, and the corresponding preimage relation:

Rφ = {(h; g) | φ(g) = h}.

We have the protocol:

PROTOCOL 2.13 (Generalized Σ-protocol Πφ for Rφ).
P and V both have φ : G0 → G1 and an element h ∈ G1. P has an element g ∈ G0 such that φ(g) = h.

1: P randomly samples r ← G0, and sends V the image a := φ(r).
2: V samples e← Fq and sends e to P.
3: P sets z := r + c ·G and sends z to V.
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4: V accepts iff f(z)
?
= a+ c ·H.

Theorem 2.14. The protocol Πφ is a Σ-protocol for the relation Rφ.

Proof. This is essentially proven in [HL10, §§ 6.1–6.2]; though that proof targets the Schnorr protocol, the
proof is identical in the more general setting.

We record applications of Theorem 2.14 here; we will use these below.

Example 2.15. The classic Schnorr protocol (see e.g. [KL21, Fig. 13.2]) specializes Protocol 2.13 to the
map φ : Fq → G sending φ : x 7→ x · g, for some group (G, q, g)← G(1λ).

Example 2.16. A well-known technique proves that a homomorphic ciphertext A encrypts 0 under the
public key pk; this protocol specializes to a “proof of Diffie–Hellman tuple” under the El Gamal scheme.
This latter protocol appears in e.g. [HL10, Prot. 6.2.4] and [LNR18, § 3.3 (2)]. We record the relation here:

RDH = {(pk,A; r) |A = Encpk(0; r)}.

This protocol arises upon specializing Protocol 2.13 to the map φ : r 7→ Encpk(0; r); using Theorems 2.12
and 2.14, we obtain a secure instantiation of the corresponding ideal functionality, which we call FDH

zk .

Example 2.17. A similar protocol can be used to prove knowledge of the message and randomness of an
El Gamal ciphertext; this relation appears in [LNR18, § 3.3 (4)]. We reproduce it here:

REG = {(pk,A;m, r) |A = Encpk(m; r)}.

To securely instantiate FEG
zk , we define φ : (m, r) 7→ Encpk(m; r), and apply Theorems 2.12 and 2.14.

Example 2.18. A further related protocol shows that two ciphertexts are related by a re-randomization
operation, and that, in particular, one encrypts 0 if and only if the other does (and moreover is random
subject to this condition). This protocol appears in [LNR18, § 3.3 (2)]. We have the relation:

RRE = {(pk,A0, A1; s, r) |A1 = s ·A0 + Encpk(0; r)}.

One may securely instantiate FRE
zk by setting φ : (s, r) 7→ s ·A0 + Encpk(0; r).

Example 2.19. Protocol 2.13 can be used to prove that two ciphertexts encrypt the same message. We
have the relation:

REqMsg = {(params, pk0, pk1, A0, A1;m, r0, r1) |A0 = Encpk0(m; r0) ∧A1 = Encpk1(m; r1)}.

We obtain a Σ-protocol for REqMsg upon specializing Protocol 2.13 to the map φ : (m, r0, r1) 7→
(Encpk0(m; r0),Encpk1(m; r1)). This technique appears in [FMMO19, § 6.1]. Applying Theorem 2.12, we

obtain a secure instantiation of the corresponding ideal functionality FEqMsg
zk .

Example 2.20. Using an almost identical technique, we obtain a proof that a commitment and a ciphertext
“contain” the same message. We have the relation:

RComMsg = {(params, pk,A0, A1;m, r0, r1) |A0 = Comparams(m; r0) ∧A1 = Encpk(m; r1)}.

We obtain a Σ-protocol for RComMsg from Protocol 2.13 and φ : (m, r0, r1) 7→ (Comparams(m; r0),Encpk(m; r1)).

Example 2.21. The relation RProd of [LNR18, § 3.3 (5)] allows a prover to demonstrate that a particular El
Gamal ciphertext equals the (re-randomized) scalar multiple of one ciphertext by the message of a further
ciphertext. We recall the relation here:

RProd = {(pk,A,A0, A1;m, r0, r1) |A = m ·A0 + Encpk(0; r0) ∧A1 = Encpk(m; r1)}.

The relation RProd—and a corresponding Σ-protocol for it—also arises as a specialization of Rφ above; indeed,
it’s enough to specialize Πφ to the map φ : (m, r0, r1) 7→ (m ·A0 + Encpk(0; r0),Encpk(m; r1)). Theorem 2.12
yields a secure instantiation of the resulting ideal functionality FProd

zk .
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The following Σ-protocol does not arise as a specialization of Protocol 2.13.

Example 2.22. A “bit-commitment” proof shows that a public ciphertext A contains a bit. More precisely:

RBitProof = {(pk,A;m, r) |A = Encpk(m; r) ∧m ∈ {0, 1}}.

We write ΠBitProof for the protocol [GK15, Fig. 1] of Groth and Kohlweiss. We recall the following result:

Theorem 2.23 (Groth–Kohlweiss [GK15, Thm. 2]). ΠBitProof is a Σ-protocol for the relation RBitProof .

Applying Theorem 2.12, we obtain a secure instantiation of the ideal functionality FBitProof
zk .

We finally recall the “committed non-interactive zero knowledge” ideal functionality FRcom-zk associated
to a relation R (see e.g. [LNR18, Func. 3.4]):

FUNCTIONALITY 2.24 (FRcom-zk—committed ZKPOK functionality R).
A relation R is fixed. There are two players, P0 and P1.

• Upon receiving a message of the form (commit-prove, x;w), from player Pν say, FRzk stores
(commit-prove, x,R(x,w)) in memory and sends (proof-receipt) to P1−ν .

• Upon receiving a message of the form (decommit-prove, x), from player Pν say, FRcom-zk

checks whether (commit-prove, x,R(x,w)) is in memory. If it is, FRcom-zk sends
(decommit-prove, x,R(x,w)) to P1−ν ; otherwise, FRcom-zk sends (decommit-prove, x, 0) to P1−ν .

As [LNR18, § 3.3] argues, FRcom-zk can be securely instantiated given a ZKPOK for R and a commitment
scheme. We thus likewise obtain analogous instantiations of FRcom-zk for each relation R discussed above.

3 Piecewise Constant Codes and Hyperplane Coverings

In this section, we study which boolean functions f : {0, 1}n → {0, 1}—or more precisely, which sets
S := f−1(1) ⊂ {0, 1}n—can be covered using polynomially many hyperplanes over an n-bit prime q.

The following definition is implicit in [AF93] and [AGG+21].

Definition 3.1. We say that a family {Hi}m−1
i=0 of affine hyperplanes in Fnq covers a subset S ⊂ {0, 1}n if

S =
⋃m−1
i=0 Hi ∩ {0, 1}n.

That is, the hyperplanes’ respective restrictions to the cube cover exactly S, and no further cube elements.
Equivalently, the family {Hi}m−1

i=0 expresses S as a union of intersection patterns.

Definition 3.2. The class H consists of those languages L ⊂ {0, 1}∗ for which, for each n ∈ N, the on-set
Sn := L ∩ {0, 1}n can be covered by polynomially many hyperplanes over some fixed n-bit prime q.

That is, L ∈ H if and only if, for some polynomial function m = poly(n) and each n ∈ N, there is some

n-bit prime q such that L ∩ {0, 1}n =
⋃m−1
i=0 Hi ∩ {0, 1}n, where each Hi ⊂ Fnq is an affine hyperplane. In

this setting, we also say that the function family {fn : {0, 1}n → {0, 1}}n∈N defined by fn(x) := x ∈ L is
efficiently computable by affine hyperplanes.

3.1 Main theorem on piecewise constant codes and intersection patterns

Our main mathematical result shows that those S ⊂ {0, 1}n expressible as “compact” piecewise constant
codes are also coverable by polynomial-cardinality collections of hyperplanes. We derive various consequences
of this result below.

We begin with a handful of definitions and lemmas. The following lemma is purely combinatorial:

Lemma 3.3. Fix a natural number n. Across all partitions n = n0 + · · ·+nt−1 of n, the product expression∏t−1
i=0(ni + 1) is maximized by the partition n = 1 + · · ·+ 1 (where it attains the value 2n).
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Proof. We fix an arbitrary partition n =
∑t−1
i=0 ni, and suppose that some summand ni > 1. Though the

term ni alone contributes (ni + 1) to the product, splitting it into the further terms 1 and (ni − 1) would
preserve the sum, and yet contribute to the product a factor of 2 ·ni, which is strictly larger than ni+ 1.

We also state the following related lemma, whose proof is similar:

Lemma 3.4. For each partition n =
∑t−1
i=0 ni for which some summand ni ≥ 3, we have

∏t−1
i=0(ni+1) ≤ 2n−1.

Though apparently new, Lemmas 3.3 and 3.4 evoke various classical problems (see e.g. Došlić [Doš05]).
There is a particular sort of pattern in a piecewise constant code’s multidimensional array which will be

of special importance to us.

Definition 3.5. Fix n ∈ N and a partition n = n0 + · · · + nt−1. We call a subset C ⊂
∏t−1
i=0{0, . . . , ni} a

quasicube if C takes the form

C =
{

(w0, . . . , wt−1) ∈
∏t−1
i=0{0, . . . , ni}

∣∣∣ ∧k−1
i=0 wci = vi

}
,

where {c0, . . . , ck−1} ⊂ {0, . . . , t− 1} is a subsequence, and vi ∈ {0, . . . , nci} for each i ∈ {0, . . . , k − 1}.

In other words, a quasicube consists of those multi-indices some of whose components wci are bound to
fixed constants vi ∈ {0, . . . , nci}, and the rest of which are free.

Example 3.6. Each single cell {(w0, . . . , wt−1)} ⊂
∏t−1
i=0{0, . . . , ni} is obviously a quasicube (with all values

bound, so that {c0, . . . , ct−1} = {0, . . . , t− 1} and vi = wci for each i ∈ {0, . . . , t− 1}).

Example 3.7. Each code S ⊂ {0, 1}n becomes piecewise constant with respect to the “trivial partition”
n = 1 + · · · + 1. This particular partition’s corresponding cell array degenerates to the cube {0, 1}n itself,
and S = S for each S ⊂ {0, 1}n. Moreover, the quasicubes correspond exactly to the subcubes C ⊂ {0, 1}n.

The following lemma is the technical core of this section:

Lemma 3.8. Fix a natural number n ∈ N and any n-bit prime q. For each partition n = n0 + · · · + nt−1

and each quasicube C ⊂
∏t−1
i=0{0, . . . , ni}, the pullback C ⊂ {0, 1}n of C is an Fq-intersection pattern.

Proof. We prove the lemma by constructing an appropriate hyperplane. We fix C and q as in the hypothesis
of the lemma, and write {c0, . . . , ck−1} ⊂ {0, . . . , t− 1} and (v0, . . . , vk−1) ∈

∏k−1
i=0 {0, . . . , nci} for the bound

values guaranteed to exist by definition of C. We now define:

H : (x0, . . . , xn−1) = x0 ‖ · · · ‖ xt−1 7→
k−1∑
i=0

∏
j<i

(ncj + 1)

 ·
nci−1∑

l=0

xci,l − vi

 ,

where xci,l denotes the lth bit of the segment xci (for l ∈ {0, . . . , nci − 1}). H is clearly a hyperplane.
We now argue that H correctly satisfies H ∩ {0, 1}n = C. We prove this fact by induction on k, the

number of bound values in the quasicube. For each k∗ ∈ {0, . . . , k}, we write Ck∗ for the quasicube defined
by C’s first k∗ bound values (v0, . . . , vk∗−1) and Ck∗ for its pullback, and moreover consider the partial sum

Hk∗ : (x0, . . . , xn−1) 7→
∑k∗−1
i=0

∏
j<i(ncj +1)·

(∑nci−1

l=0 xci,l − vi
)

; we argue that Hk∗∩{0, 1}n = Ck∗ for each

k∗ ∈ {0, . . . , k}. In the base case k∗ = 0, there’s nothing to prove. We thus fix k∗ ∈ {1, . . . , k}, and assume by
induction that Hk∗−1(x) = 0 if and only if x ∈ Ck∗−1; we moreover assume that Hk∗−1(x) (viewed as an ele-

ment of Z) resides within the symmetric integer range
{
−
∏
j<k∗−1(ncj + 1) + 1, . . . ,

∏
j<k∗−1(ncj + 1)− 1

}
for each x ∈ {0, 1}n (i.e., regardless of whether x ∈ Ck∗−1). We now consider the k∗ − 1st (i.e., high-

est) summand of Hk∗ . The inner expression
∑nck∗−1

−1

l=0 xck∗−1,l − vk∗−1 clearly equals 0 if and only if
w(xk∗−1) = vk∗−1; in any case, it moreover resides within the integer range {−nck∗−1

, . . . , nck∗−1
} (actually,

it resides within {−vk∗−1, . . . , nck∗−1
− vk∗−1}, but our weaker bound is enough). By adding Hk∗−1(x) to∏

j<k∗−1(ncj + 1) times this latter expression, we see that the result Hk∗(x) has absolute value at most:

∏
j<k∗−1

(ncj + 1)− 1 +

 ∏
j<k∗−1

(ncj + 1)

 · nck∗−1
=
∏
j<k∗

(ncj + 1)− 1.
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This is exactly the range we need in order to preserve the inductive hypothesis. It remains to argue that
Hk∗(x) = 0 if and only if x ∈ Ck∗ . But x ∈ Ck∗ if and only if x ∈ Ck∗−1 and w(xck∗−1

) = vk∗−1. If
both of these are true, then both Hk∗−1(x) (by induction) and the top summand (discussed above) equal
0, as needed. On the other hand, if either of these conditions is false, then either Hk∗−1(x) is a nonzero

element of
{
−
∏
j<k∗−1(ncj + 1) + 1, . . . ,

∏
j<k∗−1(ncj + 1)− 1

}
(by induction), or the top summand is∏

j<k∗−1(ncj+1) times a nonzero element of {−nck∗−1
, . . . , nck∗−1

} (by above). The sum of two such elements
cannot be zero (the sets are both additively symmetric and disjoint, and no cancellation can happen).

Completing the induction, we see that H(x), viewed as an integer, is an element of the range{
−
∏
j<k(ncj + 1) + 1, . . . ,

∏
j<k(ncj + 1)− 1

}
, which moreover is 0 (as an integer) if and only if x ∈ C. It

remains to argue that this quantity cannot overflow modulo q (and so unduly yield the sum of 0 in Fq). By
Lemma 3.3,

∏
j<k(ncj + 1) is at most 2n. We thus see that if q ≥ 2n, then no overflow can occur.

We can weaken this requirement to q ≥ 2n−1, with a bit of extra work. Exploiting Lemmas 3.3 and 3.4,
we note that the stronger upper-bound

∏
j<k(ncj + 1) ≤ 2n−1 in fact holds unless k = t—so that all of

C’s components are bound, and
∑k−1
i=0 ni =

∑t−1
i=0 ni = n—and moreover the partition n = n0 + · · · + nt−1

consists only of 1s and 2s (in fact, it can contain at most two 2s, but we ignore this further fact). We handle
this latter case separately using a different construction. After permuting coordinates, we may assume that
the 2s occur in contiguous pairs at the beginning; we write t∗ ∈ {0, . . . ,

⌊
n
2

⌋
} for the number for which

n0 = · · · = nt∗−1 = 2 and nt∗ = · · · = nt−1 = 1. After applying Lemma 2.1, we may further assume that
vt∗ = · · · = vt−1 = 0. It follows similarly to the above argument that the hyperplane

H : (x0, . . . , xn−1) 7→
t∗−1∑
i=0

3i · (x2i + x2i+1 − vi) + 3t
∗
·

(
t−1∑
i=t∗

x2·t∗+i

)

suffices to define C; moreover, it returns integers in the range {−3t
∗

+ 1, . . . , 3t
∗ −1 + 3t

∗ · (n−2 · t∗)}, which
is well within {−2n−1 + 1, . . . , 2n−1 − 1} regardless of t∗ ∈ {0, . . . ,

⌊
n
2

⌋
}. This completes the proof.

Remark 3.9. The proof of Lemma 3.8 can be understood from the following perspective. The individual

hyperplanes
∑nci−1−1

l=0 xci,l − vi (for i ∈ {0, . . . , k− 1}) constructed during the proof of Lemma 3.8 intersect
in a n − k-dimensional affine flat, which intersects the cube exactly at C; the challenge is to “extend”
this flat into a hyperplane without accruing new cube points. Having computed the individual hyperplanes∑nci−1−1

l=0 xci,l − vi (for i ∈ {0, . . . , k − 1}), H interprets these k individual outputs as the “digits” of a
number in a nonstandard, mixed-radix, signed-digit positional numeral system—whose respective “places”
range throughout {−nci , . . . , nci}—and returns the resulting number. The key property of this (unusual)
system is that while numbers don’t in general have unique representations, 0 does.

We now present the main result of this subsection, a consequence of Lemma 3.8:

Theorem 3.10. If {Sn ⊂ {0, 1}n}n∈N is such that each Sn is expressible as a piecewise constant code whose

cell representation Sn moreover admits a covering by polynomially many quasicubes, then {Sn}n∈N is in H.

Proof. If Sn is piecewise constant—with respect to n = n0 + · · · + nt−1, say—and Sn =
⋃m−1
i=0 Ci for

quasicubes Ci ⊂
∏t−1
i=0{0, . . . , ni}, then likewise Sn =

⋃m−1
i=0 Ci, where, for each i ∈ {0, . . . ,m− 1}, Ci is the

pullback of Ci. The result follows immediately from Lemma 3.8.

Theorem 3.10 is extremely powerful, and subsumes all hyperplane-covering constructions we’re aware of.
We immediately record the following corollary:

Corollary 3.11. If a family {Sn ⊂ {0, 1}n}n∈N is such that each Sn is a piecewise constant code with a cell

representation Sn consisting of only polynomially many filled cells, then {Sn}n∈N is in H.

Proof. Every cell is a quasicube (see Example 3.6); the result thus follows directly from Theorem 3.10.

We discuss specific consequences in the next subsection.
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3.2 Applications of the main theorem

We now apply Theorem 3.10 to a number of specific cases. Surprisingly, many natural boolean functions
f : {0, 1}n → {0, 1} have on-sets f−1(1) which satisfy the hypothesis of Theorem 3.10. We begin with the
following fundamental result:

Theorem 3.12. Σ2 ⊂ H.

Proof. Each code Sn := L ∩ {0, 1}n is piecewise constant with respect to the trivial partition n =
∑n−1
i=0 1

of Example 3.7. By hypothesis on L, each Sn is moreover coverable by polynomially many subcubes; these
are exactly the quasicubes with respect to n =

∑n−1
i=0 1, and the result follows from Theorem 3.10.

Concretely, each subcube C ⊂ Sn—of the form C =
{

(x0, . . . , xn−1) ∈ {0, 1}n
∣∣∣ ∧k−1

i=0 xci = 0
}

, say, for

some subsequence {c0, . . . , ck−1} ⊂ {0, . . . , n−1} (we assume that C contains the origin, by Lemma 2.1)—can

be exactly covered by the single hyperplane H : (x0, . . . , xn−1) 7→
∑k−1
i=0 xci , provided that q > n.

The following function appears in Goldreich [Gol04, § 7.2.1]:

Example 3.13. For even n, the function f : (x0, . . . , xn−1) 7→
∨n/2−1
i=0 (x2i ∧ x2i+1) returns true if and only

the bitwise AND of its argument’s even-indexed and odd-indexed substrings contains a 1. Alternatively, f
checks whether the sets represented by these even-indexed and odd-indexed substrings are non-disjoint. As
f is decided by a Σ2-circuit, we conclude from Theorem 3.12 that f is efficiently computable by hyperplanes.

In fact, f is piecewise constant even with respect to the coarser partition n =
∑n/2−1
i=0 2; its cell representation

under this partition is a union of n
2 quasicubes (each with one component bound to 2 and the rest free).

These n
2 quasicubes collectively cover 3

n/2 − 2
n/2—an exponentially large number in n—cells; we conclude

that the relative generality of Theorem 3.10 (over and above Corollary 3.11) conveys utility. Concretely, the
hyperplanes Hi : (x0, . . . , xn−1) 7→ x2i + x2i+1 − 2 (for i ∈

{
0, . . . , n2 − 1

}
) suffice to compute f (if q ≥ 3).

We write Sn for the set of symmetric functions on n variables (see e.g. [Weg87, § 3.4]).

Theorem 3.14. Each symmetric function f in Sn is coverable by at most n+ 1 hyperplanes.

Proof. By definition, each symmetric f ’s on-set is piecewise constant with respect to the partition n = n.
Because the entire cell array of this partition has just n+ 1 cells, the result follows from Corollary 3.11.

Concretely, it suffices to use the hyperplane Hi : (x0, . . . , xn−1) 7→
∑n−1
i=0 xi − i to cover each filled cell

i ∈ {0, . . . , n} (i.e., each i for which {x ∈ {0, 1}n | w(x) = i} ⊂ f−1(1)). This is correct so long as q > n.

Example 3.15. The majority function f : (x0, . . . , xn−1) 7→
∑n−1
i=0 xi ≥

⌈
n
2

⌉
is obviously symmetric; we

conclude from Theorem 3.14 that f−1(1) is coverable by at most n+ 1 hyperplanes (in fact,
⌊
n
2

⌋
+ 1 suffice).

Corollary 3.16. H 6⊂ AC0.

Proof. We refer to Example 3.15 and the fact that majority is not in AC0 (see [Weg87, § 11 Thm. 4.1]).

Example 3.17. For even n, the Hamming-weight comparator function f : (x0, . . . , xn−1) 7→
∑n/2−1
i=0 x2i −

x2i+1 ≥ 0 differs from majority by pre-composition with the affine bijection (x0, . . . , xn−1) 7→ (x0, 1 −
x1, . . . , xn−2, 1−xn−1). We conclude from Example 3.15 that f−1(1) can be covered using n

2 +1 hyperplanes.

The following function also appears in Goldreich [Gol04, § 7.2.1]:

Example 3.18. For even n, the function f : (x0, . . . , xn−1) 7→
∧n/2−1
i=0 (x2i ⊕ x2i+1) checks whether

its argument’s even-indexed and odd-indexed substrings are equal. By applying the affine-linear bijec-
tion (x0, . . . , xn−1) 7→ (x0, 1 − x1, . . . , xn−2, 1 − xn−1), we see that it’s enough to consider the function

f : (x0, . . . , xn−1) 7→
∧n/2−1
i=0 (x2i ⊕ x2i+1). This latter function f ’s on-set f−1(1) ⊂ {0, 1}n is piecewise

constant with respect to the partition n =
∑n/2−1
i=0 2, represented moreover by the single cell (1, . . . , 1) ∈∏n/2−1

i=0 {0, 1, 2}. Applying Lemma 3.8, we see that H : (x0, . . . , xn−1) 7→
∑n/2−1
i=0 3i ·(x2i + x2i+1 − 1) satisfies

f−1(1) = H ∩ {0, 1}n (at least if q ≥ 3
n/2). Interestingly, this hyperplane returns exactly the integer whose

balanced ternary representation is (x2i + x2i+1 − 1)
n/2−1
i=0 (this integer is 0 if and only if f(x) = 1).
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Example 3.19. Again for even n, we consider the integer comparison function f : (x0, . . . , xn−1) 7→∑n/2−1
i=0 2i · (x2i − x2i+1) > 0 (true if and only if the little-endian unsigned integers x0 and x1 represented

respectively by x’s even-indexed and odd-indexed substrings satisfy x0 > x1). By applying the affine bijec-
tion (x0, . . . , xn−1) 7→ (x0, 1 − x1, . . . , xn−2, 1 − xn−1), we see that it’s equivalent to consider the function

f : (x0, . . . , xn−1) 7→
∑n/2−1
i=0 2i · (x2i + x2i+1) ≥ 2

n/2 (true if and only if the sum x0 + x1 ≥ 2
n/2 overflows).

We argue first that this latter function f is such that f−1(1) is piecewise constant with respect to the

partition n =
∑n/2−1
i=0 2, and hence that Theorem 3.10 applies to f . Indeed, f is evaluated by the following

variant of a standard comparison circuit:

∨
f

C0

xn−1xn−2 xn−3xn−4

C1

xn−5xn−6

C2

· · ·

x1x0

Cn/2−1

Figure 1: A well-known boolean circuit evaluating whether two integers’ sum generates a carry.

We observe that each among the n
2 output wires of this circuit evaluates to true exactly on the pullback

of a quasicube (with respect to n =
∑n/2−1
i=0 2). Indeed, for each i ∈ {0, . . . , n2 − 1}, the wire labeled Ci of

the above circuit is exactly the pullback of the quasicube Ci ⊂
∏n/2−1
i=0 {0, 1, 2} defined by the trailing indices{

n
2 − 1− i, n2 − 1} ⊂ {0, . . . , n2 − 1

}
, respectively bound to the values (v0, . . . , vi) = (2, 1, . . . , 1). Each such

pullback is an intersection pattern, by Theorem 3.10; we conclude that f−1(1) is coverable by n
2 hyperplanes.

Applying a version of the “special case” of the proof of Lemma 3.8, we obtain the concrete expressions:

Hi : (x0, . . . , xn−1) 7→
∑
j<i

2j ·
(
xn−2·(j+1) + xn−2·(j+1)+1 − 1

)
+ 2i · (xn−2·(i+1) + xn−2·(i+1)+1 − 2)

for i ∈
{

0, . . . , n2 − 1
}

; these are correct so long as q ≥ 3
2 · 2

n/2. Analogous hyperplanes for the original
comparator f follow from an appropriate affine transformation. We note that these hyperplanes can be
evaluated on any input x ∈ {0, 1}n in O(n) total time, using an obvious expression-sharing scheme.

Example 3.20. In [CLS86, Fig. 6], Cohen, Lobstein and Sloane—using a piecewise constant construction—
introduce a new family of (2R+4, 12)R-codes (i.e., cardinality-12 codes S ⊂ {0, 1}2R+4 whose covering radius
is R). In particular, their construction establishes the upper-bound K(2R+ 4, R) ≤ 12 for each R ≥ 1 (i.e.,
there exist R-covering codes S ⊂ {0, 1}2R+4 of cardinality 12 or less). As of the publication of [CHLL97], 12
remains the best-known upper bound of K(2R+4, R) for each value R ∈ {1, . . . , 10} treated in the extensive
[CHLL97, Table 6.1] (this upper-bound is known to be tight only in the cases R ∈ {1, 2}).

The construction [CLS86, Fig. 6] uses the partition 2R + 4 = (2R − 2) + 3 + 3, and employs exactly 4
cells (w0, w1, w2) ∈ {0, . . . , 2R − 2} × {0, 1, 2, 3} × {0, 1, 2, 3} (namely (0, 1, 0), (0, 2, 3), (2R − 2, 3, 1) and
(2R − 2, 0, 2)). Corollary 3.11 implies that S can be covered by exactly 4 hyperplanes; these are correct so
long as the prime field order q ≥ (2R− 1) · 42.
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3.3 Upper limits on H’s size

In this section, we turn to negative results on the power of hyperplane-based computation.

Theorem 3.21. H ⊂ NC1.

Proof. We prove the theorem by an explicit construction. We fix a collection of hyperplanes {Hi}m−1
i=0 over

an n-bit prime q, and construct a corresponding fan-in 2 log-depth circuit.
We first express each individual hyperplane Hi as a log-depth boolean circuit. The linear combination

αi+αi,0 ·x0 + · · ·+αi,n−1 ·xn−1 evaluated by Hi, restricted to boolean inputs, is actually a subset sum (i.e.,
each αi,j is either present or absent). We thus set each xj as the select bit of a multiplexer with inputs the
n-bit string of 0s and αi,j (we recall that q is an n-bit prime). By [Vol99, Thm. 1.20], the “iterated addition”
of the n n-bit outputs of the multiplexers and the affine constant αi can be carried out using a log-depth
bounded fan-in circuit. The output of this circuit—namely, αi + αi,0 · x0 + · · · + αi,n−1 · xn−1 = Hi(x)—
is an integer of bit-length n + O(log n); we must reduce this number modulo q (actually, it’s enough to
check whether it’s a multiple of q). This is essentially [Vol99, Ex. 1.19 (a)], and can be done in log-depth
using Barrett’s modular reduction; in particular, we apply Menezes, van Oorschot, and Vanstone [MvOV97,
Alg. 14.42] to x using the radix b = 4. The resulting circuit uses only a constant number of shifts and
multiplications (which themselves can be carried out in log-depth; see [Vol99, Thm. 1.23]).

It remains to check whether any of the equalities Hi(x) ≡ 0 (mod q) is true (for i ∈ {0, . . . ,m − 1}).
This can be done using a tree of OR gates of depth O(logm), which is O(log n) if m is polynomial in n.

The construction of Theorem 3.21 is depicted in Figure 2.

Hi(x)
?≡ 0 (mod q)

+
(iterated addition gate)

x0

mux
0 1

0n αi,0

x1

mux
0 1

0n αi,1

xn−1

mux
0 1

0nαi,n−1

· · ·

· · ·

αi

?≡ 0 (mod q)

Figure 2: A log-depth, bounded fan-in boolean circuit evaluating an affine hyperplane.

Though we’re currently unable to prove it, we believe that the inclusion of Theorem 3.21 is strict. To
argue this, we begin with the following example, which is interesting in its own right; indeed, it describes a
family which does not satisfy the hypothesis of Theorem 3.10. The function f below (perhaps tellingly) is
called the “Achilles’ heel function” in the logic synthesis literature (see e.g. [BHMSV84, § 4.9]).

Example 3.22. For even n, the function f : (x0, . . . , xn−1) 7→
∧n/2−1
i=0 (x2i ∨ x2i+1) returns true if and

only if the bitwise OR of its argument’s even-indexed and odd-indexed substrings consists entirely of 1s.
Alternatively, f checks whether the union of the two subsets of {0, . . . , n2 −1} represented respectively by its
argument’s even-indexed and odd-indexed substrings equals the whole set {0, . . . , n2 − 1}. The function f is

in Π2; moreover, f is piecewise constant with respect to n =
∑n/2−1
i=0 2 (f is the complement of the function

of Example 3.13, up to a reflection of the cube).
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We show that f does not satisfy the hypothesis of Theorem 3.10. In fact, for any partition of n with
respect to which f becomes piecewise constant, its resulting cell representation requires exponentially many
quasicubes to cover. To prove this, we first argue that f is piecewise constant only with respect to n =∑n/2−1
i=0 2 (and its refinements). Indeed, we fix an arbitrary partition, say F , of {0, . . . , n − 1}, which

is not a refinement of {0, . . . , n − 1} =
⊔n/2−1
i=0 {2i, 2i + 1}, and assume for contradiction that f−1(1) is

piecewise constant with respect to F . By hypothesis on F , there exist elements j0 and j1 of {0, . . . , n− 1}
which belong to the same subset F ∈ F (say) but for which {j0, j1} 6= {2i, 2i + 1} holds for each i ∈
{0, . . . , n2 − 1}. Without loss of generality, we assume that both j0 and j1 are even. We treat separately the
cases {j0, j0 + 1, j1, j1 + 1} 6⊂ F and {j0, j0 + 1, j1, j1 + 1} ⊂ F . In the former case, we have jk + 1 6∈ F
for some k ∈ {0, 1}. Because the three components (xjk , xjk+1, xj1−k) attain the values (1, 0, 0) at some
appropriate element (x0, . . . , xn−1) ∈ f−1(1), we conclude that f−1(1)’s cell representation with respect
to F contains a cell for which the weights at both {j0, j1}’s and {jk + 1}’s respective subsets of F are
simultaneously less than full. It follows that f−1(1) contains all such vectors, including at least one for which
the components (xjk , xjk+1, xj1−k) attain the values (0, 0, 1). This contradicts the definition of f−1(1). We
now suppose that {j0, j0 + 1, j1, j1 + 1} ⊂ F . We let k ∈ {0, 1} be arbitrary, and note that the components
(xjk , xjk+1, xj1−k) attain the values (0, 1, 0) at some appropriate element of (x0, . . . , xn−1) ∈ f−1(1). We
conclude that f−1(1)’s cell representation with respect to F contains a cell whose weight at F is at least
two less than full. This implies that the components (xjk , xjk+1, xj1−k) also attain the values (0, 0, 1) at
some element (x0, . . . , xn−1) ∈ f−1(1), which again contradicts the definition of f−1(1). It thus remains

only to treat
⊔n/2−1
i=0 {2i, 2i+ 1} and its refinements. We suppose that F is a (possibly non-strict) refinement

of
⊔n/2−1
i=0 {2i, 2i + 1}; we write S for f−1(1)’s cell representation with respect to this partition. Because∣∣f−1(1)
∣∣ = 3

n/2, it suffices to argue that, for each quasicube C satisfying C ⊂ S, the pullback C of C satisfies

|C| ≤ 2
n/2. By hypothesis on F , each adjacent tuple {2i, 2i + 1} equals the disjoint union of either one or

two among F ’s subsets; moreover, by definition of f−1(1), at least one of these subsets’ components must
be bound for any quasicube C ⊂ S. Expanding cases, we see that each tuple {2i, 2i+ 1} contributes a factor
of at most 2 to the product expression defining C’s size (for i ∈ {0, . . . , n2 − 1}). This completes the proof.

I would like thank Jason Long for suggesting the consideration of this function.
It is also extremely interesting to ask whether the family f of Example 3.22 belongs to H. Is non-

membership in H would imply Π2 6⊂ H and hence AC0 6⊂ H. Intriguingly, extensive empirical evidence
indicates that for each n-bit prime field Fq (and, indeed, for any field), each affine hyperplane H ⊂ Fnq for

which H ∩ {0, 1}n ⊂ f−1(1) moreover satisfies H ∩ {0, 1}n ≤ 2
n/2. This fact, if true, would imply, as before,

that Π2 6⊂ H; it would also suggest a close connection in the negative direction between piecewise constant
codes and hyperplane coverings. We record this claim as a conjecture:

Conjecture 3.23. If an affine hyperplane H ⊂ Fnq satisfies H ∩ {0, 1}n ⊂ f−1(1), then H ∩ {0, 1}n ≤ 2
n/2.

We have been unable to prove or disprove Conjecture 3.23 despite significant effort.

4 Commitment-Consistent 2PC

In this section, we describe a hyperplane-based protocol for commitment-consistent secure two-party com-
putation, as well as a key subprotocol for commitment-consistent secure iterated modular multiplication.

4.1 Review of private multiplication

Our protocols make use of the ZKPOK ideal functionalities FDH
zk , FEqMsg

zk , FProd
zk , and FBitProof

zk already
discussed in Subsection 2.6 above.

Following Lindell, Nof and Ranellucci, [LNR18, § 2.3], we moreover recall the notion of a secure multi-
plication protocol which is “private, but not necessarily correct”.

FUNCTIONALITY 4.1 (FPrivMult—the underlying private multiplication functionality).
Players P0 and P1 and a prime q are fixed.
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• Upon receiving
(
multiply, (〈αi〉ν , 〈βi〉ν)

m′−1
i=0

)
from both parties Pν , FPrivMult proceeds as follows:

1: allocate a length-m′ output vector (〈γi〉ν)
m′−1
i=0 for each party ν ∈ {0, 1}.

2: for i ∈ {0, . . . ,m′ − 1} do
3: set γi := (〈αi〉0 + 〈αi〉1) · (〈βi〉0 + 〈βi〉1) (mod q).
4: randomly additively share γi = 〈γi〉0 + 〈γi〉1 (mod q).

FPrivMult sends the message
(
multiply, (〈γi〉ν)

m′−1
i=0

)
to Pν , for each ν ∈ {0, 1}.

Definition 4.2 (Lindell–Nof–Ranellucci [LNR18, § 2.3]). A protocol ΠPrivMult for Functionality 4.1 is pri-
vate if, for each C ∈ {0, 1}, each real-world nonuniform PPT adversary A corrupting PC , and each pair(
〈αi〉1−C , 〈βi〉1−C

)m′−1

i=0
and

(
〈α′i〉1−C , 〈β′i〉1−C

)m′−1

i=0
of inputs on the part of P1−C , the distributions describ-

ing A’s output in ΠPrivMult in case P1−C uses either of these inputs are computationally indistinguishable.

We now recall that FPrivMult can be instantiated privately, using a protocol of Doerner, Kondi, Lee, and
shelat [DKLs18, § VI. D.]. An issue arises from the fact that, in that particular protocol, P0 and P1 directly
submit the (vectors of) scalars they’d like to multiply componentwise, whereas, in Functionality 4.1, P0

and P1 only possess joint additive sharings of the desired multiplicands (that is, the functionality must first
reconstruct, and only then multiply). We accommodate this issue in the following way. Given any pair
αi = 〈αi〉0 + 〈αi〉1 and βi = 〈βi〉0 + 〈βi〉1 (say) of jointly held multiplicands, P0 and P1 can obtain additive
sharings of αi ·βi using 2 (simultaneous and vectorized) invocations of [DKLs18, § VI. D.], as we now argue.
Indeed, by the distributive law, αi · βi = (〈αi〉0 + 〈αi〉1) · (〈βi〉0 + 〈βi〉1) equals

〈αi〉0 · 〈βi〉0 + 〈αi〉0 · 〈βi〉1 + 〈αi〉1 · 〈βi〉0 + 〈αi〉1 · 〈βi〉1 .

P0 and P1 can locally compute the first and last terms 〈αi〉0 ·〈βi〉0 and 〈αi〉1 ·〈βi〉1, respectively. To obtain
additive sharings of the middle two terms, P0 and P1 can submit (〈αi〉0 , 〈βi〉0) and (〈βi〉1 , 〈αi〉1), respectively,
to [DKLs18, § VI. D.] (note the reversal of order). Upon obtaining the respective outputs (〈ηi〉0 , 〈ξi〉0) and
(〈ηi〉1 , 〈ξi〉1), say, P0 and P1 can return 〈αi〉0 ·〈βi〉0+〈ηi〉0+〈ξi〉0 and 〈αi〉1 ·〈βi〉1+〈ηi〉1+〈ξi〉1 (respectively).
By the above discussion, these outputs yield random shares of αi ·βi, as desired. I would like to thank Yehuda
Lindell for helping to clarify this point.

Using this argument, we thus obtain:

Theorem 4.3 (Doerner et al.). The protocol [DKLs18, § VI. D.]—used in the above way, with arity 2 ·m′—
yields an implementation of Functionality 4.1 which is private in the sense of Definition 4.2.

We finally make use the following functionality from Lindell, Nof and Ranellucci [LNR18, Func. 4.2].

FUNCTIONALITY 4.4 (FCheckDH—joint assessment of a Diffie–Hellman tuple).
Two players P0 and P1 are fixed, as well as an Fq-homomorphic encryption scheme (Gen,Enc,Dec).

• Upon receiving (init) from both parties, FCheckDH runs (pk, sk)← Gen(1λ) and outputs (key, pk).

• Upon receiving (check, A) from both parties, FCheckDH returns
(
check,Decsk(A)

?
= 0
)

to both.

The result [LNR18, Prop. 7.2] yields a secure instantiation of FCheckDH (or at least of its specialization to
the El Gamal scheme, which is secure under the DDH assumption):

Lemma 4.5 (Lindell–Nof–Ranellucci). The protocol [LNR18, Prot. 7.1] securely computes FCheckDH in the(
FRE

zk ,FDH
com-zk

)
-hybrid model.

Remark 4.6. Because our protocol has only two parties, we may slightly simplify the structure of the
initialization subprotocol [LNR18, Prot. 4.3] of [LNR18, Prot. 7.1]. Indeed, instead of requiring that all
parties invoke FRDL

com-zk, we may dictate that P0 go first, and that P0 alone commit to its proof; P1 must then
prove, but not commit. Precisely this approach is taken by [DKLs18, Prot. 2] (the only difference there
is that that sharing is multiplicative, as opposed to additive). An identical simplification can moreover be
carried out in steps 1. and 2. of [LNR18, Prot. 7.1].
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4.2 Secure iterated multiplication

We introduce the following key ideal functionality, for iterated secure modular multiplication which moreover
is consistent with pre-held ciphertexts. We actually present a variant which also multiplicatively randomizes
the resulting product (this randomization can be optionally removed, as we note in Remark 4.14 below).

Our iterated multiplication functionality works using ciphertexts which both parties know. To formally
capture the fact that both parties must collectively know these common ciphertexts, we add a committing
phase to our functionality, which distributes them.

FUNCTIONALITY 4.7 (FIterMult—commitment-consistent iterated multiplication functionality).
FIterMult involves parties P0 and P1 and an Fq-homomorphic encryption scheme (Gen,Enc,Dec).

• Upon receiving (init) from both parties, FIterMult forwards these messages to FCheckDH, and returns
the response (key, pk) to both parties.

• Upon receiving
(
commit, (Yi,ν)

m−1
i=0

)
from a party Pν , FIterMult forwards the message to P1−ν .

• Upon receiving
(
multiply; (〈yi〉ν , si,ν)

m−1
i=0

)
from both parties Pν , FIterMult executes:

1: randomly sample y ← Fq. . to omit re-randomization, replace this assignment with y := 1.
2: for i ∈ {0, . . . ,m− 1} do
3: for ν ∈ {0, 1} do

4: require Yi,ν
?
= Encpk(〈yi〉ν ; si,ν); else send (multiply-abort) to both parties and abort.

5: reconstruct yi := 〈yi〉0 + 〈yi〉1 (mod q).
6: overwrite y := y · yi (mod q).

7: output (multiply, y) to both parties.

We now show how to securely compute FIterMult in O(logm) rounds, by recursively applying ideas from
[LNR18, Prot. 4.7]. We make use of a private multiplication subprotocol ΠPrivMult, which “privately” computes
Functionality 4.1 in the sense of Definition 4.2; in practice, we use that of Doerner et al. [DKLs18, § VI. D.]
(see Theorem 4.3).

Our protocol, roughly, is a recursive variant of [LNR18, Prot. 4.7], which repetitively performs appropriate
parts of that protocol in a tree-like manner. In particular, its lines 8–10 below correspond to [LNR18,
Prot. 4.7 (1) – (2) (a)], and are performed once for each adjacent pair of shared elements in each layer of
the tree (the sum of [LNR18, Prot. 4.7 (2) (b)] is done “lazily”, and is implicit in line 8 of the next tree
layer). The lines 12–16 correspond to [LNR18, Prot. 4.7 (2) (c) – (4) (a)], and are carried out once for each
adjacent pair of tree elements whose parent node occupies an even index in its layer. The idea of this is that
the protocol anticipates the block 8–10 of the next recursive call, which requires full openings (〈y2i〉ν , s2i,ν)
of each even-indexed ciphertext Y2i (in the last iteration, where m′ = 1, the protocol must also anticipate
the final opening process of lines 24–26). Lines 24–26 correspond to [LNR18, Prot. 4.7 (4) (b) – (5)], and
are performed exactly once per tree, at the root. For notational convenience, we assume that m is a power
of 2 in the following protocol.

PROTOCOL 4.8 (ΠIterMult—commitment-consistent iterated multiplication protocol).
Our protocol involves players P0 and P1, an Fq-homomorphic encryption scheme (Gen,Enc,Dec), and a
private multiplication subprotocol ΠPrivMult.

Setup. Each player Pν submits (init) to FCheckDH, and stores the response (key, pk) from FCheckDH.

Commitment. Each player Pν sends (Yi,ν)
m−1
i=0 to P1−ν and receives (Yi,1−ν)

m−1
i=0 from P1−ν .

Multiplication. On input (〈yi〉ν , si,ν)
m−1
i=0

, each player Pν proceeds as follows:

1: for i ∈ {0, . . . ,m− 1} do
2: submit (prove, Yi,ν ; 〈yi〉ν , si,ν) to FEG

zk .
3: submit (verify, Yi,1−ν) to FEG

zk .
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4: procedure RecursiveMultiply
(

(〈yi〉ν , si,ν , Yi,ν , Yi,1−ν)
m−1
i=0

)
5: write m′ := m/2 and allocate the empty length-m′ vector

(
〈y′i〉ν , s′i,ν , Y ′i,ν , Y ′i,1−ν

)m′−1

i=0
.

6: conduct ΠPrivMult on the input (〈y2i〉ν , 〈y2i+1〉ν)
m′−1
i=0

; assign to
(
〈y′i〉ν

)m′−1

i=0
the resulting output.

7: for i ∈ {0, . . . ,m′ − 1} do
8: sample r′i ← Fq and set Y ′i,ν := 〈y2i〉ν · (Y2i+1,0 + Y2i+1,1) + Encpk(0; r′i).

9: send Y ′i,ν to P1−ν and submit
(
prove, Y ′i,ν , Y2i+1,0 + Y2i+1,1, Y2i,ν ; 〈y2i〉ν , r′i, s2i,ν

)
to FProd

zk .

10: receive Y ′i,1−ν from P1−ν and submit
(
verify, Y ′i,1−ν , Y2i+1,0 + Y2i+1,1, Y2i,1−ν

)
to FProd

zk .
11: if i is even then
12: temporarily stash the value Y ′i := Y ′i,0 + Y ′i,1.

13: sample s′i,ν ← Fq and overwrite Y ′i,ν := Encpk
(
〈y′i〉ν ; s′i,ν

)
.

14: send the new Y ′i,ν to P1−ν and submit
(
prove, Y ′i,ν ; 〈y′i〉ν , s′i,ν

)
to FEG

zk .

15: overwrite Y ′i,1−ν with the new value from P1−ν and submit (verify, Y ′i,1−ν) to FEG
zk .

16: submit (check, Y ′i − Y ′i,0 − Y ′i,1) to FCheckDH.

17: if m′ > 1 then return RecursiveMultiply
((
〈y′i〉ν , s′i,ν , Y ′i,ν , Y ′i,1−ν

)m′−1

i=0

)
.

18: else return
(
〈y′0〉ν , s′0,ν , Y ′0,ν , Y ′0,1−ν

)
.

19: assign
(
〈y′0〉ν , s′0,ν , Y ′0,ν , Y ′0,1−ν

)
← RecursiveMultiply

(
(〈yi〉ν , si,ν , Yi,ν , Yi,1−ν)

m−1
i=0

)
.

20: pick aν and rν randomly from Fq and encrypt Aν := Encpk(aν ; rν).
21: send Aν to P1−C and submit (prove, Aν ; aν , rν) to FEG

zk .
22: receive A1−ν from P1−C and submit (verify, A1−ν) to FEG

zk .
23: assign

(
〈y′0〉ν , s′0,ν , Y ′0,ν , Y ′0,1−ν

)
← RecursiveMultiply

(
(aν , rν , Aν , A1−ν) ‖

(
〈y′0〉ν , s′0,ν , Y ′0,ν , Y ′0,1−ν

))
.

24: send 〈y′0〉ν to P1−ν and submit
(
prove, pk, Y ′0,ν − Encpk(〈y′0〉ν ; 0); s′0,ν

)
to FDH

zk .

25: receive 〈y′0〉1−ν from P1−ν and submit
(
verify, pk, Y ′0,1−ν − Encpk(〈y′0〉1−ν ; 0)

)
to FDH

zk .
26: output 〈y′0〉0 + 〈y′0〉1 (mod q).

Theorem 4.9. If ΠPrivMult satisfies Definition 4.2 and (Gen,Enc,Dec) has indistinguishable multiple encryp-
tions, then Protocol 4.8 securely computes Functionality 4.7 in the

(
FDH

zk ,FEG
zk ,FCheckDH

)
-hybrid model.

Proof. We define an appropriate simulator. As a space-saving device, we stipulate throughout that, upon
the failure of any of its checks, S immediately sends (abort) to Ff , outputs what A outputs, and halts.

On the input (1λ, C), S operates as follows:

1. When A sends (init) to FCheckDH, S forwards (init) to FIterMult. When S receives (key, pk) from
FIterMult, S internally sends A (key, pk), as if from FCheckDH.

2. Upon receiving
(
commit, (Yi,1−C)

m−1
i=0

)
from FIterMult, S forwards the ciphertexts to A, as if from P1−C .

When A sends (Yi,C)
m−1
i=0 to P1−C , S forwards

(
commit, (Yi,C)

m−1
i=0

)
to FIterMult.

3. S plays the role of P1−C in the “multiplication” portion of Protocol 4.8; that is, S runs Algorithm 1.

We invoke a sequence of hybrid distribution families:

D0: Corresponds to IdealF,S,C .

D1: Same as D0, except that S is given P1−C ’s actual inputs
(
〈yi〉1−C , si,1−C

)m−1

i=0
, and supplies these,

instead of (0)
m−1
i=0 , in its main top-level invocation of Algorithm 1 in line 21.

D2: Same as D1, except that S skips line 28, and moreover P1−C is not given the output (multiply, y)
directly from FIterMult, but rather is given 〈y′0〉0 + 〈y′0〉1, as computed from S’s local state at line 32.

D3: Same as D2, except that S instead uses the assignments Y ′i,1−C ← 〈y2i〉1−C ·(Y2i+1,0 + Y2i+1,1)+Encpk(0)

in line 8, Y ′i,1−C ← Encpk
(
〈y′i〉1−C

)
in line 13, and A1−C ← Encpk(a1−C) in line 22.

D4: Corresponds to RealΠ,A,C .
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Algorithm 1 Simulator for Protocol 4.8

1: for i ∈ {0, . . . ,m− 1} do
2: when A submits (verify, Yi,1−C) to FEG

zk , check that the statement Yi,1−C is as received from FIterMult.
3: when A submits (prove, Yi,C ; 〈yi〉C , si,C) to FEG

zk , check Yi,C and the relation REG; store (〈yi〉C , si,C).

4: procedure RecursiveSimulate
((
〈yi〉C , 〈yi〉1−C , Yi,C , Yi,1−C

)m−1

i=0

)
5: write m′ := m/2 and allocate the empty length-m′ vector

(
〈y′i〉C , 〈y′i〉1−C , Y ′i,C , Y ′i,1−C

)m′−1

i=0
.

6: engage in ΠPrivMult with A on input
(
〈y2i〉1−C , 〈y2i+1〉1−C

)m′−1

i=0
; assign to

(
〈y′i〉1−C

)m′−1

i=0
the output.

7: for i ∈ {0, . . . ,m′ − 1} do
8: generate Y ′i,1−C ← Encpk(0) as a random encryption of 0; send Y ′i,1−C to A.

9: when A submits
(
verify, Y ′i,1−C , Y2i+1, Y2i,1−C

)
to FProd

zk :

• require that Y2i+1
?
= Y2i+1,0 + Y2i+1,1 and Y2i,1−C match the function’s passed-in arguments.

• require that the statement element Y ′i,1−C matches that just simulated and sent to A.

10: when A sends Y ′i,C to P1−C and submits
(
prove, Y ′i,C , Y2i+1, Y2i,C ; 〈y2i〉C , r′i, s2i,C

)
to FProd

zk :

• require that Y2i+1
?
= Y2i+1,0 + Y2i+1,1 and Y2i,C match the function’s passed-in arguments.

• require that the statement element Y ′i,C matches that which A just sent separately to P1−C .

• check manually that RProd holds on
(
Y ′i,C , Y2i+1, Y2i,C ; 〈y2i〉C , r′i, s2i,C

)
.

11: if i is even then
12: temporarily stash the value Y ′i := Y ′i,0 + Y ′i,1.
13: randomly encrypt and overwrite Y ′i,1−C ← Encpk (0); send the new Y ′i,1−C to A.

14: when A submits
(
verify, Y ′i,1−C

)
to FEG

zk , ensure that Y ′i,1−C matches that just sent to A.

15: when A sends Y ′i,C to P1−C and submits
(
prove, Y ′i,C ; 〈y′i〉C , s′i,C

)
to FEG

zk , check Y ′i,C and REG.
16: when A submits (check, Y ′i − Y ′i,0 − Y ′i,1) to FCheckDH:

• require thatA’s submitted statement indeed matches Y ′i −Y ′i,0−Y ′i,1 (as determined locally).

• require that A’s above-extracted 〈y′i〉C
?
= (〈y2i〉0 + 〈y2i〉1) · (〈y2i+1〉0 + 〈y2i+1〉1)− 〈y′i〉1−C .

17: else
18: store the intermediate value 〈y′i〉C := (〈y2i〉0 + 〈y2i〉1) · (〈y2i+1〉0 + 〈y2i+1〉1)− 〈y′i〉1−C .

19: if m′ > 1 then return RecursiveSimulate
((
〈y′i〉C , 〈y′i〉1−C , Y ′i,C , Y ′i,1−C

)m′−1

i=0

)
.

20: else return
(
〈y′0〉C , 〈y′0〉1−C , Y ′0,C , Y ′0,1−C

)
.

21: assign
(
〈y′0〉C , 〈y′0〉1−C , s′0,C , Y ′0,C , Y ′0,1−C

)
← RecursiveSimulate

(
(〈yi〉C , 0, Yi,C , Yi,1−C)

m−1
i=0

)
.

22: a1−C ← Fq randomly, but set A1−C ← Encpk(0) as a random encryption of 0; send A1−C to A.
23: when A submits (verify, A1−C) to FEG

zk with the right statement A1−C , respond (verify, 1).
24: when A sends AC to P1−C and submits (prove, AC ; aC , rC) to FEG

zk , ensure AC matches and REG holds.

25: concatenate
(
〈yi〉C , 〈yi〉1−C , Yi,C , Yi,1−C

)1
i=0

:= (aC , a1−C , AC , A1−C) ‖
(
〈y′0〉C , 〈y′0〉1−C , Y ′0,C , Y ′0,1−C

)
.

26: overwrite
(
〈y′0〉C , 〈y′0〉1−C , Y ′0,C , Y ′0,1−C

)
← RecursiveSimulate

((
〈yi〉C , 〈yi〉1−C , Yi,C , Yi,1−C

)1
i=0

)
.

27: send A’s extracted inputs as
(
multiply, (〈yi〉C , si,C)

m−1
i=0

)
to FIterMult; receive the output y from FIterMult.

28: using the output (multiply, y) received from FIterMult, overwrite 〈y′0〉1−C := y − 〈y′0〉C .
29: send 〈y′0〉1−C to A; if A aborts, send (abort) to FIterMult.

30: when A submits
(
verify, pk, Y ′0,1−C − Encpk

(
〈y′0〉1−C ; 0

))
to FDH

zk :

• require that A’s statement indeed matches Y ′0,1−C − Encpk
(
〈y′0〉1−C ; 0

)
(as determined locally).

31: when A sends 〈y′0〉C to P1−C and submits
(
prove, pk, Y ′0,C − Encpk (〈y′0〉C ; 0) ; s0,C

)
to FDH

zk :

• require that A’s statement indeed matches Y ′0,C − Encpk (〈y′0〉C ; 0) (as determined locally).

• check manually that FDH
zk holds on

(
pk, Y ′0,C − Encpk (〈y′0〉C ; 0) ; s0,C

)
(this implies 〈y′0〉C matches).

32: send (continue) to FIterMult and terminate.
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Lemma 4.10. If the underlying multiplication subprotocol ΠPrivMult is private in the sense of Definition 4.2,
then the distributions {D0(x0,x1, λ)}x0,x1,λ

and {D1(x0,x1, λ)}x0,x1,λ
are computationally indistinguishable.

Proof. A’s views in D0 and D1 differ only in the inputs S supplies to ΠPrivMult. This difference affects not
just S’s outermost execution of RecursiveSimulate (initiated at line 21), but also the subsequent recursive
subcalls, as well as the final execution (initiated at line 26); in these latter calls, S uses inputs which depend
on the outputs of prior calls. In any case, the lemma follows from our hypothesis on ΠPrivMult.

Lemma 4.11. The distributions {D1(x0,x1, λ)}x0,x1,λ
and {D2(x0,x1, λ)}x0,x1,λ

are identical.

Proof. A’s views in the two distributions are identical until its receipt of 〈y′0〉1−C in line 29; moreover, in
both distributions, this latter share differs by 〈y′0〉C from P1−C ’s output. It thus suffices to show that P1−C ’s
respective outputs y and 〈y′0〉0 + 〈y′1〉1 in the two distributions are distributed identically, conditioned on S’s

reaching line 29. Because a1−C is random, so is a0+a1; we conclude that y and (a0+a1)·
∏m−1
i=0 (〈yi〉0 + 〈yi〉1)

follow the same distribution. It thus in turn suffices to show that this latter quantity equals 〈y′0〉0 + 〈y′1〉1 (as
determined on line 32). This latter condition itself captures the correctness of the multiplication protocol,
and follows by induction from lines 16 and 18 (the base case comes from line 3 and the definition of D1).

Lemma 4.12. If Π′ = (Gen,Enc,Dec) has indistinguishable multiple encryptions, then the distribution
ensembles {D2(x0,x1, λ)}x0,x1,λ

and {D3(x0,x1, λ)}x0,x1,λ
are computationally indistinguishable.

Proof. We suppose for contradiction that there exists a distinguisher D, a polynomial p(Λ), and an infinite
collection of triples (x0,x1, λ) for each among which |Pr [D2(x0,x1, λ) = 1]− Pr [D3(x0,x1, λ) = 1]| ≥ 1

p(λ)

(strictly speaking, we must insist that infinitely many distinct values λ appear throughout these triples).
Without loss of generality—that is, after possibly flipping D’s output bit and constraining the set of triples
(x0,x1, λ)—we may assume that Pr [D3(x0,x1, λ) = 1]− Pr [D2(x0,x1, λ) = 1] ≥ 1

p(λ) for each triple.

We define an adversary A′ attacking the multiple encryptions experiment PubKLR-cpa
Π′,A′ as follows. For each

λ for which a triple exists, A′, using the advice (x0,x1), plays PubKLR-cpa
Π′,A′ (λ) in the following way, given

pk and access to the oracle LRpk,b(·, ·). A′ runs an instance of S, with the following modifications. Instead
of executing 1. above, A′ internally simulates FCheckDH giving A (key, pk), where pk is the experimenter’s
public key. Using P1−C ’s inputs, A′ computes Yi,1−C := Encpk

(
〈yi〉1−C , si,1−C

)
for each i ∈ {0, . . . ,m− 1},

and simulates P1−C sending A (Yi,1−C)
m−1
i=0 .

Moreover, A′ applies the following modifications to Algorithm 1. In line 8, A′ generates Y ′i,1−C ←
LRpk,b

(
0, 〈y2i〉1−C · (〈y2i+1〉0 + 〈y2i+1〉1)

)
using an oracle call. Similarly, in line 13, A′ obtains and overwrites

Y ′i,1−C ← LRpk,b
(
0, 〈y′i〉1−C

)
from the oracle (using the output

(
〈y′i〉1−C

)m′−1

i=0
it obtained from ΠPrivMult in

line 6). Finally, in line 22, A′ generates A1−C ← LRpk,b (0, a1−C) using a further oracle call. A′ proceeds
otherwise as specified in D2 and D3, and runs D on the resulting output. A′ outputs whatever D outputs.

If the experimenter’s bit b = 0, then A’s view in its simulation by A′ clearly matches its view in D2;,
if b = 1, then A’s view matches its view in D3. Indeed, we note in particular that, in D3, the distribution
of Y ′i,1−C ← 〈y2i〉1−C · (Y2i+1,0 + Y2i+1,1) + Encpk(0) is exactly that of a random encryption of 〈y2i〉1−C ·
(〈y2i+1〉0 + 〈y2i+1〉1).

We conclude that:

Pr
[
PubKLR-cpa

Π′,A′ (λ) = 1
]

=
1

2
·
(

Pr
[
A′
(
PubKLR-cpa

Π′,A (λ)
)

= 0 | b = 0
]

+ Pr
[
A′
(
PubKLR-cpa

Π′,A′ (λ)
)

= 1 | b = 1
])

=
1

2
· (Pr[D(D2(x0,x1, λ)) = 0] + Pr [D(D3(x0,x1, λ)) = 1])

=
1

2
· (1− Pr[D(D2(x0,x1, λ)) = 1] + Pr [D(D3(x0,x1, λ)) = 1])

=
1

2
+

1

2
· (Pr [D(D3(x0,x1, λ)) = 1]− Pr[D(D2(x0,x1, λ)) = 1]) .

≥ 1

2
+

1

2 · p(λ)
,

where the last step is exactly our hypothesis on D. This inequality, which holds for infinitely many λ,
contradicts our assumption that (Gen,Enc,Dec) has indistinguishable multiple encryptions.
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Lemma 4.13. The distributions {D3(x0,x1, λ)}x0,x1,λ
and {D4(x0,x1, λ)}x0,x1,λ

are identical.

Proof. It remains to argue that S’s abort conditions in D3 match those employed by P1−C and the various
functionalities in D4 (i.e., in the real world). This fact is essentially self-evident, except perhaps at S’s
check in line 16. In that line, S proceeds if and only if A’s extracted message 〈y′i〉C and S’s output 〈y′i〉1−C
from ΠPrivMult add to the “correct” product, itself computed using certain quantities memoized from prior
executions. We claim that S’s abort condition here is equivalent to FCheckDH’s. Because 〈y′i〉C opens the
overwritten Y ′i,C by definition of REG (see line 15) and 〈y′i〉1−C opens the overwritten Y ′i,1−C by construction
(see the definition of D3), this claim in turn is equivalent to that whereby the message of Y ′i is the product
expression (〈y2i〉0 + 〈y2i〉1) · (〈y2i+1〉0 + 〈y2i+1〉1). By the construction of the summands Y ′i,0 and Y ′i,1 of Y ′i
and the definition of RProd, this fact itself holds so long as 〈y2i+1〉0+〈y2i+1〉1 is the message of Y2i+1,0+Y2i+1,1.
This latter fact again holds by an inductive argument. Indeed, we refer to the check 18 of the prior recursive
call, together with an identical product argument, and the inductive hypothesis. The base case again holds
by virtue of the supplied inputs (see line 3 and the definition of D1).

We complete the proof upon combining Lemmas 4.10, 4.11, 4.12, and 4.13.

Remark 4.14. To omit the re-randomization step of line 1 of FIterMult, we may simply skip Protocol 4.8’s
lines 20–23. Similarly, the simulator S would correspondingly skip lines 22–26 of Algorithm 1.

Remark 4.15. Interestingly, Protocol 4.8 uses the odd-indexed components of the initial randomness vector
(si,ν)

m−1
i=0 only as witnesses for FEG

zk in the first line, and nowhere else. The body of RecursiveMultiply itself
never uses the odd-indexed randomnesses submitted to it, and in fact declines to populate them altogether
in the recursive inputs it prepares. This phenomenon owes to the fact that the “product” functionality FProd

zk

treats its arguments asymmetrically, and in particular requires the message and randomness only of one of
its “multiplicands”. Protocol 4.8 could, of course, execute the reconstruction block 12–16 at every—and not
just every even—index i, but the effort so exerted would be wasted.

Remark 4.16. Actually, only the odd-indexed initial inputs 〈yi〉0 and 〈yi〉1 need to be treated in Protocol
4.8’s lines 2–3 (see also lines 2–3 of Algorithm 1). Indeed, the even-indexed values appear anyway, in lines
9–10 (see also lines 9–10 of Algorithm 1), where they’re submitted as witnesses to RProd; this relation in
particular implies REG. In fact, by the same reasoning, we may eliminate entirely the FEG

zk proofs from lines
21 and 22 of Protocol 4.8; we preserve these above essentially to simplify our exposition.

Remark 4.17. We contrast Lemma 4.13 with the security argument [LNR18, Thm. B.1, Mult., 9. (b)].
There, to simulate FCheckDH, S essentially checks (in our notation) whether A’s extracted witness 〈y′i〉C and
S’s output 〈y′i〉1−C from ΠPrivMult add to the correct output (as discerned directly from the functionality).
Our S lacks this recourse, as the element to which these quantities “should” add is, in our case, generally
(i.e., except in the last execution) some intermediate value unavailable from the functionality. The content
of Lemma 4.13, then, is essentially that S can nonetheless correctly emulate FCheckDH’s abort behavior on
the basis solely of both parties’ initial inputs and its own outputs in ΠPrivMult. Indeed, having extracted

A’s initial inputs (〈yi〉C)
m−1
i=0

in line 3 and given P1−C ’s inputs
(
〈yi〉1−C

)m−1

i=0
, S can exactly determine the

message of each intermediate sum Y ′i . This latter calculation requires a recursive memoization, aided by the
induction-preserving step in line 18. In fact, each initial pair (〈yi〉0 , 〈yi〉1) can influence as many as Θ(logm)
memoized expressions before it is used to check some opening 〈y′i〉C (e.g., consider the case i = m− 1).

4.3 Main protocol

We now give our main protocol for Functionality 2.8. We assume that a particular instance of that
functionality—that is, a boolean function f : {0, 1}n → {0, 1}—has been fixed.

In order to simplify its exposition, we implement Protocol 4.18’s “commitment” consistency using homo-
morphic encryption. We could just as well have used a homomorphic commitment scheme (compare Examples
2.19 and 2.20). Informally, we repurpose our encryption scheme as a perfectly binding commitment scheme.
Our encryption-based approach makes Protocol 4.18’s compatibility with Zether [BAZB20] and Anonymous
Zether [Dia21] somewhat more immediate, though the approaches are philosophically analogous.
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PROTOCOL 4.18 (Main protocol).
We fix players P0 and P1, an Fq-homomorphic encryption scheme (Gen,Enc,Dec), and a covering

f−1(1) =
⋃m−1
i=0 Hi ∩ {0, 1}n using Fq-hyperplanes.

Setup. Each Pν submits (init) to FIterMult, and stores the response (key, pk).

Commitment. Each party Pν runs (pkν , skν)← Gen(1λ) and encrypts Aν ← Encpkν

(∑n/2−1
i=0 2i · xν,i

)
.

Pν sends (pkν , Aν) to P1−ν and receives (pk1−ν , A1−ν) from P1−ν .

Evaluation. On input xν =
(
xν,0, . . . , xν,n/2−1

)
∈ {0, 1}n/2, Pν executes the following steps:

1: for i ∈
{

0, . . . , n2 − 1
}

do
2: randomly additively secret-share xν,i = 〈xν,i〉0 + 〈xν,i〉1 in Fq.
3: sample rν,i,ν ← Fq and encrypt Aν,i := Encpk(xν,i; rν,i,ν).
4: send Aν,i and 〈xν,i〉1−ν to P1−ν , and submit (prove, pk,Aν,i;xν,i, rν,i,ν) to FBitProof

zk .

5: locally write rν,i,1−ν := 0, Aν,i,1−ν := Encpk
(
〈xν,i〉1−ν ; 0

)
, and Aν,i,ν := Aν,i −Aν,i,1−ν .

6: receive A1−ν,i and 〈x1−ν,i〉ν from P1−ν , and submit (verify, pk,A1−ν,i) to FBitProof
zk .

7: locally write r1−ν,i,ν := 0, A1−ν,i,ν := Encpk
(
〈x1−ν,i〉ν ; 0

)
, and A1−ν,i,1−ν := A1−ν,i −A1−ν,i,ν .

8:

9: submit
(
prove, pkν , pk,Aν ,

∑n/2−1
i=0 2i ·Aν,i;xν , rν ,

∑n/2−1
i=0 2i · rν,i,ν

)
to FEqMsg

zk .

10: submit
(
verify, pk1−ν , pk,A1−ν ,

∑n/2−1
i=0 2i ·A1−ν,i

)
to FEqMsg

zk .

11: evaluate the hyperplanes (Hi)
m−1
i=0 on your plaintexts and the opposite party’s ciphertexts; i.e., set:

(〈yi〉ν , si,ν)
m−1
i=0

:=
(
Hi

((
〈x0,i〉ν , r0,i,ν

)
,
(
〈x1,i〉ν , r1,i,ν

)n/2−1

i=0

))m−1

i=0
, (1)

(Yi,1−ν)
m−1
i=0 :=

(
Hi ((A0,i,1−ν) , (A1,i,1−ν))

n/2−1
i=0

)m−1

i=0
. (2)

12: submit
(
commit, (Encpk (〈yi〉ν ; si,ν))

m−1
i=0

)
to FIterMult.

13: upon receiving
(
commit, (Yi,1−ν)

m−1
i=0

)
from FIterMult, ensure that the ciphertexts match those of (2).

14: submit
(
multiply, (〈yi〉ν , si,ν)

m−1
i=0

)
to FIterMult, and receive the output y.

15: output y
?
= 0.

Theorem 4.19. If (Gen,Enc,Dec) has indistinguishable multiple encryptions, then Protocol 4.18 securely

computes Functionality 2.8 in the
(
FBitProof

zk ,FEqMsg
zk ,FIterMult

)
-hybrid model.

Proof. We first define an appropriate simulator. We stipulate as before that, before aborting upon a failed
check, S sends (abort) to Ff and outputs what A outputs.
S operates as follows, given (1λ, C,xC):

1. When A sends (init) to FIterMult, S runs (pk, sk)← Gen(1λ), and sends A (key, pk) as if from FIterMult.

2. S generates (pk1−C , sk1−C)← Gen(1λ) and simulates A1−C ← Encpk1−C (0) as a random encryption of
0. S internally simulates P1−C giving A (pk1−C , A1−C). S receives (pkC , AC) from A.

3. S randomly simulates the ciphertexts A1−C,i ← Encpk(0), and samples the “shares” 〈x1−C,i〉C ← Fq
randomly; S sends these internally to A. To each message (verify, pk,A1−C,i), S responds (verify, 1).
Upon A’s sending AC,i and 〈xC,i〉1−C to P1−C and (prove, pk,AC,i;xC,i, rC,i,C) to FBitProof

zk , S ensures

that the ciphertexts AC,i match, and that RBitProof (pk,AC,i;xC,i, rC,i,C) (for each i ∈
{

0, . . . , n2 − 1
}

).

4. Upon A’s message
(
verify, pk1−C , pk,A1−C ,

∑n/2−1
i=0 2i ·A1−C,i

)
to FEqMsg

zk , S ensures that the state-

ment matches the appropriate previously received or simulated quantities, and responds (verify, 1).
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Upon A’s message
(
prove, pkC , pk,AC ,

∑n/2−1
i=0 2i ·AC,i;xC , rC ,

∑n/2−1
i=0 2i · rC,i,C

)
to FEqMsg

zk , S en-

sures that its statement matches all prior quantities, and checks that the relation REqMsg holds.

5. Using the values AC,i and 〈xC,i〉1−C A sent and the values A1−C,i and 〈x1−C,i〉C S simulated, S, re-

derives each ciphertext AC,i,C := AC,i−Encpk
(
〈xC,i〉1−C ; 0

)
and A1−C,i,C := Encpk

(
〈x1−C,i〉C ; 0

)
(as

P1−C would) and A1−C,i,1−C := A1−C,i − Encpk
(
〈x1−C,i〉C ; 0

)
and AC,i,1−C := Encpk

(
〈xC,i〉1−C ; 0

)
(as PC would). Using these and (2), S manually recomputes the ciphertexts (Yi,C)

m−1
i=0 and (Yi,1−C)

m−1
i=0 .

6. S sends A
(
commit, (Yi,1−C)

m−1
i=0

)
, as if from FIterMult. When A submits

(
commit, (Yi,C)

m−1
i=0

)
to

FIterMult, S ensures that the ciphertexts in A’s message match those which S just computed above.

7. When A submits
(
multiply, (〈yi〉C , si,C)

m−1
i=0

)
to FIterMult, S ensures that Yi,C

?
= Encpk(〈yi〉C ; si,C)

for each i ∈ {0, . . . ,m− 1}. If if this check fails, S sends (multiply-abort) to A and halts.

8. S submits (commit,x′C) and (evaluate) to Ff , where x′C :=
(
xC,0, . . . , xC,n/2−1

)
; S receives

(evaluate, v), where v ∈ {0, 1}. S sets y ← Fq or y := 0 accordingly as v = 0 or v = 1, and
simulates FIterMult giving A (multiply, y). If A sends (abort) to FIterMult, then S sends (abort) to Ff .
Otherwise, S sends (continue) to Ff , who releases v to P1−C . S outputs whatever A outputs.

We prove the theorem by means of a sequence of hybrid distribution families.

D0: Corresponds to IdealF,S,C .

D1: Same as D0, except S is given P1−C ’s input x1−C , and the ideal P1−C ’s output is determined not using
(evaluate, v) from the functionality, but rather by S, who, in step 8. above, interleaves x′C and x1−C

to obtain v := f(x), assigns y ← Fq or y := 0 accordingly as v = 0 or v = 1, and gives P1−C y
?
= 0.

D2: Same as D1, except S, using P1−C ’s actual input x1−C =
(
x1−C,0, . . . , x1−C,n/2−1

)
, sets A1−C,i ←

Encpk(x1−C,i) for each i ∈
{

0, . . . , n2 − 1
}

in step 3.

D3: Same as D2, except S moreover sets A1−C ← Encpk1−C

(∑n/2−1
i=0 2i · x1−C,i

)
in step 2. above.

D4: Corresponds to RealΠ,A,C .

Lemma 4.20. The distribution ensembles {D0(x0,x1, λ)}x0,x1,λ
and {D1(x0,x1, λ)}x0,x1,λ

are statistically
indistinguishable.

Proof. These distributions differ only in how P1−C ’s output is determined; it’s v in D0 and y
?
= 0 in D1.

These quantities in turn differ only if v = 0 but S draws the unlucky sample y = 0 randomly from Fq. More
formally, for each v ∈ {0, 1}, the difference |Pr [P1−C (D0(x0,x1, λ)) = v]− [P1−C (D1(x0,x1, λ)) = v]| is at
most 1

q ∈ O
(

1
2λ

)
, which is negligible.

Lemma 4.21. If Π′ = (Gen,Enc,Dec) has indistinguishable multiple encryptions, then the distribution
ensembles {D1(x0,x1, λ)}x0,x1,λ

and {D2(x0,x1, λ)}x0,x1,λ
are computationally indistinguishable.

Proof. We fix as before a distinguisher D, a polynomial p(Λ), and an infinite collection of triples (x0,x1, λ)
for which |Pr [D1(x0,x1, λ) = 1]− Pr [D2(x0,x1, λ) = 1]| ≥ 1

p(λ) ; we again assume without loss of generality

that Pr [D2(x0,x1, λ) = 1]− Pr [D1(x0,x1, λ) = 1] ≥ 1
p(λ) holds for each triple.

We again define an adversary A′ attacking the multiple encryptions experiment PubKLR-cpa
Π′,A′ . For each λ for

which a triple exists, A′, on the advice (x0,x1) and given pk and access to the oracle LRpk,b(·, ·), A′ initiates
the following variant of S. In step 1. above, A′ simulates the message (key, pk) to A as if from FIterMult, using
the experimenter’s public key. In step 2., S sets (pk1−C , sk1−C) ← Gen(1λ) and A1−C ← Encpk1−C (0) as
usual. In step 3., A′ constructs A1−C,i ← LRpk,b (0, x1−C,i) using an oracle call, for each i ∈

{
0, . . . , n2 − 1

}
.

A′ proceeds otherwise as in D1 and D2, and runs D on the resulting output. A′ outputs whatever D outputs.
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If the experimenter’s bit b = 0 or b = 1, then the joint distribution of A’s and P1−C ’s outputs—that is,
the distribution of D’s input—exactly matches D1 or D2, respectively. We conclude as before that:

Pr
[
PubKLR-cpa

Π′,A′ (λ) = 1
]

=
1

2
·
(

Pr
[
A′
(
PubKLR-cpa

Π′,A (λ)
)

= 0 | b = 0
]

+ Pr
[
A′
(
PubKLR-cpa

Π′,A′ (λ)
)

= 1 | b = 1
])

=
1

2
· (Pr[D(D1(x0,x1, λ)) = 0] + Pr [D(D2(x0,x1, λ)) = 1])

=
1

2
· (1− Pr[D(D1(x0,x1, λ)) = 1] + Pr [D(D2(x0,x1, λ)) = 1])

=
1

2
+

1

2
· (Pr [D(D2(x0,x1, λ)) = 1]− Pr[D(D1(x0,x1, λ)) = 1]) .

≥ 1

2
+

1

2 · p(λ)
,

where the last step is our hypothesis on D. This again contradicts our assumption that (Gen,Enc,Dec) has
indistinguishable multiple encryptions.

Lemma 4.22. If Π′ = (Gen,Enc,Dec) has indistinguishable multiple encryptions, then the distribution
ensembles {D2(x0,x1, λ)}x0,x1,λ

and {D3(x0,x1, λ)}x0,x1,λ
are computationally indistinguishable.

Proof. We define an adversary A′ attacking PubKLR-cpa
Π′,A′ as above; this lemma is essentially the same as

Lemma 4.21, but applied to P1−C ’s initial ciphertext A1−C in step 2. In this reduction, A′ generates
(pk, sk)← Gen(1λ) in step 1. in the usual way, and internally sends A (key, pk) as if from FIterMult. A′ uses

the experimenter’s public key as pk1−C in step 2., generates A1−C ← LRpk1−C ,b
(

0,
∑n/2−1
i=0 2i · x1−C,i

)
using

an oracle call, and internally gives A (pk1−C , A1−C) as if from P1−C . Elsewhere, A′ proceeds as in D2 and
D3. A′ runs the distinguisher D on the resulting output, and returns whatever D does. If the experimenter’s
bit b equals 0 or 1, then D’s input is distributed exactly as D2 and D3, respectively; the lemma follows
exactly as Lemma 4.21.

Lemma 4.23. The distributions {D3(x0,x1, λ)}x0,x1,λ
and {D4(x0,x1, λ)}x0,x1,λ

are identical.

Proof. These distributions “differ” only in that P1−C ’s output is determined using v := f(x) in D3 and by
FIterMult in D4 (i.e., in the real world). This lemma captures the correctness of the protocol, and follows

from the condition f−1(1) =
⋃m−1
i=0 Hi ∩ {0, 1}n. Indeed, S’s input x and FIterMult’s inputs (〈yi〉0 , 〈yi〉1)

m−1
i=0

are related by the hyperplane expressions (1) in any successful run of the protocol. By the hypothesis

f−1(1) =
⋃m−1
i=0 Hi ∩ {0, 1}n, v = 1 if and only if 〈yi∗〉0 + 〈yi∗〉1 = 0 for some i∗ ∈ {0, . . . ,m− 1}. It follows

that S’s simulated output distribution and FIterMult’s real-world output distribution are identical.

Combining Lemmas 4.20, 4.21, 4.22, and 4.23, we conclude the proof of the theorem.

Remark 4.24. The steps 12 and 13 essentially facilitate formal compliance with the interface of FIterMult,
and can be omitted in a real-life implementation of Protocol 4.18. More concretely, the “commitment”
phase of Protocol 4.8—as well as that protocol’s lines 2–3—can be omitted when Protocol 4.8 serves as a
subprotocol within Protocol 4.18. As proving this fact would require breaking our abstractions, we simply
note it here informally. Indeed, each party Pν computes the opposite party’s ciphertexts (Yi,1−ν)

m−1
i=0 in

(2). If, instead of exchanging and mutually validating these ciphertexts, the parties simply proceeded with
Protocol 4.8, then any discrepancy would necessarily emerge—and induce an abort—in lines 9 and 10 of that
protocol. Theoretically speaking, lines 2 and 3 are unnecessary when Protocol 4.8 resides within Protocol
4.18, as the simulator of that latter protocol can independently compute the messages of A’s ciphertexts.

Remark 4.25. As each player Pν in Protocol 4.18 invokes FBitProof
zk

n
2 times, we could have replaced that lat-

ter ideal functionality with a “vectorized” variant; such a functionality can moreover be securely instantiated
with O(log n)-sized proofs, using aggregated Bulletproofs [BBB+18, § 4.3]. Because our protocol requires
that the Θ(n) statements A0,i and A1,i be exchanged regardless, we have elected not to use Bulletproofs,
which are slightly more computationally costly in practice than the standalone bit-proofs of [GK15, Fig. 1].
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4.4 Efficiency

In this subsection, we describe the efficiency of Protocols 4.8 and 4.18, both theoretical and concrete. We
present a full implementation of both protocols, including all required zero-knowledge proofs (summarized
in Subsection 2.6) and the multiplication subprotocol of Doerner et al. [DKLs18, § VI. D.] (see Theorem
4.3). The entire implementation comprises about 2,500 lines of Go code. About 1,000 among these lines
constitute the multiplication subprotocol; 500 or so more serve zero-knowledge proofs. Protocols 4.8 and
4.18 occupy the remaining 1,000 lines; among these, the former protocol represents the significant majority.
Our implementation is single-threaded; certain parts could in principle be parallelized.

We take (G, q, g) throughout our implementation to be the secp256k1 elliptic curve group, defined in
[Bro10, § 2.4.1]. The group order q is a 256-bit prime. We use the implementation of that curve in Go’s
btcec package. Throughout, we set (Gen,Enc,Dec) to be the El Gamal scheme over (G, q, g) (see Example
2.6 above).

We benchmarked our protocol by running both players as separate processes on a single 2019 MacBook
Pro (with a 2.6 GHz 6-Core Intel Core i7 processor), where moreover all traffic was tunneled through a
WAN. “Wall time” reflects the time the protocol took over this WAN, whose upload and download speeds
were respectively clocked at around 600 Mbps and 200 Mbps (this time can be slightly larger for the player
who computes last; we consistently reported the larger time). The “elliptic curve multiplications” column
counts the number of curve scalar multiplications each party must compute throughout its executing the
protocol. “Bytes sent” refers to the number of bytes which each party must send the other throughout the
course of its running the protocol. The parties in fact must send each other different amounts, because of
their asymmetric roles in [DKLs18, § VI. D.]. The difference between these amounts ranges from a factor of
10% in the case m = 8 to about 30% when m = 64; we report the larger quantity in each benchmark. As we
work in the two-party setting, we don’t report “rounds”, but rather the total number of messages sent (by
either party to the other). This simplifies the exposition, and also reflects certain simplifications we apply
in “commit-then-prove” scenarios (e.g., see Remark 4.6). We don’t report the costs of our protocol’s setup
and key-generation phases, as these are identical to those of [DKLs18] and [LNR18].

m EC Multiplications Bytes Sent Total Messages Wall Time

8 397 378 KB 28 1,048 ms

16 651 749 KB 34 1,626 ms

32 1,259 1,491 KB 40 2,267 ms

64 2,475 2,972 KB 46 3,706 ms

asymp. Θ(m) Θ(m) Θ(logm) Θ(m)

Table 1: Costs of Protocol 4.8, for different m.

Our benchmarks for Protocol 4.18 specialize that latter protocol to the comparator function of Example
3.19. We note that that function—which compares two n

2 -bit integers—can be covered using m = n
2 hyper-

planes; we recall finally that these can be evaluated in O(n) total time. We note that the majority of the
complexity of Protocol 4.18, in most measures, comes from its multiplication portion (namely, Protocol 4.8).

n EC Multiplications Bytes Sent Total Messages Wall Time

16 550 380 KB 30 1,261 ms

32 1,038 754 KB 36 1,641 ms

64 2,014 1,501 KB 42 2,442 ms

128 3,966 2,991 KB 48 3,945 ms

asymp. Θ(n) Θ(n) Θ(log n) Θ(n)

Table 2: Costs of Protocol 4.18 (specialized to the function of Example 3.19), for different n.
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