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Abstract Factorization methods like P−1, P+1, ECM have a stage which

deals with primes of a ± b form, where a + b and a − b are processed by a

single operation. Selecting a and b such that both a+ b and a− b are prime

is called ‘prime pairing‘ and can significantly improve performance of the

stage. This paper introduces new methods of pairing, which in some cases

find pairs for up to 99.9% of primes in a range. A practical algorithm and

its implementations are presented.

1 Introduction

The basic idea behind factorization methods like P−1, P+1, ECM is the same, and can be described as

hoping that a finite abelian group specific to a factor has smooth order (an order composed of prime powers

smaller than a chosen bound B). Using additive notation and · operator as scalar multiplication (repeated

group operation), we can describe all methods with the same formulas.

A factorization attempt starts with a generator G, which is multiplied by all prime powers below B. If

the group order for some factor is B-smooth, then

X(B) =

 ∏
pk<B

pk

 ·G ≡ 0 ·G (mod factor)

Usually, it is trivial to recover the factor from X by GCD or impossible division. If the order is not B-smooth

one can either increase B or attempt the so-called stage 2 in hope that only one prime in the group order is

larger than B. Let’s define B1 and B2 as the bounds of two-stage factorization attempt, B1 < B2. In stage

1 compute X = X(B1). In stage 2 compute p ·X for each prime in (B1, B2) interval and try to recover a

factor from each p ·X value.

Observe that if p ·X ≡ 0 ·G (mod factor) and p = a− b, then

a ·X = (p + b) ·X = p ·X + b ·X ≡ b ·X (mod factor)

This allows to perform stage 2 very efficiently. Instead of computing p · X, only look for the case when it

turns to 0 ·G. Select constant D and let p = iD − r. Precompute all r ·X, and iterate through all iD ·X.

For each prime p, (i− 1)D < p < iD test if iD ·X ≡ r ·X (mod factor). For the purpose of this paper we

call this set of primes a D-section.

In most cases it’s possible to define an abs() function such that abs(−b · X) = abs(b · X). This is

inherent property of P+1 method, one of coordinates of ECM has this property too, and it can be achieved

rather inexpensively in P−1 method∗. As a result, abs(iD · X) ≡ abs(r · X) (mod factor) when either

(iD + r) ·X ≡ 0 ·G (mod factor) or (iD− r) ·X ≡ 0 ·G (mod factor). Testing for one tests the other too.

∗Or P−1 stage 2 can be outright replaced by P+1 stage 2. [1, Section 5]
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The choice of D affects the size of precomputed set {r ·X}, which is exactly ϕ(D). If D is composed of

small primes, like D = 2 · 3 · 5 · 7 = 210, the precomputed set is relatively small, ϕ(210) = 48. We consider

the application of this paper to be the factoring of big numbers (more than a million decimal digits). For

such numbers the size of the precomputed set becomes an issue. Residues modulo a leading edge Mersenne

prime candidate can take up to 50MB of system memory when stored in a form suitable for FFT-based

multiplication. The general assumption is that due to limitations of available memory, D should be less than

1000.

If more memory is available one should consider alternative approaches to performing stage 2. So-called

“FFT continuation” [2] tests all numbers in (B1, B2) interval (not only primes), but does it very efficiently.

It was implemented in GMP-ECM [3] with great success.

2 Pairing

There are several conditions for primes p and q to be considered a pair (p, q):

p + q

2
≡ 0 (mod D),

p− q

2
∈ {r}, p ≡ −q (mod D)

The last condition divides primes into 1
2ϕ(D) residue classes. Pairs can be made only inside the same class.

Consequently, a prime can be paired only with one prime in the previous D-section and one in the next

D-section, which seriously limits the probability of successful pairing. One can increase this probability by

adding (r+D)·X, (r+2D)·X, ..., (r+(L−1)D)·X to precomputed set {r ·X}. Doing so provides 2L pairing

opportunities for each prime. The downside is that the size of precomputed set increases significantly.

Montgomery in [1, Section 4.2] presents an algorithm which builds pairing with D,L parameters. It’s a

simple greedy algorithm that iterates over an ordered set of primes and selects the smallest possible match

for each prime. Despite its simplicity, the algorithm finds the best solution. Because primes are ordered and

locked in their residue classes, the smallest match is always the best option.

We take Montgomery’s algorithm as a starting point and present methods to improve on it.

2.1 Relocatable primes

Since the goal of stage 2 is to test whether a single prime p in (B1, B2) interval is the final divisor of the

group order, one does not need to test exactly p ·X, the same result could be obtained by cp ·X = c(p ·X).

One can multiply a prime by a constant c for convenience of processing. The conditions here are that the

product should be relatively prime with D and the product should not exceed B2. We call such primes

‘relocatable primes‘. All primes between B1 and B2

c0
can be relocated, where c0 is the smallest constant such

that gcd(D, c0) = 1 and B2

c0
> B1. For example, when D = 210, c0 = 11 and primes between B1 and B2

11 are

relocatable.

Relocating primes to the higher ranges of the stage 2 interval increases the density of primes available

for pairing. But that is not their most useful feature. If the ratio B2

B1
is large, there can be several constants

satisfying condition B2

c0
< cp < B2. For example, when B2

B1
= 20, one can use constants c0 = 11, c1 = 13, c2 =

17, c3 = 19. Instead of choosing the constant at initialization phase, add all {c}p to the pairing algorithm.

Only one of them should be paired, and when that happens the constant becomes fixed and the prime gets

relocated to the position where it has a pair. All other relocation options become disabled. This approach

significantly increases pairing at virtually no cost.

Another benefit of relocatable primes is that the starting point iD moves from B1 to B2

c0
. This decreases

the amount of D-sections that need to be iterated through.
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2.2 Graph matching

Since relocatable primes are not locked in residue classes and have a certain freedom in their final position, a

greedy algorithm does not find the best solution anymore. While Montgomery’s algorithm can still be used

to initialize the pairing, a graph matching algorithm becomes necessary to find the best (or good enough)

solution. The set of vertices includes all primes in (B2

c0
, B2) interval as well as all relocation positions for

primes in (B1,
B2

c0
) interval. Each relocatable prime should be represented by at least one vertex c0p. The

edges of the graph are all pairing opportunities.

Graph matching works by searching for augmenting paths, each of which increases an existing match by

1 pair. Care should be taken when adding a relocation position to the match. It’s not a single vertex that

gets matched, but an entire subgraph of vertices representing the same relocatable prime. Similarly, when

searching for free vertices the entire subgraph is added to the search queue. An augmenting path can start

at the smallest prime, then jump to the largest prime, then go back to the middle. This really brings out

the benefits of relocatable primes.

The final choice of relocation constant is made in the end. If the subgraph was matched, the prime is

relocated to the position of match, otherwise it is relocated to an arbitrary available position.

2.3 Irregular precomputation

The minimal size of precomputed set is 1
2ϕ(D), providing one pairing opportunity for each residue class.

Let’s call the minimal set a unit. The precomputed set in Montgomery’s algorithm was composed of several

such units in a sequential order: unit,D − unit,D + unit, 2D − unit, ... But there’s no requirement that

the units should be sequential. In fact, adding irregularity benefits pairing. Consider a precomputed set

composed of L units: unit, unit + D,unit + 3D,unit + 7D, ..., unit + (2L−1 − 1)D. It provides L pairing

opportunities at different scales. The density of primes decreases from B1 to B2. The irregular precomputed

set allows to find pairs at a wide range of distances.

The exact distribution of units is up to an implementation. We have obtained good results with powers

of 2 for a wide range of input parameters. It is also easy to precompute. But it’s not the optimal distribution

in almost all cases. For each particular set of input parameters a better distribution could be found. Further

research is needed to determine if there’s a general method to obtain the optimal distribution.

Large distances in the precomputed set not only allow to find pairs in sparse areas, but also allow to look

for pairs outside the bounds. A prime can be relocated below B2

c0
or above B2 as long as its base value (iD)

is inside the bounds. This is another optimization that gives some pairing opportunities at no cost.

If there’s a shortage of system memory to store the full precomputed set, only a part of the last unit can

be precomputed, making L a non-integer number greater than 1.

2.4 Second base

Let A > 2 be a prime divisor of D. Consider two representations of a prime: p = iD± r and p = iD+ D
A ± r.

The second representation doubles the amount of pairing opportunities. But more importantly, it lets the

prime to break free from its residue class. In graph terms, it adds edges between residue classes in a rather

unpredictable way, dramatically boosting the pairing.

For the second representation to be always possible, add values divisible by A to the precomputed set.

More precisely, the size of the set becomes 1
2ϕ(D

A ) · A · L. For example, when D = 210, A = 7, L = 2, the

size grows from 48 to 56.
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There is some freedom in placing the second base. There are A − 1 possible values which look equiv-

alent in a general sense, but can produce different results in practice, especially if some of the parameters

D,A,L,B1, B2 are fixed.

If D is not divisible by A2, one can have c0 = A and the starting point iD = B2

A . This further decreases

the number of D-sections to process. Unfortunately, the amount of work necessary to switch from one D-

section to the next doubles, because both iD and iD + D
A need to be incremented by D. This may not be

significant for P+1 method, where the increment takes only one multiplication and the boost in pairing can

compensate the increased complexity. But for ECM with its complicated arithmetic the second base is never

beneficial in D ranges interesting for us. It may become beneficial at large D when the amount of D-sections

becomes small and the amortized cost of ECM group addition becomes negligible.

2.5 Pairing sharing

The full implementation of all proposed methods can make the setup phase of a factorization run quite slow.

Luckily, the pairing produced is not bound to a specific number being factored. It can be stored and reused

with the same parameters. The main parameters are B1 < 106 and B2 < 108 with only the first 2-3 digits

being significant. The other important parameter is the amount of memory available at the host running the

factorization. This parameter is also quantized and limited. A pairing suitable for these three parameters

can be stored and retrieved from a central repository. Even if it is not there, the host can compute it and

upload for all others to use. Pairings in the repository can even be upgraded in the future with new methods

and optimizations.

3 Algorithm

The first thing to note about the graph is that it isn’t bipartite. The classical graph matching algorithm

won’t find the best solution. Micali–Vazirani [4] algorithm finds the best solution, but its complexity may not

be necessary in practice. In practical applications the pairing reaches 95% with 100 precomputed values, and

exceeds 99% with 500 precomputed values. Sacrificing a percent of pairs with a “good-enough” algorithm

may be preferrable.

The algorithm we’re presenting is based on a simple BFS bipartite matching algorithm. We’re using it

to demonstrate how the proposed methods of pairing can be implemented. Readers are free to adapt the

same ideas to more specialized matching algorithms, or use optimization tweaks that decrease matching but

increase performance, if that is their goal.

The algorithm itself is not sensitive to the exact distances between primes. A lot of experiments can be

done on the distance list. It is only used to initialize adjacency lists. On the other hand, method-specific

algorithms that generate the precomputed set can be extremely sensitive to the form and distribution of

distances. A gain in pairing could be lost in increased complexity of precomputation.

A subgraph representing relocatable prime is treated as a single vertex in many cases. It can have only

one match, and the exact position that is matched is the one where the prime will be relocated. It also tracks

the position from which it was entered in the search, so the augmenting path can be easily back traced. But

when it is entered from its match, all of the individual vertices of the subgraph get added to the search

queue. And since potential relocation positions can be spread throughout the graph, the scope of the search

gets greatly enhanced and the size of the queue can become comparable to the size of the graph.

4



But first, compute the basic precomputed unit.

Algorithm 1: One unit

Output: A unit of numbers relatively prime to D/A.

1 unit ← ∅;

2 for i← 1 to D/2 do

3 if gcd(D/A, i) = 1 then

4 unit ← unit ∪ {i};
5 end

6 end

Now compute all the distances in the precomputed set.

Algorithm 2: All distances

Output: All possible distances in the precomputed set.

1 distribution ← ∅ // We’re using powers of two here, which may not be the best.

2 for i← 0 to L− 1 do distribution ← distribution ∪ {2i − 1};
3 distances ← ∅;

4 foreach d ∈ distribution do

5 foreach u ∈ unit do

6 distances ← distances ∪ {u + d ·D} ∪ {−u− d ·D};
7 end

8 end

Each residue can have a pair only at a distance with a base in the middle.

Algorithm 3: Residue distances

Output: Possible distances for each residue.

1 for i← 0 to D − 1 do

2 residue distance(i)← ∅;

3 if gcd(D/A, i) = 1 then

4 foreach d ∈ distances do // the second base here can have a different value

5 if i + d ≡ 0 (mod D) or i + d ≡ D/A (mod D) then

6 residue distance(i)← residue distance(i) ∪ {2d};
7 end

8 end

9 end

10 end

Note that the distance between any two primes is almost always even.
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Now compute relocation constants and initialize relocation subgraphs.

Algorithm 4: Relocations

Output: All possible relocations(), source() for each relocated value and a default relocated() map.

1 multipliers ← ∅;

2 for i← 3 to B2/B1 do

3 if gcd(D/A, i) = 1 then

4 multipliers ← multipliers ∪ {i};
5 end

6 end

7 foreach p ∈ prime range(B1, B2/multipliers[0]) do

8 relocations(p)← ∅;

9 foreach m ∈ multipliers do

10 if p ·m ≥ B2/multipliers[0] and p ·m ≤ B2 then

11 relocations(p)← relocations(p) ∪ {p ·m};
12 source(p ·m)← p;

13 relocated(p)← p ·m;

14 end

15 end

16 end

Note that there are at most L edges per base for each prime. It allows to store adjacency efficiently.

Algorithm 5: Adjacency

Output: Graph V and its adjacency().

1 V ← relocations(prime range(B1, B2/multipliers[0])) ∪ prime range(B2/multipliers[0], B2);

2 foreach p ∈ V do

3 adjacency(p)← ∅;

4 foreach d ∈ residue distance(p (mod D)) do

5 q ← p + d;

6 if q /∈ V then continue;

7 if source(q) 6= nil and source(p) = source(q) then continue;

8 adjacency(p)← adjacency(p) ∪ {q};
9 end

10 end
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The next algorithm is equivalent to Montgomery’s algorithm if both V and adjacency() are sorted.

Algorithm 6: Initializing

Output: Some match().

1 foreach p ∈ V do

2 if match(p) 6= nil or (source(p) 6= nil and match(source(p)) 6= nil) then continue;

3 foreach q ∈ adjacency(p) do

4 if (source(q) = nil and match(q) = nil) or (source(q) 6= nil and match(source(q)) = nil)

then

5 if source(p) 6= nil then

6 relocated(source(p)) ← p;

7 match(source(p)) ← q;

8 else

9 match(p) ← q;

10 end

11 if source(q) 6= nil then

12 relocated(source(q)) ← q;

13 match(source(q)) ← p;

14 else

15 match(q) ← p;

16 end

17 break;

18 end

19 end

20 end
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After match() is initialized, run graph matching algorithm to find augmenting paths.

Algorithm 7: Matching

Output: Improved match(), a map of relocated() primes.

1 restart:

2 begin

3 link ← ∅;

4 foreach p ∈ V do

5 if match(p) 6= nil or (source(p) 6= nil and match(source(p)) 6= nil) then continue;

6 queue ← ∅;

7 enqueue(p);

8 link(p)← nil;

9 if source(p) 6= nil then link(source(p))← p;

10 while queue 6= ∅ do

11 front← dequeue();

12 foreach q ∈ adjacency(front) do

13 if link(q) 6= nil or (source(q) 6= nil and link(source(q)) 6= nil) then continue;

14 p← front;

15 if (source(q) = nil and match(q) = nil) or

(source(q) 6= nil and match(source(q)) = nil) then

16 augment(match, link, p, q);

17 goto restart;

18 else

19 link(q)← p;

20 if source(q) 6= nil then

21 link(source(q))← q;

22 q ← relocated(source(q));

23 p← match(source(q));

24 else

25 p← match(q);

26 end

27 link(p)← q;

28 if source(p) 6= nil then

29 link(source(p))← p;

30 foreach r ∈ relocations(source(p)) do enqueue(r);

31 else

32 enqueue(p);

33 end

34 end

35 end

36 end

37 end

38 end
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After an augmenting path is found, matching is flipped with extra care for relocated primes.

Algorithm 8: Augmenting

1 function augment(match, link, p, q)

2 begin

3 while true do

4 if source(q) 6= nil then

5 relocated(source(q)) ← q;

6 match(source(q)) ← p;

7 else

8 match(q) ← p;

9 end

10 if source(p) 6= nil then

11 relocated(source(p)) ← p;

12 match(source(p)) ← q;

13 else

14 match(p) ← q;

15 end

16 if source(p) 6= nil then p← link(source(p));

17 if link(p) = nil then

18 return

19 end

20 q ← link(p);

21 if source(q) 6= nil then q ← link(source(q));

22 p← link(q);

23 end

24 end

3.1 Implementations

The algorithm was implemented in Prefactor (https://github.com/patnashev/prefactor) and Prime95

(https://www.mersenne.org/download/) programs.

Prime95 implementation uses a “windowed mode”, which searches for augmenting paths only in small

subsets of the graph to save time. Prime95 mostly runs tests on Mersenne numbers at high B1, B2 values,

and an additional 1-2% increase in pairing is not worth the extra setup time. The implementation also uses

only one base.
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Table 1: Pairings for a selected set of input parameters.

B1 B2 #primes D A L #{r}
Pairs

Montgomery Prefactor Prime95

10 000 1 000 000 77 269 210 1 8 192
32 121

83.1%

38 370

99.3%

38 206

98.9%

10 000 1 000 000 77 269 714 3 5 720 -
38 577

99.9%
-

700 000 23 100 000 1 397 601 84 1 10 120
535 912

76.7%

677 422

96.9%

664 321

95.1%

700 000 23 100 000 1 397 601 210 1 5 120
465 585

66.6%

537 185

76.9%

536 248

76.7%

700 000 23 100 000 1 397 601 210 7 5 140 -
657 563

94.1%
-

700 000 23 100 000 1 397 601 210 1 10 240
566 578

81.1%

680 178

97.3%

671 159

96.0%

700 000 23 100 000 1 397 601 510 3 6 576 -
689 404

98.7%
-

When reading Table 1 take into account that larger D is good, because it decreases the amount of D-

sections, but is bad because it increases the size of precomputed set. To determine what parameters are

optimal, one needs a cost function specific to the exact factorization method used.
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