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Abstract. Distributed Oblivious RAM (DORAM) protocols allow a
group of participants to obliviously access a secret-shared array at a
secret-shared index, and DORAM is the key tool for secure multiparty
computation (MPC) in the RAM model.
In this work, we present a novel 3-party semi-honest DORAM protocol
with O((κ + D) logN) communication per access, where N is the size
of the memory, κ is a security parameter and D is the block size. Our
protocol performs polylogarithmic computation and does not require ho-
momorphic encryption. Under natural parameter choices, this is the most
communication-efficient DORAM with these properties.
To build this DORAM protocol, we first present an extremely efficient
oblivious data structure for answering set membership queries. From this
we build an oblivious hash table with asymptotically optimal memory
usage and access cost and with negligible failure probability. We believe
these are of independent interest.

1 Introduction

Oblivious RAM (ORAM) [Ost90,GO96] provides a method for a trusted proces-
sor to execute a program that reads from and writes to an untrusted memory
array such that the access pattern is independent of the (private) inputs to the
program itself. Although traditional encryption algorithms can protect the con-
tent of the data, protecting data access patterns is critical for security.

The original application of ORAM was for software protection, where a
tamper-resistant CPU had to maintain program security while making use of
an untrusted external memory. With the rise of “secure enclaves” like Intel’s
SGX [AGJS13,HLP+13,MAB+13,CD16] and AMD’s SEV [KPW16] that make
use of untrusted system memory, this problem becomes more acute. Indeed,
several types of “cache-attacks” (e.g. [TOS10,GBK11]) have shown that access
pattern leakage can be used to extract secret key material, and that even trusted
enclaves like SGX are vulnerable [BMD+17,MIE17].

A similar application of ORAM arises in the setting of cloud storage, where a
client wants to outsource its data storage needs to an (untrusted) cloud provider.
Encryption can hide the contents of the data, but not the access pattern. This
setting is similar to the setting of trusted CPU, but the data sizes are larger,



and the bandwidth is reduced. On the other hand, in the cloud-storage setting,
it may be reasonable to assume the cloud provider is willing to perform some
amount of computation in order to respond to a user’s request, and the efficiency
requirements may be relaxed somewhat compared to the CPU setting.

Most ORAM protocols aim to minimize the amount of communication be-
tween the client and the server, and the efficiency of an ORAM protocol is
measured by the (multiplicative) communication increase incurred by executing
the ORAM protocol. In other words, the overhead of an ORAM protocol is the
communication cost of accessing t blocks (of size D) under the ORAM protocol
divided by tD (as the number of database accesses, t, tends towards infinity).
Sometimes, the asymptotic overhead depends on the relationship between D and
other parameters. In this case it is often simpler to explicitly state the amor-
tized communication cost, which we often refer to just as the communication
cost, which is the cost of t accesses divided by t.

Early ORAM protocols were designed to allow a single, trusted proces-
sor to make a series of reads and writes to a single untrusted memory store.
The application we target, however, is secure multiparty computation (MPC)
[Yao82,Yao86,GMW87,BOGW88,CCD88].

The goal of MPC is to allow a group of data owners to securely compute a
function of their joint data without revealing any information beyond the output
of the computation. This notion of security requires that MPC protocols be data
oblivious, in particular the running time, memory accesses and communication
patterns of the participants cannot depend on other private data. To achieve data
obliviousness, most MPC protocols work in the circuit-model. Circuits are inher-
ently data-oblivious, and the MPC protocol securely computes the target circuit
gate by gate. Although any computation can be expressed as a circuit, this rep-
resentation may not be compact. Thus for efficiency reasons, it would be highly
desirable to securely compute RAM programs. (A time-bounded RAM program
of size O(N) can be converted to a circuit of size O

(
N3 logN

)
[CR73,PF79],

but in most situations this efficiency loss is unacceptable.) Combining ORAM
with a traditional, circuit-based MPC protocol provides a method for securely
computing RAM programs, and can drastically increase the efficiency of certain
types of secure computations.

This type of MPC-compatible ORAM protocol is called Distributed ORAM
(DORAM). One of the challenges of building a DORAM protocol is that the
there is no longer a trusted client who is allowed to learn the indices being
queried. Note that this is different from multi-server ORAM protocols (e.g.
[OS97,GKK+12,LO13,GKW18,KM19]) which aim to increase efficiency by using
multiple, non-colluding servers, but still require a trusted client. The efficiency
of multi-server ORAM protocols can be increased further by allowing the servers
to communicate with each other as well as the client [HYG20].

Any k-server DORAM protocol trivially yields a k-server active ORAM with
O(logN) client-server communication, since you can always add a fully-trusted,
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lightweight, client whose queries consist of secret-sharing an index without com-
promising security.4

Moving in the other direction, any ORAM protocol that requires a trusted
client can be converted into a DORAM protocol by emulating the client using
an MPC protocol, and allowing the MPC participants to play the role of the
untrusted server(s). Since MPC requires a significant computational overhead,
simulating the ORAM client under MPC is only practical if the ORAM client
uses minimal computational and storage resources. To this end protocols like
“circuit ORAM” [WCS15] have been designed to minimize the computational
complexity of the (trusted) ORAM client with the aim of making it simple
enough to allow efficient execution by an MPC protocol.

Since DORAM protocols already require multiple servers, it is natural to cre-
ate DORAM protocols by using MPC to emulate the trusted client in a multi-
server or active ORAM protocol. This is a promising approach since several effi-
cient multi-server ORAM protocols exist [OS97,GKK+12,LO13,GKW18,KM19]
and some have even been implemented [GKK+12,WHC+14,Ds17,ZWR+16]. Un-
fortunately, most of these multi-server ORAM protocols are not suited for secure
multiparty computation, because their clients often perform complex computa-
tions that cannot be efficiently executed inside an MPC.

The problem of building efficient DORAM protocols has been widely studied
[FJKW15,ZWR+16,Ds17,JW18,BKKO20], but the most efficient existing pro-
tocols are significantly less efficient than single-server and multi-server ORAM
protocols that require a trusted client.

In the single-server setting, the most efficient ORAM protocols5 haveO(D logN)
communication [AKL+20], and in the multi-server setting, O(D logN) commu-
nication is achievable using simpler techniques [LO13].

In the DORAM setting, where there is no trusted client, the best practical
protocols have at (at least) O

(
log3(N) +D log(N)

)
communication ([WCS15]

[FJKW15] [JW18] [BKKO20]). See Section 2 for a more detailed discussion of
existing DORAM protocols.

Our main construction is a novel 3-party DORAM protocol that has O((κ+
D) log(N)) communication and is extremely efficient in theory and in practice.

Theorem 1 ((3, 1)-DORAM (informal)). There exists a 3-server DORAM
protocol with amortized communication complexity O((κ+D) log(N)) bits. The
protocol provides security in the semi-honest model against one corruption.

As noted above, in general, a k-server DORAM protocol does not immedi-
ately yield a k-server ORAM protocol. Our construction, however, can also be

4 Note that a k-server DORAM protocol does not immediately yield a (k − 1)-server
active ORAM by allowing one of the DORAM servers to play role of the trusted
client, because in active ORAM the client must use sublinear storage, and there is
no such restriction for DORAM servers.

5 If the server is allowed to be active, i.e., if the server can perform computation
in order to craft its responses, then the communication can be reduced to O(D)
[AKST14,DvDF+16,FNR+15,RFK+14].
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used in the multi-server setting, since one of the servers only uses polylogarithmic
memory (except while building the hash tables).

Our construction builds on the “hierarchical ORAM” solution of [GO96]. The
hierarchical ORAM was further refined in the single-server setting [KLO12], and
the multi-server setting [LO13,KM19].

The main source of inefficiency in the hierarchical ORAM solution, comes
from having to (obliviously) shuffle different levels of the hierarchy, then (obliv-
iously) index into these levels.

In the 2-server setting, [LO13] eliminated the use of oblivious shuffles, but
their solution requires the client to encrypt each record as it’s being passed from
one server to the other. In the setting of multiparty computation, where the client
is simulated by an MPC protocol, the cost of simulating the client dominates
the rest of the protocol.

Nevertheless, the asymptotic complexity of the DORAM protocol which sim-
ulates the [LO13] client under MPC is actually quite good. Assuming execut-
ing a symmetric cipher on D bits with security parameter κ under MPC re-
quires O(κ+D) communication, the DORAM protocol derived from [LO13] has
O ((κ+D) log(N)) communication cost, which is asymptotically better than all
the subsequent DORAM protocols [WCS15,FJKW15,ZWR+16,Ds17,JW18,BKKO20].

Concretely, our DORAM protocol reduces the number of calls to the under-
lying block cipher by a factor of 50 (see Supplementary Material A).

Our construction makes use of a novel set-membership data structure that
has negligible failure probability, and only requires accessing O (logN) bits per
access.

Theorem 2 (Set-Membership Data structure). The data structure out-
lined in Section 6 can store n = ω(log(N)) elements, from a universe of size
N , with linear storage overhead (O(n log(N))-bits), negligible false-positive rate
(in N), zero false-negative rate, negligible probability of build failure (in N) and
logarithmic lookup cost (O(log(N)) bits).

Note that these properties are not simultaneously satisfied by existing data
structures like Cuckoo Hash Tables and Bloom Filters. Note that cuckoo hashing
has a non-negligible probability of build failure, cuckoo-hashing with a stash
has O

(
log2(N)

)
lookup cost, and Bloom Filters cannot simultaneously achieve

logarithmic lookup cost and negligible false-positive rates. See Section 6 for a
more detailed discussion.

2 Prior work

Oblivious RAM [Ost90,GO96] has been extensively studied (see e.g. [SCSL11],
[KLO12],[WCS15],[SVDS+13],[AKL+20]) with a variety of different applications
and efficiency metrics.

Early ORAM protocols had an overhead of O
(
log3N

)
[GO96], while later

works improved this to O (logN) [SVDS+13,WCS15,AKL+20] which is known
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to be optimal [GO96,LN18]. These early work considered a model with a single,
trusted client, and a single, server that could only store and retrieve data.

Several other models have been developed in an attempt to improve perfor-
mance. These include adding multiple (non-colluding) servers, or allowing the
server(s) to perform computations in order to respond to user queries.

Multi-server ORAM: The communication complexity of ORAM protocols can
be improved by allowing multiple (non-colluding) servers. Multi-server ORAM
protocols include [OS97,GKK+12,LO13,GKW18,CKN+18,KM19]

[LO13] used two (non-colluding) servers, each holding alternate levels of the
hierarchy. To shuffle a level, the server would pass the (encrypted) level to the
client, the client would decrypt, then re-encrypt the level, and pass it to the
other server. The other server would perform the shuffle (in the clear), pass the
level back to the client, who would decrypt it, re-encrypt it, and pass the shuffled
layer back to the original server. This process avoids the costly oblivious shuffles
(since all shuffles are done in the clear), but requires the client to perform a linear
number of (symmetric-key) encryptions. In the traditional ORAM setting, this
is acceptable, since the client can perform symmetric-key encryption (e.g. AES)
extremely efficiently. Unfortunately, when using the ORAM protocol within a
secure computation, the client is simulated by the MPC protocol, and thus all the
client operations (including the encryptions) need to be performed under MPC.
Although encryptions can be performed under MPC, this cost dominates the
cost of the overall protocol, and makes the entire scheme inefficient in practice.

[KM19] provides two fundamentally different multiparty ORAM solutions,
a PIR solution and a hierarchical solution with different requirements and per-
formance. The PIR solution was pioneered in [OS97], and the [KM19] solu-
tion builds on it, essentially replacing information-theoretic PIR with FSS-based
[GI14,BGI15] PIR. The [KM19] PIR solution requires four servers, and works as
follows. The servers are divided into two groups of two. For each group, the entire
memory array is secret-shared among the two servers in each group. Thus the
servers hold two copies of the memory array, and each copy is 2-out-of-2 secret
shared. To read (or write) an entry into the array, the client uses a 2-server PIR
protocol to read the corresponding location in both secret-shares. Finally, the
client reconstructs the memory location by summing the shares contained in the
two PIR responses. Using 2-server PIR based on Function Secret Sharing (FSS)
[GI14,BGI15], the communication complexity for each query is O(κ logN +D).
Since there is no hierarchical structure, there is no complicated reshuffling pro-
cedure. The main drawback of the PIR solution is that the servers need to do
O(N) computation to respond to the PIR query. Thus while the communication
overhead is small, the computational overhead is larger (on the server side) than
in most other protocols. The hierarchical solution of [KM19] builds on that of
[KLO12,LO13], but requires 3+ servers. Recall that in the balanced hierarchical
solution, the memory array is stored in levels of increasing size, and each level
contains multiple hash tables. In previous works, the client would query all the
hash tables at each level. Using efficient 2-server FSS-based PIR [GI14,BGI15],
the client can execute a PIR query for each level to extract only the entries from
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the correct hash table. Like the [LO13] work, the [KM19] solution avoids expen-
sive oblivious shuffles having different levels of the hierarchy stored by different
servers. In addition to [KM19] FSS-based PIR was also used in FLORAM [Ds17]
and 3-party ORAM [BKKO20].

If the servers are allowed to communicate with each other, then they can
further reduce the client-server communication [HYG20].

These multi-server ORAM protocols are active, i.e., although the servers do
not communicate with each other, they don’t just read and write data, they
perform complex calculations in order to respond to user queries. Even in the
single-server setting, giving the server power perform computation, can reduce
client-server bandwidth.

Active ORAM: If the ORAM server(s) are allowed to compute on data, rather
than just store and retrieve data, the O (logN) lower-bound of [GO96,LN18] can
be avoided, and several active ORAM protocols achieve constant client-server
[AKST14,DvDF+16,FNR+15,RFK+14].

Despite their differences, all the multi-server and active ORAM protocols
assume the client is trusted, an assumption we hope to avoid.

Distributed ORAM (DORAM): One important application of ORAM is in
secure multiparty computation (MPC), where ORAM can be used to avoid the
linear cost of oblivious memory accesses that is inherent in the circuit model.

Although multi-server ORAM and DORAM both involve multiple servers,
the models are fairly different. Multi-server ORAM assumes a single, trusted
client (who can perform operations locally), whereas in DORAM, there is no
“client.” Converting a multi-server ORAM protocol (or an active-server ORAM
protocol) into a DORAM protocol would require simulating the client’s actions
using MPC, which can be extremely inefficient.

One approach to building a DORAM scheme is to take any ORAM protocol
and simulate the client under MPC. The efficiency of this type of generic trans-
formation is highly dependent on the complexity of the original ORAM client.
Circuit ORAM [WCS15] is an ORAM protocol particularly amenable to secure
multiparty computation, since its client is “circuit friendly.” Instantiating Circuit
ORAM with a generic MPC protocol (e.g. garbled circuits or BGW [BOGW88])
yields a DORAM scheme with O

(
log3N +D logN

)
communication. The (3, 1)-

DORAM protocol of [JW18] also builds on Circuit ORAM, and achieves com-
munication complexity O

(
κ log3(N) +D log(N)

)
, where D is the record size.

Although the asymptotic communication complexity of the [JW18] protocol is κ
times larger than that of a generic 3PC implementation of Circuit ORAM, the
round complexity is improved from O

(
log2N log logN

)
to O (logN).

Since DORAM protocols already involve multiple servers, it is possible to
convert a multi-server ORAM protocol to the DORAM setting by using MPC
to simulate the ORAM client just as in the single-server setting.

In fact, instantiating [LO13] client using a generic MPC protocol yields a
DORAM protocol with communication cost of O ((κ+D) logN), which is better
than that achieved by subsequent DORAM protocols [FJKW15], [JW18],[WHC+14],[BKKO20].
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This was observed in [FJKW15], but seems to have been largely ignored in later
works (e.g. [JW18,BKKO20]).

Although instantiating the [LO13] client using generic MPC yields an asymp-
totically efficient DORAM protocol, it is not practically efficient. The main ob-
stacle to efficiency is that the ORAM client in [LO13] performs a linear amount of
symmetric-key encryptions when rebuilding a level. In the trusted-client model,
these encryptions are extremely efficient (AES can be evaluated using hardware
acceleration) but translating this protocol to the DORAM setting would re-
quire doing all of the encryptions under MPC which would drastically reduce
the efficiency. In Appendix A, we calculate the concrete number of Shared-Input,
Shared-Output PRP (SISO-PRP) calls, and show that our construction achieves
the same asymptotics, but reduces the concrete number of SISO-PRF calls by a
factor of 50.

An alternative approach to building DORAM was given in [BKKO20], where
they build a (3, 1)-DORAM based on Function Secret-Sharing (FSS) [GI14,BGI15].

Although FSS-based protocols have bad asymptotics ([BKKO20] has O
(√

N
)

communication, and O (N) server-side computation), they are extremely effi-
cient in practice (note that

√
N < log3(N) for N < 6 · 108). The FSS-based

DORAM of [BKKO20] is also the only known DORAM protocol with constant
round complexity.

Asymptotically, the best communication efficiency is achieved by instanti-
ating the 2-server hierarchical ORAM of [LO13] using a generic MPC, but in
practice schemes with suboptimal asymptotics, e.g. the BGW-instantiated Cir-
cuit ORAM with a cost of O

(
log3N +D logN

)
are superior. See Table 1.

Our work achieves amortized communication cost O ((κ+D) logN), but un-
like the only existing DORAM protocol with this asymptotic cost, our protocol
is actually efficient in practice.

Hierarchical ORAM: Our work builds on the “hierarchical ORAM,” which
was explored in the single-server setting [GO96,KLO12] and the multiserver
setting [LO13,KM19].

In the hierarchical model, the server stores a hierarchy of hash tables. The
top level is of logarithmic size, and each subsequent level is twice as large as the
level above it. Every read query performs a linear scan over the top level, then
makes one query into the hash table at each level. At certain specified intervals,
the table at level i is emptied and the contents “shuffled” into the level below it.

The periodic reshuffles require oblivious hash table rebuilds, which is an
obstacle to the overall efficiency of the protocol.

Implementations: Several works have implemented ORAM protocols. [GKK+12]
implements the [SCSL11] ORAM using garbled circuits, SCORAM [WHC+14]
uses the ObliVM [WLN+15] framework, [ZWR+16] implements the square-root
ORAM solution in the Obliv-C [ZE15] framework, FLORAM [Ds17] uses the
Obliv-C framework to implement function-secret-sharing-based ORAM.

Obstacles to efficient DORAM: The main obstacle to converting existing
ORAM (or multiparty ORAM) solutions to the DORAM setting is the overhead
of executing the ORAM client under MPC. For example, in the 2-server ORAM
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GC Circuit ORAM [WCS15] O
(
κ log3N + κD logN

)
2PC Sqrt-ORAM [ZWR+16] O

(
κD
√
N log3N

)
2PC FLORAM [Ds17] O

(√
κDN logN

)
2PC ORAM [HV20] O

(√
κDN logN

)
BGW Circuit ORAM [WCS15] O

(
log3N +D logN

)
BGW 2-server hierarchical [LO13] O ((κ+D) logN)

3PC ORAM [FJKW15] O
(
κσ log3N + σD logN

)
3PC ORAM [JW18] O

(
κ log3N +D logN

)
3PC ORAM [BKKO20] O

(
D
√
N
)

Our protocol O ((κ+D) logN)

Table 1: Communication complexity of DORAM protocols. N denotes the num-
ber of records, κ is a cryptographic security parameter, σ is a statistical security
parameter, and D is the record size. Although instantiating the [LO13] 2-party
ORAM using generic MPC has the same asymptotic complexity as our protocol,
concretely, we reduce the number of SISO-PRP calls by a factor of more than
50 (Appendix A).

protocol of [LO13], the reshuffling stage requires the client to encrypt (and de-
crypt) every entry being reshuffled. In [KM19]’s PIR solution, the FSS scheme
requires the client to perform O(logN) encryptions for each query, and the hi-
erarchical scheme of [KM19] requires a linear number of encryption operations
for each reshuffle (just like [LO13]).

When the client is being simulated by an MPC protocol, all these encryptions
must be performed under the MPC, and even using the most “MPC-friendly”
block-ciphers (e.g. [ARS+15,DEG+18]) the overhead of the encryptions domi-
nates the overhead of the rest of the ORAM protocol.

The main contribution of our paper is to provide an efficient Distributed
ORAM protocol, which can be dropped in to existing MPC frameworks to sim-
ulate RAM in secure multiparty computations.

3 Preliminaries

Let P1, P2 and P3 be the three parties in the protocol. For a positive integer B,
we use single square brackets, [B], to represent the set {1, . . . , B}.

We assume the parties have access to an Arithmetic Black Box (ABB) func-
tionality FABB (Figure 1). This is a reactive functionality that provides input,
retention and output of secret-shared data. Additionally, it provides basic arith-
metic operations, as well as some more advanced operations which we explain
further below.

We borrow standard secret-sharing notation (e.g. from [GRR+16]) to rep-
resent variables stored in the ABB. Each variable in the ABB has a public
identifier. We use JxK to denote the identifier for a value x that is stored in the
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ABB. In general, methods in the ABB functionality require all parties to call
them. However, the Input method is called by a single party, and the Reshare
method is called only by the qualified set.

Functionality FABB

Input(x, pId, varName): Receive x from party pId and store it as JvarNameK.
InputTo2Sharing(x, pId, varName, sharing): Receive x from party pId and
share it as JvarNameK accessible by qualified set sharing, where |sharing| = 2.
ReshareTo2Sharing(JxK, sharing, varName): Share x as
JvarNameK, accessible by qualified set sharing, where |sharing| = 2.
ReshareFrom2Sharing(JxKsharing, sharing, varName): Receive shares
of x from the qualified set sharing, where |sharing| = 2 and store it as
JvarNameK.
AND(JxK, JyK, outName): Compute z = x ∧ y and store z in JoutNameK.
OR(JxK, JyK, outName): Compute z = x ∨ y and store z in JoutNameK.
Equal(JxK, JyK, outName): If x

?
= y set z to true, otherwise to false. Store z

in JoutNameK.
IfThenElse(JbK, JxK, JyK, outName): If b

?
= true, set z to x, otherwise to y.

Store z in JoutNameK.
PRP keygen(N, keyName): Generate a new random key, k, for a PRP
fk : [N ]→ [N ]. Store k in JkeyNameK.
PRP eval(JxK, JkK, outName): Compute z = fk(x) and store z in JoutNameK.
Shuffle(JXK, outName): Given an array JXK = JX1K, . . . , JXnK, generate a
random permutation of the contents of JXK and store the result in JoutNameK. If
multiple arrays are given as inputs/outputs, they are all shuffled using the same
permutation.
Output(JzK, pIds, localVarName): Send z to every party in set pIds, who
store it in the local variable localV arName.

Fig. 1: Arithmetic Black Box functionality

For notational convenience, we use normal assignment notation to show a
new variable being stored in the ABB and drop its variable name from the
function declaration. For instance, FABB .AND(JxK, JyK, z) will alternatively be
written as JzK = FABB .AND(JxK, JyK). Assignment notation is similarly used to
show a new local variable being assigned based on a call to Output. We also
use the notation JzK = JxK to show that the value of JxK, stored in the ABB,
was copied to a new location, JzK. Lastly, we occasionally place constants in the
secret-sharing notation (e.g. JtrueK). In this case, the constant is implicitly first
input as a secret variable from any party.

The ABB abstracts away the details of the secret-sharing implementation
and underlying MPC framework. Our efficiency results are based on instantiating
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FABB with the generic MPC protocol of Araki et al [AFL+16]. This is designed
for the semi-honest (3, 1) setting and uses a (3, 2)-secret sharing.6

In addition to basic arithmetic and IO functionalities, our ABB also has
the ability to share and reshare to and from a (2, 2) sharing. Although we de-
fine methods for converting between (3, 2) and (2, 2) sharing, our protocol never
computes on (2, 2) shares, and thus functionality does not define any calcula-
tions that occur on (2, 2)-shared data. The resharing protocols are described in
Appendix C.

One way to implement the functionality FABB .Shuffle is to use the 3-party
shuffle of [LWZ11]. This shuffle has concrete communication cost of 24nD bits
to shuffle n bits, each of size D (See Appendix D).

Functionality Communication (bits, total) Source

FABB .Input 4 (per input bit) [AFL+16] §2.1

FABB .InputTo2Sharing 2 (per input bit) Appendix C

FABB .ReshareTo2Sharing 0 Appendix C

FABB .ReshareFrom2Sharing 8 (per input bit) Appendix C

FABB .XOR 0 [AFL+16] §2.1

FABB .AND 3 [AFL+16] §2.1

FABB .OR 3 Using 1 AND and NOTs

FABB .Equal (n bits) 3(n-1) Standard, e.g. [Ang]

FABB .IfThenElse (n bits) 3n Mux z = b ∧ (x⊕ y)⊕ y
FABB .PRP keygen 0 [AFL+16] §3.4

FABB .PRP eval (D bits) 21(κ+D) [ARS+15], Ours Appendix B

FABB .Shuffle (n each D bits) 24nD Appendix D

FABB .Output 3 [AFL+16], send xi to Pi+1

Table 2: Communication costs of FABB
Costs ignore a setup phase in which each pair of parties pick a PRG key for
generating identical randomness. This set-up phase occurs only once for FABB
and requires 3κ bits of communication.

We will be looking at an ORAM of size N , i.e., it represents a RAM of size
N . We assume N is a power of 2, so that indices are representable by log(N)
bits where all logs are base-2. We will seek to achieve statistical failure that is
negligible in N . Each data block will be of size D, where D = Ω(log(N)).

Our protocol achieves κ-bit security, by which we mean the protocol achieves
symmetric security roughly equivalent to AES-κ. We assume a PRP exists with
κ-bit security that can be represented as a circuit with O(κ) AND gates. We

6 Our protocol could also be executed using garbled circuits. This would increase the
communication cost by a factor of κ, since 2 ciphertexts would need to be sent per
AND gate [ZRE15]. However the round complexity would be reduced to linear in
the “openings” depth of the protocol, rather than the AND depth of the circuit.
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suggest instantiating this with LowMCv3 which requires about 7κ AND gates
to achieve κ-bit security (see section 4 and Appendix B). Throughout this work,
as is standard, we assume κ = ω(log(N)).

4 SISO-PRPs

A pseudo-random function (PRF) is a keyed deterministic function such that
the output appears random to any polynomially bounded adversary.

A Shared-Input, Shared-Output PRF (SISO-PRF) is a multiparty protocol
to securely evaluate a PRF when the input, outputs and keys are secret-shared
between the participants. Note that this is slightly different from the notion of an
Oblivious Pseudo-Random Function (OPRF) [FIPR05]. Most OPRF protocols
have focused on a 2-party evaluation of a PRF, where one party holds a key, k,
and the other holds an input, x, and the output, Fk(x) is delivered to one party.

In our applications, however, it is critical that the inputs to the PRF are
secret-shared, thus most existing OPRF protocols are not applicable. In prin-
ciple, it is possible to evaluate any PRF with secret-shared keys, inputs and
outputs, using generic MPC protocols, but this is often fairly inefficient.

In this work, we will focus on Shared-Input Shared-Output PRPs (SISO-
PRPs) where the pseudorandom function is actually a permutation.

Concretely, we imagine implementing our SISO-PRP using the “MPC-friendly”
LowMC block cipher, which is highly optimized for evaluation as a SISO-PRP
[ARS+15]. In addition to being MPC-friendly, LowMC has two additional fea-
tures that make it useful in our setting. (1) LowMC has configurable block sizes,
allowing us to reduce the communication and computational costs when the in-
dex space is small, and (2) when the maximum number of queries to the PRP is
bounded (as is the case in our construction), LowMC can be instantiated with
more aggressive parameters, increasing efficiency.

In Table 3, we compare the efficiency of LowMC, vs AES for 128-bit security.
We present various parameter choices for LowMC using the LowMCv3 security
estimator.7 “Data” represents the log of the number of PRP evaluations the
adversary will ever learn.

5 Construction Overview

Our main construction is a (3, 1)-DORAM protocol with amortizedO ((κ+D) logN)
communication cost.

Our construction builds on the “hierarchical solution” which is essentially a
tool for converting an oblivious hash table that only provides obliviousness on
distinct queries into an oblivious data structure that provides obliviousness on
repeated queries. We describe the hierarchical solution in more detail in Section 9.

Informally, an oblivious hash table is a data structure that provides oblivi-
ousness on distinct queries, thus the hierarchical solution reduces the problem

7 https://github.com/LowMC/lowmc/blob/master/determine rounds.py
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Cipher Blocksize Data rounds AND gates

AES 128 128 40 5120

LowMC 128 128 19 1824

LowMC 128 128 252 861

LowMC 10 10 32 288

LowMC 10 10 94 282

Table 3: Block cipher costs for 128-bit Security (AES-128 from [ARS+15][Table
2], LowMC from LowMCv3 security estimator )

of designing a DORAM protocol to building an oblivious hash table that can be
built and queried efficiently in a distributed manner.

Starting with [PR10], Cuckoo Hash Tables have been widely used in ORAM
protocols [GMOT12,KLO12,LO13,PPRY18,KM19,AKL+20]. The key property
of Cuckoo Hash Tables is that in a series of distinct queries, the physical access
pattern is independent of the underlying queries.

However, it is tricky to correctly incorporate Cuckoo Hash Tables into a
hierarchical ORAM protocol. Cuckoo Hash Tables have a non-trivial probabil-
ity of build failure (and a failure would leak information). Thus Cuckoo Hash
Tables are instantiated with a “stash” of size ω(1) to hold elements that can-
not be stored in the main Cuckoo Hash Table [KMW09]. In the hierarchical
solution, adding a separate stash at every level of the hierarchy increases the
asymptotic query complexity, thus most hierarchical ORAM protocols sought
to combine the stashes across different levels of the hierarchy. This breaks the
abstraction of each level of the hierarchy being an Oblivious Hash Table and was
often done in a way that led to flaws in the ORAM protocol [FNO21]. In short,
while Cuckoo Hash Tables with combined stashes can be used to implement hi-
erarchical ORAM protocols efficiently, this makes the protocol and its analysis
undesirably complicated.

Rather than instantiating the hierarchical solution with Cuckoo Hash Tables,
we design a novel Oblivious Hash Table that requires Θ(κ+D) bits of communi-
cation per access (amortized). Our starting point is the observation [MZ14] that
once it is known whether an element is stored in a table, Distributed, Oblivious
Hash Tables can be constructed using any non-oblivious, but secret-shared, hash
table structure by searching for distinct pre-inserted dummy elements when an
element is not in the set.

This essentially reduces the problem to that of designing an efficient data
structure for set membership. We do this by building a Cuckoo Hash Table with
a stash, but instantiating the stash with a Bloom Filter. Surprisingly, this simple
combination increases the asymptotic efficiency of the data structure beyond
what can be achieved by Cuckoo Hash Tables or Bloom Filters alone.

The main technical challenge is then to construct the Oblivious Set Member-
ship structure and Oblivious Hash Tables in the distributed setting efficiently,
and without leaking any sensitive data.
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We solve this in the (3, 1)-security setting by using a shared-input PRP,
where one party learns the outputs in the clear during builds and the other two
parties to learn the PRP outputs during accesses. We show that a single party
can construct the Bloom Filter and Cuckoo Table objects in the clear based
on the PRP evaluations alone, but without any shares of the actual indexes or
data. The Bloom Filter and Cuckoo Table data structures can then be secret-
shared between the remaining two parties who can then evaluate lookups without
revealing any PRP outputs to the third party.

We present our Oblivious Set Membership protocol in Section 7 followed
by our full Oblivious Hash Table protocol in Section 8. Finally, we use our
novel Oblivious Hash Table protocol together with the hierarchical solution to
construct a (3, 1)-DORAM protocol (Section 9).

Our Supplementary Material contains some useful standard material namely
the definitions of hashing (Section E), oblivious hashing (Section F), Bloom
Filters (Section G) and Cuckoo Hash Tables (Section H).

6 Set membership

Let there be some set of n elements from a universe of size N , each repre-
sented by log(N) ≥ log(n) bits. In this section we outline a novel data structure
that supports set membership queries that simultaneously achieves the following
properties:

1. Linear storage overhead (O(n log(N)))
2. Negligible false-positive rate in N
3. Zero false-negative rate
4. Negligible probability of build failure in N
5. Logarithmic lookup cost (O(log(N)))

Bloom filters and Cuckoo hash tables (supplementary material sections G and
H) are widely used data structures that provide efficient storage and retrieval,
but they do not satisfy all of the above design criteria simultaneously.

Example 1 (Cuckoo Hashing). Standard Cuckoo Hash Tables have linear storage
overhead, zero false-positive rate, and logarithmic8 lookup cost. Unfortunately,
Cuckoo Hash Tables (without a stash) have a non-negligible probability of build
failure.

Example 2 (Cuckoo Hashing with a stash). Modifying a standard Cuckoo Hash
Table to include a “stash” of size s = Θ(logN), for any n = ω(log(N)) makes the
failure probability negligible in N [Nob21]. Unfortunately, every lookup query
scans the entire stash, which requires reading s locations, which means lookups
require accessing Θ(log2(N)) bits of memory.
8 Note that lookups require looking in a constant number of locations, but each loca-

tion stores an identifier which must be at least log(n)-bits, so the total lookup cost
requires transmitting (at least) a logarithmic number of bits. Even Cuckoo filters
[FAKM14] requires storing keys that are at least log(n)-bits.
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Example 3 (Bloom filters). The false-positive rate for a Bloom filter of size m

storing n elements (using k hash functions) is about
(

1− e− kn
m

)k
. A standard

analysis (e.g. [MU17][Chapter 5]) shows that the false-positive rate is minimized
when k = log(2) · (m/n), which makes the false-positive probability approxi-

mately (log 2)
−m/n

. Thus to make the false-positive probability negligible in N ,
we need m = ω(n logN), which means that the storage overhead is super-linear.

Although Cuckoo Hashing, and Bloom filters alone cannot achieve our five
goals (linear storage overhead, negligible false-positive rate, zero false-negative
rate, negligible probability of build failure and logarithmic lookup cost), combin-
ing the Cuckoo Hashing with Bloom filters allows us to simultaneously achieve
all these goals. This is achieved simply by creating a Cuckoo Hash table with a
stash, but storing the stash in a Bloom filter.

Build Given a set X1, . . . , Xn

1. Create a Cuckoo Hash table with a stash as follows:
(a) Pick 2 hash functions h1, h2 which map [N ] → [m] for m = εn for some

constant ε > 1.
(b) Create 2 empty tables, T1 and T2, each of size m.
(c) Try to store each Xi in either T1[h1(Xi)] or T2[h2(Xi)]. Find a maximal

allocation (e.g., through a matching algorithm). Let S be the set of ele-
ments that were not able to be stored in either T1 or T2. If |S| > log(N),
the build fails.

2. Store the stash in a Bloom Filter as follows:
(a) Create an array, B of length n log(N) of all zeros.
(b) Pick k = log(N) hash functions, g1, . . . , gk, which map [N ]→ [n log(N)].
(c) For each element x ∈ S, and for 1 ≤ i ≤ k set B[gi(x)] = 1.

Query Given an index x

1. Check if x is stored in the Cuckoo hash table by checking locations T1[h1(x)] =
x or T2[h2(x)] = x. If so, return true.

2. Check if x is stored in the Bloom filter, by checking whether B[gi(x)] = 1 for
all 1 ≤ i ≤ k. If so, return true. Otherwise return false.

Fig. 2: Set Membership

Theorem 3. When n = ω (log(N)), the Set Membership protocol of Figure 2
provides a data structure with linear storage overhead, negligible false-positive
rate (in N), zero false-negative rate, negligible probability of failure (in N) and
logarithmic lookup cost (in bits).

The proof of Theorem 3 is straightforward and can be found in Appendix I.
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7 3-Party Oblivious Set Membership Protocol

We now show how we can securely build and access the set-membership data
structure presented in Section 6. This will be fundamental to our efficient Obliv-
ious Hash Table construction.

The core idea is that a single party, say P1, can locally construct the Cuckoo
Hash table and Bloom Filter objects. Since the indices must remain secret shared,
the Cuckoo Hash table and Bloom Filter are constructed not from the indices Xi,
but on PRP evaluations of the indices qi = PRPk(Xi). This PRP is evaluated in
a secure computation, and the output revealed to P1, who constructs the Cuckoo
Hash Table and Bloom Filter and secret-share theses between P2 and P3. The
hash functions for the Cuckoo Hash Table and Bloom Filter can be public, since
the data structures are secret-shared.

If an index x is queried, the parties securely evaluate q = PRPk(x) and reveal
this to P2 and P3. The locations to be accessed in the secret-shared Cuckoo
Hash table and the secret-shared Bloom Filter depend only on q and public
hash functions. P2 and P3 can therefore access the required locations of the
secret-shared Cuckoo Hash Table and Bloom Filter and securely calculate the
result of the set membership query.

Our protocol works in the FABB-hybrid model, where FABB is defined in
Figure 1. The Oblivious Set functionality is defined below. Note that it reveals
any repetitions in the array of inputs, or in the array of queries (but does not
reveal publicly relationships between queries and inputs). This is necessary since
certain parties will learn the PRP evaluations of the inputs, or the queries (but
no parties will learn both). This will allow these parties to learn of any duplicates.

Functionality FOSet

Build(JXK, N):
Build an Oblivious Set data structure consisting of the elements in array JXK =
JX1K, . . . , JXnK of variables stored in the ABB, where Xi ∈ [N ] for all i ∈ [n] (no
outputs).
Set firsti = min(j : Xj = Xi) Reveal first to all parties.
Query(JxK, res):
If x ∈ X set z = true else, set z = false. Store z in JresK in the ABB (no
outputs).
The functionality maintains a counter of the number of times Query is called,
nQueries. Set queriesnQueries = x. Set firstFound = min{j : queriesj = x}.
Reveal firstFound to all parties.

Fig. 3: Oblivious Set functionality
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Protocol ΠOSet

Build(JXK, N)

1. Set JkK = FABB .PRP keygen(N)
2. P1 generates and shares with P2 and P3:

(a) Public Cuckoo Hash functions h1, h2 : [N ]→ [m]
(b) Public Bloom Filter hash functions g1, . . . , glog(N) : [N ]→ [n log(N)].

3. For i ∈ [n]
(a) Securely evaluate the PRP on Xi: JQiK = FABB .PRP eval(JXiK, JkK).
(b) Reveal to P1: qLocali = FABB .Output(JQiK, P1).

4. For i ∈ [n], P1 sets firsti = j where Qj , j ≤ i is the first occurrence of Qi in
Q. P1 outputs first.

5. P1 constructs a Cuckoo Hash table with a stash for the outputs qLocali i.e.,
P1 stores qLocali in T1[h1(qLocali)] or T2[h2(qLocali)] for as many encodings
as possible, and stores the remaining random encodings in stash S. If |S| >
log(N) the build fails and P1 sends abort to all parties, who then abort. In
all empty locations in the table, P1 stores ⊥ (where ⊥ /∈ [N ]). Let C be the
appended tables of T1 and T2. P1 secret-shares C between P2 and P3, i.e. for
i ∈ [2m] call FABB .InputToSharing(Ci, P1, cuckooi, {P2, P3})

6. P1 constructs a Bloom Filter B of length n log(N), using inputs S and hash
functions g1, . . . , glog(N). P1 then secret-shares B to P2 and P3 as follows: for
i ∈ [n log(N)] call FABB .InputToSharing(Bi, P1, bloomi, {P2, P3})

7. P2 and P3 create empty local dictionary queries for storing PRP query results
they learn. Set nQueries = 0.

Query(JxK, res)

1. Securely evaluate random the PRP on the query and reveal the output to P2

and P3. JqSharedK = FABB .PRP eval(JxK, JkK).
q = FABB .Output(JqSharedK, P2)
q = FABB .Output(JqSharedK, P3)

2. P2 and P3 see if q is already stored in queries. If so, set firstFound =
nQueries and set queries[q] = nQueries. Else set firstFound = queries[q].
Reveal firstFound to all players. Increment nQueries.

3. Securely query q in the Cuckoo Table as follows. For i ∈ {1, 2},
(a) P2 and P3 locally calculate cLocali = hi(q) + (i− 1) ∗m.
(b) JciK = FABB .InputFromSharing(JcuckoocLocaliK, {P2, P3})
(c) JeqiK = FABB .Equal(JciK, JqSharedK)
Call JinCuckooK = FABB .OR(Jeq1K, Jeq2K).

4. Securely query q in the Bloom Filter i.e., call JinBloomK = JtrueK. For i ∈
[log(N)]:
(a) P2 and P3 locally calculate bLocali = gi(q) for 1 ≤ i ≤ k.
(b) JbiK = FABB .InputFromSharing(JbloombLocaliK, {P2, P3})
(c) JinBloomK = FABB .AND(JinBloomK, JbiK).

5. Securely determine whether it is in either the Cuckoo Table or the Bloom
Filter: JresK = FABB .OR(JinCuckooK, JinBloomK)

Fig. 4: 3 Party Secure Set Membership
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Theorem 4. Protocol ΠOSet (Figure 4) securely implements FOSet (Figure 3)
in the FABB-hybrid model, in the (3, 1) semi-honest setting

Proof. Build: Observe that ΠOSet.Build has a probability of failure, whereas
FOSet.Build does not. However the failure probability is negligible (Theorem 3),
so cannot be used to distinguish the real and ideal executions.

Let SBUILD,1 be the simulator for P1 for ΠOSet.Build. It is provided with
P1’s input and output, and only needs to produce the messages P1 received from
FABB , namely qLocal1, . . . , qLocaln. It proceeds as follows:

1. SBUILD,1 is given first.
2. Let unused = {1, . . . , N}
3. For i ∈ {1, . . . , n}

(a) If firsti = i select an element r of unused uniformly at random, remove
r from unused, and set qLocali = r.

(b) Otherwise let j = firsti. Set qLocali = qLocalj .

Firstly, observe that if qLocali = qLocalj in the program execution, then
firsti = firstj , so qLocali = qLocalj in the simulator’s transcript. The unique
values in qLocal1, . . . , qLocaln are results of a truly random permutation. There-
fore, distinguishing the values of qLocal from the real and simulated executions
amounts to distinguishing the pseudo-random permutation from a truly random
permutation. Since viewπ1 (x, y, z) is indistinguishable from S1(1n, x, f1(x, y, z)),
and f(x, y, z) and outputπ(x, y, z, n) are deterministic functions of S1(1n, x, f1(x, y, z))
and viewπ1 (x, y, z) respectively, the combined distributions (S1(1n, x, f1(x, y, z)), f(x, y, z))
and (viewπ1 (x, y, z, n), outputπ(x, y, z, n)) are computationally indistingishable.
P2 and P3 receive no messages during a build..

Query: There is a negligible probability of a false positive and zero proba-
bility of a false negative (Theorem 3). Therefore, the event of a false result does
not allow the true and simulated executions to become computationally indis-
tinguishable. The sumulator for P2 during a query is almost identical to that
of P1 during a build, except that rather than receiving an entire list of pseudo-
random permutations to simulate, it receives one at a time. The simulator has
to generate a single value that is consistent with a PRP evaluation. It is given a
value firstFound for the current query call. It keeps track of all previous values
of firstFound, as well as all views generated for previous calls to the query. If
firstFound < nQueries, SQUERY,2 sets the message q to the same one that was
generated in the the firstFoundth query. Otherwise it generates a new, unused
message from [N ] and sets this to be the message q for the current round. Since
P2 and P3 have symmetric roles in the protocol, their simulators for the query
are identical. P1 receives no messages during a query.

The communication costs of ΠOSet are stated below. The proofs just consist
of adding up the costs of each step, and are included in Appendix J.

Theorem 5. Protocol ΠOSet.Build (Figure 4) requires O(κn) communication.
In particular it requires n calls to FABBPRP eval.

Theorem 6. Protocol ΠOSet.Query (Figure 4) requires O(κ) communication. In
particular it requires 1 call to FABBPRP eval.
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7.1 3 Party Oblivious Set Membership for small n

Our hierarchical ORAM protocol will need Oblivious Hash Tables, and Oblivious
Sets, where n is not ω(log(N)). In this case, the data structure presented above
will have non-negligible failure probablity.

To solve this, when n is small we use a modified set membership protocol
ΠOSetSmall, which uses larger Bloom filters and no Cuckoo Hash Tables. We have
some security parameter κ, where κ = ω(log(N)). If n < κ, the Cuckoo Hash
Table is not used, and P1 places all n PRP evaluations in the Bloom Filter, and
makes the Bloom filter of size B = nκ. As before the number of hash functions
is log(N). This makes the probability of a false positive(

1− e
log(N)n
nκ

)log(N)

=
(

1− e
log(N)
κ

)log(N)

which is negligible in N . The proof of security is identical to that of the
ΠOSet, since the only messages revealed are the PRP evaluations, so ΠOSetSmall

securely implements FOSet for n < ω(log(N)).
The communication complexity of a build remains O(κn) with n secure PRP

evaluations and the communication complexity of a query remains O(κ) with 1
secure PRP evaluation.

Therefore, in terms of security and communication cost, other protocols can
call ΠOSetSmall in place of ΠOSet when n is small and the behavior will be the
same. One small difference, however, is thatΠOSetSmall needs superlinear storage
(Θ(κn) rather than Θ(n log(N))). Nevertheless, in the ORAM data structure,
only the smaller levels will be instantiated with this data structure, so it will not
increase the asymptotic memory usage.

8 (3, 1)-secure Oblivious Hash Table

We will now present how an Oblivious Set can be used to construct an efficient
Oblivious Hash Table. The essential realization is that once it is known whether
an item is in the Hash Table, the protocol can choose whether to search for the
item itself or to search for a pre-inserted dummy element. This means that the
protocol need not hide where in the data structure data is stored, nor need it
hide the location that is accessed. All that needs to be hidden is whether an item
is a dummy element or not, and if not, to avoid revealing any information about
which element it is. As such, Oblivious Sets turn out to handle the hardest part
of the problem, and any regular hash table may be used to store the data.

Like the Oblivious Set, the Oblivious Hash Table will reveal which indices
in the input are duplicates of each other, and will also reveal which queries are
repetitions of each other. (In our final ORAM protocol, it will be ensured that
there are no duplicates, so this will leak no information.)

The Oblivious Hash Table contains a fixed number of pre-inserted dummy
items, and since each distinct non-member query needs to access a distinct
dummy, the Oblivious Hash Table will only support a limited number of queries.
(The table can be rebuilt with new dummies if need be, but this will not be
needed for the Oblivious RAM application.) These pre-inserted dummy items
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are searched for also using a PRP. This increases the size of the inputs space of
the PRP to log(2N).

The Oblivious Hash Table is parameterized by the set of keys and values,
(X1, Y1), . . . , (Xn, Yn), the size of the domain of the indices, N , and the maxi-
mum number of distinct queries allowed, T . (By definition T ≤ N .)

Functionality FOHTable

Build((JX1K,JY1K), . . . , (JXnK, JYnK), N, T):
Let firsti = min{j : Xj = Xi}. For all i such that firsti = i, store Yi in a
dictionary dict under index Xi. (No outputs.)
Reveal first to all parties.
Set t = 0 (unique query counter) and nQueries = 0 (query counter)
Query(JXK, res):
If t ≥ T do nothing. Otherwise, if X ∈ X1, . . . , Xn, set Y = dictJXiK, otherwise
set Y = ⊥. Store Y in JresK (no outputs).
Set queriesnQueries = x. Set firstFound = min{j : queriesj = x}. If
firstFound = t increment t. Increment nQueries. Reveal firstFound to all par-
ties.
Extract(res):
Returns n+ T − t elements, containing all pairs (Xi, Yi) where firsti = i and Xi

was never queried. The remaining items are set to (⊥,⊥). This array is stored in
the ABB in JresK.

Fig. 5: Oblivious Hash Table functionality

Theorem 7. ΠOHTable (Figure 6) securely implements FOHTable in the FABB-
FOSet-hybrid model in the (3, 1) semi-honest security setting.

Proof. Build: FOSet generates first exactly according to the requirement for
FOHTable. Furthermore this output is a deterministic function of the inputs. It
follows that we only need to show that simulators exist for each party whose gen-
erated messages are computationally indistinguishable from the real messages.

P1 receives no messages. P2 receives Q̂1, . . . , Q̂n+T . S2 generates n+ T ran-
dom distinct log(4N)-bit messages in place of these. Since these are the result
of PRP evaluations on distinct inputs, any entity that could distinguish these
from random distinct messages would be able to distinguish the PRP from a
random permutation. Hence, by the security of the PRP, the output of S2 is
indistinguishable from the view of P2. P3 role is symmetric to P2.

Query: We need to show both that the correct value firstFound is returned
and that JresK is set to the correct value. Based on the definition of firstFound
in FOSet, and the fact that every query to ΠOHTable results in exactly 1 query to
FOSet, the value firstFound that FOSet reveals will satisfy exactly FOHTable.
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Protocol ΠOHTable

Build((JX1K, JY1K), . . . , (JXnK, JYnK), N, T)

1. Call FOSet.Build(JX1K, . . . , JXnK, N). This reveals the value first to all par-
ties.

2. P1 locally chooses k, a key for the PRP fk : [4N ] → [4N ]. Securely input k:
JkK = FABB .Input(k, P1).

3. For i = 1, . . . , n
(a) If firsti 6= i, Xi is a duplicate, set JXiK = JN + iK and JYiK = J⊥K.
(b) Set JQiK = FABB .PRP eval(JXiK, JkK).

4. P1 creates and uploads dummies indexed from 2N+1 to 2N+T , to be queried
when an item is not in the Oblivious Hash Table. For i = 1, . . . , T
(a) P1 locally evaluates Qn+i = fk(2N + i)
(b) JQn+iK = FABB .Input(Qn+i, P1)
(c) Set JXn+iK = J2N + iK and JYn+iK = J⊥K

5. Shuffle the tuples. Set JQ̂K, JX̂K, JŶ K = FABB .Shuffle(JQK, JXK, JY K)
6. Reveal Q̂1, . . . , Q̂n+T to P2 and P3. This will allow P2 and P3 to find an item’s

index in the shuffled array, based on its PRP evaluation.
7. Initialize t = 0 (counter for unique accesses to data structure).

Query(JxK, res)

1. Check whether the index is stored in the table: sharein = FOSet.Query(JxK).
2. The previous function will also reveal to all parties the value firstQuery,

which shows the first time x was queried to the Oblivious Hash Table. Let
nQueries be the number of times the Query function has been called before.
If firstQuery < nQueries, this item has been queried before. If so, set JresK
to the same query result that was provided the previous time JxK was queried
and return. Otherwise increment t.

3. If the index is not in the table, an index of a pre-inserted dummy is used
instead. JxdummyK = FABB .Input(2N + j, P1).
JxusedK = FABB .IfThenElse(JinK, JxK, JxdummyK)

4. The PRP evaluation identifying the real/dummy element is calculated and
revealed to P2 and P3:
JqK = FABB .PRP eval(JxusedK, JkK)
q = FABB .Output(JqK, {P2, P3})

5. P2 and P3 find the PRP tag in the permuted PRP array, which allows them
to find the value corresponding to that tag. I.e. P2 and P3 find j such that
q = Q̂j and reveal j to P1. The parties set JresK = JŶiK.

Extract(res)

1. It is publicly known which t of the n + T (X̂, Ŷ ) pairs were visited. For
j = 1, . . . , n+ T − t, let i be the jth unvisited index and set:
(a) JisDummyK = FABB .Equal(JYiK, J⊥K)
(b) JXiK = FABB .IfThenElse(JisDummyK, J⊥K, JXiK)
(c) JresjK = (JXiK, JYiK)

Fig. 6: Oblivious Hash Table
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If x has been queried before, the protocol stores in JresK the same value as it
stored last time, so if x is correct on all new queries it will also be correct on
all repeated queries. If x has not been queried before, then there are two cases.
Either JxK ∈ JXK, in which case x is queried, or JxK /∈ JXK, in which case 2N + j
is queried. If JxK ∈ JXK, then q = fk(x). Let ρ be the permutation of the shuffle,
and let i represent the indices prior to the shuffle and j = ρ(i) represent the
indices following the shuffle. Since x = Xi for some i ∈ [n], and Qi = fk(Xi),
then q = Q̂j for some j such that Ŷj = Yi, so JresK is set to the correct value.
If JxK /∈ JXK then q = fk(2N + t). Since 1 ≤ t ≤ T , q = Qn+t. As such, there is
some j such that Q̂j = q and JŶjK = JYn+tK = J⊥K. Therefore JresK is set to J⊥K
as required.

This shows that the query protocol is correct, but it remains to show that it
is secure. If the index was queried before, no messages are sent to any player and
the protocol is trivially secure. If the index was not queried before, then P1 learns
the index of the accessed item in the shuffled array. SQUERY,1 will generate a
random index in [n+ T ] that has not been accessed before. By the definition of
FABB .Shuffle, the accessed items after the shuffle will be truly random distinct
values. As such the distribution of the view of P1 is identical to the distribution
generated by SQUERY,1. P2 receives, in each query, the message q = Q̂j . The

simulator SQUERY,2, simulates this by selecting an element of Q̂j uniformly at
random from among the elements that have not previously been selected. Again,
from the security of the shuffle, each accessed element in the real protocol will also
be selected uniformly at random from among the unaccessed elements. Therefore
the real and simulated views are identical. Since P3 is symmetric to P2 its proof
of security is the same.

Extract: JresK will contain n + T − t elements as required. If x = Xi for
i ∈ [n], and x was queried, then, from above, the index of x will be visited, so Xi

and its data Yi will not be stored in JresK. If x = Xi for i ∈ [n], but x was not
queried, then Qi = fk(Xi) was never revealed as a result of query, so index ρ(i)
was never visited in the permuted array. Since Yi is a real data element Yi 6= ⊥,
so JXiK, JYiK will be stored in JresK. All remaining elements stored in JresK will
be for some Xi /∈ X, i.e., i > N . In these cases Yi = ⊥, (J⊥K, J⊥K) will be stored
in JresK as required. The security of Extract is trivial since no parties receive
messages.

The communication costs of ΠOHTable are stated below. The proofs just
consist of adding the costs of each step, and are included in Appendix K.

Theorem 8. ΠOHTable.Build (Figure 6) requires O(κn+Dn+DT ) communi-
cation. In particular, it requires 2n calls to FABB .PRP eval.

Theorem 9. ΠOHTable.Query (Figure 6) requires O(κ) communication and, in
particular, at most 2 calls to FABB .PRP eval.

Theorem 10. ΠOHTable.Extract (Figure 6) requires O((n + T − t)D) commu-
nication and no calls to FABB .PRP eval.
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9 Hierarchical ORAM

The Oblivious Hash Table functionality of Figure 5 has 3 limitations. Firstly,
it only allows items to be written once during the build, and then allows items
to be read one at a time. Secondly, the build leaks which items in the build
are duplicates of each other. Lastly, the query leaks which queried items were
repetitions of each other.

We will now present the Oblivious RAM functionality which does away with
these limitations. To simplify the protocol, our version of the ORAM function-
ality executes both a read and a write in a single function call (reads the old
value and writes the new). This can easily be converted into calls to the indi-
vidual functions: ignoring the returned value provides the write (but don’t read)
function; re-writing the read value provides the read (but don’t write) function.
The readAndWrite function is executed on a single index at a time. It leaks no
information about whether the index was used in previous queries.

Functionality FORAM

Init(JY K, N, D) Initialize the ORAM to initially have stored (JiK, JYiK) for 1 ≤
i ≤ N , where |JYiK| is D bits (no output).
ReadAndWrite(JxK, JyK, res): (Where x ∈ {1, . . . , N} and y is D bits.) Set
JresK to the value that was most recently written to JxK and set the new value of
index JxK to JyK (no output).

Fig. 7: Oblivious RAM functionality

Our ORAM protocol builds on the “hierarchical ORAM” solution [Ost92],
[Ost90], [GO96], [LO13] and uses the Oblivious Hash Table of Functionality 5
as a building block. Specifically, hierarchical ORAM schemes avoid leakage of
repeated queries by building a hierarchy of Oblivious Hash Tables of geomet-
rically increasing sizes, and ensuring that each element is only queried once at
each level of the hierarchy.

Any time an item is accessed, the accessed item is placed in a “cache” (L0).
Each time a new query is performed, the entire cache is scanned. If the item is
found, the old value is deleted from its previous location in the cache and the
new value is appended to the cache.

In this scheme, the size of the cache grows with each access, so searching the
cache becomes increasingly expensive. To solve this, the cache has a maximum
size, which we set to log(N). When the cache is full, a new (small) Oblivious
Hash Table is built from its contents. This allows these items to be accessed again
efficiently. In general, once levels L0, . . . , Li are filled, their (unaccessed) elements
are extracted and built into a new larger Oblivious Hash table at level, Li+1, and
the levels L0, . . . , Li are emptied. In this way, a hierarchy of ≈ log2(N) Oblivious
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Hash Tables is constructed of geometrically increasing sizes. The hierarchical
ORAM scheme is presented in detail in Figure 8.

Before reasoning about correctness, security and communication complexity,
we will need to show some basic properties of the protocol.

Definition 1. We say that an index JxK where x ∈ [N ] resides at a certain level,
Lj, if one of the following is true.

– j = 0 and there exists exactly one index in L0 that is set to JxK.

– j > 0 and there is an Oblivious Hash Table at Lj that was built using JxK,
and JxK has not yet been queried to this table.

Observe that when levels L0, . . . , Li are merged during a rebuild, the new
Oblivious Hash Table is built using exactly the real indices that resided at levels
L0, . . . , Li (and some dummy indices).

Lemma 1. If index JxK, where x ∈ [N ], was queried to an Oblivious Hash Table
that exists at level Li, for i ≥ 1, at the start and end of each function call there
exists exactly one level, Lj, where j < i, at which JxK resides.

Proof. By induction on the query step and the rebuild step.

At the time JxK was queried to Li, it must not have been found in L0, . . . , Li−1,
(otherwise JN + tK would have been queried to Li instead). Then after the index
was queried to Li, it was written to L0, so resided in exactly one level (L0).

In each subsequent query (ignoring the rebuild step), if the index is queried
again, it will, by induction, be found in some level Lj for j < i. If it is found in
L0, that location will be set to J⊥K and if it is found in some other level it will
now have been queried in that level. Either way, it will not reside at any level at
this moment. It will again be written to L0, at which point it will again reside in
exactly one level (L0). If another index is queried, the index will not be queried
at whichever level it is stored, so the invariant is preserved.

If a rebuild occurs, by the inductive assumption, there is a level, Lj , j < i, at
which JxK resides. Let w be such that the rebuild is to merge levels L0, . . . , Lw.
If w < j, Lj is unaffected, so JxK will continue to reside at Lj . Since JxK did not
reside in L0, . . . , Lw it will not be built into the new Oblivious Hash Table, so will
not reside there. If j ≤ w < i, since JxK resides at level Lj , it will be extracted,
and be placed in JAK. Therefore, the new Oblivious Hash Table produced after
a rebuild will contain index JxK, and it will not yet have been queried at that
level before. Since Li was not merged in the rebuild, it must be that w ≤ i− 2.
Therefore, the new Oblivious Hash Table will be placed in level w + 1 < i, so
JxK now resides in only Lw+1 satisfying the invariant. Lastly, if w ≥ i, then the
Oblivious Hash Table at level Li is deleted, and so the condition of the lemma
no longer holds.

Corollary 1. Each index JxK for x ∈ [N ] resides at exactly one level at the start
and end of each function call.
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Protocol ΠORAM

Init(JY K, N, D):

1. Let top = log(N) − log(log(N)) + 1 be the index of the top level. Build
FOHTable.Build((J1K, JY1K), . . . , (JNK, JYN K), 2N,N). Store it at level Ltop.

2. Set L0 to be an empty array of size log(N).
3. Initialize t = 1 (access counter).

ReadAndWrite(JxK, JyK, res):

1. If JxK is found, the protocol searches for a nonce henceforth. Set JxusedK = JxK
to hold the updatable value that will be searched for.

2. Securely check whether JxusedK is in L0. If so, securely (using
FABB .IfThenElse), set JresK to the corresponding data element, set the item
at which it was found to (J⊥K, J⊥K) and update JxusedK to the nonce JN + tK.

3. Securely check whether JxusedK exists in each of the remaining levels, from
smallest to largest. Let FOHTable,i represent the instance of the Oblivious
Hash Table functionality for level Li. I.e., for each non-empty Li:
(a) JyiK = FOHTable,i.Query(JxusedK)
(b) JiniK = FABB .Equal(JyiK, J⊥K)
(c) JxusedK = FABB .IfThenElse(JiniK, JN + tK, JxusedK)
(d) JresK = FABB .IfThenElse(JiniK, JyiK, JresK)

4. Place (JxK, JyK) in the first empty location in L0.
5. If L0 is full, call Rebuild.

Rebuild():

1. Merge all (unaccessed) key-value pairs from levels L0 to Li, where i is the
largest number such that all levels L1 to Li have an Oblivious Hash Table,
then delete these tables. I.e. set JAK = L0, then for j ∈ [i]:
(a) Append JextractediK = FOHTable,i.Extract() to JAK.

2. The dummy values all have the index ⊥ however. Before a new Oblivious
Hash Table is build, these values need to be deleted or given new names. Let
(JXiK, JYiK) = JAiK. For i = 1, . . . , |JAK|,
(a) JisDummyiK = FABB .equal(JXiK, J⊥K)

3. If i < top, give the dummy indices unique names and then build a new Obliv-
ious Hash Table. For i = 1, . . . |JAK|:
(a) JXiK = FABB .IfThenElse(JisDummyiK, JN + iK, JXiK)
Build FOHTable.Build(JAK, 2N, |JAK|) and store it at level Li+1.

4. If i = top, remove dummies and then build a new Oblivious Hash Table.
(a) J ˆisDummyKJX̂K, JŶ K = FABB .Shuffle(JisDummyK, JXK, JY K)
(b) For j = 1, . . . , |JAK|

i. ˆisDummyj = FABB .Output(J ˆisDummyjK, {P1, P2, P3}).
ii. If ˆisDummyj = false, append (JX̂jK, JŶjK) to JĀK.

(c) Build FOHTable.Build(JĀK, 2N,N) and store it at level Ltop.
(d) Reset t = 1.

Fig. 8: Hierarchical ORAM scheme
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Proof. Apply Lemma 1 with i = top. Initially, all indices reside only in Ltop. Any
index that has been queried to Ltop, no longer resides in Ltop and, by Lemma 1,
resides in exactly one level Lj , for j < top. Any index that has not been queried
to Ltop still resides in Ltop, and cannot reside in any smaller level since it has
never been written to L0.

When Ltop is rebuilt all indices in [N ] are therefore included in Ā, and an
Oblivious Hash Table is constructed from these indices. Since all other levels no
longer have Oblivious Hash Tables, all indices now reside only in Ltop.

Corollary 2. Each query to each Oblivious Hash Table is distinct.

Proof. If a real index was queried once to an Oblivious Hash Table at level Li
(even if the index resided in a larger level) the index will then reside in a smaller
level until the table is deleted. If queried again to the ORAM, it will then be
found at the smaller level first, and JN+tK will be queried to the Oblivious Hash
Table instead. Since t increments with each access, the values of N + t will be
distinct for the lifetime of any Oblivious Hash Table.

Lemma 2. For an Oblivious Hash Table at level Li, for 1 ≤ i < top, the fol-
lowing properties hold:

1. It will be built using log(N)2i−1 items.
2. It will be accessed log(N)2i−1 times before being extracted and deleted.
3. It will have log(N)2i−1 items extracted from it.
4. A (new) table is extracted and deleted from Li every log(N)2i accesses,

Proof. By strong induction. First observe that property 3 follows directly from
property 1 and 2 since Oblivious Hash Tables are always instantiated with
T = |A| = log(N)2i−1 items, so after log(N)2i−1 distinct accesses, |A| + T −
log(N)2i−1 = log(N)2i−1 elements will be extracted. Hence we do not need to
separately prove property 3.

For i = 1, L1 is built using the elements of the cache, L0, so there are
log(N) such elements, as per property 1. The table at L1 will be extracted
and deleted, when the cache becomes full again, that is after a further log(N)
accesses, satisfying property 2. In general, every log(N) accesses, L0 becomes
full, and on alternating periods, a table will either exist at L1 (in which case it
is extracted) or it will not exist (in which case it is built), so extractions at level
L1 will occur ever 2 log(N) accesses.

For 1 < i < top, when a table is built at Li, it is built because L0 is full, and
is built by extracting all tables from previous levels. By property 3, the total
number of items will be log(N) +

∑i−1
j=1 log(N)2j−1 = log(N)2i−1. When the

table at Li was build, the table at Li−1 was extracted and deleted. The table at
Li will be extracted and deleted again when that of Li−1 is, which by property 4
occurs after another log(N)2i−1 accesses. In general, every log(N)2i−1 accesses,
Li−1 is extracted, which either causes Li to have a table built if there is none,
or extracted and deleted if there is one. Therefore, extractions and deletions will
occur every log(N)2i accessses.
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Theorem 11. Protocol ΠORAM (Figure 8) implements functionality FORAM
(Figure 7) in the FABB-FOHTable-hybrid model.

Proof. First we show that the correct value is returned by the read. Since an
index JxK resides in a single level of the table, (Corollary 1) it will be found at
that level. Initially, the data associated with JiK will be JYiK of the original array.
Henceforth, whatever value was last written to the index will be associated with
it (first by the pair being stored in L0, and after because the pair are moved
together during rebuilds until JiK is written to again).

Next, we show that the views are simulatable. Note that neither the theorem
nor the protocol assume a (3, 1) semi-honest access structure. The messages
created by the protocol are the values first and firstFound revealed by the
FOHTable during builds and queries respectively. Before a new Oblivious Hash
Table is built, each index resides at exactly one level, so JAK contains only a
single copy of each real index. Each dummy input in JAK is also made distinct
(to some value in {N + 1, . . . , N + |JAK|}). Therefore first = 1, . . . , |A|, so
can be easily simulated. Similarly, the queries to a given Oblivious Hash Table
are distinct (Corollary 2) so the jth value of firstFound returned by a given
Oblivious Hash Table will be j, so is easily simulated.

Therefore the views of any parties is identical in the real and simulated
executions.

Theorem 12. The amortized communication cost of ΠORAM when FOHTable
is instantiated with ΠOHTable is O(log(N)(κ + D)) per ReadAndWrite. In par-
ticular, it requires amortized less than 2 log(N) calls to FABB .PRP eval.

Proof. We amortize the rebuild costs over N accesses. We ignore the cost of Init,
as this is a once-off cost.

Checking L0 requires at most log(N) secure log(N)-bit comparisons, and
O(log(N)) calls to FABB .IfThenElse on O(D)-bit inputs, for a total cost of
O(D log(N)).

There are log(N) − log(log(N)) + 1 ≤ log(N) remaining levels. In general
though, based on the observation that tables exist at a level only half the
time (Lemma 2), asymptotically only half of these levels will be queried. Each
level that has a table will require 2 calls to FABB .PRP eval, and O(κ) com-
munication for the OHTable query, and a further O(D) communication for the
IfThenElse statements. Therefore, asymptotically, querying the other levels will
require log(N) calls to FABB .PRP eval. and O(log(N)(κ+D)) communication.

Level i is rebuilt every log(N)2i accesses, using a set of size ni = log(N)2i−1

and parameter Ti = log(N)2i−1. Therefore the cost of building the level isO((κ+
D)ni) and, in particular, 2ni calls to FABB .PRP eval. Per access this is O(κ+D)
communication and 1 call to FABB .PRP eval. Similarly a table at level i is
extracted every log(N)2i levels, with cost O(κ+D) per access.

Identifying and renaming/deleting dummies incurs an additional O(D) com-
munication cost per access per level. As such the total communication cost is
O((κ+D) log(N)) per access, and in particular 2 calls to FABB .PRP eval.

Combining Theorems 11 and 12 completes the proof of Theorem 1.
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Supplementary Material
A Comparison with LO13

As discussed in Section 2, the 2-Server ORAM protocol of [LO13] can also be
used to implement a DORAM protocol, by simulating the client inside of an
MPC. The main obstacle to efficiency is that the client performs symmetric-
key encryptions and decryptions, which are expensive when executing inside an
MPC.

Asymptotically, using MPC to simulate the [LO13] protocol is actually ef-
ficient. It is possible for block cipher operations on plaintexts of size D to be
computed using O(κ+D) AND gates. Using this and generic MPC techniques
to simulate the client of [LO13] leads to a DORAM protocol with ammortized
O((κ+D) log(N)) communication per access. However, this protocol would be
very far from practical. Specifically we show below that the number of SISO-
PRPs we need is fewer than [LO13] by a factor of about 50. These results are
tabulated in Figure 9, and are explained verbally below.

We examine Figures 3 and 4 of [LO13] and calculate the number of SISO-
PRP calls. Encryptions, decryptions and PRF evaluations will all be counted as
a single PRP call. Note that encryptions and decryptions in [LO13] are actually
applied to both the index and the data payload, so will require PRPs on larger
block sizes than those used by our protocol and will therefore require more
communication than the SISO-PRPs in our protocol.

It is important to note that [LO13] uses the cache-the-stash technique. This
doubles the frequency of rebuilds: in our protocol a table with n elements is
rebuilt every 2n accesses, but in the protocol of [LO13] rebuilds occur every n
accesses. The observation that a level only contains hash tables half of the time
still holds. (Although this observation was not made in [LO13], it would be used
by any implementation.)

Queries in [LO13] begin by querying the top level. Unlike our protocol, [LO13]
caches the stash, which means that the top level will always have at least log(N)
elements. When it is full it will have 2 log(N) elements, so on average it has
1.5 log(N) elemens. Each of these is decrypted in step 2, leading to amortized
1.5 log(N) SISO-PRP evaluations.

[LO13] then accesses the smaller levels, which use standard hash tables, with
buckets of capacity 3 log(N)/ log(log(N)). There are approximately 7 log(log(N))
such levels, and on average half of these will have tables at a given point in time.
This means that the average number of items that will need to be accessed in the
small levels is 10.5 log(N). Each item will need to be both decrypted (step 3b)
and re-encrypted (step 3d) leading to 21 log(N) SISO-PRPs per access. Addi-
tionally, a PRF will need to be executed at each level (step 3a), leading to a futher
7 log(log(N)) SISO-PRPs. To simplify the analysis, we will ignore log(log(N))
terms since these will be small relative to log(N) for large N .

The remainder of levels accessed are Cuckoo tables. These will only require
accessing two locations per level. Ignoring log(log(N)) terms, there will be log(N)
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such levels, and therefore, on average, log(N)
2 such tables. Each item, again, will

need to be decrypted (step 4b) and again re-encrypted (step 4d), each leading
to amortized costs of log(N) SISO-PRPs per access. Additionally there will be a
PRF call for each Oblivious Hash Table (step 4a) each costing 1 SISO-PRP. Since

there are on average log(N)
2 levels this costs amortized 0.5 log(N) SISO-PRPs.

Lastly, the top level is accessed again. This time items are both decrypted
and re-encrypted. Since on average there are 1.5 log(N) items in this level, this
needs, on average, 3 log(N) SISO-PRPs.

In the build, the role that a server plays during the building of a table depends
on which server will hold the built table, since the servers hold alternating levels
of the hierarchy. To build a level that will be held by Sb, the items of Sa are first
sent over to Sb. To do this these items are decrypted and re-encrypted by the
client. Next these are combined with items held by Sb, permuted by Sb and then
sent back to Sa, each first being decrypted and re-encrypted by the client. The
client also sends Sa the PRF evaluations that Sa will need to build the table.
Sa builds the table and the table is sent to Sb, but once again every item is
decrypted and re-encrypted.

Additionally, since [LO13] use the cache-the-stash technique, rebuilds will
occur twice as frequently as in our construction. Specifically, Table i will hold
c2i elements (including dummies), but will be rebuilt every c2i−1 accesses.

First the elements held by Sa need to be re-encrypted and send to Sb (Rebuild
step 2). It will be easier to count this cost based on the table that is being
extracted, rather than the one being built. We assume that when a table is
extracted to be placed into a lower level, that half of the time it will be placed
in a level that will be held by the other party. (In reality it will be more than
half, since half of the time it is placed in the level below it, which is held by the
other party.) In this case, the costs described in step 2 of the reshuffle will be
incurred.

For the small levels, there will be 3n log(N)/ log(log(N)) elements per level.
Each will need to be encrypted and decrypted (2 SISO-PRPs). This will occur
every 2n accesses. (Since the rebuilds occur every n accesses, and for at least
half of these, step 2 will need to occur.) There are 7 log(log(N)) such levels.
Therefore the cost of step 2 on small levels will be 3n log(N)/ log(log(N)) ∗
2/(2n) ∗ 7 log(log(N)) = 21 log(N) SISO-PRPs.

Cuckoo levels are similar, except that there will be only 2εn elements per
level and will be log(N) levels (ignoring log(log(N)) terms). Therefore the cost
for cuckoo levels will be 2εn ∗ 2/(2n) ∗ log(N) = 2ε log(N) SISO-PRPs per level.

The reshuffle in step 3 happens locally so incurs no communication cost.

In step 4, each element in the table is again decrypted. Again we count
these based on the table from which the elements came. This will happen to all
elements (both Sa’s and Sb’s), so will always happen when a table is extracted.
Since rebuilds occur every n accesses, the amortized number of SISO-PRPs per
access for decrypting items from small tables will be 3n log(N)/ log(log(N))/n ∗
7 log(log(N)) = 21 log(N) SISO-PRPs. The items are then re-encrypted, but
empty items need not be re-encrypted. The small tables only have log(log(7))
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items than need be re-encrypted, which will be ignored in this analysis. For
larger Cuckoo tables the situation is similar, except there are 2εn items per level
and about log(N) levels. This leads to 2ε log(N) items. Additionally, the non-
empty items will need to be encrypted. There will be n of these, leading to an
additional amortized log(N) SISO-PRPs per access for the cuckoo levels. Step
4 also simulates n PRF evaluations. For each level this occurs every n access,
adding an amortized cost of log(N) SISO-PRPs.

Step 5 is again performed locally by SA so incurs no communication cost.

When a table of capacity n is being built in step 6, the n non-empty items
given from Sa need to be decrypted. Decrypting the non-empty items costs
amortized log(N) SISO-PRPs per access (summed over all levels). Following
this, every item in the resulting table (both empty and not) must be encrypted
and sent to Sb. The total amortized cost for this over all small tables is 21 log(N)
SISO-PRPs. The total amortized cost for this over all Cuckoo tables is 2ε log(N)
SISO-PRPs.

Step SISO-PRPs per access (amortized)

Query: 2 1.5 log(N)

Query: 3b 10.5 log(N)

Query: 3d 10.5 log(N)

Query: 4a log(N)

Query: 4b log(N)

Query: 4d 0.5 log(N)

Query: 6 3 log(N)

Query Total: 28 log(N)

Reshuffle: 2 (buckets) 21 log(N)

Reshuffle: 2 (cuckoo) 2ε log(N)

Reshuffle: 4 (encrypt non-empty) log(N)

Reshuffle: 4 (decrypt buckets) 21 log(N)

Reshuffle: 4 (decrypt cuckoo) 2ε log(N)

Reshuffle: 4 (PRFs) log(N)

Reshuffle: 6 (decrypt non-empty) log(N)

Reshuffle: 6 (encrypt buckets) 21 log(N)

Reshuffle: 6 (encrypt cuckoo) 2ε log(N)

Reshuffle Total: (66 + 6ε) log(N)

Total: (94 + 6ε) log(N)

Fig. 9: Communication Cost of [LO13]: Number of SISO-PRPs

Figure 9 shows the total costs. Since ε > 1, the total cost is at least an
amortized 100 log(N) PRPs per access. Our protocol requried amortized only
2 log(N) SISO-PRPs per access. Therefore [LO13] requires about 50 times more
SISO-PRPs than our protocol.
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B Asymptotic Cost of LowMC

One appealing property of LowMC as a block cipher is that the security level can
easily be configured. While [ARS+15] does not explicitly state the asymptotic
relationship between the security level and the number of AND gates of a LowMC
circuit, their implememtation contains a script9 to calculate the number of AND
gates needed for any concrete security setting. From these we extrapolate that
LowMC can encrypt data of length D bits with κ-bit security using O(κ + D)
AND gates.

For a given security level, κ, we set the block-size equal to the security level.
We also assume a data level equal to the security level. (The data level is the
log of the number of elements viewable by the adversary. It is therefore upper-
bounded by κ and the number of AND gates needed will be highest when it
is κ.) We find the minimum number of AND gates needed at this level. These
results are presented in Figure 10. It appears from these results that the number
of AND gates needed is O(κ), with a constant of about 7.

If we wish to encrypt fewer than κ bits, we simply pad the input and the
encryption costs O(κ) AND gates. If we wish to encrypt D bits, where D > κ,
since our block size is also κ this will require O(D/κ) PRP calls, so if a PRP call
requires O(κ) AND gates, encrypting all D bits will require O(D) AND gates. In
general therefore, the cost of encrypting D bits with κ-bit security using LowMC
is O(κ+D).

κ Block Size Data AND gates AND gates / κ

20 20 20 282 14.1

40 40 40 375 9.4

60 60 60 465 7.8

80 80 80 582 7.3

100 100 100 699 7.0

120 120 120 816 6.8

140 140 140 933 6.7

160 160 160 1050 6.6

Fig. 10: LowMCv3 Complexity

C Conversions to and from (2, 2) sharing

Our Arithmetic Black Box presented in Figure 1 has the ability to share to
and from a (2, 2) sharing. Our (2, 2) sharing is a simple XOR-sharing, i.e. if the
sharing is between P1 and P2, Pi has xi where x1 and x2 are uniformly random
booleans subject to the constraint x1 ⊕ x2 = x, where x is the secret.

9 https://github.com/LowMC/lowmc/blob/master/determine rounds.py
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FABB .InputTo2Sharing(x, pId, varName, sharing) can be implemented by

player pId selecting a random x1
$← {0, 1}, setting x2 = x1 ⊕ x and sending xi

to sharingi. This is a ubiquitous protocol for generating a (2, 2) sharing of a
secret. It requires 2 bits of communication (only 1 if pId ∈ sharing).

For FABB .ReshareTo2Sharing(JxK, sharing, varName) we will need a protocol
to convert from the (3, 2) sharing of [AFL+16] to a (2, 2) sharing. The protocol
of [AFL+16] represents a sharing of secret v as follows. x1, x2, x3 are chosen
uniformly at random subject to x1 ⊕ x2 ⊕ x3 = 0. Then ai = xi−1 ⊕ v, where
subscripts wrap-around in [1, . . . , 3]. Pi’s share is (xi, ai). Then Pi, Pi+1 can
form a (2, 2) secret-sharing of v by Pi keeping xi and Pi+1 keeping ai+1. This
is a correct (2, 2)-XOR sharing since xi ⊕ ai+1 = v. Since no communication
occurs, there are no messages to simulate, and so security is automatic.
FABB .ReshareFrom2Sharing(JxKsharing, sharing, varName) can be implemented

simply by each of the two parties in the sharing calling FABB .Input(x, pId, var-
Name) on their share to store their share in the ABB. The real result can then
be computed within the ABB as the XOR of these two stored values. Since all
data is kept within the ABB, this protocol is secure.

D Multiparty secure shuffles

Our protocol requires a secure shuffle protocol, denoted FABB .Shuffle.
Although our protocol can be instantiated with any 3-party shuffle, we imag-

ine using the the multiparty shuffle of [LWZ11].
The key idea is that if a vector is secret shared among n participants, with an

t-out-of-n secret sharing scheme, then for every subset C. of n− t participants,
the participants reshare the vector to the members of C, then the members of
C permute their shares using a shuffle that is public to all members of C.

If there are only t corrupt participants, there will be some subset C, that
is completely honest, and the permutation chosen by this subset will remain
hidden from the adversary.

The key benefit of this approach is that all the shuffles are done in the clear,
and the only communication is sharing seeds for the (pseudorandom) permuta-
tions, and repeatedly re-sharing the vector.

In the (3, 1) security setting this only requires 3 local shuffles and 3 resharings,
so it is very efficient. The formal algorithm is presented as Algorithm 1.

Note that we sometimes pass to the shuffle procedure multiple arrays of the
same length. In this case the same permutations are used for each array.

Asymptotic Complexity: Given computationally bounded adversaries it
is possible for the randomness for the permutation to be generated by a PRG.
Therefore, an unlimited number of local pair-wise shuffles could be performed
with only a single PRG seed being shared between each pair of parties. The
amortized cost of this PRG seed distribution therefore tends to 0. The commu-
nication cost is therefore dominated by the cost of resharing, which requires

Θ(nD)
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Algorithm 1 Secure (3, 1) shuffle

1: procedure Shuffle(JXK)
2: n← |JXK|
3: Jπ1KA,B

$← Π(n) .
$← Π(n) chooses a pseudo-random permutation on

{1, . . . , n}.
4: Jπ2KB,C

$← Π(n)

5: Jπ3KA,C
$← Π(n)

6: JX1KBC ← ShuffleAB(JXKAB , Jπ1KA,B)
7: JX2KAC ← ShuffleBC(JX1KBC , Jπ2KB,C)
8: JX3K← ShuffleAC(JX2KAC , Jπ3KA,C)
9: return JX3K

10: end procedure

bits of communication where n is is the number of elements in the list, and
each element is D bits.

It requires 4 rounds of communication. This can be reduced to 3 rounds if
the received or target sharings are pair-wise.

Locally, it requires each player to evaluate 2 permutations on sets of size n.
Again, if the adversary is computationally bounded, this can be a pseudo-random
permutation.

Concrete Complexity

For each subset C, the members of C need to agree on the seed for a permu-
tation. This can be done by having one member generate a seed, and send it to
the other members of C.

Since a single shared seed can be extended to provide new permutations for
all subsequent calls to FABB .Shuffle, and thus this cost is amortized across all
calls to FABB .Shuffle. As noted in Table 2 in Section 3, these one time setup
costs are not included in the FABB model.

During the execution of the protocol, for each committee, C, of 2 players, the
players execute FABB .ReshareTo2Sharing to reshare to the members of C, the
members of C shuffle the shares (which requires no communication), and finally
the members of C call FABB .ReshareFrom2Sharing to reshare back to the full
set of participants.

Thus the total communication cost of the protocol is 3 calls to FABB .ReshareTo2Sharing,
and 3 calls to FABB .ReshareFrom2Sharing.

Since FABB .ResharingTo2Sharing has no communication, and FABB .ReshareFrom2Sharing
requires 8 bits of communication per bit of secret data, the total communication
cost to shuffle n elements, each of size D is 24nD.

Security: Since each player is excluded from one of these permutations, the
resulting permutation remains secret.

The data remains secret-shared, so no data is leaked to any participants
during this protocol.
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E Hashing

Definition 2 (Hashing). An (n,m, s)-hashing scheme, H, consists of three
procedures (Gen,Build, Lookup).

1. Key generation: Gen(·) is a PPT algorithm that takes an index size, N ∈
Z, and outputs a key, κ.

κ
$← Gen(N)

2. Build: Build is a RAM program takes a key κ, and a list X = {(τ, x) | τ ∈ [N ]},
where |X| = n, and each τ is distinct. The Build program returns a table T
of size m and a stash S of size at most s. Every position in T contains a
single element (τ, x) ∈ X or is empty.

(T, S)← Build(κ,X).

3. Query: The query procedure takes a bucket, τ ∈ [n], and a key κ, and returns
a set of indices I ⊂ [m].

I ← Lookup(τ, κ).

The procedures (Gen,Build, Lookup) satisfy the following properties:
Correctness: If κ← Gen(N), and (T, S)← Build(κ, x).

– Build failure: The build procedure has a negligible probability of failing.

Pr [(T, S) = (⊥,⊥)] = O
(
N−ω(1)

)
– Lookup: If T 6= ⊥, then for any (τ, x) ∈ X, if I ← Lookup(τ, κ), then either
T [i] = (τ, x) for some i ∈ I, or (τ, x) ∈ S.

The complexity of the hashing scheme is measured as follows. Complexity:
The complexity of Build is measured by the amount of data exchanged by the CPU
and RAM in an Build invocation. The complexity of Lookup is the maximum size
of the set I returned by Build.

F Oblivious hashing

Hash tables are widely used in ORAM protocols, but care needs to be taken
in their application. An adversary who monitors the build procedure as well as
subsequent queries to the hash table can distinguish real queries from “dummy”
queries. To address this, many ORAM schemes rely on oblivious hashing. A
hashing scheme is said to be oblivious if Build is oblivious, i.e., the access pattern
of the RAM program Build is independent of its inputs (κ,X). To address this,
[GO96] gave an oblivious balls-and-bins hashing algorithm that relies on repeated
applications of an oblivious sorting algorithm.

Other ORAM protocols relied on cuckoo hashing, and an oblivious Cuckoo
hashing was proposed [GM11]. The original of obliviousness had flaws that were
later fixed [CGLS17].
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Unfortunately, all known oblivious hashing algorithms are fairly complex,
requiring several applications of oblivious sorting.

To get around this, in the multi-server setting, it is common to have one
server build the hash table and encrypts it, while a different server responds to
queries about the (encrypted) table. Thus no single party is able to see both the
transcript of the build procedure and subsequent queries [LO13,KM19].

Essentially any hashing scheme can be made oblivious in this way, and this
eliminates the need for (expensive) oblivious sorting.

G Bloom Filter

A Bloom Filter is a standard data structure for performing set membership
queries. We present it in Algorithm 2.

Algorithm 2 Bloom Filter

1: procedure Build(X, n, m, k, κ)
2: Input: X a set of size n
3: Input: m size of Bloom filter array
4: Input: k number of hash functions
5: Input: κ security parameter
6: for i in 1, . . . , k do
7: Ki ← PRF. keygen(κ)
8: end for
9: M = 0m . M is a bit-array

10: for i in 1, . . . , k do
11: for j in 1, . . . , n do
12: qi,j = PRF.Eval(Kj , Xi) mod m
13: M [qi,j ] = 1
14: end for
15: end for
16: return M , K1, . . . ,Kk.
17: end procedure
18:
19: procedure Lookup(x, M , {Ki}ki=1 )
20: Input: x an element to look up
21: Input: M Bloom filter array of size m
22: Input: {Ki} hash function keys
23: b = 1
24: for i in 1, . . . , k do
25: qi = PRF.Eval(Ki, x) mod m
26: b = AND(b,M [qi])
27: end for
28: return b
29: end procedure
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Since the build algorithm explicitly sets M [PRF.Eval(Ki, xj)] = 1 for all i
and for all xj ∈ X, if x ∈ X then Lookup(x,M,K,m) will return 1. There is
however a possibility of false-positives, where x /∈ X but Lookup(x,M,K,m)
still returns 1.

Although it is difficult to calculate the exact false-positive rate for a Bloom
filter [BGK+08,CRJ10], asymptotically, the false-positive rate for a Bloom filter
with storing s elements is more straightforward [MU17][Chapter 5]. Storing a
set of size s, in a Bloom filter of size m using k hash functions, the probability
of false positives is

Pr [false positive] ≈
((

1− e− ks
m

)k)
.

If the Bloom Filter data structure is secret-shared between two parties, then
Lookups will need to perform the AND operation inside a secure computation.
Using pre-distributed randomness this can be achieved with O(k) communica-
tion.

H Cuckoo Hash Table

Cuckoo Hashing is a standard data Hash Table implementation. There are many
variants–for concreteness and completeness we present a specific one below which
would be used by our protocol.

If the “payload” is simply a single bit representing that the item is present
in the table, a Cuckoo Hash Table also serves as a set membership protocol.

Cuckoo Hashing [PR01] is a dictionary implementation. Each element is
stored in one of d locations in memory according to the index’s evaluation on
d distinct hash functions. Lookups therefore only require d memory accesses.
With d = O(1) and a table of size O(n) the basic algorithm has a small, but
non-negligible probability of build failure as some elements may not be able to
be placed.

To reduce this failure probability, the cuckoo hash can include a “stash” of
size s, which contains any elements that were not able to be placed in the table.
For a constant s, the probability of failure becomes O(n−(s+1)) [KMW09,Mit09]
In fact, with d hash functions, and a stash of constant size s, cuckoo hashing build
fails with probability O

(
n(1−d)(s+1)

)
[KMW09][Lemma 3.1]. For s = O(log(n))

the failure probability is O(n−
s
2 ).

Cuckoo hashing has been used in hierarchical ORAMs [KLO12,LO13,AKL+20,KM19].
However, building a Cuckoo Table obliviously in the context of an ORAM is
challenging, and many works have observed flaws or unintended overheads in
previous designs [GM11,CGLS17,FNO21].

For concreteness, Algorithm 3 outlines a basic cuckoo hashing scheme with
d = 2. For consistency with the analysis of [Aum10] we use the version where
the two hash functions map to different tables.

To allow compatibility with our protocols which perform execution on secret-
shared data, we distinguish in the Lookup procedure between the variable which
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determines the data’s location in the table, z, and that used to verify which item
in the table is correct, x. In our oblivious algorithms z = SISO-PRF.EvalABC([k], [x])
is known to the parties performing the Lookup, but x is secret-shared. In the
case where the table is secret shared, the Lookup therefore requires 2 secure
comparisons and also needs to execute the if statements in Lookup obliviously
(i.e., evaluate both branches). Similarly, to execute the stash Lookup when S
and x are secret-shared, each comparison must be executed securely and each if
statement evaluated obliviously.

I Proof of Theorem 3

Proof (Proof of Theorem 3).
Storage overhead: The total storage of the data structure is |T | + |B|. T

has O(n) locations, each of size log(N) and B has n log(N) bits so the total
space is Θ(n log(N)).
False-positive rate: Since Cuckoo Hash Tables have no false positives, the
only way a false-positive can occur is during the Bloom Filter lookup. Given a
Bloom Filter with k hash functions, and a table B of size |B|, storing s elements
a standard analysis (e.g. [MU17][Chapter 5]) shows that the probability that a
false positive occurs approaches (

1− e−
ks
|B|

)k
.

Here k = log(N), s ≤ log(N) and |B| = n log(N). Therefore, the probability
of a false positive is at most(

1− e−
log2(N)
n log(N)

)log(N)

=
(

1− e−
log(N)
n

)log(N)

We wish that the failure probability be negligible inN , i.e., Pr(false positive) ≤
N−c0 for any constant c0 > 0 for sufficiently large N . This is equivalent to say-

ing Pr(false positive) ≤ (2−c0)
log(N)

, and setting c1 = 2−c0 this is equivalent to

saying that for all constants 0 < c1 < 1, Pr(false positive) ≤ clog(N)
1 .

(
1− e−

log(N)
n

)log(N)

≤ clog(N)
1 ⇔ log(N)

n
≤ − ln(1− c1)

− ln(1 − c1) will be a constant greater than 0. Since n = ω(log(N)) this is
satisfied for any constant 0 < c1 < 1, for sufficiently large N .
False negatives: Any item in the set will be stored in either the Cuckoo Hash
table or the Bloom Filter. Since neither the Cuckoo hash table nor the Bloom
Filter have false negatives, every item in the set will be found.
Build failure: The build will only fail if |S| > log(N). For n = ω(log(N)) and
a stash of size log(N) Cuckoo Hashing with a stash of size log(N) will succeed
except with probability negligible in N [Nob21].

41



Algorithm 3 CuckooHT: Cuckoo Hash Table

1: procedure Keygen
2: K1 ← PRF.Keygen(κ)
3: K2 ← PRF.Keygen(κ)
4: return K
5: end procedure
6:
7: procedure Insert(T1, T2, S, x, y, b,
k1, k2, j)

8: Input: Two tables T1, T2

9: Input: A stash, S
10: Input: A key-value pair (x, y)
11: Input: A bit, b, indicating which

table to try first
12: Input: Keys for two hash func-

tions k1, k2
13: Input: A counter, j, indicating

how many attempts have been made
14: if j > log(N) then
15: S. append((x, y))
16: return
17: end if
18: q ← PRF.Eval(kb, x).
19: (x̄, ȳ)← (Tb)q
20: (Tb)q ← (x, y)
21: if x̄ 6= ⊥ then
22: Insert(T1, T2, x̄, ȳ, (3 −

b), k1, k2, j + 1)
23: end if
24: end procedure
25:
26: procedure Build(X, Y , K, n, m)
27: Input: A set of keys, X, with
|X| = n

28: Input: A set of values, Y , with
|Y | = n

29: Input: A set of PRF keys, K,
with |K| = 2

30: Input: A table size, m
31: S is initialized to an empty list
32: T1 ← (⊥,⊥)

m
2

33: T2 ← (⊥,⊥)
m
2

34: for i in 1, . . . , n do
35: Insert(T1,T2,Xi,Yi, 1,K1,K2, 0)
36: end for
37: return T1||T2, S
38: end procedure
39:
40: procedure LookupMain(z, x, T , k1,

k2 ) . Lookup in the table, but skip
the stash

41: Input: A key, z, that was used to
build the table

42: Input: A key, x, that is stored
with each data element

43: Input: A pair of tables T
44: Input: A pair of keys k1, k2
45: q1 ← PRF.Eval(k1, z)
46: q2 ← PRF.Eval(k2, z)
47: if (T1)q1 . left = x then
48: return (T1)q1 . right
49: else if (T2)q2 . left = x then
50: return (T2)q2 . right
51: else
52: return ⊥
53: end if
54: end procedure
55:
56: procedure LookupStash(x, S) .

Lookup just in the stash
57: Input: A key x
58: Input: The stash S
59: y ← ⊥
60: for i in 1, . . . , |S| do
61: if Si . left = x then
62: y = Si.right
63: end if
64: end for
65: return y
66: end procedure
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Lookup cost: The amount of memory accessed for the lookup is 2 log(N) bits
for searching the Cuckoo Tables, and k = log(N) bits for searching the Bloom
filter, so the total about of memory accessed is O(log(N)).

J Deferred proofs of ΠOSet communication costs

Theorem 13. Protocol ΠOSet.Build (Figure 4) requires O(κn) communication.
In particular it requires n calls to FABBPRP eval.

Proof. Generating the secret key requires no communication. Sharing the hash
functions requires sending O(log(N)) = o(n) hash functions, each which can
be represented with κ bits, so O(κn) bits total. Step 3 requires n calls to
FABBPRP eval. each of which costs O(κ+logN) = O(κ) bits of communication,
so again O(κn) bits total. Outputting these results to P1 requires outputting n
messages, each of size O(κ), and the communication cost to output a bit is O(1),
so the total cost is again O(κn).

Constructing the Cuckoo Hash table and Bloom Filter is achieved locally
by P1 so needs no communication. Inputting the Cuckoo Table requires in-
putting 2m = O(n) messages, each of size O(κ), each bit of which requires O(1)
communication, so O(κn) communication total. The bloom filter is of length
n logN = o(nκ) bits, so inputting it requires o(nκ) communication.

Each step requires O(nκ) communication, and since there is a constant num-
ber of steps, the total communication for a Build is O(κn) communication.

Theorem 14. Protocol ΠOSet.Query (Figure 4) requires O(κ) communication.
In particular it requires 1 call to FABBPRP eval.

Proof. The protocol begins with one (and the only) call to FABBPRP eval. This
costs O(κ + log(N)) = O(κ) bits of communication. Reveal the output to P2

and P3 requires revealing 2 messages of size log(N) = o(κ), which requires o(κ)
communication total. P2 and P3’s local examination of the queries object needs
no communication. Securely checking the Cuckoo Hash table requres 2 calls to
FABB .InputFromSharing on inputs of size log(N) = o(κ), 2 calls to FABB .Equal
also on inputs of size log(N) = o(κ) and a single secure OR of cost O(1). There-
fore the total cost of querying the Cuckoo Hash table is O(log(N)) = o(κ).
Querying the Bloom Filter requires log(N) calls to FABB .InputFromSharing on
inputs of size 1, and log(N) calls to FABB .AND. This sums to O(log(N)) = o(κ)
communication. The final OR requires O(1) communication. Since there are a
constant number of steps, each costing O(κ) bits, the total communication cost
of a query is O(κ) bits.

K Deferred proofs of ΠOHTable communication costs

Theorem 15. ΠOHTable.Build (Figure 6) requires O(κn+Dn+DT ) commu-
nication. In particular, it requires 2n calls to FABB .PRP eval.
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Proof. FOSet.Build can be implemented O(κn) communication and n calls to
FABB .PRP eval (Theorem 13). Inputting the PRP key requires O(κ) commu-
nication. Resetting the values of duplicates (step 3a) requires inputting at most
n values of size log(4N) and n of size D, for a total cost of O(nD). There are n
more secure calls to FABB .PRP eval, needing a total of O(κn) communication.
Inputting the dummies in step 4 requires T iterations, each needing communi-
cation O(log(4N) + D) = O(D), or O(TD) total. The shuffle shuffles arrays of
length n + T , where each is of size O(D), leading to O(Dn + DT )) communi-
cation. Revealing Q̂ to P2 and P3 requires O((n + T ) log(4N)) = O((n + T )D)
communication. Therefore the entire protocol requires O(κn+Dn+DT ) com-
munication.

Theorem 16. ΠOHTable.Query (Figure 6) requires O(κ) communication and,
in particular, at most 2 calls to FABB .PRP eval.

Proof. Calling FOSet.Query requiresO(κ) communication and 1 call to FABB .PRP eval.
If x was queried before, the protocol is done. Otherwise an additionalO(log(4N)) =
O(κ) communication is required to input the dummy index and O(log(4N)) =
O(κ) is needed to set JxusedK to the appropriate value. Securely evaluating the
PRP on JxusedK requires an additional call to FABB .PRP eval and O(κ) com-
munication. Revealing the result requires O(log(4N)) = O(κ) communication.
Setting JresK is free (since the data is already in the ABB). The total cost is
therefore O(κ).

Theorem 17. ΠOHTable.Extract (Figure 6) requires O((n + T − t)D) commu-
nication and no calls to FABB .PRP eval.

Proof. The protocol has n + T − t iterations of a loop. Each iteration consists
of a secure equality on D bits, costing O(D) communication, an IfThenElse on
log(4N) bits, costing O(log(N)) communication and a secure renaming, which
is free. Therefore the total cost is O((n+ T − t)D).
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