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Abstract

We introduce Themis, a scheme for introducing fair ordering of transactions into (permis-
sioned) Byzantine consensus protocols with at most f faulty nodes among n > 4f + 1. Themis
is the first such scheme to achieve (optimistic) linear communication complexity. At the same
time, it enforces the strongest notion of fair ordering proposed to date. Themis also achieves
standard liveness, rather than the weaker notion of previous work.

We show experimentally that Themis can be integrated into state-of-the-art consensus pro-
tocols with minimal modification or performance overhead. Additionally, we introduce a suite
of experiments of general interest for evaluating the practical strength of various notions of fair
ordering and the resilience of fair-ordering protocols to adversarial manipulation. We use this
suite of experiments to show that the notion of fair ordering enforced by Themis is significantly
stronger in theory and for realistic workloads than those of competing systems.

We believe Themis offers strong practical protection against many types of transaction-
ordering attacks—such as front-running and back-running—that are currently impacting com-
monly used smart contract systems.

TEqual second-author contribution.
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1 Introduction

Decentralized Finance (DeF1i), meaning the deployment of financial instruments on blockchains, has
attracted substantial interest in recent years, with over 85 billion USD locked in Ethereum DeFi as
of August 2021 [11]. Unfortunately, while DeFi continues to gain popularity, a long line of work [10,
13, 20, 31, 41] has shown the rise of adversaries extracting profit by manipulating the ordering and
inclusion of transactions in DeFi applications. In decentralized exchanges and lending contracts,
for example, where transaction execution order is critically important, such order manipulation
results in attackers profiting at the expense of ordinary users.

Order manipulation is possible in existing protocols largely because the formal properties re-
quired of state machine replication (SMR) or consensus—the primitive that underpins blockchains—
place no restriction on how transactions are ordered. Neither consistency nor liveness, the two
pillars of consensus security, enforces any relationship between the order in which transactions
arrive in the network and their final ordering in the log. Indeed, in both permissioned consensus
protocols, e.g., PBFT [8] and Hotstuff [39], and permissionless ones, e.g., Ethereum, the current
“leader” fully controls the inclusion and ordering of transactions within a block that it creates.

To address this gap in traditional consensus research, a recent line of work [18, 19, 21, 22, 40]
proposes consensus protocols with so-called fair ordering properties—properties that prevent ad-
versarial manipulation of transaction ordering. These works propose several definitions of fairness'
along with protocols that realize them. These notions are different and in many cases stronger
than past ordering properties such as causal ordering [6, 32] which only prevents reordering of
transactions based purely on their content and fails to account for a range of attacks, e.g., those
based on transaction metadata leakage or prioritizing adversarial transactions over others (e.g., to
get the best purchase price for an asset [28]). The recent line of work on fair ordering attempts
to tackle transaction ordering at a more fundamental level; notably, [18, 19, 40] all found exciting
connections of the fair ordering problem to social choice theory.

Existing proposed fair-ordering protocols, however, have serious limitations. The protocol in [19]
has impractically high O(n3) communication complexity, while for [22, 40] it is O(n?) which is sub-
optimal. Moreover, as we show in this work, there are subtle censorship issues in [40] and the
notion of fairness in [22, 40] is potentially weaker in both theory and practice than that of [19].
Further, [22, 40] also depend on the existence of synchronized clocks among the protocol nodes,
which can introduce significant additional overhead. We include a few key comparison points in
Table 1.

1.1 Themis: An efficient fair-ordering protocol

We introduce a new fair-ordering protocol called Themis that overcomes these limitations of pre-
vious work. Themis operates with a committee of n nodes of which at most f may be arbitrarily
adversarial where n > 4f + 1; it is designed to run in the partially synchronous network model.
In contrast to previous order-fair protocols, which require O(n?) communication [22, 40] or O(n?)
communication [19] even in the optimistic case, Themis is the first order-fair protocol that achieves
linear communication, i.e., O(n), in the optimistic case. This is optimal and equivalent to state-of-
the-art consensus protocols that lack any fair ordering guarantees, e.g., Hotstuff [39].

!Throughout this paper, we use “fairness” to mean fairness of transaction ordering or fair ordering, although the
term fairness has been used in the past for unrelated notions (e.g., fair PoW mining [30]).
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Table 1: Comparison of Themis to existing fair ordering protocols. An entry in green indicates
that it is the best property among the protocols that we compare to. (1) While the core Wendy
protocol does not require synchronized clocks, if honest local clocks are far apart (e.g., each an
hour apart), then their fairness definition will never apply, and therefore the system essentially
provide no guarantees; (2) We define fair separability in Definition 6.1 which corresponds to timed-
relative-fairness used in [22]. The ordering linearizability definition from Pompé is exactly the same
as fair separability but only pertains to transaction pairs that are output by the protocol; (3) The
design of Pompe can be modified to take advantage of general-purpose SNARKS; this results in a
communication complexity of O(nlogn) in the optimistic case and O(nlogn + nf) in the worst
case. (4) Themis can also work when n > 3f + 1 if only crash-faults are present or if censorship is
allowed; (5) In Themis, transactions in a “batch” are output contiguously rather than at the same
time.

As our O(n) Themis protocol is somewhat computationally intensive, we also introduce a O(n?)
protocol that may be potentially more scalable in practice, just as Hotstuff itself is implemented as
a practical O(n?) protocol the original codebase [25] as well as in LibraBFT [2]. We emphasize that
even our O(n?) protocol provides significant advantages over existing protocols; Themis satisfies
a much stronger fairness property compared to existing O(n?) fair-ordering protocols and also
removes the reliance on synchronized clocks.

We show that integration of this variant of Themis into Hotstuff results in acceptable perfor-
mance overhead in practice; our implementation was still able to achieve a latency of roughly 13ms
and a peak throughput of 43,622 transactions per second, which should suffice for most applications.

As we now explain, Themis satisfies the strong fairness property of [19] and achieves standard
liveness, while [19] only achieves a notion called weak-liveness.

Themis: Fair-ordering property. Themis achieves the batch-order-fairness property proposed
by Kelkar et al. [19]. Informally, batch-order-fairness? with parameter % < v < 1 dictates that if
~ fraction of nodes receive a transaction tx before tx’ from the client, then tx should be ordered
no later than tx’ in the final output. (While [19] also introduced a stronger receive-order-fairness
property for which tx must be ordered strictly before tx’, the authors show that it is impossible to
satisfy in the general case without strong synchrony assumptions.)

Batches arise as a result of non-transitive Condorcet cycles in message receipt times across

2Here, batch is unrelated to the standard SMR optimization of increasing throughput (at the cost of latency) by
amortizing consensus over many transactions.



nodes [9] (see Section 3.1 for more details). As shown by [19], the “no later than” condition of
batch-order-fairness is required only when Condorcet cycles arise and in that sense represents a
minimal relaxation of receive-order-fairness. To bolster this point, we show in this work that in
practice, Condorcet cycles arise infrequently and tend to be quite small in reasonable network
settings. Consequently, the final transaction ordering output by Themis should be very close to
that guaranteed by the strong receive-order-fairness notion. This is because Themis guarantees
that for any two subsequent transactions tx; and tx;i; in the final output, it holds that tx; was
received before tx;;1 by at least n(1 — ) + 1 honest nodes.

We find that the batch-order-fairness property supported in Themis is stronger in practice than
other ordering notions proposed in Zhang et al. [40] and Kursawe [22]. One of our contributions is
an extensive set of experiments comparing these different notions and demonstrating the practical
security advantage achieved by batch-order-fairness in adversarial order-manipulation attacks.

Themis design. Themis can be bootstrapped from any leader-based consensus protocol. For con-
creteness, we choose to build on Hotstuff [39], adding to it to the batch-order-fairness property.
Themis maintains the basic structure of Hotstuff, with three modifications. First, before construct-
ing a block, all replicas send information about the order in which they received client transactions
to the current leader. Second, we specify an algorithm for an honest leader to construct a fair
proposal from the replica orderings. Finally, we provide a way for the replicas to verify the fairness
of a leader’s proposal as well as extract out the final ordering.

For the fair proposal algorithm, we extract out key techniques from [19] for ordering transactions
(much as [18] does). Unfortunately, applying these techniques naively results in a loss of liveness,
similar to the original Aequitas protocol from [19] which achieves only a weaker notion of liveness
due to the possible “chaining” of Condorcet cycles (see Section 3.1 for details). Concretely, in
Themis, loss of liveness would mean empty blocks being produced by several honest leaders until
the “chaining” of the current Condorcet cycle is completed.

Our solution is a new technique that we call deferred ordering. With deferred ordering, blocks
produced by a leader contain some transactions that are fully ordered, while other transactions
are only partially ordered. Partially ordered transactions await total ordering by a subsequent
honest leader. Notably, the finalization of these partially ordered transactions happens within the
network delay and does not have to wait indefinitely for the ordering of future transactions, e.g., the
presence of Condorcet cycles. This feature of Themis allows us to circumvent the liveness problem
of Aequitas. Thanks to deferred ordering, Themis achieves the standard liveness property. Deferred
ordering is a technique of general interest: It can, e.g., be retrofitted to [19] to achieve standard
liveness there too.

Suite of fair-ordering experiments. We study the performance of Themis experimentally.
There exists no prior work on practical measurement or empirical comparison of the strength of
fair ordering protocols. A key contribution of our work, therefore, is a general, systematically
conceived suite of experiments to quantify the practical impact of both fairness definitions and
protocols and understand their design tradeoffs. We use this suite here to study batch-order-
fairness and Themis and compare them with alternatives, and believe it will be useful for any
future work on fair ordering protocols.

In particular, we propose two kinds of experiments: The first attempts to understand the
strength and robustness of a given fair ordering property in an ideal honest setting (with no adver-
sarial nodes).



The second experiment considers the resilience of fair ordering techniques in adversarial settings.
For this, we consider three broad class of adversarial attacks, which are commonly seen in practice
and evaluate how different protocols fare against them. Specifically, this includes the following:
(1) Network layer insertions — attempting to insert malicious transactions at the network layer
(i.e., even before the consensus begins) through e.g., frontrunning; (2) Censorship — attempting
to censor specific user transactions; and (3) Reordering — attempting to reorder transactions
compared to the “honest” execution.

Experimental results. We run our suite of experiments on the fair-ordering definitions proposed
by Kelkar et al. [19], Zhang et al. [40], Kursawe [22]. As a highlight, we find that the fairness notions
from [19] (even for the strictest parameter choice of v = 1) perform better in practice compared to
the notions from [22, 40] both in ideal and adversarial settings. Additionally, we discuss potential
censorship threats in existing protocols.

1.2 Contributions

Our contributions in this work are as follows:

e Themis: We introduce Themis, the first partially synchronous fair-ordering protocol with opti-
mistic linear communication complexity. Themis realizes the strong fairness property of [19], but
unlike [19] achieves practical performance.

e Liveness: We introduce the technique of deferred ordering, which enables us to achieve standard
liveness in Themis (as opposed to the weak liveness of [19]) and is of general interest. Additionally,
we show subtle censorship concerns existing fair ordering protocols.

o FExperimental suite: We introduce an experimental suite of general interest for the study of fair-
ordering protocols. Using this suite, we run experiments showing that the fairness property
of Themis is stronger in practice than alternative notions and the occurrence of Condorcet cycles
is likely to be relatively rare.

2 Preliminaries and Model

Model. Our setup is a permissioned system with a set N of n known protocol nodes or replicas,
of which at most f are controlled by an adversary (denoted by A) and can deviate arbitrarily from
the protocol description. Transactions to be sequenced are sent by system clients to all replicas.
For our fair ordering protocols, we will consider the times at which a transaction was received
by the replicas to decide on its overall ordering in the final ledger. For communication between
replicas, we assume the presence of a PKI, and the security of digital signatures. The network itself
is partially synchronous [12]; specifically, there exists a network delay A that bounds the message
delivery time between replicas, but is not known to the replicas. A controls all message delivery,
and can delay and reorder messages up to the bound A.

Arguments of knowledge. We make use of generic arguments of knowledge—specifically, SNARKSs [3,
16] for NP languages—in a black-box way to verify computation. For a language L in NP with
witness relation Rz, a SNARK for Ry is a tuple of efficient algorithms (Gen, Prove, Verify) where
Gen generates the trusted parameters pp (e.g., the CRS) given 1* where ) is the security parameter



for the argument system, Prove is the prover algorithm, and Verify is the verifier algorithm. Given
pp and any (x,w) € R, Prove(pp, x,w) produces a proof 7 attesting that x € L. The proof can
be checked using Verify(pp, z, 7). We require the standard completeness, soundness, and knowledge
properties for SNARKs. For (asymptotic) efficiency of our protocol, the SNARKSs need to have
constant-sized proofs excluding a poly-log factor in the security parameter (e.g., [16]). We do not
require any zero-knowledge property.

Graph terminology and algorithms. We make use of common graph algorithms to reason
about the ordering dependencies between transactions. We therefore start by recalling standard
graph terminology. G = (V,£) denotes a graph with vertex set V and edge set £. Unless specified,
all graphs will be directed and unweighted. We often use vertices and transactions interchangeably
when referring to graphs where vertices represent transactions. We call G a tournament graph if
there is exactly one edge between each pair of vertices.

For V eV, SCCq(V) denotes the strongly connected component that contains V. The subscript
G can be dropped when the context is clear. Recall that a strongly connected component is a
maximal subgraph such that there is a path in each direction between each pair of vertices in the
component. G* denotes the condensation of G (i.e., the transformed graph where vertices in the
same SCC are collapsed into a single vertex). Note that G* is guaranteed to be acyclic.

Within a graph, a Hamiltonian path is a path (i.e., a sequence of vertices) that visits each vertex
exactly once. A Hamiltonian cycle is a Hamiltonian path that forms a cycle, i.e., there is also an
edge from the last vertex to the first vertex in the path. For an acyclic graph G, a topological
sorting is a linear ordering of vertices such that for any vertices U and V', U is ordered before V if
(U, V)egG.E.

Given a graph G, its condensation can be easily computed in time O(|V| + |€]) using depth-
first search techniques [36]. Moreover, if G is acyclic, then it can also be topologically sorted with
the same asymptotic complexity. While the problem of detecting Hamiltonian paths in generic
graphs is NP-complete, for acyclic graphs in particular, it is solvable in time O(|V|+ |£]) (through
topological sorting). This is also true for tournament graphs [27].

Fair-ordering consensus protocols. Standard SMR or consensus protocols are required to
satisfy two properties: consistency and liveness. Informally, consistency ensures that all replicas
eventually agree on the same transaction ledger, while liveness guarantees that new transactions
proposed by clients are incorporated into the ledger quickly.

Motivated by practical use cases where transaction ordering is of critical importance, recent
works [19, 22, 40] have proposed adding a third property that captures a notion of fairness in
transaction ordering. While a variety of properties have been proposed, at a high level, this style
of fairness seeks to guarantee a specific ordering in the finalized ledger based on how transactions
arrive into the network.

In this work, we will primarily focus on the fairness desiderata proposed by Kelkar et al. [19]. We
justify our choice in Section 6 by illustrating through comprehensive network simulations why this
fairness notion is better suited to handle natural order-manipulation attacks than other related
properties. Through these experiments, we provide a detailed comparison to the the protocols
proposed in [19, 22, 40].

We describe the techniques of Kelkar et al. [19] in Section 3.1.



3 Building Blocks

3.1 Aequitas Technique

Our starting point is the work of Kelkar et al. [19], which explored several variants of fair transaction
ordering along with the assumptions necessary to realize them. All definitions were parameterized
by an order-fairness parameter v bounded by % < v < 1, which intuitively represents the fraction
of replicas in the system that ensures a definitive transaction ordering. Specifically, the system as
a whole is guaranteed to decide on a particular global ordering of transactions tx and tx’ if some ~-
fraction of replicas all received the transactions in a specific order. The primary notion considered,
and subsequently realized by their leaderless Aequitas protocol, was batch-order-fairness. In this
paper, we will be mainly concerned with this notion, which is as follows:

Definition 3.1 (y-batch-order-fairness). Suppose that transactions tx and tx’ are received by all
protocol nodes. If yn nodes received tx before tx’ locally, then all honest nodes deliver tx no later
than tx’.

A stronger notion, receive-order-fairness (exactly as Definition 3.1, but now, tx must be delivered
before tx’), was also considered in [19]. An impossibility result, however, rules out realization of that
notion except in specific synchronous settings. The impossibility result arises from the Condorcet
paradox [9] in voting theory. Abstractly, this allows for non-transitive global preferences even if
each party’s local preferences are transitive.® Consequently, the global “fair” transaction ordering
(according to receive-order-fairness) could contain cycles, which we refer to as Condorcet cycles.
Batch-order-fairness sidesteps this by enabling transaction delivery in batches (transactions can
still be totally ordered within a batch), and subsequently ignoring unfairness resulting from any
cyclic orderings in the same batch.

Aequitas protocol. The Aequitas protocol from [19] consists of three stages that each transac-
tion goes through before being delivered to the ledger. First, in the gossip stage, all nodes broadcast
transactions in the order they were locally received from clients. The FiFo broadcast primitive [17]
is used to ensure that the broadcast order of an honest sender is maintained. Next, in the agreement
stage, a variant of Byzantine Agreement [23] is used to agree on whose local orderings to use to
order a particular transaction. Lastly, the finalization stage is used to non-interactively determine
the final transaction ordering. Given the local orderings of other nodes, the finalization algorithm
builds a dependency graph of transactions as they arrive. Here, edges represent ordering dependen-
cies between transactions (e.g., an edge from tx to tx’ signifies that a large number of nodes have
received tx earlier). Disregarding the complexity introduced by the graph being built at different
rates by different nodes, the core algorithm removes transactions from the graph and delivers them
when, informally, they no longer have any dependencies.

Aequitas realizes batch-order-fairness and circumvents the impossibility result by delivering
transactions in the same Condorcet cycle at the same time (i.e., in the same “batch”). Further,
Aequitas guarantees that batch-relaxation is minimal in the sense that if no Condorcet cycles are
present, each batch includes only a single transaction (i.e., the stronger receive-order-fairness notion
will be met). In this paper, we will show the practical significance of this feature by showing that

3 As a simple example, suppose that three nodes receive transactions in the order [a, b, c], [b, ¢, a] and [c, a, b]. Here,
each of “a before b”, “b before ¢”’, and “c before a” holds for a majority of nodes, resulting in a non-transitive global
preference.



under standard network models, Condorcet cycles tend to arise infrequently and are typically of
small size.

Condorcet cycles and weak-liveness. A crucial problem with the Aequitas protocol, however,
is that it achieves only a weak notion of liveness. Once again, the existence of Condorcet cycles
proves problematic here. Kelkar et al. [19] note the possibility for Condorcet cycles to “chain”
together, and extend for an arbitrarily long time and even include transactions input later (this
happens because of specific input transaction orderings and not necessarily the adversary). In other
words, specific input orderings could prevent the delivery of transactions for arbitrarily long. To
provide intuition for, and confirm this perhaps surprising observation from [19], we show an explicit
construction of such an input ordering in Appendix A. The Aequitas protocol, therefore, can only
guarantee liveness after the current chain completes, which may take arbitrarily long in the worst
case.

3.2 Evading the Weak-Liveness Problem

Potential Condorcet cycles. Since some local orderings can be adversarial, we need to account
for potential Condorcet cycles, which are also implicitly accounted for in Kelkar et al. [19]. We
formally define them below as they lead to a key piece of our protocol design.

Definition 3.2 ((Potential) Condorcet Cycle). A list [txq,...,tx] is a potential Condorcet cycle
of length [ if the following holds: For all i € {1,...,l}, where tx; = tx;41, at least n(1 —~v) + 1
honest nodes have received tx; 1 before tx;.

Further, for each i, if at least yn — f nodes “claim” to have received tx;;+1 before tx; (honest
nodes claim the order in which they receive transactions while adversarial nodes can claim arbitrary
orderings), then [tx, ..., tx;] will be form a Condorcet cycle.

For potential cycles, note that when tx’ is received before tx by at least n(1 — ) + 1 honest
nodes, the order-fairness definition does not guarantee that tx is ordered before tx’, which means
that the two transactions could potentially end up in the same Condorcet cycle. We emphasize
however that not all potential cycles will end up being actual cycles. For the actual cycle to be
formed, for each edge in the cycle, at least yn — f nodes should claim to have received that ordering.

Now, we observe that while transactions in the same Condorcet cycle are delivered at the same
time by Aequitas, in many practical applications, some total ordering will need to be imposed
for transaction execution. Here, Aequitas encourages choosing a deterministic (e.g., alphabetical)
ordering for transactions in the same cycle. However, since cycles can chain, it may take an unknown
amount of time to identify all the transactions that should be part of the current cycle.

To avoid this problem, we make a crucial observation: in most scenarios, it should be reasonable
to output transactions in the same cycle contiguously, even potentially in successive blocks rather
than together. This means that a part of the current cycle can be output later as long as no
transaction from a later cycle comes before it.

This creates a surprisingly powerful tool: in essence, it will allow us to “continue” the same
cycle across consecutive consensus leaders without compromising on fairness. While identifying the
end of the current cycle brings us back to the same weak-liveness problem, doing so is no longer
necessary when cycles can be output contiguously. In this spirit, we introduce the technique of
deferred ordering, which will propose a partial ordering for some transactions and defer their total



ordering to the next leader. Note that the total ordering for deferred transactions will not depend
on the chaining of Condorcet cycles, and therefore, we are able to achieve standard liveness.
Notably, we can still guarantee two important fairness properties: (1) No transaction is censored;
(2) The total ordering can be linearly partitioned into cycles, i.e., a transaction in a different cycle
cannot be ordered between two transactions in the same cycle. Similar to earlier, if there are no
(potential) Condorcet cycles, the stronger receive-order-fairness notion will still be satisfied.

3.3 Protocol Design

We describe the core design of Themis in this section. Themis can be bootstrapped from any
leader-based consensus protocol and will endow it with our fair ordering property.

Recall that standard protocols provide the leader complete authority when creating its proposal—
only the validity of transactions and not their ordering is checked by the replicas. The way Themis
will achieve fairness is by providing a mechanism for replicas to also check the ordering in the
proposal. To enable the leader to construct a fair ordering, all replicas will first submit their local
transaction orderings to the leader. By local ordering, we mean transactions received at a given
node ordered by their receive times. Without loss of generality, we will assume that the local
orderings are totally ordered.

Specifically, we start by providing an algorithm used by the leader to construct a fair-ordered
proposal from a set of replica local orderings. Abstractly, this algorithm will guarantee that most
transactions are proposed (which is important for liveness) but at the same time, fairness is not
violated even when a new leader needs to continue the ordering proposed by an earlier leader. When
sending the proposal to replicas, the leader will also include a SNARK proof that the proposal
algorithm was executed correctly. This will be used to guarantee the fair ordering of transactions
in the proposal. We point out though, that our use of SNARKS is primarily to reduce the protocol
communication complexity. If this is a non-goal, correctness can also checked by forwarding all
replica local orderings to all other replicas. This alternative strategy will incur an extra O(n)
communication factor. Section 4 contains a full description of the fairness components of our
Themis design.

Our changes to the overall structure of the underlying consensus protocol are quite minimal.
Notably, our design will only need to modify how the leader proposal is constructed and how its
fairness is verified by the replicas. We require only a single extra communication step (to send the
local orderings from the replicas to the leader) on top of the underlying protocol. Other standard
consensus mechanisms (e.g., detecting leader equivocation, leader rotation etc.) will not be affected
and can be plugged in as before.

While we can bootstrap from any leader-based consensus protocol, for concreteness, we will
use the partially synchronous Hotstuff protocol from Yin et al. [39]. For a single (honest) leader,
Hotstuff requires only O(n) communication; this will also be the communication complexity of our
protocol. In the worst case with f cascading leader failures, the communication complexity of both
protocols will be O(nf).

4 Fair Leader Protocol

In this section, we describe the algorithms used by an honest leader to propose a fair ordering among
the transactions it receives from the replicas, as well as how fairness can be verified by the replicas.

10



We extract out the underlying consensus protocol and only specify the fair ordering components.
Any leader-based consensus protocol can utilize these components to achieve fair ordering.

Basic structure. Recall that the technique by which we circumvent the weak-liveness problem
is to allow Condorcet cycles to continue across multiple leader proposals. Specifically, we will allow
a leader to propose a partial ordering, which will later be completed by a future leader without
compromising on fairness. For this, we provide two algorithms, FairPropose and FairUpdate,
which detail how an honest leader should construct a proposal, and how it should update a previous
leader’s proposal, respectively. We also describe an algorithm FairFinalize, that allows all nodes
to extract a fair transaction ordering from fully specified proposals.

Local replica orderings. Before the leader constructs a proposal, each replica sends its local
transaction ordering to the leader. Note that since the network is partially synchronous, the leader
will need to work with only n — f orderings. To enable the leader to construct a proposal, an honest
replica i sends the following: (1) List; containing the transactions received by 4 that are not part of
any previous proposal, in the order that they were received (by 7); (2) o;(List;) which is 4’s signature
on List;. Further, to allow the leader to update previous proposals, i sends the following: (1) Update;
containing transactions from previous proposals that are not fully specified (we will elaborate on this
later) in the order that they were received (by 7); (2) o;(Update;) which is ¢’s signature on Update;.
Notably, our protocol only requires orderings from the replicas, and not individual timestamps for
transactions. This means that Themis can work even without synchronized clocks.

Local order notation. For a set £ of n — f orderings, we use tx €, L (resp. tx ¢ L) to
denote that tx is present in at least (resp. less than) k orderings in L. We use tx <z tx’
to denote that tx appears before tx’ in at least k orderings in £. We call tx a solid transaction
(wrt. L) if tx €, of L, a shaded transaction if tx €,1_y)4r41 £ but tx ¢, oy L, and a blank
transaction if tx €,1_,)4 541 £. tx is a non-blank transaction if it is either solid or shaded. We
use Weight,(tx, tx) to denote the maximum value k such that tx <, ) tx".

Deferred ordering. Looking ahead, solid transactions are the ones that have been received by
enough replicas to make an ordering decision. Note that both shaded and blank transactions are
not present in enough replicas yet to be finalize an ordering. However, in some cases, there can be
an edge from a shaded transaction tx to a solid transaction tx’. Here, to retain fair ordering, tx
will be included in the leader proposal but may only be partially ordered until the time it becomes
a solid transaction for a later leader’s proposal (which only depends on the actual network delay).
Furthermore, this also defers the ordering for tx’ until then.

4.1 Overview of Leader Algorithms
We now describe the FairPropose and FairUpdate algorithms used by an honest leader.

Proposal algorithm. The algorithm FairPropose is used by an honest leader to construct a
block proposal upon receiving a set £ of n— f orderings. Abstractly, the goal of this algorithm is to
propose as many transactions as possible while making sure that the exclusion of any transaction
from the proposal does not violate fairness.

The algorithm proceeds as follows: First, it constructs the dependency graph G by adding a ver-
tex for each non-blank transaction. An edge (tx, tx’) is added to the graph whenever tx <(Ln(1—)+f+1)
tx’; only one of (tx,tx’) or (tx’,tx) is added however, i.e., if both conditions are satisfied, the one
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Algorithm FairPropose (L)

// Propose a fair ordering for new transactions.
On input a set £ containing the local transaction orderings of n — f nodes:

1. Build Dependency Graph

e Create an empty graph G = (V, £).

For each non-blank tx, add a vertex tx to V.

For each tx, tx’ € V, let k = Weight - (tx, tx') and k¥’ = Weight, (tx/,tx). If k > n(l —~v)+ f+1 and
k >k and (tx',tx) ¢ &, then add the edge (tx,tx’) to &.

e Compute the condensation graph G* of G and its topological sorting S.

2. Output Fair Ordering

e Let V be the last vertex of S that contains a solid transaction.
e Remove those transactions from G, that are part of vertices after V' in S.

e QOutput G.

Figure 1: Leader Proposal Algorithm

with the larger value will be added. Specifically, let kK = Weight(tx, tx') and k' = Weight(tx, tx).
If both k, k' > n(1 —v) + f + 1, then add the edge (tx,tx’) if & > k' and the edge (tx/, tx) if &' > k;
If K = k', then one of the two edges can be added deterministically. Note that no edges are added
when both k, k" < n(1—+)+ f+ 1. When this happens, an edge will be added by a later proposal.

Next, the condensation of the graph is computed and topologically sorted. Let V' be the last
vertex in the topological sorting that contains a solid transaction. Then, the FairPropose outputs
the graph structure obtained by removing all transactions tx from G such that SCC(tx) occurs after
V in the topological sorting. The details are given in Figure 1.

Proposal properties. A proposal created using FairPropose(L) is guaranteed to contain all
solid transactions in £. Further, it contains no blank transactions, and exactly those shaded
transactions that contain an outgoing path into a solid transaction within the dependency graph.
We show in Lemma 4.2 that the exclusion of any transaction that is not proposed does not violate
fairness; specifically, if tx is the last solid transaction proposed, and tx’ is a transaction that is not
proposed, then at least n(1 — «) 4+ 1 honest nodes that have received tx before tx'.

Further, within the graph G, there is at exactly one edge between any two vertices, except
possibly when both vertices correspond to shaded transactions. Future leaders cannot modify
existing edges but will be able to add missing edges between shaded transactions. This proposal of
a “partial graph” is crucial as it allows us to avoid the weak-liveness problem. The main observation
we use here is that any transaction that is not proposed will either be part of the same or later
potential Condorcet cycle than any transaction that is proposed; in other words, fairness is not
lost by including shaded transactions that have missing edges within the proposal. We prove this
formally in Lemma 4.3.

Update algorithm. The update algorithm allows a leader to add missing edges to a previous
leader’s proposal graph. For this, each replica ¢ also sends the ordering Update; that orders shaded
transactions from previous proposals as seen by i. The update algorithm is quite simple: upon
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Algorithm FairUpdate (L)

// Update the ordering for previous proposals
On receiving a set Lypdates containing the local transaction orderings of n — f nodes for previously
proposed shaded transactions:

1. Output Dependencies

o Let gupdates — .

e For all tx and tx’ that are part of the same leader proposal and between whom, no edge has been
proposed yet, let k = Weight,  (tx,tx) and &' = Weight,  (tx',tx). Ifk >n(l—7)+f+1
and k > k' and (tx/,tx) ¢ Eupdates, then add the edge (tx,tx’) to Eupdates-

i ()utput 5updates~

Figure 2: Update Algorithm

receiving n — f of such orderings from replicas, for all transactions tx and tx’ that were part of the
same previous leader’s proposal and do not currently have an edge between them, the edge (tx, tx’)
is added if tx <(z ;(1—y)+f+1) tX. Once again, only one of (tx,tx') or (tx',tx) is added however
exactly as in the FairPropose algorithm. The new edges are specified in an update list & pqates-
Intuitively, this allows all nodes to use these update edges to fill in the missing details within earlier
proposals in order to compute the final fair ordering. We provide details in Figure 2.

4.2 Constructing A Fair Ordering

Replica verification. We use generic arguments of knowledge to enable replicas to verify the
correctness of a leader’s proposal. Specifically, the leader will prove knowledge of transaction
orderings from n — f nodes such that when they are run through the FairPropose algorithm, the
graph output is the one that’s proposed. The knowledge of these transaction orderings can be
verified through digital signatures. We do this so as to prevent the leader from needing to forward
all transaction orderings and signatures to all nodes, which incurs an O(n?) cost.

More formally, we can consider the language L in NP such that (z,w) is in the witness relation
Ry, if the following holds: x is a string representation of directed graph G, w is parsed into List;, ||

<o || List;,_, || o (Listy) || -+ || 04, ,(List;,_,) where each (Listj,0;) represents a transaction
ordering from a distinct node along with a signature from the node, and FairPropose(L£) outputs
G where £ = {List;,...,List; _ f}. The string representation of a graph can be decided upon

deterministically, for example, by choosing vertices in alphabetical order. A well studied line of
work ([16, 26] among numerous others) has shown how to construct constant size SNARKs that
enable such proofs for any language in NP. We use these proofs to provide witness proofs for our
language L. The same technique can be used to prove correctness of the update list Eypdates-

Finally, the overall proposal block B by the leader will be the tuple (G, Eupdates, 71, T2) Where
G is the graph for newly proposed transactions, Eupdates is the set of edges to add to previous
proposals, 7y is the SNARK for G, and 75 is the SNARK for &,pdates- The upshot is that now, the
size of B depends no longer depends on the number of nodes, enabling the underlying consensus
algorithm to achieve communication complexity O(n).

Note that the use of SNARKSs enables linear asymptotic communication complexity and is
not necessary if O(n?) complexity is acceptable; the leader can simply include all orderings and
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Algorithm FairFinalize()

Given a sequence of proposals [By, B, ..., Bj]:

1. Update Graphs

i. For all B; and transactions tx, tx’ in B; that do not have an edge between them, if (tx,tx’') is in
some B;.G, then add that edge to B;.G.

ii. Let k be the last index such that the graph By.G is a tournament.
iii. Compute the condensation graphs of B;.G, ..., Br.G and their topological sortings S, ..., Sk.

2. Retrieve Fair Ordering

i. For each S; = [v;1,...,vy,| where ¢ € {1,...,k}, let H;; be a Hamiltonian cycle of v;; (pick one
deterministically if there are multiple). Note that this exists since each v;; is a strongly connected
tournament.

ii. Let tx;;, be a solid transaction in each v;;, (pick one deterministically if there are multiple), and let
H{li be the cyclic rotation of H;;, so that the last transaction is tx;, .

iii. The final transaction ordering for the block B; is now given by Hiy, ..., Hyq,—1), Hj .

i

Figure 3: FairFinalize Algorithm

signatures within the proposal, which can in turn be checked by the replicas. In fact, SNARKSs
could be less practical than the O(n?) variant of our protocol due to, to the best of our knowledge,
the current lack of any efficient SNARKSs geared towards verifying graph algorithms. A practical
method to achieve O(n) complexity is to let the leader propose a block without a SNARK while
maintaining the replica orderings locally. This can facilitate later auditing leading to potential
reversal of the proposed order and/or slashing of the leader stake.

Choosing a final fair ordering. As the final step, we now describe an algorithm FairFinalize
used by replicas to arrive at the fair ordering. This step is carried out locally by all nodes after
proposal blocks have been confirmed by the underlying consensus protocol. FairFinalize will
decide on the ordering for transactions within fully specified graph proposals; G is fully specified
when it is a tournament graph, i.e, there is exactly one edge between any pair of vertices. An
important point to highlight here is that the confirmation of transactions will depend only on the
network delay and does not suffer from the weak-liveness problem present in the Aequitas protocol.
This is because missing edges in a graph G will be added (making it fully specified) as soon as
the transactions are received by the network and an honest leader is elected. As an optimization,
transactions whose SCC as well as all SCCs that precede it contains only solid transactions can be
finalized immediately even before the proposal graph is fully specified.

Now, given a sequence of blocks By, ..., By, the FairFinalize algorithm first uses the B;.Eypdates
to add missing edges to earlier graphs. Let k be the largest index such that all of B1.G to By.G are
fully specified. Intuitively, FairFinalize will order all transactions within these blocks.

Consider a graph B;.G where j < k. Note that each SCC in B;.G is also a tournament. An old
result by Camion [7] shows that all strongly connected tournaments contain a Hamiltonian cycle
(a cycle that visits every vertex exactly once). Intuitively, we will use this Hamiltonian cycle to
determine a total ordering within an SCC in such a way that it connects to the ordering from other
SCCs. Note that although the problem of finding Hamiltonian cycles is NP-complete for general
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graphs, for tournaments specifically, they can be found in time linear in the number of edges [27].

More concretely, given a graph B.G, for each SCC C' in the graph, we first find a Hamiltonian
cycle He containing all the transactions within C. If multiple cycles exist, one of them can be chosen
deterministically to be used for the total ordering. Now, let [Vi, Vo, ..., V] denote the topological
sorting of the condensation graph B.G*. Note that each of V; to V. represent an SCC within B.G.
The ordering for transactions within V7 to V,._; is simply the sequence of the Hamiltonian cycles
Hy, to Hy, ,. For the final SCC V., we will cyclically rotate the corresponding Hamiltonian cycle.
Recall that our FairPropose algorithm guarantees that this contains at least one solid transaction,
say tx. Now, to obtain the transaction ordering for V., we rotate Hy, so that tx is now the final
transaction among those output. This is done to ensure that the any tx’ output in a later block is
such there are at least n(1 — ) + 1 honest nodes that have received tx before tx’.

A note on our use of Hamiltonian cycles. While we make use of Hamiltonian cycles, we note
that other techniques, such as using median timestamps, or alphabetical ordering, can certainly be
used to decide on the final ordering for transactions within a Condorcet cycle.

Our technique has some distinct advantages however. First, it does not rely on synchronized
clocks between protocol nodes to ensure correct timestamps, since only the the local orderings (in
fact, the entire Themis protocol does not rely on synchronized clocks).

Second, and perhaps more interestingly, we can use Hamiltonian cycles to cleanly “connect”
the boundaries of subsequent Condorcet cycles. More specifically, if [tx1, ..., tx;] is the final output
ordering, then for any j, tx; is received before tx;1 by at least n(1—v)+1 honest nodes, regardless of
whether tx; and tx;;1 are in the same Condorcet cycle. Notably, this is not achieved if transactions
in a cycle are ordered alphabetically as suggested by Aequitas [19].

4.3 Themis Properties

We will now formally define and prove the properties satisfied by Themis in a partially-synchronous

4

network when n > 27—{1 where n is the number of nodes, f is the maximum number of adversarial

nodes, and % < v <1 is the order-fairness parameter.

Lemma 4.1 (Dependency Graph Properties). The following properties hold for the output of the
algorithm FairPropose(L): (1) It contains all solid transactions; (2) For all solid tx and non-
blank tx' contained in the output, exactly one of the edges (tx,tx") and (tx',tx) is present in the
output graph.

Proof. Let G be the dependency graph constructed by FairPropose(L). It is easy to see why (1)
holds since the final graph output only removes those SCCs from G that do not contain a single
transaction that is not solid.

To prove (2), first notice that since tx is solid and tx’ is non-blank, at least n—2f > 2n(1—~)+2f
orderings in £ contain at least one of tx or tx/, i.e., order the two transactions. Therefore, at least
one of tX <z n(1—y)4+ 41 tx’ or tx <Ln(l—y)+f+1 tx” holds. Since only one edge is added even when
both holds, we conclude that exactly one of the edges (tx, tx’) and (tx’,tx) is contained in the final
graph output. O

Lemma 4.2. If FairPropose (L) outputs a solid transaction tx and does not output tx' (and tx'
was not present in a previous proposal), then there are at least n(1 — ) 4+ 1 honest nodes that have
received tx before tx'.
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Proof. We break this into two cases. First, if tx’ is blank, then since tx’ is present in at most
n(1—-)+ f orderings we have tx < tx' where k =n—2f —n(1—v)—f=yn-3f >n(l—v)+ f
since n > %. Equivalently, since at most f of those are adversarial, it holds that more than
n(1 — ) + 1 honest nodes have received tx before tx’.

On the other hand, if tx’ is shaded, since it was not output, this means that there is no path
from tx’ to any solid transaction in the graph. In particular, there is also no edge from tx’ to tx.
This implies that either Weight - (tx/,tx) < n(1 —v)+ f or n(1 —v) + f + 1 < Weight(tx/, tx) <
Weight - (tx, tx"). The second case directly implies that tx is received before tx’ by at least n(1—~)+1
honest nodes. For the first case, notice that since tx is solid, we have Weight - (tx, tx) > (n —2f) —
n(l—=~)+f)>yn—=3f>n(l—~)+ f since n > %, which completes the proof. O
Lemma 4.3 (Contiguous Cycles). IfFairPropose (L) outputs a transaction tx and does not output
tx' (and tx' was not present in a previous proposal) and if tx' is received before tx by yn nodes,

then tx and tx' are in the same potential Condorcet cycle.

Proof. We first note that tx cannot be solid within the leader proposal since this would imply that
there are at least n(1 — ) 4+ 1 honest nodes that have received tx before tx' (from Lemma 4.2),
which contradicts the given condition. Therefore tx must be shaded and consequently, it will be
included in the proposal only when there is a sequence of transactions [tx = txg, txy, ..., tx;] such
that the dependency graph contains each of the edges (tx;,tx;+1) and tx; is a solid transaction.
This also means that tx; was received before tx’ by at least n(1 — ) + 1 honest nodes.

Now, since tx’ is received before tx by yn nodes, this directly implies that [tx, tx1,. .., tx;, tx']
is a (potential) Condorcet cycle. O

Theorem 4.4 (Themis satisfies batch-order-fairness). At any time, let [txy,...,tx;] be the final
transaction ordering output by FairFinalize. Then, there are indices 1 = i1,...,ix = | such
that for all j € {1,k — 1} Cj = [tx;;,...,tx;;,,] s a potential Condorcet cycle and the ordering
[C1,...,C1_1] satisfies batch-order-fairness.

Further, for each i € {1,1—1}, it holds that tx; was received before tx; 41 by at least n(1 —-~)+1
honest nodes.

Proof. To show batch-order-fairness, consider tx and tx’ such that tx was received before tx’ by at
least yn nodes. Now, we follow a few cases:

e (Case 1) At some time, the current correct leader proposal includes tx and tx’ is not included in
this or any earlier proposal. Now, by Lemma 4.3, we know that tx’ must be in the same or later
Condorcet cycle as tx.

e (Case 2) At some time, the current correct leader proposal includes tx” and tx is not included in
this or any earlier proposal. Since we are also given that tx was received before tx’ by yn nodes,
by Lemma 4.3, we know that tx’ must be in the same potential Condorcet cycle as tx.

e (Case 3) At some time the current correct leader proposal includes both tx and tx’. Since tx
was received before tx’ by yn nodes, we know that there is an edge from tx to tx’ within the
dependency graph. Therefore, once again, either tx’ will be output in the same potential cycle
as tx or a later one.
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The above cases show that the final transaction ordering can be split into contiguous potential
Condorcet cycles, and consequently, it will hold that batch-order-fairness is satisfied.

Now, in the final output ordering, consider transactions tx; and tx;;; where tx;4; is output
immediately after tx;. We consider the following cases:

e (Case 1) Both transactions were part of the same initial leader proposal. Now, if they were part
of the same SCC, then since the output order is a Hamiltonian cycle, (tx;,tx;41) is an edge in the
dependency graph; in other words, tx; was received before tx;;1 by n(1 — ) + 1 honest nodes.
On the other hand, if tx; was in an earlier SCC, then (tx;, tx;41) is already an edge. Note that
since tx; was output earlier, it cannot be in a later SCC.

o (Case 2) tx;j41 was proposed in the block after tx; was proposed. This means that, in some valid
leader proposal, tx; was present but tx;;; was not, and further tx; was the last transaction in
the previous proposal, which implies that tx; was a solid transaction. Therefore, we can directly
conclude the result by Lemma 4.2.

e (Case 3) Note that it not possible for tx; to be proposed in a block after tx;,; since the final
ordering contains tx; first.

O

Corollary 4.4.1. Themis satisfies receive-order-fairness when there are no potential Condorcet
cycles.

Theorem 4.5. Themis satisfies consistency and (standard) liveness.

Proof. Consistency is a direct consequence of the consistency of the underlying consensus algorithm.
For liveness, consider a transaction tx that has been received by all nodes, i.e., it will be present
in at least n — 2f local replica orderings sent to the leader. In other words, tx is solid, and will be
included in the leader’s proposal. Note that the final ordering of tx only depends on earlier (shaded)
transactions that have been proposed by the current or an earlier proposal (since this can cause
edges to be missing in the graph proposal). Note that the final ordering of tx no longer depends
on any transactions that are not yet proposed. This means that as soon as the edges between
the previously shaded transactions are added (this will happen when the shaded transactions are
received by enough nodes which is only dependent on the network delay). Consequently, Themis
achieves standard liveness. O

4.4 Other Properties

Audit friendliness. The fairness properties of Themis are also quite friendly for auditing. In
particular, an optimistic fast path can be used where the fairness of the leader’s proposal is not
checked by the replicas for ordering, but can be validated at a later time, even by an external
auditor. This is of course possible only when the auditor can force a revert of the system to an
earlier state and/or impose a penalty upon detection of a malicious leader proposal.

This is straightforward to achieve for Themis. The leader constructs the proposal as normal
but does not need to send an proof of correctness to the replicas; it can hold on to this for any
subsequent audit check.
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Crash-fault tolerant protocol for n > 3f+1. Themis can also be modified in a straightforward
way to create an 3 f+1 version when v = 1, and in settings with only crash faults (instead of explicit
adversarial behavior).

For this, we start by redefining solid transactions to be the ones present in all of the received
n— f orderings by the leader. This can be done since any replica that has not crashed will eventually
include all transactions in the ordering it submits to the leader. The algorithms FairPropose and
FairFinalize work exactly as before. Still, in all fairness proofs, since solid transactions are
present in n — f lists, only a bound of n > 3f 4 1 is required. Note that the underlying consensus
mechanism for agreeing on the proposals already supports n > 3f + 1.

Interestingly, the same protocol works for Byzantine faults but at the cost of allowing the leader
node to censor transactions.

5 Implementation and Experiments

We ran an extensive set of experiments for Themis that we detail in this section. In addition to the
standard performance benchmarks (Section 5.1) for throughput and latency, we also design a suite
of fairness experiments in Section 6 which are useful in quantifying the extent of fair transaction
ordering. Through these experiments, we analyze not only our protocol and fairness definitions, but
also those of several related works [19, 22, 40]. We begin with an overview of our implementation
below.

Implementation details. Our implementation for Themis is bootstrapped from the Hotstuff
protocol [39]: a state-of-the-art leader-based protocol for the partially synchronous setting. For
this, we started from the author’s open-source libhotstuff codebase [25] (which implements the
O(n?) version of the Hotstuff protocol). Our primary code changes were having the leader generate
fair transaction sequences and having the replicas validate them. We use this implementation to
benchmark the performance of Themis.

5.1 Performance and Benchmarks
We start with the standard performance experiments.

Experimental setup. For our performance experiments, we consider a system with n = 5 nodes
within the same AWS region. Each node is run on an AWS EC2 C5.4xlarge instance with 16vCPUs
and 32GiB memory. In addition, we utilize separate “client” nodes to generate and transmit
transactions. We consider two settings: (1) Same Region: All nodes are in the same AWS region
(us-east-2); (2) Geo-distributed: Nodes are distributed across across 5 regions (us-west-1, us-east-1,
ap-northeast-1, ap-northeast-2, eu-central-1) with 1 node in each region.

Latency and throughput. We report on the latency and throughput of Themis and compare it
to the performance of standard Hotstuff run with our experimental setup as a baseline. The results
are shown in Table 2 (single datacenter setting) and Table 3 (geo-distributed setting).

For the single datacenter setting, we use the default blocksize = 400 parameter set in libhot-
stuff [25]. We find that the latency of Themis is quite comparable to the Hotstuff. While the
throughput is smaller, it is still more than 43000 tx/sec, and we expect this to be sufficient for
most applications that require the fairness properties of Themis. For the geo-distributed setting,
the performance of Themis is competitive with Hotstuff.

18



Protocol Median Peak Throughput
Latency (ms) (txs/sec)
Hotstuff (Baseline) 12.595 214,332
Themis (Our Work) 13.212 43,622

Table 2: Performance results for Themis compared to Hotstuff as a baseline with 5 nodes in the
same datacenter.

Protocol Median Peak Throughput
Latency (ms) (txs/sec)
Hotstuff (Baseline) 3,373.345 1,400
Themis (Our Work) 3,433.579 1,382

Table 3: Performance results for Themis compared to Hotstuff as a baseline with 5 geo-distributed
nodes.

We also believe that an optimized implementation of the graph algorithms that Themis requires
could further push the throughput. Furthermore, the throughput can also be increases by choosing
a higher blocksize parameter albeit at the cost of slightly higher latency.

6 Suite of Fair Ordering Experiments

To better analyze and compare different fair ordering definitions and protocols on an equal footing,
we created a suite of experiments with accompanying simulation environments that allow fine-tuning
several parameters that may influence how different fairness notions fare. In our experiments, we
compare the fairness definitions from [22, 40] as well as receive-order-fairness, and batch-order-
fairness, with v being taken from {1,0.8,0.6,0.51} for the latter two definitions. We also compare
Themis to existing fair ordering protocols.

The experiments we propose are as follows: First, we compare the strength of different fairness
definitions in an ideal setting in Section 6.2. Next, in Section 6.3, we analyze the susceptibility to
network level transaction insertions, e.g., through frontrunning attacks. Third, in Section 6.4, we
compare fair ordering protocols on censorship resistance. And finally, in Section 6.5, we analyze to
what extent an adversary can influence the final transaction ordering.

6.1 Preliminaries and Setup

We start by introducing the fairness notions from [22, 40].

Fair ordering definitions from [22, 40]. Zhang et al. [40] and Kursawe [22] took a different
approach to defining fairness than Kelkar et al. [19]. Both works use similar definitions of fairness
and therefore, we consolidate this into a notion we call fair separability, given in Definition 6.1.

Definition 6.1 (Fair Separability). Suppose that two transactions tx and tx’ are received by all
protocol nodes. If all honest nodes receive tx before any honest node received tx’, then all honest
nodes deliver tx before tx'.
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[22] calls this timed-relative-fairness. We compare to the Wendy protocol from [22] which
satisfies this definition. An identical property was also stated as a desideratum in [14] although no
protocols achieving this property were given.

The definition from [40] further only applies when tx and tx’ are both be delivered in the
log. [40] calls this ordering-linearizability. Note that ordering-linearizability considers it acceptable
if only tx’ if delivered and tx is not, even when the antecedent of the above definition is true,
i.e., all honest nodes received tx before any honest node received tx’. Consequently, [40] satisfies
Definition 6.1 only for transaction pairs that are output by the protocol. By doing so, the protocol
is able to ensure that the delivery of tx’ is not held back by tx even when tx is stuck in a slow
network. However, by making this tradeoff, another problem is introduced: a network adversary
or even a Byzantine leader node is now able to censor a specific transaction from being delivered;
this is potentially far more problematic, especially for our primary motivation of DeFi. We discuss
this further in Section 6.4.

Simulation setup. We start with a “sending” process that generates transactions with the delays
between consecutive transactions sampled from a distribution GenerationDist. It is most fruitful to
analyze the ordering for transactions sent around the same time. The scenario where tx’ is sent
after tx has already been ordered, for instance, is not particularly interesting. Therefore we take the
approach of studying sets of temporally clustered transactions, rather than workloads of extended
duration. We use sets of 1000 such transactions in our experiments.

Now, for each transaction, we simulate when the transaction would reach different consensus
nodes by randomly sampling the network latency from a distribution NetworkDist. The simulation
outputs the receive timestamps of the generated transactions at each node. Let Send(tx) denote
the time that tx was generated and Recv(node, tx) denote the time that tx is received by node.

We instantiate each distribution using the exponential distribution, which is standard in net-
working literature. The rate of generation or arrival of messages is usually modeled as a Poisson
process, which is equivalent to the distribution for intervals between messages (i.e., GenerationDist)
being modeled as an exponential distribution. Separately, the network delay is also usually modeled
as an exponential distribution.

For our experiments, we will evaluate how the relative rate of transaction generation to the
network latency affects fairness. Specifically, for this, we set GenerationDist to the exponential
distribution Exp(1/p) with mean p = 1, and chose NetworkDist to be independently distributed
with mean ru = r for a network ratio parameter r.t

The network ratio 7 serves in our experiments as a proxy for how far apart the consensus nodes
are from one another; a small r (< 1) captures a setting where all nodes are in the same local
network, while a larger r (10 to 100) is typically more reflective of a geo-distributed setting.

On the network ratio r and the fairness granularity. We highlight that even when the
network delay is very large, transaction latencies with smaller r can be approximated by abstractly,
setting a coarser granularity for fairness. We define granularity below.

Definition 6.2 (Fairness granularity). For granularity g, we consider that timestamps are bucketed
into slots of interval ¢ time each (e.g., [0, g), [9,2¢) and so on). Events within a time bucket are
assumed to happen at the same time.

4The choice of u = 1 is without loss of generality since exponential distributions satisfy the scaling property — If
X ~ Exp(1/u), then kX ~ Exp(1/kp).
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In particular, a granularity of g is equivalent to only quantifying fair ordering across these width
g intervals, and ignoring unfairness of transactions within the same interval. Note the time intervals
can be w.r.t. the local time at a given node, and synchronized clocks are not required. In other
words, the granularity can be changed without affecting any protocol assumptions.

In all our experiments, we assume the finest possible granularity. (i.e., g = € ~ 0) since this is
the most challenging setting, but we note that in some cases, a courser granularity (i.e., larger g)
may be acceptable.

6.2 Comparison of Fairness Definitions

Our first set of experiments attempts to quantify to what extent a given fair ordering definition
is useful in an ideal, non-adversarial setting. For this, we ask a simple question: How “close” is
the ordering guaranteed by a given fair ordering definition to the ideal ordering? Note that given
our simulation setup, there is a canonical “ideal” global transaction ordering, namely the order in
which transactions are generated.

Once transaction receive times have been simulated, we count the number of transaction pairs
(tx,tx’), Send(tx) < Send(tx’) where the given fair ordering definition requires that tx be ordered
before tx’ in the output. For example, fair separability (Definition 6.1) will order tx before tx’ if
all of the timestamps for tx are smaller than any of the timestamps for tx’, but otherwise does not
stipulate an ordering of the two transactions. For batch-order-fairness, although it only guarantees
that tx is ordered no later than tx’, note that tx and tx’ will be placed in the same batch only when
they are part of the same Condorcet cycle. Therefore, to quantify its usefulness conservatively, we
will only count the transaction pairs that are strictly ordered in the output (e.g., end up in different
Condorcet cycles).

Recall that the mean generation time p and the mean network delay is ru. Of course, as r
grows (i.e., the network delay gets larger), the order of transactions received at the nodes will be
vastly different than the send ordering, i.e., the number of transaction pairs ordered correctly will
drop to zero. Still, the interest in this experiment is understanding how quickly this drop takes
place for different definitions.

Results. Figure 4a and Figure 4b show the results for n = 20 and n = 100 respectively. For each
fairness definition we consider, we compute the fraction of transaction pairs that it would order the
same as the ideal ordering. We vary the network ratio r from 10~2 to 103.

We start with some simple observations: both graphs show that as r gets larger, the gap be-
tween send ordering and final transaction ordering grows exponentially. However, the order-fairness
definitions (receive- and batch-order-fairness) ensure closer to ideal ordering than fair separability
everywhere. Further, having a larger n makes each definition fare better.

Comparing receive and batch order-fairness. For n = 100, note that the plots for receive-
order and batch-order are identical except for when v = 0.51. Even for v = 0.51, they are identical
for a small ». When n = 20, the two definitions also deviate for v = 0.6. This is because Condorcet
cycles are much more common when 7 is large and when yn gets close to n/2 — when n is large,
this effect is not seen until v gets close to 0.5.

Abstractly, the deviation between the definitions can be seen as the result of the frequency
with which Condorcet cycles arise in practice. Note that the presence of cycles also means that
receive-order-fairness cannot be achieved in these settings. Therefore, a natural question to ask
now is how commonly do cycles arise, and when they do, how large do they get?
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Figure 4: Comparison of the fraction of transaction pairs correctly ordered by different fairness
notions as a function of r.

Cycle size. We find the number of transactions that are present in Condorcet cycles of each size
in the ideal setting. Note that the length of potential cycles may be much larger. In fact, even when
the actual cycles are small, the potential cycles may extend arbitrarily long. In such a scenario,
Aequitas will still only satisfy weak-liveness, while our deferred ordering technique allows Themis
to satisfy standard liveness.

Figure 5a and Figure 5b contain results for n € {20,100} and for reasonable network ratios
r € {1,10}. For example, for a given length-k cycle, we count k transactions in the bucket for k.
Note that £ = 1 means that there is no cycle.

We found that for r = 1, there were no cycles found for v € {1,0.8,0.6}. For v = 0.51, for
n = 20, there was one 3-length cycle and one 4-length cycle, while there was just one 3-length cycle
for n = 100.

When r = 10, we did not find cycles for v € {1,0.8}. There were a few length-3 cycles for
v = 0.6 for n = 20 but none for n = 100. For v = 0.51, cycles are more common but still a
reasonable network ratio of r = 10, the max cycle length was 11 for n = 20 and 5 for n = 100. We
also notice that it is less common to find cycles (for the same ) as n increases due to a smaller
variance.

6.3 Network Level Frontrunning

In this set of experiments, we analyze how robust a fairness definition is to network-level fron-
trunning, which is arguably the core ordering issue in today’s networks. We define network level
frontrunning as a node Y being able to perform the following attack: Upon receiving a transaction
tx from another node X, it attempts to create a new transaction tx’ and get it sent to other nodes in
an attempt to get tx’ ordered before tx. Note that this frontrunning takes place before transactions
are received by all honest nodes, i.e., even before the the consensus protocol begins.

While secure causal ordering or privacy techniques can help hide transaction data before or-
dering, thus thwarting targeted frontrunning (i.e., based on the honest user transaction content),
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Figure 5: Comparison of the number of transactions in a Condorcet cycle of specific lengths

they do not help against problems such as metadata leakage, or non-targeted frontrunning (i.e.,
based only on the transaction existence rather than its content). Therefore, quantifying network
frontrunning remains important. Notably, our experiment measures frontrunning protection even
in cases when transaction privacy is not sufficient. Nevertheless, we note that all fair ordering pro-
tocols can incorporate secure causal ordering techniques as a complementary protection — e.g., as
a backstop against fair-ordering failures in extreme settings such as full adversarial network control.
We also emphasize that our experiment can be easily adapted to other network-level attacks like
backrunning, sandwiching, and priority attacks (e.g., first in line for an ICO [28]).

Basic setup. We performed this experiment using a real network rather than a simulation to un-
derstand the possibility of frontrunning in practice. We start with a simple example geo-distributed
network with one node each in five different and popular AWS regions: us-west-1 (California),
us-east-2 (Ohio), ap-northeast-1 (Tokyo), ap-northeast-2 (Seoul), and eu-central-1 (Frankfurt) and
measured ping timings between each pair of servers (in both directions) as a proxy for the commu-
nication latency between them. Table 4 contains ping times averaged over 1000 samples. Our goal
now, is to find the number of frontrunnable pairs — i.e., (A, B) such that B is able to frontrun
transactions originating from A. While we experimentally find the number of such pairs, we empha-
size that the success of actual frontrunning attacks in practice also depends on many other factors
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— for instance, the specific protocol, the expected profit of a particular frontrunning strategy, the
variance in network latency, the presence of competing entities etc.

Frontrunning for fair separability. For fair separability, frontrunning is possible if there exists
nodes A, B,C, D (where A, B, and C are distinct, D is different from A and B but potentially the
same as (') such that ping(A, B) + ping(B, C) < ping(A, D). When this happens, notice that B can
receive a transaction tx from A (working as a client) and forward its own adversarial transaction
tx’ to C before tx was received by all honest nodes. Here, fair separability will not apply since the
antecedent is violated — there is an honest node (C) that received tx’ before some other honest
node (D) received tx.

For our toy AWS setting, out of the 180 possible tuples (A, B,C, D), the above property is
violated by 16 of them. As a concrete example based on Table 4, an adversary in Tokyo could
frontrun a user transaction from Seoul by sending its adversarial transaction to California before
the transaction from Seoul reached Frankfurt. Overall, there are 10 frontrunnable pairs (A, B) such
that B can frontrun transactions originating from A (i.e., there exists some C' and D that satisfy
the aforementioned property).

Frontrunning for receive/batch order-fairness. On the other hand, for (receive/batch)-
order-fairness, a node B can possibly frontrun transactions from A if there are at least n(1—~)+f+1
nodes C such that ping(A4, B) + ping(B,C) < ping(A,C). Note that this is because, now, the
transaction tx from A is no longer received before the transaction tx’ by at least yn — f nodes.
Frontrunning success is guaranteed if there are more than yn — f such nodes C.

Observe that each satisfying (A, B, C') corresponds to breaking triangle inequality. Therefore,
the possibility of frontrunning here for (A, B) is synonymous to triangle inequality being violated
in the network for a non-trivial (at least f 4+ 1) number of nodes. We find that is quite unlikely to
hold for real-world networks. In fact, within Table 4, there are no tuples (A, B,C') for which the
triangle inequality is violated, i.e., there are no frontrunnable pairs in the example AWS setting.
For order-fairness, we will report on both the v = 1 case (for which triangle inequality needs to be
violated f + 1 times for the pair to be frontrunnable), and the optimal case (for which it needs to
be violated > n/2 times)

Analysis over a large network. While our example experiment is helpful for a basic under-
standing of how susceptible fairness notions are to front running, we also carried out a much larger
scale analysis with data from 250 servers. For this, we used the publicly available WonderProxy
dataset [38] which contains ping times (in both directions) between each pair of 250 servers averaged
over 30 pings per hour over the two day period of July 19-20 2020.

Now for both n = 20 and n = 100, we randomly sample an n-sized committee from the 250
servers and once again compute the number of frontrunnable pairs. We average the results over
100 randomly chosen committees. Table 5 reports on our findings for the number of frontrunnable
pairs for different fairness definitions.

For fair separability, 82% and 94% pairs on average were found frontrunable for n = 20 and
n = 100 sized committees respectively. On the other hand, for order-fairness, the corresponding
numbers were 4.5% and 2.8% for v = 1 and 0.26% and 0.16% in the optimal case. Notably,
frontrunning gets easier on larger networks for fair separability while it gets harder for order-
fairness.
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End | us-west-1  us-east-2 ap-northeast-1 ap-northeast-2 eu-central-1
Origin (California)  (Ohio) (Tokyo) (Seoul) (Frankfurt)
us-west-1 - 51.407 105.733 133.771 147.308
us-east-2 51.166 - 131.609 159.931 98.827
ap-northeast-1 106.684 131.359 - 31.723 228.356
ap-northeast-2 134.018 159.561 32.397 - 222.829
eu-central-1 145.962 97.972 228.862 234.641 -

Table 4: Average ping times (in ms) between different AWS servers

Number of frontrunnable pairs
. Total . Receive/Batch | Receive/Batch
Setting . Fair . .
Pairs Separabilit Order-Fairness | Order-Fairness
P Y (v=1) (Optimal)
5 AWS nodes 21 10 0 0
Random n = 20 380 313 14 1
Random n = 100 | 9900 9326 262 16

Table 5: Number of frontrunnable pairs for fair separability and order-fairness for several settings.
The first line denotes to our example setting with 5 geo-distributed AWS nodes. For the other
rows, we randomly sample n-sized committees from the Wonderproxy ping dataset [38]. We chose
n = 20,f = 4 and n = 100, f = 24 for the second and third row respectively. The average
number (rounded to the nearest integer) of frontrunnable pairs is given over 100 random committee
samplings.

6.4 Censorship Resistance and Attacks

Censorship resistance is defined as the property that if an honest client sends a transaction to the
consensus nodes, it will eventually be output by the protocol. For the fair ordering setting, since
transactions are sent to all nodes (instead of just the leader), an honest transaction is defined as
one that has been received by all nodes. It is desirable to guarantee the delivery of all honest
transactions. However, as we see, there is an inherent tradeoff between liveness and censorship
resistance for some existing fair ordering protocol designs.

Censorship attack on [40]. Pompg [40] uses a pre-protocol (specifically an ordering phase prior
to consensus) to compute the median timestamp for transactions, with the fair ordering being
taken as the transactions in ascending order of the median timestamp. For n > 3f + 1, as long as
(tx, tx’) satisfies the antecedent of fair separability (Definition 6.1), the median of tx will be smaller
than that of tx’. In other words, as long as both transactions complete the ordering phase, tx will
be ordered earlier by the protocol; this condition is explicitly stated in the ordering linearizability
definition used in Pompe. Unfortunately, this results in censorship resistance being guaranteed only
for transactions that pass the pre-protocol phase.

For Pompeg, in a partially synchronous network, an adversary can delay sending the median
time-stamp for tx from the replicas long enough till tx’ is delivered. If this happens, since the rest
of the output is fair, tx can never be output by the protocol. Concretely, Pompe assumes that
there is a known A, which is the upper bound on the time for an honest node to complete the
ordering phase; they use this bound as the maximum time a transaction in the consensus phase
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waits for any potential transaction from earlier to finish the ordering phase. When this bound is
not satisfied, while safety is not broken, earlier transactions are now essentially censored since the
consensus phase has moved on to a later timestamp even though they were timestamped during the
ordering phase. In order words, to achieve censorship resistance, Pompe needs to assume a known
synchronous bound on the time for an honest node to complete the ordering phase. Note that such
a bound cannot be assumed to be known in a partially-synchronous network.

While this was partially acknowledged in [40] as a possible way a Byzantine node could selec-
tively chose which of its transactions to submit to the consensus phase, the censorship repercussions
were not identified, and in the context of DeF1i, both selective disclosure and censorship are far more
severe. This also surfaces an inherent tradeoff between liveness and censorship resistance within
such protocols. Since the client (or the protocol node in charge of the client’s transaction) is in
charge of accumulating timestamps from the nodes in the ordering phase before proceeding to the
consensus phase, as [40] notes, it is not possible to distinguish between whether the transaction
was sent to the consensus phase in time or not. Consequently, either there will be a liveness failure
(by potentially waiting forever for such a transaction), or censorship resistance will not be possible
to achieve.

Our analysis is that the primary reason for this is the separation between the pre-protocol
that computes the median timestamp and the consensus phase, along with the requirement that
a single node is in charge of moving a specific transaction from the former to the latter phase. In
such a protocol design, due to the presence of Byzantine nodes, it is impossible to ensure that any
transaction that has been timestamped at the protocol nodes also makes its way into the consensus
phase.

On the other hand, Wendy as well as both Themis and Aequitas [19] are not susceptible to these
form of censorship; if a transaction is honest, and therefore received by all honest replicas, it will
not be censored, and moreover be sequenced in a fair order.

6.5 Adversarial Reordering

While all notions we considered in our experiment suite guarantee “fair” ordering even in the
presence of an adversary for transaction pairs that satisfy a given property (e.g., order-fairness
applies when tx is received before tx’ by at least yn nodes), it is also beneficial to understand for
various ordering protocols how an adversary can impact the ordering for transaction pairs where
the fairness notion does not apply.

Zhang et al. [40] show that it is impossible to make the final ordering completely independent
of the adversary (since intuitively, adversarial nodes are indistinguishable from honest nodes).
Still, ideally, a good ordering protocol restricts adversarial influence only to transactions that are
already “very close” in the honest ordering — close in the sense that even their honest ordering
could have been inverted by small network delays. Effectively, this would imply that the impact
of the adversary is similar to that of small network fluctuations. We analyze this property in our
final experiment.

To quantify “closeness” between tx and tx/, we use as a proxy metricthe absolute value of the
difference between the number of times tx is received before tx’ and the number of times tx’ is
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Figure 6: Adversarial influence on transaction ordering

received before tx, i.e.:

Dist(tx, tx') =
|# [Recv(tx) < Recv(tx)] — # [Recv(tx’) < Recv(tx)]].

Dist varies from (n mod 2) to n in increments of 2. A small Dist(tx,tx’) implies “fragile”
transaction tx, where the number of nodes that received tx earlier is roughly the same as the
number that received tx’ earlier, while a large Dist value implies that one of the two transactions
was received earlier by a large number of nodes.

Adversarial strategy. Since the space of possible adversarial strategies is practically unbounded,
we consider just one specific attack in which the adversary will attempt to flip the ordering of trans-
actions. This adversarial strategy is quite simple: an adversarial node simply flips the ordering of all
transactions it received as input. For instance, if it received transactions in the order [txi,...,tx],
it claims to have received them in the order [tx;,...,tx;]. Despite the simplicity, this should be a
reasonable strategy for attempting to reverse the final ordering for many transaction pairs. Still,
we acknowledge that better adversarial strategies likely exist and fair ordering protocols should
also be tested against them. We leave this for future work. For instance, another strategy could
be attempting to invert the final ordering for a specific targeted transaction pair.

Measurement. Given our adversarial strategy of transaction flipping, we now find how frequently
it enables an adversary to reverse the ordering (w.r.t. the honest ordering) of a transaction pair
with a given distance. We consider two settings: n = 21, f = 5 and n = 101, f = 25, and vary the
actual number of corruptions. In each instance, we find the fraction of transaction orderings the
adversary successfully inverted. The results are shown in Figure 6.

We did not implement the specific protocols from [22, 40], but we compare Themis to a simple,
nearly equivalent protocol that computes the median timestamp for each transaction and then sorts
them in ascending order.

From the graphs, we first notice that for large Dist(tx, tx’) (> 13 for n = 21, and > 71 for
n = 101), there was no successful reordering against either protocol, even with the maximum
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number of corruptions (for Themis, this was true for all distances > 11 for n = 21 and > 29 for
n = 101). Note that the X-axis in Figure 6b is in log-scale to better highlight reordering for
transactions pairs with small distance (since reordering was absent for large values of Dist).

We also note that in all cases, the fraction of reversed transaction pairs drops sharply as Dist
gets larger, which shows both fair ordering protocols working as expected. For small Dist(tx, tx'),
the transactions are so close that even non-adversarial random network delays can reverse their
ordering, and thus it is unreasonable to expect resilience to adversarial strategies.

Overall, we found that for a given actual number of corruptions, it is easier to reverse the
transaction ordering for a median timestamp protocol than for Themis. In fact, in our experiment,
it was easier to reverse the ordering against the median timestamp protocol even with a small
number of corruptions than it was against Themis. Further, we also note that for this specific
adversarial strategy, the additional gain against Themis through extra corruptions is small.

7 Related Work

We compare our protocols to related work on fair ordered consensus in this section. We focus our
comparison primarily on the recent works of Kelkar et al. [19], Kursawe [22], and Zhang et al. [40]
since these recent works all consider some notion of fair transaction ordering. Our experimental
suite from Section 6 contains several comparisons but we use this section to highlight a few more
nuances.

7.1 Comparison to Other Techniques
We start by comparing the line of work on fair ordering to alternative techniques.

Censorship resistance. Many protocols provide censorship resistance [29] — the property that
honest transactions are eventually ordered by the system — or utilize a reputation-based system
to detect censorship. Note however that this does not guarantee that the ordering of transactions
is “fair.” Interestingly, as we saw in Section 6.4, protocols can fairly order transactions that are
output by a pre-protocol yet may still be susceptible to censorship in the pre-protocol itself. We
emphasize that the Themis protocol achieves both fair ordering and censorship resistance since it
realizes batch-order-fairness for all transactions (and not just those output by a pre-protocol).

Causal ordering and privacy techniques. Prior work in classical distributed systems [6, 32]
had considered a limited notion of preventing reordering based on transaction content, but as
mentioned earlier (and also identified by [18, 19, 22]), this is not robust against metadata leakage,
collusion with protocol nodes, and order-manipulation attacks that do not rely on the content of
honest transactions.

Informally, causal ordering uses threshold encryption to hide transaction data before its po-
sition is finalized in the total ordering. In a similar spirit, other recent protocols have proposed
to use alternative cryptographic confidentiality mechanisms to accomplish the same goal. This
includes protocols that utilize, for instance, commit-and-reveal schemes [4], time-lock encryption,
verifiable delay functions (VDFs) [35], or even multi-party-computation (MPC) among the proto-
col nodes [24]. We note that these protocols have the same drawbacks as causal ordering when
compared to the line of work on fair ordering protocols. In addition, these protocols are somewhat
ad hoc, to the best of our knowledge lacking formal analysis on their properties.
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Additionally, many of these protocols involve choosing a random ordering among transactions
within a specific epoch. As noted in, e.g., [18], such techniques are susceptible to flooding attacks
(e.g., [28]) where now with high probability, at least one adversarial transaction will be be unfairly
ordered ahead of the honest user transaction.

We note, however, that confidentiality-based techniques can nicely complement fair ordering
protocols; confidentiality can protect transactions against ordering attacks at the network layer,
while fair ordering does so at the consensus layer.

7.2 Comparison to Fair-Order Consensus Protocols

Comparison to Aequitas [19]. Kelkar et al. [19] initiated the recent line of work on fair or-
dering, and they detail several protocols that achieve batch-order-fairness in different settings. For
our comparisons, we use their leaderless Aequitas protocol that works in partially synchronous and
asynchronous networks. While a leader-based variant is also provided, it uses the same structure
as the leaderless protocol, requires more communication, and does not provide any additional ben-
efits. Although Themis and Aequitas satisfy the same notion of batch-order-fairness, Themis has a
three-fold advantage over Aequitas: first, our Themis protocol requires only O(n) communication
in the optimistic case while Aequitas always requires O(n?). Second, we evade the liveness problem
of Aequitas, allowing Themis to satisfy standard liveness. And finally, while Aequitas provides
a general compiler to make any standard consensus protocol fair by using it to instantiate FiFo
broadcast and (single-shot) Byzantine agreement protocols, Themis can utilize any leader-based
protocol as is and add to it the same notion of fairness.

The structure of the dependency graph constructed by Themis is also somewhat different than
the one from Aequitas. For some inputs, both Aequitas and Themis build the dependency graph
in the same way. In other cases, Themis seems to approximate the graph structure for Aequitas
with a smaller « (since Themis will always attempt to add an edge between any transaction pair
to construct, while some edges may be missing from the Aequitas graph). However, to extract
a total ordering, Aequitas still needs to compare transactions without an edge, for which it uses
the number of descendants in the graph. In Themis, the comparison between such transactions
is done explicitly by adding the edge corresponding to the larger weight.Further, Themis’s use of
Hamiltonian cycles allows for connecting different Condorcet cycles, which appears to provide a
stronger notion of “fairness within a batch.”

This simple analysis reveals that although both protocols satisfy batch-order-fairness, there are
other subtleties within the graph structure that are not captured by the definition. We leave the
problem of uncovering these to future work.

Comparison to Zhang et al. [40]. Concurrent to [19], work by Zhang et al. [40] also found
fundamental connections of transaction ordering to social choice theory, including the works of
Arrow [1] and Gibbard-Satterthwaite [15, 33]. Since our work is geared towards efficient fair
ordering protocol, our comparison is based on their specific definition of transaction ordering, and
their proposed protocol Pompe.

We point out that the design of Pompé can be modified to achieve optimistic linear complexity
through the use of SNARKS for verifying the computation of the median timestamp. Specifically,
after the ordering phase, in Pompg, the median timestamp for a given transaction is computed and
transmitted during the consensus phase. This is done by the client but Pompé assumes that the
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all clients are protocol nodes. In this case, the median computation can be proved (by the client)
using constant-size SNARKSs which enables linear communication in the optimistic case.

However, we note that for standard usecases, clients and protocol nodes can be separate entities
and not all clients need to be present during the system initialization. In such a case, SNARKSs
with trusted setup might not provide an appropriate trust model for clients. Current constant-size
SNARKS, however, all require trusted setup. Further, even if a trusted setup can be used, the
public parameters (e.g., the CRS) need to be communicated to the clients. Since the CRS size is
dependent on n for known constant-size SNARKS, this means that in the usual setting where clients
and nodes can be distinct, the optimistic communication complexity of Pompé will not linear in n.

While SNARKs without trusted setup can be used instead, current state-of-the-art construc-
tions [5, 34, 37] all have at least logarithmic proof sizes. This means that, even with the use of
SNARKS, at best, O(nlogn) optimistic communication complexity can be achieved.

8 Conclusion

We introduced Themis, the first consensus protocol that satisfies a strong fair transaction-ordering
property, requires only linear communication in the optimistic case, and has efficiency comparable
even to state-of-the-art consensus protocols that lack fair-ordering properties. We also introduced
a new systematically designed suite of experiments related to fairness to evaluate and compare
Themis to the recent exciting line of work on fair-ordering protocols. These experiments show that
the fairness property satisfied by Themis is stronger in practice than alternative notions.
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A Explicit Condorcet Chaining Example

We provide an explicit algorithm (Algorithm 1) for generating an arbitrarily large Condorcet cycle
for any valid n, f,v. For simplicity, we provide details for the synchronous setting where the
“claimed” input orderings of all nodes are taken into account. Abstractly, the algorithm inductively
constructs transaction input orderings for each node in a way that all transactions will be part of
the same Condorcet cycle. Note that this simply provides a theoretical example of unbounded
chaining; as we saw earlier, in practical networks, we expect Condorcet cycles to be small in length.

Suppose that the system nodes are denoted by the set {0,...,n—1}. To create a cycle of length
[ > n (this is a non-optimal bound on the minimum length of a cycle with n nodes), the algorithm
proceeds by interatively adding a new transaction to all input lists while maintaining the invariant
that all current transactions form a Condorcet cycle. For the initial transaction txg, the input
ordering txlist; of each node j is taken simply as [txo]. To add a later transaction tx;, a set S; of
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Algorithm 1: Explicit input ordering with unbounded Condorcet chaining for n, f,

1 Let N ={0,...,n — 1} be the set of all nodes.;
2 Let txlisto, . .., txlist,—1 + [txo];

3 start < 0;

4 foriel,2,... do

5 end < (start + (yn — f) — 1) mod n
6 if start < end then
7 ‘ S = {start,...,end}
8 else
9 ‘ S = {start,...,n—1} U{0,...,end}
10 end
11 for j € S do
12 ‘ Insert tx; right before tx;_1 in txlist;
13 end
14 for j € N\ S do
15 ‘ Append tx; at the end of txlist;
16 end
17 start < (start + 1) mod n
18 end

size yn — f is first chosen. S is chosen to be the set {0,...,yn — f — 1}. The set S; is obtained
by cyclically rotating S;_1 modulo n. For a node j € S;, tx; is inserted right before before tx; 1 in
txlist;; for other nodes j ¢ S;, tx; is appended to the end of txlist;. By doing so, we make sure that
tx; occurs before tx;_1 in at least yn — f lists.

Additionally, it is easy to see why txg will occur before tx; in at least yn — f lists through
induction. First note that txq is before tx; in n — (yn — f) = n(1l — ) + f lists. Further, if txy
occurs after txg in some list, then for any d’ > d, txg will also occur after txgp in that list (since
each transaction is added just before the last one or at the end of the list). Now, due to the cyclic
rotation of the S;, each tx; will be after tx in one more list (subject to a maximum of n lists) than
tx;_1 was. Consequently, for any v, f, when [ > n, txg will occur before tx; in at least yn — f lists.
When «v = 1, [ = n will be the first iteration that this happens.

Finally, putting this together, we can conclude that [txg, tx1,...,tx;] forms a Condorcet cycle.
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