
On the Round Complexity of Black-Box Secure MPC

Yuval Ishai∗ Dakshita Khurana† Amit Sahai‡ Akshayaram Srinivasan§

Abstract

We consider the question of minimizing the round complexity of secure multiparty compu-
tation (MPC) protocols that make a black-box use of simple cryptographic primitives in the
setting of security against any number of malicious parties. In the plain model, previous black-
box protocols required a high constant number of rounds (>15). This is far from the known
lower bound of 4 rounds for protocols with black-box simulators.

When allowing a random oblivious transfer (OT) correlation setup, 2-round protocols mak-
ing a black-box use of a pseudorandom generator were previously known. However, such
protocols were obtained via a round-collapsing “protocol garbling” technique that has poor
concrete efficiency and makes a non-black-box use of an underlying malicious-secure protocol.

We improve this state of affairs by presenting the following types of black-box protocols.

• 4-round “pairwise MPC” in the plain model. This round-optimal protocol enables each
ordered pair of parties to compute a function of both inputs whose output is delivered to
the second party. The protocol makes black-box use of any public-key encryption (PKE)
with pseudorandom public keys. As a special case, we get a black-box round-optimal
realization of secure (copies of) OT between every ordered pair of parties.

• 2-round MPC from OT correlations. This round-optimal protocol makes a black-box
use of any general 2-round MPC protocol satisfying an augmented notion of semi-honest
security. In the two-party case, this yields new kinds of 2-round black-box protocols.

• 5-round MPC in the plain model. This protocol makes a black-box use of PKE with pseu-
dorandom public keys, and 2-round oblivious transfer with “semi-malicious” security.

A key technical tool for the first result is a novel combination of split-state non-malleable
codes (Dziembowski, Pietrzak and Wichs, JACM ’18) with standalone secure two-party proto-
cols. The second result is based on a new round-optimized variant of the “IPS compiler” (Ishai,
Prabhakaran and Sahai, Crypto ’08). The third result is obtained via a specialized combination
of these two techniques.

∗Technion. Email: yuvali@cs.technion.ac.il
†UIUC. Email: dakshita@illinois.edu
‡UCLA. Email: sahai@cs.ucla.edu
§Tata Institute of Fundamental Research. Email: akshayaram.srinivasan@tifr.res.in. Work done in part while at UC

Berkeley.

1

Contents

1 Introduction 4
1.1 Our Contributions . 6
1.2 Related Work . 8

2 Technical Overview 9
2.1 Background: Black-box MPC in the OT Hybrid Model 9
2.2 The Watchlist Protocol . 11
2.3 Two-Round Protocol in the OT Correlations Model . 16
2.4 Fully Black-Box MPC in Five Rounds . 17
2.5 Barriers to 4 Round Black-Box MPC . 18

3 Preliminaries and Definitions 19
3.1 Two-Round Semi-Malicious Secure Oblivious Transfer 19
3.2 Non-malleable Codes . 20
3.3 Rewinding Secure Extractable Commitment . 20
3.4 Low-Depth Proofs . 21

4 Definitions 22
4.1 Multi-Party Simultaneous OT . 22
4.2 1-Rewind Sender-Secure Two-Party Computation . 23

5 The (Multiparty) Simultaneous OT Protocol 24
5.1 ` Non-malleable m-choose-k OT: Construction and Analysis 25
5.2 From Non-Malleable OT to (Multiparty) Simultaneous OT 33

6 Black-Box Five-Round Secure Multiparty Computation 35
6.1 Building Blocks . 35
6.2 Construction . 38
6.3 Simulator . 39
6.4 Proof of Indistinguishability . 41

7 Inner Protocol 45
7.1 Conforming Protocols . 45
7.2 Special Two-Round Oblivious Transfer . 47
7.3 Construction . 47
7.4 Simulator . 49
7.5 Proof of Indistinguishability . 50

8 Two-Round Protocol in the Watchlist Correlations Model 59
8.1 Construction . 60
8.2 Simulator . 60
8.3 Proof of Indistinguishability . 63
8.4 Instantiating the Inner Protocol . 66
8.5 Towards Improving the Concrete Efficiency . 68

9 Acknowledgments 68

2

References 68

A Secure Multiparty Computation 75
A.1 Defining Security. 75
A.2 Security Against Semi-Malicious Adversaries . 77

B Special Oblivious Transfer Protocol 77

C Rewinding Secure Two-party Computation 78
C.1 Construction . 78
C.2 Proof of Security . 81

D Rewind Secure Oblivious Transfer 92
D.1 Proof of Security . 94

E Proof Sketch for 1-Rewinding Sender Security of [FMV19] 102

F Five-Round MPC protocol over Point-to-Point Channels 103
F.1 Special CDS Protocol . 103
F.2 Modified Five-Round MPC protocol . 104

3

1 Introduction

Minimizing the round complexity of cryptographic protocols has been a central theme of research
in the past few decades. Much of this research focused on the question of minimizing the round
complexity of protocols for secure multiparty computation (MPC), both in the general case as well as
for special tasks of interest such as zero-knowledge proofs, oblivious transfer (OT), or coin-tossing.
This question is motivated not only by its direct relevance to the latency of protocols running over
real-life networks, but also as an intriguing theoretical challenge that often inspires new ideas and
serves as a test bed for new techniques.

The round complexity of MPC. We consider the standard setting of MPC with an arbitrary num-
ber of malicious parties, namely parties that are corrupted by a central adversary who may arbitrar-
ily change their behavior. What do we know about the round complexity of MPC in this setting?
Allowing a common random string (CRS) setup, it was recently shown [BL18, GS18] that 2-round
MPC protocols are possible under the (minimal) assumption that 2-round OT exists in the CRS
model. This round complexity is clearly optimal, even in the easier setting of semi-honest adver-
saries who send messages as instructed by the protocol. In the plain model, without any setup,
a long line of works [GMPP16, BHP17, ACJ17, KS17, BGJ+17, BGJ+18, HHPV18, CCG+20] has
culminated in 4-round protocols that rely on the minimal assumption that a 4-round OT proto-
col exists [CCG+20]. This round complexity is known to be optimal for protocols that admit a
black-box simulator [GK96b, KO04, GMPP16]. All of the above 4-round protocols are of this kind.

Black-box constructions. Another central research theme in cryptography is obtaining black-box
constructions of higher-level primitives from simpler lower-level primitives. A black-box construc-
tion of X from Y , also known as a (fully) black-box reduction from X to Y [RTV04], specifies an
implementation of X that only has oracle access to the input-output relation of Y , without being
given any explicit representation of Y , e.g., in the form of a Boolean circuit or a Turing Machine.
Moreover, it is required that the security reduction be black-box in the sense that any adversary
AX “attacking” X can be used as a black-box to obtain an adversary AY who obtains a similar ad-
vantage in attacking Y . Originating from the pioneering work of Impagliazzo and Rudich [IR90],
a long line of works study the landscape of black-box reductions between natural cryptographic
primitives. More relevant to our work is the effort to replace known instances of non-black-box
constructions, where X requires access to the code of Y , by black-box constructions.

In the MPC context, early examples of results along this line include a black-box construction
of constant-round honest-majority MPC protocols from one-way functions [DI05] (replacing an ear-
lier non-black-box construction from [BMR90]) and a black-box construction of malicious-secure
OT from semi-honest OT [HIK+11] (replacing a non-black-box construction of [GMW87]). Be-
yond the theoretical interest in understanding the tightness of the relation between primitives, the
goal of replacing non-black-box constructions by black-box counterparts is strongly motivated by
asymptotic and concrete efficiency. A well-known example in the context of MPC is the non-black-
box OT extension construction of Beaver [Bea96], which was replaced by a much more efficient
black-box construction from [IKNP03] that is commonly used as a basis for fast MPC implemen-
tations. We use the term black-box MPC to refer generically to an MPC protocol obtained via a
black-box construction from simple low-level primitives (such as OT) that can be easily and effi-
ciently constructed from standard cryptographic assumptions.

4

Round complexity of black-box MPC. Interestingly, all of the round-optimal MPC protocols in
the standard setting we consider, including those mentioned above, make non-black-box use of the
underlying primitives. In the case of 2-round MPC protocols in the CRS model, this is known to
be inherent (even for the easier goal of semi-honest security), at least for black-box constructions
from 2-round OT or any other 2-party protocol [ABG+20]. However, no such impossibility result
is known for 4-round MPC protocols in the plain model.

In the two-party case, a 4-round black-box protocol is known for one-sided functionalities that
deliver output to only one of the two parties [ORS15, FMV19]. The most general protocol of this
kind makes a black-box use of any public-key encryption (PKE) with pseudorandom public keys,
which can be easily constructed from most standard cryptographic assumptions [FMV19]. This
implies a similar 5-round protocol for two-sided functionalities.

In contrast, for a general number of parties, all known constant-round protocols are either
complex and inefficient, or resort to idealized models such as the Random Oracle (RO) model
to achieve better efficiency but only heuristic security. Despite the significant body of work on
the round complexity of black-box MPC and related primitives in the plain model, the best exact
round complexity that follows from existing works [IPS08, Wee10, Goy11] is greater than 15 (see
Section 1.2). Recent attempts to minimize round complexity [GMPP16, BHP17, BGJ+17, KS17,
ACJ17, BGJ+18, HHPV18, CCG+20] have led to complex protocols that make heavy non-black-
box use of cryptography. This gap gives rise to the first motivating question for our work.

What is the minimal round complexity of black-box MPC in the plain model?
Must we necessarily resort to idealized models to achieve simplicity and/or efficiency?

Round complexity of black-box protocol transformations. It turns out that if “plain model”
is relaxed to allow a simple setup in the form of random OT correlations between each pair of
parties, the first part of the above question has been settled. Concretely, given an OT correla-
tion setup, which can be generated with good concrete efficiency [IKNP03, BCG+19], there is
a 2-round MPC protocol making a black-box use of a pseudorandom generator [GIS18]. How-
ever, this 2-round protocol is quite complex and inefficient, as it is obtained by applying a heav-
ily non-black-box “protocol garbling” transformation [GS18, BL18] to an underlying multi-round
(information-theoretic) MPC protocol. This not only hurts asymptotic and concrete efficiency, but
also rules out applying this transformation while respecting a black-box use of an underlying
primitive. The latter includes a black-box use of an algebraic structure (e.g., a big finite field),
a cryptographic primitive (e.g., homomorphic encryption or even a random oracle), or an ideal
functionality oracle (e.g., OT or its arithmetic variant OLE). This is similar to the classical non-
black-box protocol transformation from semi-honest MPC to malicious MPC, due to Goldreich,
Micali, and Wigderson [GMW87], which is limited in the same way.

In contrast, “black-box protocol transformations” from weak MPC protocols to stronger ones,
commonly known as “MPC-in-the-head” transformations [IKOS07, IPS08], have avoided these
limitations. In a nutshell, such transformations obtain a strong MPC protocol for f (say, with
malicious security) by making a black-box use of a weak MPC protocol (say, with semi-honest
security) for a related functionality f ′. The relation between f and f ′ needs to be restricted in some
way. Typically, f ′ is a next-message function of (an information-theoretic) weak MPC protocol for
f . This black-box protocol transformation paradigm, systematically studied in [IKP+16], has not
only given rise to new theoretical feasibility and efficiency results, but it has also led to practi-
cal zero-knowledge proof systems [GMO16, AHIV17], digital signatures [CDG+17, KKW18], and
MPC protocols [HIMV19]. The question we ask is whether one can obtain a similar black-box
protocol transformation in the context of 2-round MPC with OT correlation setup:

5

Are there useful kinds of “black-box protocol transformations” from 2-round semi-honest MPC
to 2-round malicious MPC with OT correlation setup?

This question is particularly motivated in the two-party case, where there are many different tech-
niques for efficient 2-round semi-honest protocols that make black-box use of algebraic or crypto-
graphic primitives.

1.1 Our Contributions

We make progress on these questions by obtaining the following types of round-efficient black-box
protocols.

1.1.1 Black-box 4-round “Pairwise MPC” in the Plain Model.

Our first result addresses the first question by settling the round complexity of black-box MPC
for a restricted but useful class of functionalities. Concretely, we get a 4-round black-box proto-
col for any pairwise MPC functionality that enable each ordered pair of parties to simultaneously
compute a one-sided function of their inputs, whose output is delivered to the second party. The
protocol makes a black-box use of any public-key encryption (PKE) with pseudorandom public
keys, similar to the 4-round 2-party OT protocol of [FMV19].

The central challenge in the pairwise MPC setting is to develop two-party protocols that re-
main secure when executed in parallel. We develop new black-box protocols for this setting, starting
with the case of OT protocols, and generalizing via the result of [IKO+11] to any two-party func-
tionality. To this end, a technical contribution of our work is a novel combination of split-state
non-malleable codes [DPW18, CGL16] with standalone secure two-party protocols to obtain black-
box, non-malleable two-party protocols.

The resulting pairwise MPC can be used to generate OT correlations in a preprocessing phase,
as required by the 2-round black-box protocol of [GIS18]. This results in a 6-round MPC protocol
making black-box use of PKE with pseudorandom public keys. While this already constitutes a
major improvement over the state of the art, it is still two rounds away from the 4-round lower
bound. Perhaps more importantly, as discussed above, the [GIS18] approach employs a round-
collapsing “protocol garbling” that limits its efficiency and applicability to protocols that make
black-box use of algebraic or cryptographic primitives. Motivated by both limitations, we would
like to replace the protocol garbling technique by a black-box protocol transformation that takes
advantage of OT correlations.

1.1.2 An “IPS-style Compiler” for 2-Round MPC.

Our second main contribution is a new black-box protocol transformation obtained via a round-
optimized variant of the “IPS compiler” [IPS08]. This transformation uses a 2-round honest-
majority MPC protocol from [IKP10, Pas12] to transform in a black-box way any 2-round MPC
protocol with an augmented variant of semi-honest security to obtain a 2-round MPC protocol with
malicious security. The transformation relies on a special form of OT correlations referred to as
watchlist correlations. Specifically, for each pair of parties i, j, the ideal watchlist correlation is sim-
ilar to random k-out-of-m OT in that it gives to party i a random m-tuple of strings and to party
j a random subset Kj of k of the m strings. However, the different OT instances are correlated in
that the same subset Kj is received by party j in all instances in which it acts as a receiver. In fact,
the latter consistency condition should only hold for honest parties j. This gives rise to a simple

6

protocol for generating the watchlist correlation using parallel invocations of OT, which in turn
can be implemented using our pairwise OT protocol. Combined with our first main result, this
yields the same kind of 6-round black-box protocol obtained via [GIS18], but with the advantage
of making a black-box use of an augmented semi-honest protocol (as opposed to a non-black-box
use of a malicious protocol incurred by the protocol garbling technique).

The augmented semi-honest security requirement combines the so-called semi-malicious secu-
rity [AJL+12a], which is satisfied by most natural 2-round semi-honest protocols, with a form
of adaptive security with erasures. The latter is satisfied by all natural information-theoretic pro-
tocols (with standard forms of setup), as well as by computationally secure protocols with pre-
processing. Concretely, we show the protocol from [GIS18] in the OT correlations model and the
protocol from [LLW20] in the OLE correlations model satisfy augmented semi-honest security and
thus, can be used in our compiler.

We obtain a couple of interesting corollaries by instantiating our compiler with appropriate
inner protocols. As a first corollary, if we instantiate our compiler with the protocol from [GIS18]
that has statistical augmented semi-honest security for computing functions in SREN ,1 then we
get a two-round malicious secure protocol in the OT correlations model for SREN that has sta-
tistical security. This give a “round-optimal" version of the corresponding information-theoretic
result from [IPS08] making black-box use of the inner protocol. A second corollary is a two-round,
statically secure malicious MPC protocol for computing log-depth arithmetic circuits. This pro-
tocol is secure in the presence of OLE + OT correlations2 and additionally makes black-box use
of the underlying field. This is obtained by instantiating the inner protocol with the protocol of
Lin et al. [LLW20]. This settles an open problem from [LLW20] on constructing 2-round protocols
over OLE with statistical security against malicious adversaries.

Towards concretely efficient 2-sided NISC. Another interesting use case for the above result is
the 2-round, secure two-party protocol in which both parties get an output. This should be con-
trasted with the standard notion of non-interactive secure computation (NISC) [IKO+11] that ap-
plies to one-sided functionalities. Note that this kind of 2-sided NISC cannot be obtained by simply
running two parallel instances of standard NISC, since even if we ignore parallel composition is-
sues, there is no mechanism to enforce consistency between the inputs used in these instances
(unless we rely on zero-knowledge proofs and make non-black-box use of cryptography). The
only alternative black-box approach to 2-sided NISC over OT correlations we are aware of is via
the protocol garbling technique that garbles the code of a malicious secure protocol and thus,
has prohibitive computational and communication cost. Even in the 1-sided case, existing pro-
tocols from [IKO+11, AMPR14, MR17, HIV17, CDI+19] are heavily tailored to specific garbling
techniques and do not make a black-box use of an underlying semi-honest protocol.

We note that techniques developed in the context of an “IPS-style compiler" in the two-round
setting gives a new approach for constructing protocols for the 2-sided NISC problem. Specifi-
cally, if we use [IKP10, Pas12] as the outer protocol and use the simple two-sided version of Yao’s
protocol (using Boolean garbling in the OT correlations model) as the inner protocol, we obtain a
2-sided NISC protocol that is secure against malicious adversaries in the OT correlations model.3

In Section 8.5, we suggest some optimizations to improve the concrete cost of this protocol.

1SREN denotes the class of functions that admit an efficient statistical randomized encoding.
2OT can be non-interactively reduced to OLE over fields of small characteristic. However, given that OT is typically

cheaper to implement than OLE, a setup of OLE+OT is arguably comparable to OLE alone.
3As we noted before, for the case of constant number of parties, watchlist correlations reduces to standard OT

correlations.

7

1.1.3 Black-box 5-round MPC in the plain model.

Our third and final result uses a specialized combination of the previous contributions to get
“one round away” from settling the main open question about the round complexity of black-
box MPC. Concretely, we get a 5-round MPC protocol that makes a black-box use of PKE with
pseudorandom public keys (as in the first contribution), along with any 2-round OT protocol
with “semi-malicious” security. The latter security requirement is a very mild strengthening of
semi-honest security in the context of 2-round OT protocols, and is satisfied by most 2-round OT
protocols from the literature.

1.2 Related Work

In this subsection, we give a brief overview of the two main approaches taken by the prior work
in obtaining black-box MPC protocols in the plain model.

Coin tossing based approach. The main idea in this approach is to use a black-box simulatable
coin tossing protocol to setup a CRS and then use black-box MPC protocols (such as [GIS18]) in
the CRS model. Roughly, to generate the CRS, the idea is for each party to commit to a random
string ri and in a later step, for all parties to reveal their coins. To ensure that malicious parties
cannot set their randomness as a function of that of other honest players, players should use a
(concurrent) non-malleable commitment in the commit phase.

But the main bottleneck to obtaining such a coin tossing protocol is achieving simulatability. To
achieve the simulation guarantee and allow a simulator to “force” the output of the coin toss to be
a certain value4, one would need to rely zero-knowledge protocols, which if applied naively make
black-box use of cryptography. Even if one were able to achieve simulation-based guarantees via a
specific protocol, one would need to tailor this to prove statements about construction of bounded
concurrent non-malleable commitment w.r.t. commitment against synchronising adversaries, for
which no round efficient black-box constructions exist. More specifically, [GLOV12] gives a black-
box protocol but the number of rounds of this protocol is greater than 18 (the coin tossing requires
at least two more rounds. [GPR16] gives a 3-round black-box construction of NMCom but is only
secure in the standalone setting. The other round efficient constructions of concurrent NMCom
[GRRV14, COSV16, COSV17, Khu17] make non-black use of cryptography.

IPS compiler based approach. The IPS compiler [IPS08] gives a black-box MPC protocol in the
OT hybrid model. The main challenge in instantiating this approach in the plain model is in
constructing a protocol that securely realizes the ideal OT functionality. In particular, we need a
protocol that realizes the ideal OT functionality between every ordered pair of parties. [Wee10]
gave a non-constant round black-box way to realize this and this was improved by [Goy11] who
gave a constant round black-box protocol. The main component in the constant round protocol
is again a constant round black-box bounded concurrent non-malleable commitment wrt replace-
ment (which is weaker than the traditional definition of non-malleable commitment wrt commit-
ment). Even if we rely on a three-round black-box version of such a non-malleable commitment
from [GKP+18], the OT protocol requires at least 12 rounds of communication. A straightforward
way of combining this with the IPS approach incurs at least 4 more rounds.

4Note that this corresponds to the programmability requirement.

8

Five round MPC

Four round
Inner Protocol

Two round
Semi-malicious OT

Outer Protocol
[IKP10, Pas12]

Four round
Watchlist

Four round, 1
Rewind Sender

Secure 2PC for NC1

Four round, 1
Rewind Sender

Secure OT

PKE with
Pseudorandom PK

Theorem 7.1 Theorems 5.9,5.4

Theorem C.2

Theorem D.1 via [ORS15, FMV19]

Theorem 6.4

Figure 1: Overview of the Key Steps in our Black-Box Five-Round Protocol.

2 Technical Overview

In this section, we provide an overview of the key technical ideas underlying our protocols. In
Figure 1, we give a high-level overview of the key steps involved in obtaining our five-round
black-box MPC protocol.

2.1 Background: Black-box MPC in the OT Hybrid Model

We begin with a brief recap of the MPC-in-the-head approach of Ishai, Prabhakaran and Sa-
hai [IPS08], which is the starting point for our work. Readers familiar with this paradigm may
skip to Section 2.2.

We stress that [IPS08] (henceforth referred to as the IPS paradigm) does not focus on round
complexity, or on obtaining constructions in the plain model. Nevertheless our work uses this ap-
proach as a meaningful starting point towards obtaining round efficient MPC in the plain model.

The IPS paradigm combines the following components to obtain an n-party MPC protocol, in
the OT hybrid model, with security against malicious corruptions of all but one players.

• An “outer” MPC in the client-server model, with n clients and m servers. This protocol is
secure against malicious corruption of O(m) servers, and n− 1 clients.

• An “inner” n-party MPC secure against semi-honest corruptions of upto n− 1 players.

9

• A “watchlist” that enables parties to check each other and detect malicious behaviour.

An Outer Protocol with Minimal Interaction [IKP10, Pas12]. Before delving into details of the
IPS technique, it will help to fix a special (minimal) interaction pattern for the outer protocol.
The outer protocol is executed between n clients and m servers, and as discussed above, must be
secure even if n− 1 clients collude maliciously with a constant fraction of the servers (concretely,
we will fix this fraction to be 1/3). We will assume that this protocol has the following interaction
pattern:

• Every client Ci for i ∈ [n] sends a single message φi→j to each server Sj for j ∈ [m].

• Each server Sj for j ∈ [m] performs local computation on its view, i.e. computes Sj({φi→j}i∈[n])
which outputs φj→i for each client Pi, where i ∈ [n].

• Each client recovers its output by performing local computations on its view {φj→i}j∈[m].

An information-theoretic protocol as above exists for “simple” functionalities (e.g., in the complexity
class NC1) [IKP10]. This can be extended to a similar protocol for general functionalities that
makes black-box use of any PRG (see Section 3.5.3.5 of [Pas12]).

The IPS Paradigm [IPS08]. We briefly recall the IPS approach that combines an arbitrary inner
and outer protocol to obtain an n-party black-box MPC protocol tolerating upto (n− 1) malicious
corruptions. While the IPS technique works with arbitrary outer protocols, we will assume the
minimal interaction pattern discussed above to simplify discussion and build towards our goal of
round efficient black-box MPC.

Each party plays the role of a “client” in the outer protocol. At the same time, all the n parties
use the inner protocol to jointly emulate the local computation of each of the m “servers” in the
outer protocol. That is, parties run m instances of the inner protocol, where the jth instance for
j ∈ [m] corresponds to a semi-honest secure computation of the jth server’s functionality Sj .

Recall that the objective is to achieve security against upto n − 1 malicious corruptions. Since
the inner protocol only guarantees security against semi-honest corruptions, if any of the parties
emulating the jth server behave maliciously, the server Sj cannot be trusted and is essentially
corrupted. Now recall that the outer protocol is only secure against (malicious) corruption of a
1/3rd of the servers. Therefore, one must necessarily ensure that all parties are semi-honest in 2/3rd

of the m inner protocol sessions.
Such semi-honest behavior is enforced with the help of a sophisticated cut-and-choose mecha-

nism, that is implemented via “watchlists”. A watchlist enables every party Pi to watch (i.e., check)
a private small subset Si of inner protocol instances. Specifically, for every j ∈ Si, party Pi obtains
the purported input and randomness used by other parties in instance j. Given these values, each
Pi reconstructs protocol messages for all sessions j ∈ Si, and aborts if it detects an inconsistency.
Importantly, the watchlist must reveal no information about other sessions.

The size of each Si is carefully tuned to ensure that the secrets of sufficiently many instances
remain hidden from all parties. This ensures that:

• If an adversary deviates from semi-honest behaviour in more than 1/3rd of the m inner protocol
sessions, then w.h.p., at least one of the deviating executions will be on the “watchlist” of
(i.e., will be checked by) an honest party, causing the protocol to abort.

• If the adversary deviates from semi-honest behaviour in less than 1/3rd of the m inner protocol ses-
sions, then 2/3rd of the outer protocol servers are uncorrupted. This makes it possible to rely
on security of the outer protocol against upto 1/3rd fraction of server corruptions.

10

The IPS approach realized watchlists in the OT hybrid model, i.e. assuming participants have
access to ideal OTs. As a result, they obtained a black-box, constant round MPC protocol tolerating
all-but-one corruptions in the OT hybrid model. As already discussed in the introduction, our key
technical contributions are to obtain constructions of watchlists and round efficient MPC in the
plain model based on black-box use of simple primitives.

2.2 The Watchlist Protocol

As a first step, we introduce novel techniques to build round-optimal watchlists in the plain
model, that make black-box use of any public-key encryption (PKE) with pseudorandom pub-
lic keys.

We begin by closely inspecting an ideal version of the watchlist functionality. For i ∈ [n], j ∈
[n] \ {i}, this functionality must enable party Pi to choose a random (secret) subset Si ⊆ [m] of
protocol executions of size k, and obtain only the purported input and randomness used by Pj in
all executions in the set Si. At the same time all other inputs of Pj should remain hidden from
Pi. A careful reader would have already observed that the watchlist functionality can be realized
if we have access to ideal, pairwise k-out-of-m OT functionality between every pair of parties.
We observe that the k-out-of-m OT is a one-sided functionality and hence, this can be realized if
parties have pairwise access to independent copies of the ideal OT functionality [IPS08, IKO+11].
We call this as simultaneous secure OT and would like to securely realize this ideal functionality
in the plain model in the presence of arbitrary malicious corruptions.

A Starting Point. A natural first attempt is to just have each pair of parties simultaneously ex-
ecute a two-party secure protocol computing the k-out-of-m OT functionality. Such a protocol
can be realized based on black-box use of any public key encryption scheme with pseudorandom
public keys [FMV19, ORS15].

Unfortunately, this does not securely emulate access to independent copies of the ideal OT
functionality between pairs of participants, because this protocol satisfies only stand-alone security.
It is easy to achieve OT that composes under parallel repetition with fixed roles, i.e. where many OT
sessions are executed in parallel, and an adversary either corrupts multiple senders or multiple
receivers but does not simultaneously corrupt (subsets of) senders and receivers. In particular,
the stand-alone secure construction of OT from pseudorandom public keys in [FMV19] already
achieves this notion of parallel composition.

But in the (more general) simultaneous setting, an adversarial party P ∗i participates in many
OT sessions simultaneously, as sender in some sessions and receiver in others. This gives P ∗i
the opportunity to generate its own (eg, sender) message in some OT session as a function of a
message generated by an honest sender in a different OT session, thereby possibly making its own
input depend on the input(s) of honest player(s). Clearly, this is disallowed by the ideal simultane-
ous OT functionality; but not prevented by standalone OT. Our first step towards addressing this
vulnerability is to ensure that adversarial inputs are independent of the inputs of honest players.

As discussed in the introduction, we develop a novel approach to achieving such indepen-
dence. In particular, we construct “non-malleable OT” that satisfies the following guarantees.

• Receiver Security under Parallel Composition. For every adversarial sender A∗ that cor-
rupts the OT sender (or resp., multiple senders in any parallel composition of the OT pro-
tocol), there exists a simulator that simulates the view of A∗ with black-box access to (resp.,
copies of) the ideal OT functionality. This follows automatically from simulation-based se-

11

curity against malicious senders (resp., in the parallel composition setting) of the underlying
two-party secure protocol ΠF .

• Non-Malleability. Informally, here we consider a man-in-the-middle adversary MIM that
acts as a receiver in a subset of OT sessions (that we refer to as “left” sessions) and as sender
in a different subset of OT sessions (that we refer to as “right” sessions).

We require the existence of a simulator-extractor Sim-Ext, that given the inputs of all honest
receivers (participating in all right sessions), is able to extract all the implicit inputs used by
the MIM in all its right sessions. Crucially, Sim-Ext does not have access to the inputs of honest
senders (participating in the left sessions).

This is the key property that prevents an adversarial sender from “copying” the inputs of
honest senders, or more generally, generating its inputs as a function of honest senders’
inputs. Achieving this property will be a key technical focus of our work.

In what follows, we provide an overview of our construction of non-malleable OT. Then, in Section
2.2.2, we discuss why any non-malleable OT protocol satisfying these properties almost directly
implies pairwise ideal OT functionality (or, simulataneous secure OT), and therefore also securely
realizes watchlists.

2.2.1 Towards Non-Malleable OT

We take inspiration from recent works that use non-malleable codes (introduced in [DPW18])
to build cryptographic primitives like non-malleable commitments [GPR16] and non-malleable
multi-prover interactive proofs [GJK15].

In more detail, we will build simultaneous secure OT by combining parallel composable two-
party secure computation with (an) appropriate (variant of) split-state non-malleable codes. Such
codes are specified by encoding and decoding algorithms (Enc,Dec). The encoding algorithm Enc
is a randomized algorithm that encodes any message m into a codeword consisting of two parts
or “states” (L,R), and the decoding algorithm Dec on input a codeword returns the underlying
message. The security property is that for every pair of tampering functions (f, g) with no fixed
points, the (distribution of) m̃ ← Dec(f(L), g(R)), where (L,R) ← Enc(m), is independent of m.
We now describe (a simplified variant of) our construction.

Our Construction For simplicity, we will focus on the special case of implementing simultane-
ous secure 1-out-of-2 OT, but our techniques immediately extend to the more general setting of
k-out-of-m OT. To prevent obvious copying attacks, we will assign to each party a unique tag or
identity.

Our construction of non-malleable OT simply involves executing a secure two-party protocol Π
between a sender S and a receiver R, for a special functionality F . Before describing this func-
tionality, we discuss the inputs of participants to this functionality.

The sender S with on input (m0,m1) and tag encodes these messages using an appropriate
split-state non-malleable code (Enc,Dec). Specifically, S computes L0,R0 ← Enc(m0||tag) and
L1,R1 ← Enc(m1||tag). The receiver R obtains as input a choice bit b ∈ {0, 1}, and samples uni-
formly random c ∈ {0, 1}. S and R then invoke a two-party secure protocol ΠF to compute
functionality F described in Figure 2. In addition, S sends tag toR.

12

Sender Inputs: m0, L0,R0,m1, L1,R1, tag. Receiver Inputs: b, c.

The functionality F(m0, L0,R0,m1, L1,R1, b, c, tag) is defined as follows.

1. If Dec(L0,R0) 6= (m0||tag) or Dec(L1,R1) 6= (m1||tag), output ⊥.

2. If c = 0, output (mb, L0, L1).

3. If c = 1, output (mb,R0,R1).

Figure 2: The functionality F

We note that the ideal functionality F reveals mb to R, and in addition, reveals either only
(L0, L1) or only (R0,R1). Because any split-state non-malleable code is also a 2-out-of-2 secret shar-
ing scheme [ADKO15], the shares L1−b and R1−b each statistically hide m1−b fromR. It is also clear
that protocol Π makes only black-box use of the underlying two-party computation protocol.

We show that (an appropriate k-out-of-m variant of) the protocol sketched above securely
realizes non-malleable OT, even when Π itself is only parallel composable secure (but may be
completely malleable).

Proving Sender Non-Malleability. For ease of exposition, let’s consider a simpler man-in-the-
middle adversary (MIM) that participates in a single left session as receiver, and a single right
session as sender. We will also assume that the MIM never sends messages that cause an honest
party to abort. Additionally, the underlying secure two-party protocol Π will be a round optimal
(four round) protocol with sequential messages, and with a specific structure. Namely, it will
require the receiver to commit to its input b in the first round of the protocol, and at the same time,
it will be delayed-input w.r.t. receiver input c, which will be chosen by the receiver immediately
before the third round begins. Finally, it will require the inputs (m0,m1, L0,R0, L1,R1, tag) of the
sender to be committed in the second round of the protocol, before c is chosen by the receiver.

First Attempt: An Alternate Extraction Mechanism. One possible way to extract sender inputs
from the right execution, is to execute the simulator of the underlying two-party protocol Π. Un-
fortunately, this fails because Π is only parallel composable secure, and extracting from the right
execution automatically reveals honest sender inputs from the left execution.

Instead, we will use the specific way that sender inputs are encoded to introduce an alternate
extraction mechanism. Specifically, one could imagine rewinding the third and the fourth round
message of Π, using inputs c = 0 and c = 1 on behalf of the honest receiver in the real and
rewinding threads, respectively. By our assumption, the adversary is non-aborting. Therefore, we
expect to obtain outputs (L̃0, L̃1) and (R̃0, R̃1) in the right session in the real and rewinding threads
respectively. At this point, we can use the decoder of the non-malleable code to obtain (m̃0, m̃1),
which, by correctness of the two-party protocol, should correspond to the implicit inputs of the
MIM in the right session.

It doesn’t seem like this argument gives us much (yet): rewinding the MIM’s third and fourth
rounds would also end up rewinding the third and the fourth rounds of the left execution with
(possibly different) inputs c̃, ĉ used by the MIM in the main and rewinding threads. Thus, it may

13

seem like we are back to square one: it may not be possible to hide the inputs of the honest sender
in the presence of such rewinding.

Towards Resolving the Extraction Bottleneck: 1-Rewind Sender Security. To tackle this prob-
lem, our first step will be to require that Π satisfy a stronger security property: 1-rewind sender
security. Roughly, this means that any adversarial receiver R∗ that rewinds the honest sender one
time in the third and fourth rounds, using (possibly different) inputs c̃, ĉ in the main and rewinding
threads, does not recover any information beyond the output ofF on inputs (m0,m1, L0, L1,R0,R1, b̃, c̃)

and (m0,m1, L0, L1,R0,R1, b̃, ĉ). We formalize this by requiring the existence of a specific type of
simulator: this simulator generates a view for R∗ in the main thread given only (m

b̃
, L0, L1) and a

view forR∗ in the rewinding thread given only (m
b̃
,R0,R1) (or vice-versa). Now, it may seem like

this type of simulator may not be very meaningful, since the sum total of this information could
essentially allow the receiver to recover m

1−b̃ by combining L
1−b̃ with R

1−b̃.
However, the fact that (L0, L1) and (R0,R1) are made available in separate threads can be ex-

ploited argue that the MIM’s input must be independent of m
1−b̃, as we discuss next.

Alternative Simulation. Let us go back to our alternate extraction mechanism discussed earlier,
where w.l.o.g. the third and fourth round messages of Π are rewound with (honest) receiver input
set to c = 0 in the main and c = 1 in the rewinding thread, respectively. This means that in
the main thread, the challenger obtains output (L̃0, L̃1) in the right session. In the rewind thread,
setting c = 1, the challenger obtains outputs (R̃0, R̃1). Meanwhile the real and rewinding left
executions will simulated using only (m

b̃
, L0, L1) and (m

b̃
,R0,R1) (or vice-versa) respectively, as

described above. This means that in the main thread, the MIM outputs (L̃0, L̃1) as a function of only
(m

b̃
, L0, L1), and in the rewinding thread, the MIM outputs (R̃0, R̃1) as a function of only (m

b̃
,R0,R1).5

We formalize this intuition to argue that the MIM’s behaviour naturally gives rise to a split-state
tampering function family. Here, one tampering function corresponds to the MIM’s functionality
in the main thread, and the other corresponds to the MIM’s functionality in the rewinding thread.
This allows us to rely on the non-malleability of the underlying encoding scheme to switch from
generating L

1−b̃,R1−b̃ as an encoding of m1−b, to generating it as an encoding of a dummy value.
This completes a simplified description of the main ideas in our protocol. We swept several

details under the rug but point out one important detail below.

Many-many Non-malleability. Recall that we simplified things earlier, to focus on a setting
where the MIM participates in a single left session as receiver and a single right session as sender.
For our application to watchlists, we require security against adversaries that participate in multi-
ple left and right sessions.

To achieve security in this setting, we will rely on many-many non-malleable codes (that are im-
plied by one-many non-malleable codes [CGL16]) that achieve security in the presence of multiple
tamperings of a single codeword [CGL16]. Moreover, in order to deal with adversaries that may
abort arbitrarily, we will modify the functionality F . Instead of encoding (m0,m1) a single time,
the sender generates λ (where λ is the security parameter) fresh encodings {(Lib,Rib)}i∈[λ],b∈{0,1} of
m0 and m1. The receiver picks λ choice bits c1, . . . , cλ instead of a single bit c. The functionality F
checks if for every i ∈ [λ], b ∈ {0, 1}, {(Lib,Rib)}i∈[λ],b∈{0,1} encode mb. If the check fails, F outputs
⊥. If it passes, then for every i ∈ [λ], it outputs (Li0, L

i
1) if ci = 0 and otherwise, outputs (Ri0,R

i
1).

5Actually, the MIM may also output (L̃0, L̃1) as a function of only (mb̃,R0,R1), and (R̃0, R̃1) as a function of only
(mb̃, L0, L1). We use codes satisfying an additional symmetric decoding property to account for this case.

14

This helps ensure that for every adversary MIM that completes a main thread (without abort-
ing) given honest receiver input c = c1, . . . , cλ, there is (w.h.p.) a rewinding thread with a different
choice c′ = c′1, . . . , c

′
λ of honest receiver input, that is also completed by the MIM. We then rely on

any index i for which ci 6= c′i to carry out the argument described above. Additional details of our
non-malleable OT protocol can be found in Section 5.1.

2.2.2 From Non-Malleable OT to Watchlists

We note that that our OT protocol, as described above, prohibits an adversarial sender from gen-
erating its generating its inputs as a function of honest senders’ inputs.

One could ask for an even stronger property, requiring the inputs of adversarial receivers to be
independent of the honest receivers’ inputs. At first glance, this stronger property appears to be
necessary, since pairwise access to ideal OTs would actually enforce that all adversarial receiver
inputs are independent of the inputs of honest receivers.

But upon taking a closer look, we realize that non-malleable OT as described in the previous
section actually suffices to construct watchlists with security in the real/ideal paradigm. Intu-
itively, this is because the outputs of honest parties are affected only by the inputs of the adver-
sarial senders, and are unaffected by the inputs of adversarial receivers. In other words, even if
adversarial receivers manage to have their inputs depend on the inputs of the honest receivers,
this cannot affect the joint distribution of the view of adversary and the outputs of honest parties
in the ideal world.

In Section 5, we show that non-malleable OT implies watchlists, with security according to
the real/ideal definition. We achieve that via a careful hybrid analysis. First, we rely on receiver
security under parallel composition – and replace honest receivers’ inputs with dummy inputs
while extracting inputs of all senders. In the next hybrid step, we rely on sender non-malleability
to replace the inputs of all honest senders with fake inputs, while arguing that the distribution
of inputs extracted from malicious senders (and therefore also the distribution of honest party
outputs) remains indistinguishable from the real protocol. This completes a high-level overview
of our watchlist construction, and the detailed proof can be found in Section 5.2. The only missing
ingredient in our description is the 1-rewind sender secure protocol, which we describe next.

2.2.3 Constructing a 1-Rewind Sender Secure Protocol

In our actual construction of non-malleable OT, the receiver inputs (c1, . . . cλ) do not need to re-
main hidden from a corrupted sender. In particular, all we need is for the protocol to allow for
delayed function selection, where the function to be computed (defined by c1, . . . , cλ) is selected
by the receiver in the third round. Given this, the 1-rewinding security property translates to re-
quiring that any corrupt receiver which rewinds the third and the fourth round messages of the
sender by providing (possibly) different functions learns nothing beyond the output of these two
functions on sender and receiver inputs that were fixed in the first two rounds.

We will design such a 2-party protocol for NC1 circuits6 by relying on a different variant [IKOS07,
IPS08, IKO+11] of the IPS paradigm. Specifically, we will use the same 2-clientm-server outer pro-
tocol [Pas12] that was discussed at the beginning of the overview, and combine it an inner protocol
that is based a variant of Yao’s garbled circuits [Yao86]. Yao’s protocol also allows for the garbled
circuits to be generated in the final round, which immediately gives us the delayed function selec-
tion property. Importantly, since we only care about parallel composable security in the resulting
two-party protocol, parallel composable but possibly malleable 1-rewind secure OT will suffice

6We show in Section 5.1 that 1-rewind secure 2PC for NC1 circuits suffices to obtain non-malleable OT.

15

to implement watchlists in this setting. We slightly generalize the works of [ORS15, FMV19] to
obtain a maliciously secure OT that satisfies 1-rewind sender security. We refer the reader to Sec-
tion C for the details of constructing the secure computation protocol and to Appendix D for the
construction of a 1-rewind sender secure OT protocol.

2.2.4 Immediate Application: Black-box Simultaneous Two-Party Computation

Plugging the resulting simultaneous OT protocol in place of ideal OT, into the non-interactive
two-party secure black-box computation protocol of [IKO+11], yields a round optimal two-party
simultaneous secure computation, from black-box use of any PKE with pseudorandom public keys.
Next, we discuss our key application: round-efficient black-box MPC.

2.3 Two-Round Protocol in the OT Correlations Model

We now give details of our two-round MPC protocol in the OT correlations model that makes
black-box use of any two-round protocol that satisfies an augmented notion of semi-honest se-
curity (described in detail below). As mentioned before, this result relies on the IPS paradigm
(recalled in Section 2.1) and it will serve as a useful stepping stone towards our final five-round
protocol in the plain model.

One-Round Watchlists in the OT Correlations Model. Let us assume for simplicity that the
parties have access to a k-out-of-m OT correlations functionality. In the main body, we will use a
1-out-of-k OT correlations functionality instead. In the OT correlations set-up phase, every pair of
parties invoke the OT correlations functionality acting as the sender and the receiver respectively.
The sender receives m uniformly chosen random strings and the receiver obtains a subset of these
strings of size k. Given such correlations, it is easy to implement a single round watchlist pro-
tocol. Specifically, the randomly sampled sender inputs serve as secret keys/one-time pads that
can be used to encrypt the actual sender inputs to the watchlist functionality. Given these cipher-
texts, the receiver can use the keys obtained in the setup phase to recover the sender messages
corresponding to its watched executions.

Outline. The main idea in our two-round protocol is to parallelize the single round watchlist
protocol with the first round of the inner protocol. Before sending the second round messages of
the inner protocol, each party verifies whether the input and randomness used by all parties in its
watched executions are consistent with the first round message. If it detects any inconsistency, it
aborts. Otherwise, it sends the second round message.

At first sight, it may appear that the above compiler can work with any two-round semi-honest
protocol where the adversarial parties can use an arbitrary random tape (a.k.a. semi-malicious ad-
versaries). However, if we look closely into the security proof, we need the two-round protocol
to satisfy an additional property, namely, first round equivocality. To see why this is needed, con-
sider an adversary that behaves maliciously in only a small number of inner protocol executions.
Recall that in this case, security comes from the guarantees of the outer MPC protocol. However,
if an adversary deviates in a very small number of executions, it is possible that the executions in
which the adversary cheated were not watched or detected by any honest party. Therefore, the
adversary can deviate and even potentially recover the input used by honest parties in these exe-
cutions, and it may, in fact, be hard to efficiently compute which executions these were, until the
end of the first round. Not knowing where the adversary could have cheated makes it tricky to
invoke the inner MPC simulator, which is secure only in the presence of semi-malicious behavior.

16

We address this issue by requiring the inner protocol to admit a simulator that generates the
messages for the first round of the inner protocol, without knowing whether the adversary cheated
or not in these rounds. Before the last round, the simulator learns which sessions the adversary
cheated in, and obtains honest party inputs for those sessions. At this point, the simulator equivo-
cates the transcript generated so far to make it appear as if the honest party’s input had been used
all along. In summary, we require that the inner protocol satisfy the following properties:

• Security in the Presence of Semi-Malicious Behavior. The view of an adversary that be-
haves semi-maliciously in the first round can be simulated given the function’s output.

• Equivocality. If an adversary did not behave semi-maliciously in the first round, then given
inputs of honest parties at the end of the first round, the simulator generates a final mes-
sage of the protocol corresponding to these inputs, that is indistinguishable from the real
distribution.

We call a MPC protocol that satisfies these two properties as augmented semi-honest secure.
In the multiparty setting, we note that the protocol given in [GIS18] in the OT correlations model
satisfies both these properties. Combining it with our four round watchlist protocol (which can
also be used to generate the OT correlations required by the [GIS18] protocol), this gives a six
round protocol in the plain model that makes black-box use of public-key encryption with pseu-
dorandom public keys. We refer the reader to Section 1.1 for details on other useful instantiations
of the inner protocol in the two-party case.

2.4 Fully Black-Box MPC in Five Rounds

The key reason why the above approach leads to a six round protocol is that the first round of
the inner [GIS18] protocol cannot be sent until the OT correlations are generated, which in turn
requires four rounds.

We now propose an optimization that yields a 5-round fully black-box MPC protocol. Specif-
ically, we build a special 4-round inner protocol that can be parallelized with our watchlists. At a
high level, our inner protocol has the following structure: the first two rounds are used to gener-
ate appropriate OT correlations, and in the next two rounds, we run the [GIS18] round collapsing
compiler on an information-theoretic protocol in the OT correlations model. This leads to a 4
round protocol, and we show that the first 3 rounds of this protocol can be parallelized with the
last 3 rounds of our watchlist protocol.

A Subtle Issue. Note that our watchlist protocols allow parties to ‘check’ each other only at the
end of round 4. In particular, a party may behave maliciously in the first three rounds, and this
behavior will only be detected at the end of round 4, at which point it may be too late and the
adversary might be able to completely break the inner protocol. Therefore, in order to be able to
parallelize watchlists with an inner protocol, we must ensure that the inner protocol does not leak
information in its initial rounds, even in the presence of malicious behavior. In more detail, we
will need this protocol to satisfy an additional property, namely, robustness [ACJ17].

We say that an r-round protocol is robust if the honest party inputs remain hidden from an
adversary that behaves maliciously in the first (r − 1)-rounds. Thus, if we parallelize the first
three rounds of the inner protocol with the last three rounds of the watchlist protocol, then robust-
ness property guarantees that even if the adversary behaved maliciously in many executions, it
cannot learn any information about the honest party’s input at the end of the fourth round. But
in this case, the watchlists guarantee that such an adversary will be caught with overwhelming

17

probability and the honest parties will abort before sending the last round message of the inner
protocol. On the other hand, if the adversary cheated only in a small number of executions, we
require the inner protocol to additionally satisfy equivocality property as explained in Section 2.3.
In summary, we require that the four-round inner protocol satisfy the following properties:

• Robustness against Malicious Behavior. Honest party inputs remain hidden from an ad-
versary that arbitrarily (and maliciously) deviates from the protocol in the first 3 rounds.

• Security in the Presence of Semi-Malicious Behavior. The view of an adversary that be-
haves semi-maliciously in the first 3 rounds can be simulated given the function’s output.

• Equivocality. If an adversary did not behave semi-maliciously in the first 3 rounds, then given
inputs of honest parties at the end of round 3, the simulator generates a final message of the
protocol corresponding to these inputs, that is indistinguishable from the real distribution.

We show that an instantiation of the four-round version of the [GIS18] protocol using a special
two-round OT protocol that allows a simulator to extract the sender inputs satisfies all these prop-
erties. We give a construction of such an OT protocol based on any two-round semi-malicious
oblivious transfer in Appendix B. We refer the reader to Section 7 for details of constructing the
robust, equivocal MPC protocol.

Putting Things Together. To construct a five-round MPC protocol for general functions, we in-
stantiate the IPS compiler with [IKP10, Pas12] as the outer protocol and use the above 4-round
robust, equivocal MPC as the inner protocol. We implement the watchlist functionality using
four-round protocol discussed earlier. We additionally parallelize the first 3 rounds of the inner
protocol with the second, third and fourth rounds of the watchlist protocol. At the end of the
fourth round, each party obtains the input and the randomness used by every other party corre-
sponding to its watched executions. The party then checks if the inner-protocol messages obtained
in those executions are consistent with the input and randomness obtained from the watchlist pro-
tocol. If any deviation is detected, then this party aborts. On the other hand, if all the watched
executions are correct, then the party sends the final round message of the inner protocol. We
refer the reader to Section 6 for additional details on how to prove security of the five-round MPC
protocol.

2.5 Barriers to 4 Round Black-Box MPC

The works of [KO04, GMPP16] proved a 4 round lower bound for any MPC with black-box sim-
ulation. Their bound also applies to protocols that make non-black-box use of underlying prim-
itives. A sequence of recent works [GMPP16, ACJ17, BGJ+18, CCG+20] obtained protocols that
match this lower bound, while making non-black-box use of cryptography. On the other hand,
the situation in the fully black-box setting has been relatively bleak. In particular, the best known
prior round complexity here can be attributed to Goyal [Goy11], optimizations of which result in a
protocol with at least 15 rounds. While our techniques help reduce this to 5 rounds, we encounter
barriers when shaving off one extra round to obtain a round optimal construction.

All k round MPC protocols admitting a black-box simulator, require the simulator to extract
the inputs of (possibly malicious players) by the end of the (k − 1)th round, query the ideal func-
tionality on these inputs, and obtain an output. The simulator is then required to “force” this
output into the view of the adversary, by the end of the kth round. It turns out that in our setting,
such extraction must be accomplished by extracting sender inputs from watchlists. Furthermore,

18

watchlists satisfying real-ideal security require at least 4 rounds, and allow extraction of sender
inputs only by the end of the 4th round. This is because they imply maliciously secure oblivious
transfer with similar properties, which is known to require at least 4 rounds. As such, an extra
round is required after the watchlist phase to allow the simulator to force an output, once it has
extracted the adversary’s input.

Previously, overcoming this barrier has involved developing techniques to simultaneously ex-
tract from the adversary and force an output. When making non-black-box use of cryptography,
this has required the use of sub-exponential security [ACJ17] or special, complex primitives and
highly non-black-box mechanisms such as conditional disclosure of secrets [BGJ+18, CCG+20].
We leave the task of building upon our conceptual framework by redesigning primitives and
techniques especially tailored to the 4 round setting, as an interesting question for future work.

3 Preliminaries and Definitions

Let λ denote the security parameter. A function µ(·) : N → R+ is said to be negligible if for any
polynomial poly(·) there exists λ0 such that for all λ > λ0, we have µ(λ) < 1

poly(λ) . We will use
negl(·) to denote an unspecified negligible function and poly(·) to denote an unspecified polyno-
mial function.

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the
content of the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite
set S, we denote x← S as the process of sampling x uniformly from the set S. We will use PPT to
denote Probabilistic Polynomial Time algorithm.

We give the definition of Secure Multiparty Computation in Appendix A.

3.1 Two-Round Semi-Malicious Secure Oblivious Transfer

Syntax. Let (OT1,OT2,OT3) be a two-round oblivious transfer with the following syntax. OT1

takes the security parameter 1λ and the receiver’s choice bit and outputs the first round message
otm1 along with some secret state ω. OT2 takes otm1 and the two sender inputs m0 and m1 and
outputs otm2. OT3 takes otm2 and (b, ω) and outputs mb. We say that the OT protocol is secure
against semi-malicious adversaries if it satisfies the following properties.

• Correctness: For every input b of the receiver and m0,m1 of the sender:

Pr[OT3(otm2, (b, ω) = mb] = 1

where (otm1, ω)← OT1(1λ, b) and otm2 ← OT2(otm1,m0,m1).

• Receiver Security.

{otm1 : (otm1, ω)← OT1(1λ, 1)} ≈c {otm1 : (otm1, ω)← OT1(1λ, 0)}

• Sender Privacy: For any input m0,m1 of the sender and any bit b and a string r ∈ {0, 1}∗:

{b, r, otm1 := OT1(1λ, b; r),OT2(otm1,m0,m1)} ≈c {b, r, otm1 := OT1(1λ, b; r),OT2(otm1,mb,mb)}

We note that the constructions of two-round oblivious transfer with statistical sender pri-
vacy [NP01, AIR01, Kal05, HK12, BD18] satisfies the above definition.

19

3.2 Non-malleable Codes

We will use non-malleable codes in the split-state model that are one-many secure and satisfy a
special augmented non-malleability [AAG+16] property, as discussed below.

Definition 3.1 (One-many augmented split-state non-malleable codes). Fix any polynomials `(·), p(·).
An `(·)-augmented non-malleable code with error ε(·) for messages m ∈ {0, 1}p(λ) consists of algorithms
NM.Code,NM.Decode where NM.Code(m) → (L,R) where L ∈ L and R ∈ R (we will assume that
L = R) such that for every m ∈ {0, 1}p(λ),

NM.Decode(NM.Code(m)) = m

and for every set of functions f = (f1, f2, . . . f`(λ)), g = (g1, g2, . . . g`(λ)) there exists a random variable
Df,g on R × {{0, 1}p(λ) ∪ same∗}`(λ) which is independent of the randomness in NM.Code such that for
all messages m ∈ {0, 1}p(λ) it holds that∣∣(R, {NM.Decode(fi(L), gi(R)}i∈[`(λ)]

)
|(L,R← NM.Code(m))

)
, (replace(Df,g,m))

∣∣ ≤ ε(λ) and∣∣(R, {NM.Decode(gi(R), fi(L)}i∈[`(λ)]

)
|(L,R← NM.Code(m))

)
, (replace(Df,g,m))

∣∣ ≤ ε(λ)

where the function replace : {0, 1}∗ × {0, 1}∗ → {0, 1} replaces all occurrences of same∗ in its first input
with its second input, and outputs the result.

It was shown in [GKP+18, GSZ20, ADN+19] that the CGL one-many non-malleable codes
constructed in [CGL16] are also one-many augmented non-malleable codes. But we point out
that in this definition, we also require messages obtained by decoding the tampered codewords
with left and right shares interchanged to be unrelated with the original message. It is easy to see
that this property is satisfied by any non-malleable code with symmetric decoding (i.e. where
NMDec(L,R) = NMDec(R, L)). This property can simply be achieved, as observed in [GJK15], by
modifying any split-state code to attach a special symbol “`” to the left part of the codeword, and
a special symbol “r” to the right part of the codeword. This yields the following imported lemma:

Lemma 3.2. (Imported.) [GJK15, GKP+18] For every polynomial `(·), there exists a polynomial q(·)
such that for every λ ∈ N, there exists an explicit `-augmented, split-state non-malleable code satisfying
Definition 3.1 with efficient encoding and decoding algorithms with code length q(λ), rate q(λ)−Ω(1) and
error 2−q(λ)Ω(1) .

3.3 Rewinding Secure Extractable Commitment

Definition 3.3. An extractable commitment ECom = (ECom1,ECom2,ECom3,EComValid) is a three
round protocol between two parties - a committer C with input m ∈ {0, 1}λ and receiver R that proceeds
as below.

1. C computes and sends e1 = ECom1(m; rC) for uniform randomness rc.

2. R computes and sends e2 = ECom2(e1; rR).

3. C computes and sends e3 = ECom3(e2,m; rC).

4. R outputs (accept/reject)← EComOut(e1, e2, e3) .

We require this commitment to satisfy the following properties:

20

• 1-Rewind-Security. For every non-uniform PPT malicious receiver R∗ and every pair of messages
m0,m1{0, 1}λ, the experiments Expm0,R∗ Expm1,R∗ are indistinguishable, where Expmb,R∗ is de-
fined as follows.

– Run ECom1(mb; rc) with uniform randomness rc, and denote its output by (ec1, σ), where σ is
the committer’s secret state, and ec1 is the message to be sent to the receiver.

– RunR∗(ec1), and obtain ec0
2, ec

1
2.

– For each i ∈ {0, 1}, run C(σ, eci2) to obtain eci3. Send the resulting messages (ec0
3, ec

1
3) to R∗.

The output of this experiment is the view ofR∗.

• (Over-)Extraction. There exists a PPT extractor EComExt that given oracle access to any (non-
uniform) PPT malicious committer C∗ outputs a pair (τ∗, σ∗) such that:

– τ∗ is identically distributed to the view of C∗ (when interacting with an honest receiver) in the
commitment phase, and

– The probability that τ∗ is an accepting transcript and σ∗ = ⊥ is negligible. Moreover, the
probability that τ∗ can be opened to to a value different than σ∗ is negligible.

Theorem 3.4. [PRS02] Rewind-secure extractable commitments satisfying Definition 3.3 can be obtained
based on black-box use of any non-interactive commitment scheme.

3.4 Low-Depth Proofs

We will describe how any computation performed by a family of polynomial sized ciruits can be
transformed into a proof that is verifiable by a family of circuits in NC1. Let R be an efficiently
computable binary relation. Let L be the language consisting of statements in R, i.e. for which
R(x) = 1.

Definition 3.5 (Low-Depth Non-Interactive Proofs). A low-depth non-interactive proof with perfect
completeness and soundness for a relation R consists of an (efficient) prover P and a verifier V that satisfy:

• Perfect completeness. A proof system is perfectly complete if an honest provers can always convince
an honest verifier. For all x ∈ L we have

Pr[V (π) = 1|π ← P (x)] = 1

• Perfect soundness. A proof system is perfectly sound if it is infeasible to convince an honest verifier
when the statement is false. For all x 6∈ L and all (even unbounded) adversaries A we have

Pr[V (x, π) = 1|π ← A(x)] = 0.

• Low Depth. The verifier V can be implemented in NC1.

We outline a simple construction of a low-depth non-interactive proof, borrowed from [GGH+13].
The prover P executes the verification circuit on x and generates the proof as the sequential con-
catenation (in some specified order) of the bit values assigned to the individual wires of the circuit
computing R. The verifier V proceeds by checking consistency of the values assigned to the in-
ternal wires of the circuit for each gate. In particular for each gate in the verification circuit the
verifier checks if the wire vales provided in the proof represent a correct evaluation of the gate.

21

Since the verification corresponding to each gate can be done independent of every other gate and
in constant depth, we have that V itself is constant depth (with unbounded fan-in).

Looking ahead, our construction of non-malleable OT makes use of a (malleable) two-party
computation protocol for NC1 that must verify validity of a non-malleable code. We rely on low-
depth proofs to ensure that the two-party computation protocol only performs NC1 computations.

4 Definitions

4.1 Multi-Party Simultaneous OT

The (multi-party) simultaneous OT functionality is an n-party functionality that implements si-
multaneous (or parallel) α-out-of-β OT between n parties. Informally, this functionality consists
of n ·(n−1) instances of α-out-of-β OT. For every i ∈ [n], j ∈ [n], j 6= i, a secure OT is implemented
between the pair (Pi, Pj) where Pi is sender and Pj is receiver.

Formally, we define the ideal (multi-party) simultaneous OT functionality Fn·(n−1)
OT : this con-

sists of n(n − 1) independent instances of α-out-of-β ideal OT, one for each ordered pair (i, j) ∈
[n] × [n] such that i 6= j. The (i, j)-th OT instance obtains input xi,j from sender Pi and input yj,i
from receiver Pj . It parses xi,j as a set of β strings (m1, . . . ,mβ), and parses yi,j as a subset K of
[β] such that |K| = α. It outputs {mi}i∈K to Pj and outputs ⊥ to Pi.

A (multi-party) simultaneous OT protocol is one that securely realizes the (multi-party) simul-
taneous OT functionality against malicious adversaries, according to Definition 4.1, as described
below.

Definition 4.1 (n-Party (α, β) (Multi-party) Simultaneous OT Protocol). The (multi-party) simulta-
neous OT protocol mpOT is defined by a tuple of algorithms (mpOT1,mpOT2,mpOT3,mpOT4, outmpOT).
For each round r ∈ [4], the i-th party in the protocol runs mpOTr on 1λ, the index i, the private input
{xi,j , yi,j}i 6=j and the transcript of the protocol in the first (r − 1) rounds to obtain mpOTir. It sends
mpOTir to every other party via a broadcast channel. We use mpOT(r) to denote the transcript of the pro-
tocol mpOT in the first r rounds. The output computing function outmpOT takes the index i of a party, its
private input and its random tape and the transcript mpOT(4) and generates the output outi. The protocol
is required to satisfy:

• Correctness: For every choice of inputs {xi,j , yi,j}i∈[n],j 6=i for parties {Pi}i∈[n], we have:

Pr[(out1, . . . , outn) = Fn·(n−1)
OT ({xi,j , yi,j}i∈[n],j 6=i)] = 1

where outi denotes the output obtained by the ith party from the mpOT protocol when executed on
the the private input and random tape of Pi.

• Security: Let A be an adversary corrupting an arbitrary subset of parties indexed by I , that obtains
auxiliary input z. Let {REALmpOT,A(z),I(1

λ)}λ∈N,z,{xi,j ,yi,j}i∈[n]\I,j 6=i denote the joint distribution of
the view of the adversary and the outputs of honest parties in an execution of the protocol with honest
party inputs set to {xi,j , yi,j}i∈[n]\I,j 6=i.

We require the existence of an expected polynomial time simulator SimmpOT that with black-box ac-
cess to A interacts with the ideal Fn·(n−1)

OT functionality described above, and outputs an ideal view
{IDEALFn·(n−1)

OT ,A(z),I
(1λ)}λ∈N,z,{xi,j ,yi,j}i∈[n]\I,j 6=i . The interaction between the simulator and the

22

ideal functionality is according to the standard model of secure computation7, with the following dif-
ference. TheFn·(n−1)

OT functionality does not wait to receive inputs for all n·(n−1) OT sessions before
generating outputs, but generates outputs for the adversary for each session “on-the-fly”, i.e. imme-
diately after obtaining the inputs of both players. After that, in each session individually, it either
aborts or sends the output to uncorrupted parties, depending on an instruction from the adversary
for this session. We require that:

{REALmpOT,A(z),I(1
λ)}λ∈N,z,{xi,j ,yi,j}i∈[n]\I,j 6=i ≈c {IDEALFn·(n−1)

OT ,A(z),I
(1λ)}λ∈N,z,{xi,j ,yi,j}i∈[n]\I,j 6=i

Remark 4.2 (Watchlist Protocol). The watchlist protocol is defined identically to the mpOT protocol
(Definition 4.1).

4.2 1-Rewind Sender-Secure Two-Party Computation

Let us consider a protocol Π between two parties, namely, the sender S and the receiver R. The
sender holds a private input xS and the receiver holds a private input xR and they wish to com-
pute some function of their private inputs securely with the receiver obtains the output of the
function. We want this protocol to satisfy:

• (Delayed-function selection) The function to be securely computed is only decided in the
third round by the receiverR. That is, the third round message contains the explicit descrip-
tion of the function f to be computed and the first two messages depend only on the size of
the function.

• (1-Rewinding Security) Any malicious receiver that rewinds the third and fourth rounds of
the protocol once (by possibly giving different functions f0, f1) cannot learn anything about
the sender’s inputs except the output on these two functions.

The syntax of the protocol and the two properties are formalized below.

Syntax. The special two party protocol Π is given by a tuple of algorithms (Π1,Π2,Π3,Π4, outΠ).
Π1 and Π3 are the next message functions run by the receiver R and Π2 and Π4 are the next
message functions run by the sender S. At the end of the protocol, R runs outΠ on the transcript,
its input and the random tape to get the output of the protocol. We use πr to denote the message
sent in the protocol Π in round r for every r ∈ [4].

Definition 4.3. Let Π = (Π1,Π2,Π3,Π4, outΠ) be a 4-round protocol between a receiver R and a sender
S with the receiver computing the output at the end of the fourth round. We say that Π is a 1-rewinding
sender secure protocol with delayed function selection for NC1 circuits if it satisfies:

• Delayed Function Selection. The first and second message functions Π1,Π2 take as input the size
of the function f ∈ NC1 to be securely computed and are otherwise, independent of the function
description. The third round message fromR contains the explicit description of the function f to be
computed.

• Receiver Security. For every malicious PPT adversary A that corrupts the sender, there exists an
expected polynomial (black-box) simulator SimR = (Sim1

R, Sim
2
R) such that for all choices of honest

receiver input xR and the function f ∈ NC1, the joint distribution of the view ofA andR’s output in
the real execution is computationally indistinguishable to the output of the ideal experiment described
in Figure 3.

7This is described in detail in Appendix A.

23

• 1-Rewinding Sender Security. For every malicious adversaryA corrupting the receiver, there exists
an expected polynomial time simulators SimS = (Sim1

S ,Sim
2
S) such that for every choice of sender’s

input xS , we have:
Expt1(A,Π, xR, xS) ≈c Expt2(A,SimS , xR, xS)

where Expt1 and Expt2 are defined in Figure 4.

• The honest receiverR sends xR and f to the ideal functionality.

• Initialize Awith uniform random tape r.

• Sim1
R on input f , interacts with A and outputs π1, π2, xS and sk.

• Send xS to the ideal functionality.

• Sim2
R on input sk, interacts withA and outputs π3 and π4. Sim2

Rmay send an abort to the ideal functionality.

• Output (r, π1, π2, π3, π4) and the output of the honestR.

Figure 3: Ideal Experiment in the Receiver Security Game

5 The (Multiparty) Simultaneous OT Protocol

In this section, we formally construct and prove security of round optimal watchlists that make
black-box use of any public key encryption scheme with pseudorandom public keys. We prove
the following theorem, that establishes the existence of simultaneous OT satisfying Definition 4.1.

Theorem 5.1. Let λ denote the security parameter, and m = m(λ), k = k(λ) be arbitrary polynomials.
Then there exists a 4 round n-party (m, k) simultaneous OT protocol satisfying Definition 4.1 against
static, malicious adversaries satisfying security with selective abort, that makes black-box use of any public
key encryption with pseudorandom public keys.

We prove Theorem 5.1 by first constructing non-malleable OT (Definition 5.3) in Section 5.1,
and proving that this implies (multiparty) simultaneous OT (Definition 4.1) in Section 5.2.

Corollary given below follows immediately from Theorem 5.1 and [IKO+11].

Expt1(A,Π, xS) = 1]

• Initialize Awith a uniform random tape s.

• π1 ← A(1λ; s).

• Choose r ← {0, 1}λ uniformly at random and
compute π2 ← Π2(xS , π1; r).

• (f0, π3[0]), (f1, π3[1])← A(π2; s).

• π4[b]← Π4(xS , π1, (fb, π3[b]); r) for b ∈ {0, 1}.
• Output (s, π1, π2, {fb, π3[b], π4[b]}b∈{0,1}).

Expt2(A, SimS , xS)

• Initialize Awith a uniform random tape s.

• Sim1
S interacts with A and produces (π1, sk).

• Sim2
S on input sk interacts with A and produces a

query (xR, f0, f1) to be sent to the ideal function-
ality.

• On receiving zb = fb(xR, xS) from the ideal
functionality, Sim2

S interacts with A and produces
(π2, {fb, π3[b], π4[b]}b∈{0,1}).

• Output (s, π1, π2, {fb, π3[b], π4[b]}b∈{0,1}).

Figure 4: Descriptions of Expt1 and Expt2.

24

Corollary 5.2. There exists a four round n-party protocol satisfying Definition 4.1 that emulates arbitrary
pairwise two-party functionalities with one-sided output, satisfying security with selevtive abort against
static, malicious adversaries, and with black-box use of any public key encryption with pseudorandom public
keys.

5.1 ` Non-malleable m-choose-k OT: Construction and Analysis

In this section, we construct an ` non-malleable
(
m
k

)
OT satisfying Definition 5.3. Our construc-

tion is described in Figure 5, and makes use of the following ingredients:

• A 4 round two-party secure computation protocol Π satisfying Definition 4.3 with delayed-
function selection for NC1 circuits and 1-rewinding sender security.

• An information-theoretic m(λ) · `(λ) non-malleable coding scheme satisfying Definition 3.1.

• A low-depth proof for P according to Definition 3.5.

• An existentially unforgeable signature scheme with algorithms denoted by Signature.Setup,
Signature.Sign and Signature.Verify.

We describe our protocol formally in Figure 5. The correctness of this protocol follows from
correctness of the underlying oblivious transfer, non-malleable codes and signature scheme. In
what follows, we formally prove security.

First, we define non-malleable OT which secures against a man-in-the-middle adversary that
possibly generates OT messages as a function of those generated by honest players. Loosely
speaking, the non-malleability property ensures that no PPT adversarial sender can generate its
OT inputs as a function of the private inputs of other (honest) senders.

Definition 5.3 (`-non-malleable
(
m
k

)
Oblivious Transfer). An `-non-malleable

(
m
k

)
Oblivious Trans-

fer protocol is a protocol between a sender S with inputs {xi}i∈[m] and a receiver R with input K ⊂ [m]
where |K| = k, that satisfies the following properties:

• Correctness. For every i ∈ [m], xi ∈ {0, 1}λ and K ⊂ [m] such that |K| = k,

OutR〈S({xi}i∈[m]),R(K)〉 = {mi}i∈K

• Receiver Security (under Parallel Composition with Fixed Roles). For every PPT sender S∗
and every pair K,K ′ of k-sized subsets of [m], we require

ViewS∗〈S∗,R(K)〉 ≈c ViewS∗〈S∗,R(K ′)〉

Additionally, we require that there exists a PPT extractor Sen.Ext that on input any transcript τ
and with black-box access to any PPT sender S∗ outputs {(x∗i,j)}i∈[m],j∈[`] where x∗i,j denotes the ith

implicit input used by S∗ in the jth session of τ (if any input is not well-defined, it outputs ⊥ in its
place)8.

8This property guarantees that it is possible to simulate the view of an adversarial sender that simultaneously partic-
ipates in protocol sessions against multiple honest receivers. This property is satisfied by most natural rewinding-based
protocols. This is different from non-malleability because here the adversary assumes the same role (i.e. sender) in all
parallel protocol sessions, whereas in the case of non-malleability, the adversary is allowed to simultaneously assume
the role of a sender in some sessions and a receiver in others.

25

• Non-Malleability. Consider any PPT adversary (denoted by MIM) that interacts with upto `
senders S1, . . . ,S` on the left, where for every j ∈ [`], Sj has input {xi,j ∈ {0, 1}n}i∈[m], and
upto ` receiversR1, . . . ,R` on the right, where for every j ∈ [`],Rj has input Kj .

We denote by ViewMIM〈{Sj({xi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉 the view of the MIM in this inter-
action, and denote the ith implicit input used by the MIM in the jth right session by x′i,j

9. We
denote by RealMIM〈{Sj({xi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉 the joint distribution of {(x′i,j)}i∈[m],j∈[`]

and ViewMIM〈{Sj({xi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉. Then, we require that there exists a simulator-
extractor pair, (SimOT,ExtOT) that outputs10

(σ1, w
(1), {K̃j}j∈[`])← ExtMIM

OT ({Kj}j∈[`]),

IdealMIM({xi,j}i∈[m],j∈[`], {Kj}j∈[`])← Sim
MIM,{OT({xi,j}i∈[m],·)}j∈[`]

OT (σ1, {K̃j}j∈[`]),

where w(1) denotes the first round messages in a transcript generated by the MIM in its interaction
with the extractor, and σ denotes the state of the extractor. We require that the adversary’s “view”
in the ideal world, which is a part of the distribution IdealMIM({xi,j}i∈[m],j∈[`], {Kj}j∈[`]), contain a
transcript that has w(1) as the first message, and that for all honest inputs {xi,j}i∈[m],j∈[`], {Kj}j∈[`],

RealMIM〈{Sj({xi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉 ≈c IdealMIM({xi,j}i∈[m],j∈[`], {Kj}j∈[`])

Next, we prove security according to Definition 5.3.

Theorem 5.4. Let λ denote the security parameter, and m = m(λ), k = k(λ), ` = `(λ) be arbitrary

polynomials. There exists a 4 round ` non-malleable
(
m
k

)
oblivious transfer protocol satisfying Definition

5.3 that makes black-box use of any 4 round two-party secure computation protocol Π satisfying Definition
4.3, and any existentially unforgeable signature scheme.

By relying on Theorem C.1, that shows how to build a 4 round two-party secure computation
protocol Π satisfying Definition 4.3 based on black-box use of any public-key encryption with
pseudo-random public keys, we obtain the following Corollary.

Corollary 5.5. Let λ denote the security parameter, and m = m(λ), k = k(λ), ` = `(λ) be arbitrary

polynomials. There exists a 4 round ` non-malleable
(
m
k

)
OT protocol satisfying Definition 5.3 that makes

black-box use of any public-key encryption with pseudo-random public keys.

Proof of Theorem 5.4. We now consider a man-in-the-middle adversary that participates as an OT
receiver in upto `(λ) executions of this protocol on the right, and participates as an OT sender in
upto `(λ) executions on the left.

We will prove that there exists a PPT algorithm Sim-Ext, that with black-box access to the MIM,
to ` copies of the ideal OT functionality OT = {OTj({xi,j}i∈[m], ·)}j∈[`] and with input {Kj}j∈[`],
simulates an execution of the protocol with the MIM and extracts all the inputs {({x̃i,j}i∈[m])}j∈[`]

used by the MIM in the executions where the MIM is sender. We will prove that Sim-Ext outputs
IdealMIM({xi,j}i∈[m],j∈[`], {Kj}j∈[`]) according to Definition 5.3, such that

RealMIM〈{Sj({xi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉 ≈c IdealMIM({xi,j}i∈[m],j∈[`], {Kj}j∈[`])

9If any of these is not well-defined, we denote it by ⊥.
10We remark that we split the simulator-extractor into a pair of machines primarily for conceptual simplicity.

26

Inputs: Sender S has inputs {xj}j∈m and receiverR has input a set K ⊆ [m] where |K| = k.

Protocol: S andR do the following.

1. S samples (vk, sk)← Signature.Setup(1λ), then does the following.

• For each i ∈ [λ], j ∈ [m], pick uniform randomness ri,j and compute (Li,j ,Ri,j) =
NM.Code((vk|xj); ri,j).

• Set x = (vk, {(Li,j ,Ri,j , xj)}i∈[λ],j∈[m]) and L =
{

(vk, {(Li,j ,Ri,j , xj)}i∈[λ],j∈[m]) : ∀i ∈
[λ], j ∈ [m],NM.Decode(Li,j ,Ri,j) = (vk|xj)

}
. Compute ldp = LDP.Prove(x,L).

2. Both parties engage in the protocol Π to compute functionality F where:

• R plays the receiver with input K committed in round 1 and delayed function
(c1, . . . , cλ) that is chosen in round 3 by sampling each ci ← {0, 1}.
• S plays the sender with input (x, ldp), where x is parsed as

(vk, {xj , (Li,j ,Ri,j)}i∈[λ],j∈[m].

• The functionality F on input (vk, {xj , Li,j ,Ri,j}i∈[λ],j∈[m], ldp,K, {ci}i∈[λ]) generates
an output as follows:

– If LDP.Verify(x, ldp) 6= 1, output ⊥.
– Otherwise set out = vk, {xj}j∈K . Additionally, for every i ∈ [λ], if ci = 0,

append ({Li,j}j∈[m]) to out, else append ({Ri,j}j∈[m]) to out.
– Output out.

Additionally, S signs messages generated according to Π, denoted by (Π2,Π4). It
sets σ2 = Signature.Sign(Π2, sk), σ4 = Signature.Sign(Π4, sk)and sends (σ2, σ4) toR.

3. R obtains output out and parses out = (vk, {xj}j∈K , ·). It outputs {xj}j∈K iff
Signature.Verify(σ2,Π2, vk) ∧ Signature.Verify(σ4,Π4, vk) = 1, otherwise outputs ⊥.

Figure 5: `(λ) Non-Malleable m(λ)-choose-k(λ) Oblivious Transfer

To prove indistinguishability, we define a sequence of hybrid experiments, where the first one
outputs the distribution RealMIM〈{Sj({xi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`] and the final one outputs the
distribution IdealMIM({xi,j}i∈[m],j∈[`], {Kj}j∈[`]). The simulation strategy is identical to that of the
challenger in the final hybrid.

Hyb0 : This corresponds to an execution of the MIM with ` honest senders {Sj}j∈[`] on the left, each
using inputs {xi,j}i∈[m] respectively and ` honest receivers on the right with inputs ({Kj}j∈[`]) re-
spectively. The output of this hybrid is RealMIM〈{Sj({xi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉.

Hyb1 : This experiment modifies Hyb1 by introducing an additional abort condition, and changing
the way the adversary’s inputs {x̃ji}j∈[`],i∈[m] are computed.

Specifically, the experiment first executes the complete protocol corresponding to the real exe-
cution of the MIM exactly as in Hyb0 to obtain ViewMIM〈{Sj({xi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉.

Let p(λ) denote the probability that the MIM completes this execution without aborting. Set

27

γ(λ) = max
(
λ, p−2(λ)

)
. With the first two rounds of the transcript fixed, the rewind the right

execution up to γ(λ) times, picking inputs (cj1, . . . , c
j
λ) for each of the ` receivers {Rj}j∈[`] inde-

pendently and uniformly at random in every run. If there exists a rewinding thread where the MIM
completes the protocol execution, denote the inputs chosen by the challenger on behalf of the hon-
est receiver in this rewinding thread by (c′j1, . . . , c

′j
λ). For every j ∈ [`], let index αj ∈ [λ] be such

that cjαj = 0 and c′jαj = 1. Additionally for every j ∈ [`], i ∈ [m], use (L̃jαj ,i, R̃
j
αj ,i

) obtained as out-

put from the main and rewinding executions respectively to compute x̃ji = NM.Decode(L̃jαj ,i, R̃
j
αj ,i

).
If no such rewinding thread exists, or if there exists j ∈ [`] for which there does not exist α ∈ [λ]

such that cjα = 0 and c′jα = 1, then set x̃ji = ⊥ for all i ∈ [m]. Now, the output of this hybrid is the
joint distribution

ViewMIM〈{Sj({xji}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉, {x̃
j
i}j∈[`],i∈[m].

Lemma 5.6. For every unbounded distinguisher D and large enough λ ∈ N,∣∣∣Pr[D(Hyb0) = 1]− Pr[D(Hyb1) = 1]
∣∣∣ = negl(λ)

Proof. Since the MIM’s inputs {(x̃ji}j∈[`] are committed in round 2 of the protocol, then conditioned
on the adversary providing a non-aborting transcript in a rewinding execution in Hyb1, by simu-
lation security of the 2pc, {(x̃ji}j∈[`] are correctly extracted.

Therefore, to prove this lemma it suffices to show that such a rewinding execution (with a
non-aborting transcript) can be found within γ(λ) attempts, except with probability negl(λ). To
see this, we observe that the probability of a non-aborting transcript is p(λ), and therefore, the
probability that all γ(λ) trials abort is (1− p(λ))γ(λ) = negl(λ).

Hyb2: This experiment modifies Hyb1 to execute the simulator of Π in all sessions where the MIM
is a receiver.

In more detail, in all executions j where MIM is a receiver, instead of the honest sender strategy

with input {xji}i∈[m],j∈[`], this hybrid executes the simulator Sim-2PC
MIM,F(inpSj ,·)
Sen where

inpSj = ({xji , L
j
1,i, . . . , L

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m]).

Sim-2PCSen expects round 1 and round 3 messages from the MIM, and the MIM in turn expects
corresponding messages from the receiver in the right execution. Receiver messages for the right
execution are generated using honest receiver strategy with inputs Kj fixed, and inputs cj1, . . . , c

j
λ

chosen uniformly at random, exactly as in Hyb1. Denote the view of the MIM by

View
Sim
{F(inpSj ,·)}j∈[`]

〈{Rj(Kj)}j∈[`]〉,

where for every j ∈ [`], inpSj is as defined above.
Next, with the first two rounds of the transcript fixed, the challenger rewinds the right execu-

tion up to `(λ) times, picking inputs (cj1, . . . , c
j
λ) independently and uniformly at random in every

run, and generating messages in the left execution by running the simulator Sim-2PCSen on behalf
ofRj .

If there exists a rewinding execution where the MIM completes the protocol, denote the inputs
chosen by the challenger on behalf of the honest receiver in this rewinding thread by (c′j1, . . . , c

′j
λ).

For every j ∈ [`], let index αj ∈ [λ] be such that cjαj = 0 and c′jαj = 1. Additionally for every

28

j ∈ [`], i ∈ [m], use (L̃jαj ,i, R̃
j
αj ,i

) obtained as output from the main and rewinding executions

respectively to compute x̃ji = NM.Decode(L̃jαj ,i, R̃
j
αj ,i

). If no such rewinding thread exists, or if

there exists j ∈ [`] for which there does not exist α ∈ [λ] such that cjα = 0 and c′jα = 1, then set
x̃ji = ⊥ for all i ∈ [m]. The output of this hybrid is the joint distribution:

View
Sim
{F(inpSj ,·)}j∈[`]

〈{Rj(Kj)}j∈[`]〉, {x̃
j
i}j∈[`],i∈[m],

where for every j ∈ [`], inpSj is as defined above.

Lemma 5.7. Assuming 1-rewinding secure two party computation according to Definition 4.3, for every
PPT distinguisher D and large enough λ ∈ N,∣∣∣Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]

∣∣∣ = negl(λ)

Proof. To prove this lemma, we consider a sequence of sub-hybrids Hyb1,0,Hyb1,1, . . .Hyb1,` where
for every j ∈ [`], Hyb1,j is identical to Hyb1,j−1, except that instead of executing the honest sender
strategy using honest sender inputs {mj

i}i∈[m], we execute the simulator in the jth left execution,

where Sim-2PC
MIM,F(inpSj ,·)
Sen where

inpSj = ({xji , L
j
1,i, . . . , L

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m])

Suppose the lemma is not true. Then for every large enough λ ∈ N there exists j∗(λ) ∈ [`(λ)],
a polynomial p(·) and a distinguisher D such that for infinitely many λ ∈ N,∣∣∣Pr[D(Hyb1,j∗−1) = 1]− Pr[D(Hyb1,j∗) = 1]

∣∣∣ ≥ 1

q(λ)

We derive a contradiction by building a reduction A that on input λ, obtains j∗(λ) as advice
and with black-box access to the MIM and to D contradicts 1-rewinding security of the two party
computation protocol. A proceeds as follows:

• A first creates receiverR′ that interacts with the external challenger as follows.

– Generate the first round messages according to receiver strategy with inputs {Kj}j∈[`]

for the right execution. Obtain first round messages from the MIM, and output the
MIM’s message in the j∗th left execution to the challenger of the 2pc.

– Obtain the second round message for the left execution externally from the 2pc chal-
lenger, and forward this to the MIM as Sj∗ ’s message in the j∗th left execution. Obtain
the second round message from the MIM for the right execution.

– Generate the third round message for the right execution according to honest receiver
strategy, and obtain the third round message from the MIM. Output the MIM’s message
in left session j∗ to the challenger.

– Obtain the fourth round message for the left execution externally from the challenger,
and forward this to the MIM as S’s message in the j∗th left execution. Obtain the fourth
round message from the MIM for the right execution.

• Next, A rewindsR′ once, as follows.

– Generate the third round message according to honest receiver strategy, and obtain the
third round message from the MIM. Output the MIM’s message in session j∗ to the
challenger.

29

– Obtain the fourth round message for the left execution externally from the challenger,
and forward this to the MIM as S’s message in the j∗th left execution. Obtain the fourth
round message from the MIM from the left execution.

– If none of the executions abort, for every j ∈ [`], find αj ∈ [λ] such that cjαj = 0 and
c′jαj = 1. and use it to compute x̃ji = NM.Decode(L̃jαj ,i, R̃

j
αj ,i

) for i ∈ [m], j ∈ [`]. Else, set

x̃ji = ⊥ for i ∈ [m], j ∈ [`]

• A outputs the entire view of R′ together with {x̃ji}i∈[m],j∈[`]. If the challenger used honest
sender messages, we denote the distribution output by A in this experiment by Dist1 and
if the challenger used simulated messages, we denote the distribution output by A in this
experiment by Dist2.

If the challenger’s messages correspond to the real sender S, then the distribution output byA con-
ditioned on not aborting corresponds to Hyb1,j∗−1, and if the challenger’s messages correspond to
Sim-2PCSen, then the distribution output byA conditioned on not aborting corresponds to Hyb1,j∗ .

By assumption, for infinitely many λ ∈ N,∣∣∣Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]
∣∣∣ =

1

q(λ)

Since the MIM completes any run of the protocol without aborting with probability at least p(λ),
and because aborts are independent of the distinguishing advantage, for infinitely many λ ∈ N:∣∣∣Pr[D = 1 ∧ ¬abort|Hyb1]− Pr[D = 1 ∧ ¬abort|Hyb2]

∣∣∣ ≥ 1

p(λ) · q(λ)

where ¬abort denotes the event that an execution that is completed in the main thread, is also
completed without aborting in one rewinding execution.

This implies that for infinitely many λ ∈ N:∣∣∣Pr[D(Dist1) = 1]− Pr[D(Dist2) = 1]
∣∣∣ ≥ 1

p(λ) · q(λ)
,

which implies that D contradicts 1-rewinding security of the two party computation protocol.

Hyb3: This hybrid is the same as Hyb2 except whenever the challenger obtains as output a verifi-
cation key in one of the right sessions that is identical to a verification key used in one of the left
sessions, the hybrid outputs ⊥. By existential unforgeability of the signature scheme, given any
PPT adversary MIM, Hyb2 and Hyb3 are statistically indistinguishable.

Hyb4: This hybrid is the same as Hyb3 except that inpSj is set differently. Specifically, for every
j ∈ [`], i ∈ [m] and α ∈ [λ], we set (Ljα,i,R

j
α,i)← NM.Sim(1p(λ)), and set

inpSj = ({xji , L
j
1,i, . . . , L

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m]).

We note that at this point, the functionality {F(inpSj , ·)}j∈[`] can be perfectly simulated with
access to the ideal functionality {OTj(xji , x

j
i , ·)}j∈[`]. Therefore, the output of this hybrid is identical

to the ideal view IdealMIM({xji}i∈[m],j∈[`], {Kj}j∈[`]).

30

Lemma 5.8. Assuming m(λ) · `(λ) symmetric non-malleable codes satisfying Definition 3.1, for every
unbounded distinguisher D and large enough λ ∈ N,∣∣∣Pr[D(Hyb4) = 1]− Pr[D(Hyb3) = 1]

∣∣∣ = negl(λ)

Proof. We prove indistinguishability between Hyb3 and Hyb4 by considering a sequence of sub-
hybrids, {Hyb3,i,j,k}i∈[1,m],j∈[1,`],k∈[0,λ] where:

• Hyb3 = Hyb3,0,`,λ, Hyb4 = Hyb3,m,`,λ,

• for i ∈ [m], Hyb3,i−1,`,λ = Hyb3,i,1,0

• for j ∈ [`], Hyb3,i,j−1,λ = Hyb3,i,j,0,

• for every i ∈ [m], j ∈ [`], k ∈ [λ], Hyb3,i,j,k is identical to Hyb3,i,j,k−1 except that Hyb3,i,j,k

samples (Ljk,i,R
j
k,i)← NM.Code(0).

Suppose the lemma is not true. Then there exists i∗ ∈ [m], j∗ ∈ [`], k∗ ∈ [λ], an unbounded
distinguisher D and a polynomial p(·) such that for large enough λ ∈ N,∣∣∣Pr[D(Hyb3,i∗,j∗,k∗) = 1]− Pr[D(Hyb3,i∗,j∗,k∗−1) = 1]

∣∣∣ =
1

p(λ)
(1)

We now define a pair of tampering functions (fMIM, gMIM), and additional function hMIM as fol-
lows:

• fMIM, gMIM and hMIM share common state that is generated as follows:

– Execute Sim-2PCMIM
Sen , using honestR strategy in the right executions with input {Kj}j∈[`]

and uniformly chosen {cj1, . . . c
j
λ}j∈[`], until Sim-2PCSen generates a query to the ideal

functionality F at the end of round 3.

– At this point, Sim-2PCMIM
Sen outputs a view and transcript of the MIM until the third

round, as well as {K̃j , c̃j1, . . . , c̃
j
λ}j∈[`] that correspond to the receiver’s inputs in the left

execution.

– Rewind the third round once with uniformly and independently chosen {c′j1, . . . , c′
j
λ}j∈[`].

If for every j ∈ [`(λ)], there exists αj ∈ [λ] such that cjαj = 0 and c′jαj = 1, continue,
otherwise abort.

– Obtain the rewinding view (with the same prefix of the first two rounds), as well as
(c1, . . . , cn) that correspond to the receiver’s input in the left session in this rewinding
execution. If c̃jk 6= cjk, continue. Otherwise, abort.

– Generate (Ljk,i,R
j
k,i) for every (i, j, k) ∈ [m]×[`]×[λ]\{i∗, j∗, k∗} according to Hyb3,i∗,j∗,k∗−1

(this is identical to setting them according to Hyb3,i∗,j∗,k∗).

– Output the view of the MIM until round 3 in the main the rewinding threads, including
(i∗, j∗, k∗), the values (Ljk,i,R

j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}.

– Additionally, output the receiver’s inputs {K̃j , c̃j1, . . . , c̃
j
λ}j∈[`] and the sender’s inputs

{skj , vkj , {xji}i∈[m]}j∈[`].

31

• Next, the function hMIM on input L, sets Lj
∗

k∗,i∗ = L,Rj
∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {xji}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃
j
λ}j∈[`] as well as the values

(Ljk,i,R
j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F({xji , L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen on out to generate the fourth round message of the protocol tran-
script in the main thread if c̃j

∗

k∗ = 0, and generates the fourth round message of the protocol
transcript in the rewinding thread if cj

∗

k∗ = 0. It outputs the resulting transcript as the view
of the MIM.

• The function fMIM on input L, sets Lj
∗

k∗,i∗ = L,Rj
∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {xji}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃
j
λ}j∈[`] as well as the values

(Ljk,i,R
j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F({xji , L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen on out to generate the fourth round message of the protocol tran-
script in the main thread if c̃j

∗

k∗ = 0, and generates the fourth round message of the proto-
col transcript in the rewinding thread if cj

∗

k∗ = 0. It outputs the values {Ljαj ,i}i∈[m],j∈[`] or

{Rjαj ,i}i∈[m],j∈[`] obtained from the MIM.

• The function gMIM on input R, sets Rj
∗

k∗,i∗ = R, Lj
∗

k∗,i∗ = 0.

Now, using hardwired values {vkj , {xji}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃
j
λ}j∈[`] as well as the values

(Ljk,i,R
j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F({xji , L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen on out to generate the fourth round message of the protocol tran-
script in the main thread if c̃j

∗

k∗ = 1, and generates the fourth round message of the proto-
col transcript in the rewinding thread if cj

∗

k∗ = 1. It outputs the values {Ljαj ,i}i∈[m],j∈[`] or

{Rjαj ,i}i∈[m],j∈[`] obtained from the MIM.

By Definition 3.1 of 1-many augmented non-malleable codes,(
L,NM.Decode

(
fMIM(L), gMIM(R)

)∣∣∣(L,R← NM.Code(xj
∗

i∗))
)
≈ε(

L,NM.Decode
(
fMIM(L), gMIM(R)

)∣∣∣(L,R← NM.Code(0))
)

and(
L,NM.Decode

(
gMIM(R), fMIM(L)

)∣∣∣(L,R← NM.Code(xj
∗

i∗))
)
≈ε(

L,NM.Decode
(
gMIM(R), fMIM(L)

)∣∣∣(L,R← NM.Code(0))
)

32

By the data processing inequality, this implies that for every function h(·),(
h(L),NM.Decode

(
fMIM(L), gMIM(R)

)∣∣∣(L,R← NM.Code(xj
∗

i∗))
)
≈ε(

h(L),NM.Decode
(
fMIM(L), gMIM(R)

)∣∣∣(L,R← NM.Code(0))
)

and(
h(L),NM.Decode

(
gMIM(R), fMIM(L)

)∣∣∣(L,R← NM.Code(xj
∗

i∗))
)
≈ε(

h(L),NM.Decode
(
gMIM(R), fMIM(L)

)∣∣∣(L,R← NM.Code(0))
)

Setting h = hMIM, for fMIM and gMIM defined above, these distributions correspond to the outputs
of Hyb3,i∗,j∗,k∗−1 and Hyb3,i∗,j∗,k∗ respectively, whenever c̃j

∗

k∗ 6= cj
∗

k∗ . Whenever c̃j
∗

k∗ = cj
∗

k∗ , the distri-
butions Hyb3,i∗,j∗,k∗−1 and Hyb3,i∗,j∗,k∗ are ε(λ)-statistically indistinguishable because they jointly
only depend on one of the shares, L or R. Since ε(λ) = negl(λ), this contradicts Equation (1),
completing our proof.

5.2 From Non-Malleable OT to (Multiparty) Simultaneous OT

Theorem 5.9. Let ` = `(λ), k = k(λ),m = m(λ) and n = n(λ) be arbitrary polynomials such that
for large enough λ ∈ N , `(λ) ≥ n2(λ). Then there exists a black-box construction of an n-Party (m, k)

simultaneous OT protocol according to Definition 4.1 from any ` non-malleable
(
m
k

)
oblivious transfer

protocol that satisfies Definition 5.3.

Proof. We begin by constructing an n-party (m, k) (multiparty) simultaneous OT protocol from

any ` non-malleable
(
m
k

)
oblivious transfer protocol.

Construction. First, we establish some basic notation.

• For i ∈ [n], denote Pi’s OT input by
(
{Xi,j}j∈[n]\{i}, {yi,j}j∈[n]\{i}

)
where:

– For every j ∈ [n] \ {i}, yi,j ⊂ [m] such that |yi,j | = k, and

– For every j ∈ [n] \ {i}, Xi,j = (si,j,1, . . . , si,j,m).

• Denote an instance of the ` non-malleable
(
m
k

)
oblivious transfer protocol by ΠOT.

The construction itself is straightforward: for every i, j ∈ [n] × [n] where i 6= j, Pi and Pj execute
an instance of ΠOT with Pi as sender with input {si,j,k}k∈[m] and Pj as receiver with input yj,i.

Correctness. Correctness of the n-party
(
m
k

)
(multiparty) simultaneous OT follows from the

correctness of the
(
m
k

)
OT protocol.

33

Proof of Security (Sketch). We describe how to prove a stronger security property of the re-
sulting (multiparty) simultaneous OT protocol: that for every corrupted subset M ⊂ [n], there
exists a simulator SimmpOT such that for every (malicious) non-uniform adversaryA that corrupts
{Pi}i∈M , and for every choice of inputs

(
{Xi,j}j∈[n]\{i}, {yi,j}j∈[n]\{i}

)
, the “real” and “ideal” views

defined below, are indistinguishable.(
ViewA

(
mpOT({xi}i∈[n]\M)

)
, {outj

(
mpOT({xi}i∈[n]\M)

)
}j∈[n]\M

)
≈c

(
w(1−4), {outj

(
Fn·(n−1)
OT ({xi}i∈[n]\M , {x̃i}i∈M)

)
}j∈[n]\M

)
where

(σ1, w
(1), {{K̃i,j}j∈[n]\{i}}i∈M)← (SimmpOT)A;

(σ4, w
(2−4), {{s̃i,j}j∈[n]\{i}}i∈M)← (SimmpOT)A(σ1, {{si,j,j′}j′∈K̃j,i}i∈[n]\M,j∈M);

and ∀i ∈M, x̃i := {(K̃i,j , s̃i,j)}j∈[n]\{i}

Here, ViewA
(
mpOT({xi}i∈[n]\M)

)
denotes the adversary’s view (including the state and tran-

script) and {outj
(
mpOT({xi}i∈[n]\M)

)
}j∈[n]\M denote the output of honest parties in a multi-

party OT protocol where honest parties have inputs {xi}i∈[n]\M . Similarly, w(i) denotes the tran-
script generated by an adversary in its interaction with a multi-party OT simulator in round i,
σi denotes the state of the adversary at the end of the ith (simulated) round, and the variable
{outj

(
Fn·(n−1)
OT ({xi}i∈[n]\M , {x̃i}i∈M)

)
}j∈[n]\M denote the outputs of honest parties in the ideal

execution.
The simulator SimmpOT is constructed as follows. It runs the simulator-extractor pair for the

non-malleable OT, SimOT,ExtOT, on A = MIM to obtain:

(σ1, w
(1), {K̃i,j}j∈H,i∈M)← ExtMIM

OT ([k]|H|·|M |);

(σ4, w
(2−4), {̃si,j}i∈M,j∈H)← Sim

MIM,OT({si,j}i∈M,j∈H,·)
OT (σ1, w

(1), {K̃i,j}j∈H,i∈M)

We now define a sequence of hybrid experiments:

• Hyb0: This experiment outputs the joint distribution of the view of the adversary A in an
interaction with {Pi}i∈[n]\M , and the output of honest parties in this interaction, when honest
parties use inputs {xi = {Ki,j , si,j}j∈[n]\{i}}i∈[n]\M . The output of this experiment is the joint
distribution (

ViewA
(
mpOT({xi}i∈[n]\M)

)
, {outj

(
mpOT({xi}i∈[n]\M)

)
}j∈[n]\M

)
• Hyb1 : Like in Hyb0, we denote the input of honest parties by {xi = {Ki,j , si,j}j∈[n]\{i}}i∈[n]\M .

This experiment modifies the experiment in Hyb0 to generate the view of the adversary A
by using input {x′i = {[k], si,j}j∈[n]\{i}}i∈[n]\M . Specifically, the honest parties’ inputs used
to generate the view of A are partially set to a dummy input [k] instead of their real inputs
Ki,j . The output of honest parties is generated identically to Hyb0, by computing the output
of the ideal watchlist functionality on input

({xi}i∈[n]\M), {si,j}j∈[n]\M,i∈M)

where {si,j}j∈[n]\M,i∈M correspond to the implicit inputs of A. The output of this hybrid is

indistinguishable from that of Hyb0 by stand-alone receiver security of ` non-malleable
(
m
k

)
oblivious transfer according to Definition 5.3.

34

• Hyb2 : This experiment corresponds to the joint distribution(
σ4, w

(1−4), {outj
(
Fn·(n−1)
OT ({xi}i∈[n]\M , {x̃i}i∈M)

)
}j∈[n]\M

)
where A = MIM and

(σ1, w
(1), {K̃i,j}j∈H,i∈M)← ExtMIM

OT ([k]|H|·|M |);

(σ4, w
(2−4), {̃si,j}i∈M,j∈H)← Sim

MIM,OT({si,j}i∈M,j∈H,·)
OT (σ1, w

(1), {K̃i,j}j∈H,i∈M)

The output of this hybrid is indistinguishable from that of Hyb1 by ` non-malleability of(
m
k

)
OT. This follows by observing that A is just a man-in-the-middle adversary that par-

ticipates in at most `(λ) = n(λ)2 sessions where an honest party acts as OT sender, and at
most `(λ) = n(λ)2 sessions where an honest party acts as OT receiver, and therefore ad-
mits a simulator-extractor that on input [k]|H|·|M | produces a simulated view and extracts the
implicit inputs {s̃i,j}i∈M,j∈H used by A in this view. Therefore, the sender-security (non-
malleability) property of OT according to Definition 5.3 implies that the joint distribution of
the view and inputs used by A in Hyb1 and Hyb2 is computationally indistinguishable.

Note that Hyb0 corresponds to the “real” view, and Hyb2 to the “ideal” view, as desired. This
completes the proof of security.

6 Black-Box Five-Round Secure Multiparty Computation

In this section, we construct a five-round secure multiparty computation (MPC) protocol, and
prove the following theorem.

Theorem 6.1. Let f be any n-party functionality. Assume black-box access to the following primitives:

• A public-key encryption scheme with pseudorandom public keys.

• A two-round oblivious transfer protocol with semi-malicious security.

Then, there exists a five-round protocol that computes f against static, malicious adversaries satisfying
security with selective abort. The communication and computation costs of the protocol are poly(λ, n, |f |),
where |f | denotes the size of the circuit computing f , and where communication is over a broadcast channel.

We use these two primitives to construct the following building blocks that will be used in our
final MPC protocol.

6.1 Building Blocks

Our protocol builds on the IPS compiler [IPS08]. To instantiate this compiler, we need an outer
MPC protocol secure against malicious adversaries that can corrupt a minority of the parties, an in-
ner MPC protocol that is secure against semi-malicious adversaries that can corrupt upto all but one
parties, and a watchlist protocol satisfying Definition 4.1 that securely implements the multiparty
OT functionality. We now give details on each of these components and the security properties
they need to satisfy.

35

6.1.1 Outer Protocol

As the outer protocol, we use a 2-round, n-client, m-server MPC protocol satisfying privacy with
knowledge of output property (see Remark A.3) against a malicious, adaptive adversary corrupt-
ing up to n−1 clients and t = (m−1)/3 servers. Such a protocol was constructed in [IKP10, Pas12]
making black-box use of a pseudorandom generator (PRG). We setm = 8λn2. We now give details
about the syntax of this protocol.

• In the first round, the i-th client runs Φ1 on input 1λ, the index i and its private input xi
to obtain (φi→1

1 , . . . , φi→m1). Here, φi→j1 denotes the private message that this client needs to
send to the j-th server (for each j ∈ [m]) in the first round.

• In the second round, the j-th server runs Φ2(j, (φ1→j
1 , . . . , φn→j1)) to obtain φj2 and this is sent

to the output client in the second round.

• Finally, the output client runs outΦ(φ1
2, . . . , φ

m
2) to compute the output of the protocol.

Remark 6.2. We require the functions computed by the servers to be information-theoretic and not involve
any cryptographic operations. In the protocol of [IKP10, Pas12], the servers have to perform several PRG
computations. To deal with this challenge, we delegate the computation of the PRG to each of the clients.
Specifically, for every PRG computation to be done by each server, every client chooses a random seed and
gives the output of the PRG on this seed to the server. Let (seedi,PRG(seedi)) be the contribution from
the i-th client where PRG has a sufficiently long stretch. The server sets seed = (seed1, . . . , seedn) and
defines a new PRG′(seed) = ⊕iPRG(seedi). The seed and the PRG computation is sent as part of the first
message from the client to the servers. Looking ahead, we use the watchlist protocol to ensure that the PRG
computations done by the honest servers are correct.

6.1.2 Inner Protocol

To instantiate the inner protocol in the IPS compiler, we use a four-round MPC protocol that satis-
fies the following informal properties:

• Rewinding Security. Let A be an adversary corrupting an arbitrary subset of the parties
and consider the view of A restricted to the first three rounds of the protocol. We require
that even if (1) A is behaving maliciously, and (2) is able to rewind the honest parties in the
first three rounds an arbitrary polynomial number of times, the view of A restricted to the
first three rounds hides the inputs of the honest parties. We will call such an adversary as a
rewinding adversary and denote this property as rewinding security.

• Adaptive Security for the First Two Rounds. Let A be a rewinding adversary corrupting
an arbitrary subset of the parties. Before the third round of the protocol, the adversary A is
allowed to send a special instruction to corrupt all the honest parties. In this case, we require
that the random tape of the honest parties in the ideal experiment can be set after execution
of the first two rounds in such a way that it is consistent with the inputs and the transcript of
the first two rounds.

• Semi-Malicious Security. Suppose at the end of the third round, a rewinding adversary A
produces input and randomness that explains the messages sent by all the corrupt parties in
the main thread11, then the last round message sent by the honest parties in the main thread

11We will call the first execution thread of the rewinding adversary as the main thread and the rest of the executions
as rewinding threads

36

reveals no other information about their inputs except the output of the function. We call
this property as semi-malicious security.

• Equivocal Security. Assume that at the end of the third round, a rewinding adversary A
is unable to produce input and randomness that explains the messages sent by corrupted
parties in the main thread. We then require the existence of an equivocal simulator that is
given the inputs of all the honest parties and produces the final round message in the main
thread on their behalf such that the adversary cannot distinguish whether it was interacting
with the honest parties or with the simulator. We call this property as equivocal security.

We now give the syntax of the four-round protocol and formally define the above properties.

Syntax. The four-round inner protocol computing a function f is given by a tuple of algorithms
(Π1, . . . ,Π4, outΠ) with the following syntax. For each round r ∈ [4], the i-th party in the protocol
runs Πr on 1λ, the index i, the private input xi and the transcript of the protocol in the first (r− 1)
rounds to obtain πir. It sends πir to every other party via a broadcast channel. We use π(r) to denote
the transcript of Π in the first r rounds. At the end of the interaction, parties run outΠ(π(4)) to
compute the output.12

Definition 6.3. We say the protocol Π is an inner protocol for computing a funtion f if it satisfies the
following properties.

• Correctness. We say that the protocol Π correctly computes a function f if for every choice of inputs
xi for party Pi,

Pr[outΠ(π(4)) = f(x1, . . . , xn)] = 1

where π(4) denotes the transcript of the protocol Π when the input of Pi is xi.

• Security. We capture all the security properties in a real/ideal security game. Let A be an adversary
corrupting a subset of the parties indexed by the set M and let H be the set of indices denoting the
honest parties. We require the existence of a simulator SimΠ such that for any choice of honest parties
inputs {xi}i∈H , we have:

Real(A, {xi, ri}i∈H) ≈c Ideal(A, SimΠ, {xi}i∈H)

where the real and ideal experiments are described in Figure 6 and for each i ∈ H , ri is uniformly
chosen.

In Section 7, we give a construction of an inner protocol from black-box use of two-round
oblivious transfer with semi-malicious security.

6.1.3 Watchlist Protocol

We use a watchlist protocol (WL1, . . . ,WL4, outWL) that securely implements the λ-out-of-m mul-
tiparty OT functionality (see Section 4.1) satisfying Definition 4.1.

12In general, the output function additionally takes in the private input and randomness of a party to generate the
output. However, in our setting, the transcript of the protocol is publicly decodable, that is, the output is publicly
computable given the transcript [ABG+20].

37

Real(A, {xi, ri}i∈H)

1. For each r ∈ {1, 2}:

(a) For each i ∈ H , compute πir :=
Πr(1

λ, i, xi, π(r − 1); ri) where π(0) is the
null string.

(b) Send {πir}i∈H to A.

(c) Adaptive Security: If A instructs to corrupt
all the honest parties, then send {xi, ri}i∈H
to A and output the view of A.

(d) Rewinding Security: For each j ∈ [m]
(where m is chosen by A):

i. Receive {πir[j]}i∈M from A.
ii. For each i ∈ H , compute

πir+1[j] := Πr+1(1λ, i, xi, π(r)[j]; ri),
where π(r)[j] := (π(r − 1), {πir}i∈H ,
{πir[j]}i∈M).

iii. Send {πir+1[j]}i∈H to A.

(e) Receive {πir}i∈M from A.

2. For each i ∈ H , compute πi3 :=
Π3(1λ, i, xi, π(2); ri).

3. Send {πi3}i∈H to A.

4. Receive {πi3, (xi, ri)}i∈M from A.

5. Check if the messages sent by corrupt parties in
π(3) are consistent with {xi, ri}i∈M .

6. Semi-Malicious Security: If they are consistent:

(a) For each i ∈ H , compute πi4 :=
Π4(1λ, i, xi, π(3); ri).

7. Equivocality: If they are not consistent:

(a) For each i ∈ H , compute πi4 :=
Π4(1λ, i, xi, π(3); ri).

8. Send {πi4}i∈H to A.

9. Receive {πi4}i∈M from A.

10. Output the view of A and outΠ(π(4)).

Ideal(A, SimΠ, {xi}i∈H)

1. For each r ∈ {1, 2}:

(a) For each i ∈ H , compute πir :=
SimΠ(1λ, i, π(r − 1)) where π(0) is the null
string.

(b) Send {πir}i∈H to A.

(c) Adaptive Security: If A instructs to cor-
rupt all the honest parties, then com-
pute {ri}i∈H ← SimΠ({xi}i∈H). Send
{(xi, ri)}i∈H toA and output the view ofA.

(d) Rewinding Security: For each j ∈ [m]
(where m is chosen by A):

i. Receive {πir[j]}i∈M from A.
ii. For each i ∈ H , compute πir+1[j] :=

SimΠ(1λ, i, π(r)[j]), where π(r)[j] :=
(π(r − 1), {πir}i∈H , {πir[j]}i∈M).

iii. Send {πir+1[j]}i∈H to A.

(e) Receive {πir}i∈M from A.

2. For each i ∈ H , compute πi3 := SimΠ(1λ, i, π(2)).

3. Send {πi3}i∈H to A.

4. Receive {πi3, (xi, ri)}i∈M from A.

5. Check if the messages sent by corrupt parties in
π(3) are consistent with {xi, ri}i∈M .

6. Semi-Malicious Security: If they are consistent:

(a) For each i ∈ H , compute πi4 ← SimΠ(1λ,
i, f(x1, . . . , xn), {xj , rj}j∈M , π(3)).

7. Equivocality: If they are not consistent:

(a) For each i ∈ H , compute πi4 ←
SimΠ(1λ, i, {xi}i∈H , π(3)).

8. Send {πi4}i∈H to A.

9. Receive {πi4}i∈M from A.

10. Output the view of A and outΠ(π(4)).

Figure 6: Security Game for the Inner Protocol

6.2 Construction

We now describe our five-round, black-box MPC construction in Figure 7. Let n be the number
of parties and let f be the multiparty function to be securely computed. Let f ′ be a related func-
tionality that takes zi := (χi, ki) from Pi where ki is a MAC key and computes y = f(χ1, . . . , χn)
and outputs (y,MAC(k1, y), . . . ,MAC(kn, y)). The protocol for computing f makes use of the outer
MPC protocol (Φ1,Φ2, outΦ) for securely computing the function f ′, m instances of the inner MPC
protocol where i-th instance Πi = (Πi,1, . . . ,Πi,4, outΠi) implements the computation done by the

38

i-th server in the outer protocol and a watchlist protocol (WL1, . . . ,WL4, outWL). We show the
following theorem which implies Theorem 6.1 as a consequence of Theorem 7.1 and Theorem 5.1.

Theorem 6.4. Let f be an arbitrary multiparty functionality. Assume black-box access to a four-round
inner protocol for computing arbitrary multiparty functions (see Definition 6.3) and a four-round watchlist
protocol (see Definition 4.1). The construction described in Figure 7 securely computes f in five rounds
against static, malicious adversaries satisfying security with selective abort.

6.3 Simulator

In this subsection, we give the description of the ideal world simulator Sim for our black-box MPC
protocol.

Let A be an adversary that corrupts the set of parties indexed by M and let H := [n] \M . The
simulator Sim is given below:

• Sim constructs a (rushing) adversary A′ for the first three rounds of the watchlist protocol.
A′ internally interacts with the adversary A as described next.

– A′ obtains messages on behalf of honest parties for the watchlist protocol, and generates
messages on behalf of honest parties for the overall MPC protocol. Specifically, for each
i ∈ H and round r ∈ [3], A′ obtains watchlist messages {wlir}i∈H .

– It computes messages {πih,r−1}h∈[m],i∈H for the inner protocol Πh (where πih,0 is the
empty string for each i ∈ H and h ∈ [m]) by executing the simulator SimΠh for the
inner protocol.

– A′ forwards ({wlir}i∈H , {πih,r−1}h∈[m],i∈H) to A. Next, A′ parses the response of A as
{wlir}i∈M , {πih,r−1}h∈[m],i∈M , and outputs {wlir}i∈M .

• Sim now runs SimWL on A′ for the first three rounds. Before sending the final (fourth) round
message of WL, SimWL queries the ideal watchlist functionality on some input, parsed as
{xi,j}i∈M,j∈H . Sim interprets xi,j as a subset of [m] of size λ and invokes SimΦ by cor-
rupting the set of clients indexed by M and corrupting the set of servers indexed by C :=

{xi,j}i∈M,j∈H . SimΦ provides {φi→j1 }i∈H,j∈C .

• For each h ∈ C, Sim instructs SimΠh to corrupt all honest parties and gives {φi→h1 }i∈H as
their corresponding inputs. SimΠh provides their corresponding random tapes {ri,h}i∈H .

• Sim instructs A′ to generate the third round message of the protocol Πh on behalf of the
honest parties using the randomness {ri,h}i∈H and the input {φi→h1 }i∈H for each h ∈ C. For
h 6∈ C, it instructs A′ to generate the messages in protocol Πh on behalf of the honest parties
using the simulator SimΠh . On obtaining the final round watchlist message, {wli4}i∈H , A′
runs A on {wli4, {πih,3}h∈[m]}i∈H and obtains {wli4}i∈M , {πih,3}h∈[m],i∈M . A′ outputs {wli4}i∈M .

• For each i ∈ H and j ∈M , Sim provides {φi→h1 , ri,h}h∈xi,j to SimWL as the response from the
ideal OT between honest Pi acting as sender and corrupt Pj acting as receiver. SimWL uses
the response to generate the final round message of WL in its execution with A′ as well as
extract watchlist sender inputs {yi,j}i∈M,j∈H .

• For each h ∈ [m], Sim checks if there exists some j ∈ H such that for every i ∈ M , yi,j
contains the input and randomness that explains the messages sent by corrupt parties in

39

• Round-1: In the first round, the party Pi with input χi does the following:

1. It chooses a random MAC key ki ← {0, 1}∗ and sets zi := (χi, ki).

2. It computes (φi→1
1 , . . . , φi→m1)← Φ1(1λ, i, zi).

3. It chooses a random subset Ki ⊂ [m] of size λ and sets xi,j = Ki for every j ∈ [n] \ {i}.
4. It chooses a random string ri,h ← {0, 1}∗ for every h ∈ [m] and sets yi,j = {ri,h, φi→h1 }h∈[m] for every

j ∈ [n] \ {i}.
5. It computes wli1 ←WL1(1λ, i, {xi,j , yi,j}j∈[n]\{i}).

6. It broadcasts wli1.

• Round-2: In the second round, Pi does the following:

1. For each h ∈ [m], it computes πih,1 := Πh,1(1λ, i, φi→h1 ; ri,h).

2. It computes wli2 ← WL2(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(1)). (Here, wl(r) denotes the transcript in the
first r rounds of WL.)

3. It broadcasts {πih,1}h∈[m],wl
i
2.

• Round-3: In the third round, Pi does the following:

1. For every h ∈ [m], it computes πih,2 := Πh,2(1λ, i, φi→h1 , πh(1); ri,h). (Here, πh(r) denotes the tran-
script in the first r rounds of Πh.)

2. It computes wli3 ←WL3(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(2)).

3. It broadcasts {πih,2}h∈[m],wl
i
3.

• Round-4: In the fourth round, Pi does the following:

1. For every h ∈ [m], it computes πih,3 := Πh,3(1λ, i, φi→h1 , πh(2); ri,h).

2. It computes wli4 ←WL4(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(3)).

3. It broadcasts {πih,3}h∈[m],wl
i
4.

• Round-5: In the fifth round, Pi does the following:

1. It runs outWL on i, {xi,j , yi,j}j∈[n]\{i}, the random tape and wl(4) to obtain {rj,h, φj→h1 }j∈[n]\{i},h∈Ki
.

2. For each j ∈ [n] \ {i} and h ∈ Ki, it checks:

(a) If the PRG computations in φj→h1 are correct.
(b) For each ` ∈ [3], whether πjh,` := Πh,`(1

λ, j, φj→h1 , πh(` − 1); rj,h) where πh(0) is set to be the
null string.

3. If any of the above checks fail, then it aborts.

4. Else, for each h ∈ [m], it computes πih,4 := Πh,4(1λ, i, φi→h1 , πh(3); ri,h).

5. It broadcasts {πih,4}h∈[m] to every party.

• Output Computation. To compute the output, Pi does the following:

1. For every h ∈ [m], it computes φh2 := outΠh(i, πh(4)).

2. It computes outΦ({φh2}h∈[m]) to recover (y, σ1, . . . , σn).

3. It checks if σi is a valid tag on y using the key ki. If yes, it outputs y and otherwise, it aborts.

Figure 7: Description of the Five-Round MPC Protocol

Πh as well as contains the correct PRG computations. If not, it adds h to a set C ′ (which is
initially empty). If such a j exists, then for every i ∈ M , Sim uses (φi→h1 , ri,h) present in yi,j
as the consistent input and randomness used by corrupt party Pi in the protocol Πh.

40

• If |C ′| > λn2, then Sim instructs the ideal functionality to send abort to all the honest parties
and outputs the view of the adversary.

• If |C ′| ≤ λn2, then Sim instructs SimΦ to adaptively corrupt the servers indexed by C ′ and
obtains {φi→h1 }i∈H,h∈C′ . For each i ∈ H , Sim chooses a random subset Ki of [m] of size λ.
If for any h ∈ Ki, {yj,i}j∈M contains inconsistent input and randomness, then Sim instructs
the ideal functionality to send abort to i. Let H ′ be the subset of honest parties that have not
aborted.

• For every h ∈ [m] \ {C ∪ C ′}, Sim sends {φi→h1 }i∈M to SimΦ. SimΦ queries the ideal func-
tionality f ′ on inputs {zi := (χi, ki)}i∈M . Sim sends {χi}i∈M to its ideal functionality f and
obtains y. For each i ∈ M , it computes σi := MAC(ki, y) and for each i ∈ H , it chooses σi
uniformly at random. It forwards (y, σ1, . . . , σn) as the response to SimΦ. SimΦ replies with
{φh2}h∈[m]\{C∪C′}.

• To generate the final round message,

– For each h ∈ [m]\{C∪C ′}, Sim sends {(φi→h1 , ri,h)}i∈M as the input and the randomness
of corrupt parties and φh2 as the output of the function computed by Πh to SimΠh . SimΠh

generates the last round message on behalf of the parties in H ′ in Πh.

– For each h ∈ C ′, Sim sends {φi→h1 }i∈H as the inputs of the honest parties to SimΠh and
obtains the last round message on behalf of H ′.

– For each h ∈ C, Sim uses {ri,h, φi→h1 }i∈H to generate the final round message on behalf
of H ′ ⊆ H .

• To compute the output,

– If H ′ 6= H , then Sim instructs the ideal functionality to output abort to all the honest
parties.

– For each h ∈ [m], Sim computes φh2 as outΠh(πh(4)).

– It then computes (y′, σ′1, . . . , σ
′
n) := outΦ({φh2}h∈[m]).

– Sim checks if y′ = y and for each i ∈ H , that σ′i = σi. For every i ∈ H , such that above
check passes, Sim instructs the ideal functionality to deliver the outputs to Pi. For all
other parties, Sim instructs them to abort.

6.4 Proof of Indistinguishability

We now show that the real and ideal worlds are computationally indistinguishable via a hybrid
argument.

• Hyb0 : This corresponds to the view of the adversary and the outputs of the honest parties in
the real execution of the protocol.

• Hyb1 : In this hybrid, we use SimWL to generate the messages corresponding to the watchlist
protocol WL. In more detail, we construct a (rushing) adversary A′ that plays the first four
rounds of the watchlist protocol and run SimWL onA′ to generate the watchlist messages. A′
internally interacts with the adversary A as described next.

41

– A′ obtains messages on behalf of honest parties for the watchlist protocol, and generates
messages on behalf of honest parties in the overall MPC protocol. Specifically, for each
i ∈ H and round r ∈ [4],A′ obtains watchlist messages {wlir}i∈H . It computes messages
{πih,r−1}h∈[m],i∈H for the inner protocol Πh (where πih,0 is the empty string) by executing
the same strategy as Hyb0.

– A′ forwards ({wlir}i∈H , {πih,r−1}h∈[m],i∈H) to A. Next, A′ parses the response of A as
{wlir}i∈M , {πih,r−1}h∈[m],i∈M , and outputs {wlir}i∈M .

Note that before sending the final (fourth) round message of WL, SimWL queries the ideal
watchlist functionality, which is answered using the honest party inputs {xi,j , yi,j}i∈H,j∈[n]\{i}.

We show that Hyb0 and Hyb1 are computationally indistinguishable in Claim 6.5 by relying
on the security of the watchlist protocol.

• Hyb2 : This is the same as the previous hybrid, except that we instruct A′ to generate the
protocol messages for {Πh}h∈[m] as described in the simulation.

We show that Hyb1 is computationally indistinguishable from Hyb2 using the security of the
inner protocol in Claim 6.6.

• Hyb3 : In this hybrid, we define the set C ′ as in the simulation strategy, and if C ′ has size
greater than λn2, we instruct the honest parties to abort.

We show that Hyb2 is statistically close to Hyb3 in Claim 6.7.

• Hyb4 : In this hybrid, we use the simulator SimΦ to generate the protocol messages for the
outer protocol, instead of running honest party strategy.

We show that Hyb3 is computationally indistinguishable from Hyb4 by the security of the
outer protocol in Claim 6.8.

• Hyb5 : In this hybrid, we make the following two changes:

– When SimΦ queries the ideal functionality f ′ on {χi, ki}i∈M , we query f on {χi}i∈M
and obtain the output y. For each i ∈ M , we compute σi := MAC(ki, y) and for each
i ∈ H , we choose σi uniformly at random.

– In the output phase, we recover (y′, σ′1, . . . , σ
′
n) as in the previous hybrid and then check

if y′ = y and if for each i ∈ H , if σ′i = σi. For every i ∈ H , such that above check passes,
we instruct the ideal functionality to deliver the outputs to Pi. For all other parties, we
instruct them to abort.

Note that Hyb5 is identically distributed to the ideal execution. We show in Claim 6.9 that
Hyb4 is statistically close to Hyb5 from the security of the MAC scheme.

Claim 6.5. Assuming the security of the watchlist protocol WL, we have that Hyb0 ≈c Hyb1.

Proof. Assume for the sake of contradiction that there exists a distinguisher D that distinguishes
Hyb0 from Hyb1 with non-negligible advantage. We will use this distinguisher to construct an
adversary B that breaks the security of the watchlist protocol WL.

For each i ∈ H , B chooses a random subset Ki of [m] of size λ and sets xi,j := Ki for each
j ∈ [n] \ {i}. B computes Φ1(1λ, i, zi) to obtain (φi→1

1 , . . . , φi→m1) for each i ∈ H . It then chooses
a random string ri,h ← {0, 1}∗ and sets yi,j = {(ri,h, φi→h1)}h∈[m] for each j ∈ [n] \ {i}. B sends
{(xi,j , yi,j)}i∈H,j∈[n]\{i} as the inputs of the honest parties in the watchlist protocol to the external

42

challenger. B interacts with an external challenger to send and receive the messages correspond-
ing to the watchlist protocol. B constructs the adversary A′ as described in Hyb1 and forwards
the watchlist protocol messages received from challenger to A′ and in turn forwards the watchlist
messages output by A′ to the challenger. At the end of the fourth round, B receives the output
of the watchlist given to the honest parties that comprises of {rj,h, φj→h1 }i∈H,j∈[n]\{i},h∈Ki . It per-
forms the same checks that an honest party would perform before the fifth round message and
computes the outputs of all the honest parties. Finally, B runs the distinguisher D on the view of
the adversary together with the outputs of the honest parties and mirrors the output of D.

Note that if watchlist protocol messages are simulated, then the input to D is distributed iden-
tically to Hyb1, and otherwise to Hyb0. Thus, if D is able to distinguish between Hyb0 and Hyb1

with non-negligible advantage, then B can break the security of the watchlist protocol which is a
contradiction.

Claim 6.6. Assuming the security of the inner protocol, we have that Hyb1 ≈c Hyb2.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
Hyb1 from Hyb2 with non-negligible advantage. By a standard averaging argument, this implies
that there exists h ∈ [m] and two distributions (described below) Hyb1,h and Hyb1,h−1 (where
Hyb1,0 ≡ Hyb1) such that D can distinguish between Hyb1,h and Hyb1,h−1 with non-negligible
advantage. In both these distributions, for every k < h, the messages in the protocol Πk are
generated using the simulator SimΠk and for every k > h, the messages in the protocol Πk are
generated using the real algorithms. The only difference between these two distributions is how
the messages in protocol Πh are generated. In Hyb1,h, they are generated using SimΠh and in
Hyb1,h−1, they are generated using the real algorithms. Note that Hyb1,m is distributed identically
to Hyb2. We now construct an adversary B that uses D and breaks security of the inner protocol.
B computes Φ1(1λ, i, zi) to obtain (φi→1

1 , . . . , φi→m1) for each i ∈ H . It sends {φi→h1 }i∈H as the
inputs of the honest parties in Πh to the external challenger.

Next, B constructs A′ which internally interacts with the adversary A in the first three rounds,
as described below.

• A′ obtains as input – messages on behalf of all the honest parties for the watchlist protocol,
and generates as output – messages on behalf of honest parties for the 5-round MPC. Specif-
ically, for each i ∈ H and round r ∈ [3], A′ obtains watchlist messages {wlir}i∈H . It computes
messages {πih′,r−1}h′∈[m],i∈H for the inner protocol by executing the strategy in Hyb1,h−1, but
with the following change. For each h′ 6= h and i ∈ H ,A′ generates the protocol messages in
πih′,r−1 as in Hyb1,h−1. To generate the protocol messages for Πh, B interacts with the external
challenger and asks A′ to embed the messages obtained from the external challenger as the
protocol messages corresponding to πih,r−1 for every r ∈ [3] and i ∈ H .

• A′ forwards ({wlir}i∈H , {πih′,r−1}h′∈[m],i∈H) to A. It parses the response of A as {wlir}i∈M ,
{πih′,r−1}h′∈[m],i∈M , and outputs {wlir}i∈M . B forwards {πih,r−1}i∈M to the external challenger.

B runs SimWL on A′. Note that before sending the final (fourth) round message of WL, SimWL

queries the ideal watchlist functionality, which is provided honest party inputs {xi,j , yi,j}i∈H,j∈[n]\{i}.
B parses the simulator’s query to extract {xi,j}i∈M,j∈H . B interprets xi,j as a subset of [m] of size λ
and sets C = {xi,j}i∈M,j∈H .

• If h ∈ C, B instructs the external challenger to corrupt all the honest parties in Πh and obtains
{ri,h}i∈H . B instructs A′ to use {ri,h, φi→h1 }i∈H to compute the third round protocol message
of Πh.

43

• If h 6∈ C, B instructs A′ to continue its interaction with A until the end of the fourth round
by obtaining third round messages from the external challenger for Πh.

After completion of the fourth round, SimWL extracts {yi,j}i∈M,j∈H . B now checks if there exists
some j ∈ H such that for every i ∈ M , yi,j contains the input and randomness that explains the
messages sent by corrupt parties in Πh as well as contains the correct PRG computations. If such
a j exists, then B extracts (ri,h, φ

i→h
1) from yi,j and sets it as the consistent input and randomness

used by corrupt party Pi in the protocol Πh. It sends this to the external challenger. On the other
hand, if such a j does not exist, then B sends some dummy input and dummy randomness to the
external challenger. B receives the final round message in protocol Πh and uses the final round
message from A to compute the output of Πh. All other protocol messages are generated exactly
as in Hyb1,h−1.

Finally, B runs the distinguisher D on the view of the adversary and the outputs of the honest
parties. Note that if the messages generated by the external challenger are distributed identically
to the real execution of the protocol, then the inputs to D are distributed identically to Hyb1,h−1.
Otherwise, they are distributed identically to Hyb1,h. Since D can distinguish between Hyb1,h−1

and Hyb1,h with non-negligible advantage, this means that B can break the security of the inner
protocol which is a contradiction.

Claim 6.7. Hyb2 ≈s Hyb3.

Proof. Fix any honest party Pi. Note that Pi aborts in Hyb2 if |Ki ∩ C ′| 6= 0. We show that if
|C ′| > λn2 then the probability of |Ki ∩ C ′| = 0 is negligible.

Note that Ki is distributed as a random subset of [m] of size λ. We now upper bound the
probability that |Ki ∩ C ′| = 0.

Pr[|K ′i ∩ C ′| = 0] =

(m−|C′|
λ

)(
m
λ

)
<

(
m−λn2

λ

)(
m
λ

)
=

(m− λn2)!

m!

(m− λ)!

(m− λ− λn2)!

< (1− λ/m)λn
2

< 2−O(λ)

The claim now follows from a standard union bound over the set of all honest parties.

Claim 6.8. Assuming the privacy with knowledge of outputs property of the outer MPC protocol, we have
Hyb3 ≈c Hyb4.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb3 and Hyb4 with non-negligible advantage. We now use D to construct an adversary
B that can break the security of the outer MPC protocol.
B chooses a random MAC key ki for each i ∈ H and sends {zi := (χi, ki)}i∈H as the inputs

of the honest clients in the outer MPC protocol to the external challenger. B constructs A′ that
interacts internally with A in the first three rounds as in Hyb3.

Before sending the final round message of WL, SimWL queries the ideal watchlist functionality
on input {xi,j}i∈M,j∈H . B interprets xi,j as a subset of [m] of size λ and instructs the external
challenger to adaptively corrupt the set of servers indexed by C := {xi,j}i∈M,j∈H .

44

The challenger provides {φi→j1 }i∈H,j∈C . B uses this as input to SimΠh for each h ∈ C. At the
end of the fourth round, B constructs the set C ′ as in Hyb3. If |C ′| < λn2, then B instructs the
external challenger to corrupt the servers indexed by C ′ and obtains {φi→h1 }i∈H,h∈C′ . For every
h ∈ [m] \ {C ∪ C ′}, B sends {φi→h1 }i∈M as the first round messages generated by corrupted client
to the honest server indexed by h. B obtains {φh2}h∈[m]\{C∪C′}. B uses this to generate the final
round message of the protocol.

On receiving the final round message from A, B computes {φh2}h∈[m] using outΠh and sends
{φh2}h∈C∪C′ to the external challenger as the second round message. It runs outΦ on the second
round messages and computes (y′, σ′1, . . . , σ

′
n). It then performs the MAC checks as in the descrip-

tion of the protocol. B runs D on the view of the adversary and the outputs of the honest parties
and outputs whatever D outputs.

Since |C| < λn2 and |C ′| ≤ λn2, the size of |C ∪ C ′| < 2λn2 < (m − 1)/3. Note that if
the messages of the outer protocol are generated by the real algorithms, then the inputs to D
are distributed identically to Hyb3. Else, they are identically distributed to Hyb4. Thus, if D can
distinguish between Hyb3 and Hyb4 with non-negligible advantage then B breaks the security of
the outer MPC protocol, which is a contradiction.

Claim 6.9. Assuming the security of the MAC scheme, we have Hyb4 ≈s Hyb5.

Proof. Note that it follows from the property of the tags that for any y, MAC(k, y) is uniformly
distributed for a randomly chosen MAC key k. Therefore, for each i ∈ H , σi computed in both
Hyb4 and in Hyb5 are distributed identically. Thus, the only difference between these two hybrids
is that in Hyb5, we check if y = y′ and for each i ∈ H , we check if σ′i = σi. For the honest parties
where this check fails, we instruct them to abort. For all other honest parties, we instruct them to
output y. On the other hand, in Hyb4, we instruct the honest parties to do the MAC verification
and depending on the result of the verification procedure, they abort or output y′. If an honest
party does not abort in Hyb5, then it follows from the correctness of the verification procedure that
it does not abort in Hyb4. Suppose there exists an honest party Pi that aborts in Hyb5, but with
non-negligible probability does not abort in Hyb4. Then, this means that (y′, σ′i) 6= (y, σi) and that
the verification procedure on (y′, σ′i) outputs 1. However, this contradicts the security of the MAC
scheme.

7 Inner Protocol

In this section, we construct a four-round inner protocol satisfying the properties described in
Section 6.1.2. This protocol makes black-box use of a two-round oblivious transfer with security
against semi-malicious adversaries. The main theorem we show is the following:

Theorem 7.1. Let f be an arbitrary multiparty functionality. Assume black-box access to a two-round
semi-malicious oblivious transfer. There exists an inner protocol Π that computes f satisfying Defini-
tion 6.3.

Our inner protocol builds on the round-collapsing compiler given in [GS18, BL18]. We first
recall the notion of conforming protocols introduced in [GS18] which is one of the key components
in constructing the round-collapsing compiler.

7.1 Conforming Protocols

In this subsection, we recall the definition of conforming protocols from [GS18, GIS18]. We follow
the convention given in [GIS18] and most parts of this subsection are taken verbatim from [GIS18].

45

Specifications for a Conforming Protocol. Consider an n-party deterministic13 MPC protocol Φ
between parties P1, . . . , Pn that computes a functionality f . For each i ∈ [n], we let xi ∈ {0, 1}m
denote the input of party Pi. A conforming protocol Φ is defined by functions pre, post, and
computations steps or what we call actions φ1, · · ·φT . The protocol Φ proceeds in three stages: the
pre-processing stage, the computation stage, and the output stage.

• Pre-processing phase: For each i ∈ [n], party Pi computes

(zi, vi)← pre(1λ, i, xi)

where pre is a randomized algorithm. The algorithm pre takes as input the index i of the
party, its input xi and outputs zi ∈ {0, 1}`/n and vi ∈ {0, 1}` (where ` is a parameter of the
protocol). Finally, Pi retains vi as the secret information and broadcasts zi to every other
party.

• Computation phase: For each i ∈ [n], party Pi sets

st := (z1‖ · · · ‖zn)

Next, for each t ∈ {1 · · ·T} parties proceed as follows:

1. Parse action φt as (i, a, b, c) where i ∈ [n] and a, b, c ∈ [`].
2. Party Pi computes one NAND gate as

stc = NAND(sta ⊕ vi,a, stb ⊕ vi,b)⊕ vi,c

and broadcasts stc to every other party.
3. Every party Pj for j 6= i updates stc to the bit value received from Pi.

We require that for all t, t′ ∈ [T] such that t 6= t′, we have that if φt = (·, ·, ·, h) and φt′ =
(·, ·, ·, h′) then h 6= h′. Also, we denote Ai ⊂ [T] to be the set of rounds in with party Pi sends
a bit. Namely, Ai = {t ∈ T | φt = (i, ·, ·, ·)} .

• Output phase: For each i ∈ [n], party Pi outputs post(i, st).

Lemma 7.2 ([GS18, GIS18]). Any MPC protocol can be transformed to a conforming protocol Φ with a
polynomial overhead while inheriting the correctness and the security of the original protocol.

Observing that the protocols in [GMW87, Kil88, IPS08] have information-theoretic, semi-malicious
security in the presence of OT-correlations between every pair of parties, we get the following
corollary.

Corollary 7.3. For any n-party functionality represented as a circuit C, there exists a perfectly secure
conforming protocol Φ against semi-malicious adversaries for computing C in the presence O(|C|) OT-
correlation tuples between every pair of parties.

We now observe the following property about the proof of Lemma 7.2 from [GS18, GIS18].

Property 7.4. Let Φ be a conforming protocol with security against semi-malicious adversaries. Let SimΦ

be the corresponding simulator. There exists a special algorithm Simeq
Φ such that for every xi ∈ {0, 1}m, the

following two distributions are identical.

• zi ← SimΦ(1λ, i) and vi ← Simeq
Φ (i, xi, zi). Output (zi, vi).

• (zi, vi)← pre(1λ, i, xi). Output (zi, vi).
13Randomized protocols can be handled by including the randomness used by a party as part of its input.

46

7.2 Special Two-Round Oblivious Transfer

In this subsection, we construct a special two-round oblivious transfer protocol. We start with the
syntax and then give the security properties to be satisfied by the OT protocol.

Syntax. Let (OT1,OT2,OT3) be a two-round oblivious transfer with the following syntax. OT1

takes the security parameter 1λ and the receiver’s choice bit and outputs the first round message
otm1 along with some secret state ω. OT2 takes otm1 and the two sender inputs m0 and m1 and
outputs otm2. OT3 takes otm2 and (b, ω) and outputs mb. We require the OT protocol to satisfy the
following properties:

• Correctness: For every input b of the receiver and m0,m1 of the sender:

Pr[OT3(otm2, (b, ω)) = mb] = 1

where (otm1, ω)← OT1(1λ, b) and otm2 ← OT2(otm1,m0,m1).

• Equivocal Receiver Security. There exists a special algorithm Simeq
OT that on input 1λ outputs

(otm1, ω0, ω1) such that for any b ∈ {0, 1},

{(otm1, ωb) : (otm1, ω0, ω1)← Simeq
OT(1λ)} ≈c {(otm1, ω) : (otm1, ω)← OT1(1λ, b)}

• Security in the No Corruption Setting. For any two bits b, b′ and two sets of sender inputs
(m0,m1) and (m′0,m

′
1), we have:

{(otm1, otm2) : (otm1, ω)← OT1(1λ, b), otm2 ← OT2(otm1,m0,m1)} ≈c
{(otm1, otm2) : (otm1, ω)← OT1(1λ, b′), otm2 ← OT2(otm1,m

′
0,m

′
1)}

• Sender Privacy: For any input m0,m1 of the sender and any bit b and a string r ∈ {0, 1}∗:

{b, r, otm1 := OT1(1λ, b; r),OT2(otm1,m0,m1)} ≈c {b, r, otm1 := OT1(1λ, b; r),OT2(otm1,mb,mb)}

In Appendix B, we show a construction of such a two-round oblivious transfer protocol that
makes black-box use of a two-round oblivious transfer against semi-malicious adversary.

7.3 Construction

Let n be the number of parties and let f be the multiparty functionality to be securely computed.
We describe the inner protocol computing f in Figure 8. This protocol makes use of the following
building blocks:

• A perfectly secure conforming protocol Φ for computing f against semi-malicious adver-
saries in the OT correlations model. Let us assume that the number of correlations required
between each ordered pair of parties is m.

• A two-round special oblivious transfer protocol from Section 7.2.

• A pseudorandom function PRF.

47

• For each round r ∈ [4], each Pi chooses a random PRF key kir ← {0, 1}∗ and the random bits used in
computing the protocol messages in r-th round are derived by applying the PRF on the transcript seen so
far.

• Rounds-1 & 2: In the first two rounds, for each i, j ∈ [n] × [n] such that i 6= j, Pi acts a receiver in m
special OT invocations with sender Pj where the inputs of Pi and Pj in each of these m invocations are
(pseudo)randomly chosen (using the PRF).

• Round-3: Each Pi does the following:

1. Let yi denote the augmented input of Pi that includes the actual input xi as well as the OT correlations
generated in the first two rounds.

2. It computes (zi, vi)← pre(i, yi).

3. For each t ∈ Ai and α, β ∈ {0, 1},
(a) Let φt = (i, (a, b, c)).
(b) It computes rt,α,β = (vi,c ⊕ NAND(vi,a ⊕ α, vi,b ⊕ β)).
(c) It computes (otmt,α,β

1 , ωt,α,β)← OT1(1λ, rt,α,β).

4. It sends
(
zi, {otmt,α,β

1 }t∈Ai,α,β∈{0,1}

)
to every other party.

• Round-4: In the final round, each Pi does the following:

1. It sets st := (z1‖ . . . ‖zi‖ . . . ‖zn).

2. It sets labi,T+1 := {labi,T+1
k,0 , labi,T+1

k,1 }k∈[`] where for each k ∈ [`] and b ∈ {0, 1}, labi,T+1
k,b := 0λ.

3. For each t from T down to 1,

(a) It parses φt as (i∗, (a, b, c)).

(b) If i = i∗, it computes
(
f̃ i,t, labi,t

)
← Garble(1λ, f i,t[vi, {ωt,α,β}α,β ,⊥, labi,t+1]). where f i,t is

described in Figure 9.
(c) If i 6= i∗ ,

i. For every α, β ∈ {0, 1}, it computes otmt,α,β
2,i ← OT2(otmt,α,β

1 , labi,t+1
c,0 , labi,t+1

c,1).

ii. It computes
(
f̃ i,t, labi,t

)
← Garble(1λ, f i,t[vi,⊥, {otmt,α,β

2,i }α,β , lab
i,t+1]). where f i,t is de-

scribed in Figure 9.

4. It sends
(
{f̃ i,t}t∈[T],{labi,1k,stk}k∈[`]

)
to every other party.

• Output: To compute the output, Pi does the following:

1. For each k ∈ [n], let l̃ab
k,1

be the input labels received from Pk at the end of round 2.

2. For each t from 1 to T do:

(a) It parses φt as (i∗, (a, b, c)).

(b) It computes ((γ, ω), l̃ab
i∗,t+1

) := Eval(f̃ i
∗,t, l̃ab

i∗,t
).

(c) It updates stc := γ.
(d) For each k 6= i∗ do:

i. It computes (otm2,i, {labk,t+1
h }h∈[`]\{c}) := Eval(f̃ i,t, l̃ab

i,t
).

ii. It recovers labk,t+1
c := OT3(otm2,i, (γ, ω)).

iii. It sets l̃ab
k,t+1

:= {labk,t+1
h }h∈[`].

3. Compute the output as post(i, st).

Figure 8: Inner Protocol based on [GIS18]

48

f i,t

Input. st.
Hardcoded. vi, the strings {ωt,α,β}α,β , {otst,α,β2,i }α,β and a set of labels lab = {labk,0, labk,1}k∈[`].

1. Let φt = (i∗, (a, b, c)).

2. If i = i∗ then:

(a) Compute stc := NAND(sta ⊕ vi,a, stb ⊕ vi,b)⊕ vi,c and γ := stc.

(b) Output (γ, ωt,sta,stb , {labk,stk}k∈[`]).

3. Else:

(a) Output (otst,sta,stb2 , {labk,stk}k∈[`]\{c}).

Figure 9: The circuit f i,t.

7.4 Simulator

Let A be an adversary corrupting a subset of parties indexed by the set M and let H := [m] \M .
We now give the description of the ideal world simulator SimΠ.

• For each i ∈ H and each round r ∈ [4], SimΠ chooses a random PRF key kir ← {0, 1}∗ and
derives the randomness for generating the messages on behalf of Pi in round-r by applying
the PRF on the transcript seen so far.

• Rounds 1 & 2: For each i ∈ H , SimΠ generates the round-1 and round-2 messages on behalf
of the honest party Pi exactly as described in the protocol. If the adversary requests to
corrupt all the honest parties, then SimΠ sets ri := (ki1, . . . , k

i
4) for each i ∈ h.

• Round-3: To generate the round-3 message on behalf of honest Pi, SimΠ does the following:

– It samples zi ← SimΦ(i).

– For each t ∈ Ai, α, β ∈ {0, 1},
∗ For each b ∈ {0, 1}, it samples (otmt,α,β

1 , ω0, ω1)← Simeq
OT and sets ωt,α,β := (ω0, ω1).

– It sends
(
zi, {otmt,α,β

1 }t∈Ai,α,β∈{0,1}
)

to A.

• Round-4: To generate the round-4 message on behalf of honest Pi, SimΠ does the following:

– Case-1: {xi, ri}i∈M is inconsistent. In this case, SimΠ receives {xi}i∈H and:

1. It sets yi to be the augmented input of Pi that includes the actual input xi as well
as the OT correlations generated in the first two rounds.

2. It computes vi ← Simeq
Φ (i, zi, yi).

3. For each t ∈ Ai, α, β ∈ {0, 1}, it computes rt,α,β = (vi,c ⊕ NAND(vi,a ⊕ α, vi,b ⊕ β)).
It parses ωt,α,β as (ω0, ω1) and sets ωt,α,β = ωrt,α,β .

4. It generates the round-4 message on behalf of Pi exactly as described in the protocol
using vi, {ωt,α,β}t∈Ai,α,β∈{0,1}.

49

– Case-2: {xi, ri}i∈M is consistent. In this case, SimΠ receives {xi, ri}i∈M , f(x1, . . . , xn)
and:

1. For each i ∈M , it recovers yi from xi, ri and the transcript in the first three rounds
and runs SimΦ on input {yi}i∈M and f(x1, . . . , xn) and obtains the transcript Z of
the computation phase of the protocol. Let st∗ be the final state of the parties up-
dated with the transcript Z.

2. For each k ∈ [`], it sets labi,T+1
k := 0λ.

3. For each t from T down to 1,
(a) It parses φt as (i∗, a, b, c).
(b) It sets α∗ := st∗a, β∗ := st∗b , and γ∗ := st∗c .
(c) If i = i∗ then it parses ωt,α

∗,β∗ as (ω0, ω1) and sets ωt,α
∗,β∗ = ωγ∗ . It computes(

f̃ i,t, {labi,tk }k∈[`]

)
← SimGarb

(
1|fi,t|, 1`,

(
γ∗, ωt,α

∗,β∗ , {labi,t+1
k }k∈[`]

))
.

(d) Else, it computes otmt,α∗,β∗

2,i ← OT2(otmt,α∗,β∗

1 , labi,t+1
c , labi,t+1

c). It computes

(
f̃ i,t, {labi,tk }k∈[`]

)
← SimGarb

(
1|fi,t|, 1`,

(
otmt,α∗,β∗

2,i , {labi,t+1
k }k∈[`]\{c}

))
.

– It sends
{(
{f̃ i,t}t∈[T],{lab

i,1
k }k∈[`]

)}
i∈H

to A.

7.5 Proof of Indistinguishability

In this subsection, we show that Real(A, {xi, ri}i∈H) ≈c Ideal(A,SimΠ, {xi}i∈H) via a hybrid ar-
gument.

• Hyb0 : This corresponds to the output of Real(A, {xi, ri}i∈H).

• Hyb1 : In this hybrid, we make the following changes:

– Set count = 0.

– While (count ≤ λ)

∗ Choose a random bit guess← {0, 1}.
∗ Interact with the adversary in the first two rounds as specified in the experiment

Real.
∗ Let χ be the indicator bit that is 1 iff the adversary sends the instruction to corrupt

all the honest parties.
∗ If χ = guess, then exit the loop and proceed to the subsequent steps.
∗ If χ 6= guess, then increment count and go back to the first step of this while loop.

– If count = λ+ 1, then abort the experiment and output a special symbol fail.

In Claim 7.5, we show that Hyb0 is statistically indistinguishable to Hyb1.

• Hyb2 : In this hybrid, we make the following changes in every execution of the while loop:

– Choose a random bit guess← {0, 1}.
– If (guess = 1), then interact with the adversary in the first two rounds as in Hyb1.

50

– If (guess = 0), then for each i ∈ H and each round r ∈ [4], we derive the randomness
used in generating the protocol messages in round-r by applying a random function on
the transcript instead of deriving them using the PRF.

– The rest of the steps are identical to Hyb1.

In Claim 7.6, we show that Hyb1 ≈c Hyb2 from the security of the PRF.

• Hyb3 : In this hybrid, in every execution of the while loop when guess = 0, we make the
following changes:

– For every i ∈ H and for every j ∈ M , and for each of the m OT executions between Pi
and Pj in rounds 1 and 2 of the protocol where Pi acts as the receiver, we generate the
receiver OT message from Pi using Simeq

OT.

– For every i ∈ H and for every j ∈ H and for each of the m OT executions between
Pi and Pj in rounds 1 and 2 of the protocol where Pi acts as the receiver, we generate
the receiver OT message from Pi as OT1(1λ, 0). Similarly, for each the m OT executions
where Pi acts as the sender, we compute the second round sender OT message from Pi
as OT2(otm1,⊥,⊥).

We show in Claim 7.7 that Hyb2 ≈c Hyb3 from the equivocal receiver security and the security
in the no corruption setting of the two-round oblivious transfer.

• Hyb4 : In this hybrid, in every execution of the while loop when guess = 0, we make the
following changes:

– We non-uniformly fix all the messages in the interaction withA in the experiment until
the adversary sends {πi1}i∈M . This fixes the first rounds messages from honest parties
in the main thread, the first and second round messages from all the parties in the
rewind threads and the first round message from corrupt parties in the main thread.
For every i ∈ H and j ∈ M and for each of the m OTs between Pi acting as the sender
and Pj acting as the receiver in the first two rounds of Π in the main thread, we check
if there exists b ∈ {0, 1} and r ∈ {0, 1}∗ such that the first round receiver message from
Pj in that OT execution can be written as OT1(1λ, b; r).

– If all the checks pass, then for each i ∈ H and j ∈ M , we compute the second round
sender message from Pi in an execution with Pj as OT2(otm1,mb,mb) where mb is cho-
sen uniformly. If some check does not pass, then we do not make any changes.

Relying on the sender security of the oblivious transfer, we show that Hyb3 ≈c Hyb4 in
Claim 7.8.

• Hyb5 : In this hybrid, we make the following changes:

– We non-uniformly fix all the messages in the interaction with A in the experiment up
until we send {πi2}i∈H . This fixes the first and second round messages from honest
parties in the main thread, the first and second round messages from all the parties in
the rewind threads and the first round message from corrupt parties in the main thread.

– If χ = 0 and if {xi, ri}i∈M sent by A is consistent with the protocol messages in the
main thread, then to generate the fourth round message on behalf of honest Pi, we
compute otmt,α,β

2,i as OT2(otmt,α,β, labi,t+1
c,rt,α,β

, labi,t+1
c,rt,α,β

) for each t ∈ [T], α, β ∈ {0, 1}
where φt = (i∗, a, b, c).

51

In Claim 7.9, we show that Hyb5 ≈c Hyb4 from the sender privacy of the OT protocol.

• Hyb6 : In this hybrid, we make the following changes:

– We non-uniformly fix all the messages in the interaction with A in the experiment up
until we send {πi2}i∈H . This fixes the first and round messages from honest parties in
the main thread, the first and second round messages from all the parties in the rewind
threads and the first round message from corrupt parties in the main thread.

– If χ = 0, then to generate the third round message on behalf of Pi for each i ∈ H , we
compute {otmt,α,β

1 }t∈Ai,α,βin{0,1} as the output of Simeq
OT and set ωt,α,β = (ωt,α,β0 , ωt,α,β1).

We show that Hyb4 ≈c Hyb5 from the equivocal receiver security property of the oblivious
transfer in Claim 7.10.

• Hyb7 : In this hybrid, we make the following changes:

– We non-uniformly fix all the messages in the interaction with A in the experiment up
until we send {πi2}i∈H . This fixes the first and round messages from honest parties in
the main thread, the first and second round messages from all the parties in the rewind
threads and the first round message from corrupt parties in the main thread.

– If {xi, ri}i∈M sent by the adversary is consistent with the messages sent in the main
thread, then we generate the transcript in the computation phase of Φ where the mes-
sages on behalf of the honest parties are generated using their private input and ran-
domness and generate the messages on behalf of the corrupt parties are generated us-
ing {xi, ri}i∈M . This generates the transcript Z and the final state st∗. We now make the
following changes to the final round message generated on behalf of Pi for each i ∈ H ,

1. For each k ∈ [`], we set labi,T+1
k := 0λ.

2. For each t from T down to 1,
(a) We parse φt as (i∗, a, b, c).
(b) We set α∗ := st∗a, β∗ := st∗b , and γ∗ := st∗c .
(c) If i = i∗ then it parses ωt,α

∗,β∗ as (ω0, ω1) and sets ωt,α
∗,β∗ = ωγ∗ . It computes(

f̃ i,t, {labi,tk }k∈[`]

)
← SimGarb

(
1|fi,t|, 1`,

(
γ∗, ωt,α

∗,β∗ , {labi,t+1
k }k∈[`]

))
.

(d) Else, it computes otmt,α∗,β∗

2,i ← OT2(otmt,α∗,β∗

1 , labi,t+1
c , labi,t+1

c). It computes

(
f̃ i,t, {labi,tk }k∈[`]

)
← SimGarb

(
1|fi,t|, 1`,

(
otmt,α∗,β∗

2,i , {labi,t+1
k }k∈[`]\{c}

))
.

3. It sends
{(
{f̃ i,t}t∈[T],{lab

i,1
k }k∈[`]

)}
i∈H

to A.

We show in Claim 7.11 that Hyb7 ≈c Hyb8 using the security of garbled circuits.

• Hyb8 : In this hybrid, we make the following changes:

– For each i ∈ H , we generate zi as the output of Simφ(i).

– Let {xi, ri}i∈M be input and randomness of corrupt parties output by A.

52

– Case-1: If {xi, ri}i∈M is consistent. In this case, on input {xi, ri}i∈M and f(x1, . . . , xn),
we first recover {yi}i∈M and generate the transcript Z and the final state st∗ using
SimΦ({yi}i∈M , f(x1, . . . , xn)). We use this output to generate the final round message.

– Case-2: If {xi, ri}i∈M is inconsistent. In this case, we receives the inputs {xi}i∈H and
do the following to generate the final round message on behalf of honest Pi
∗ We compute the correlations of honest parties as in Hyb7 and compute the aug-

mented input yi for each i ∈ H .
∗ We compute vi ← Simeq

Φ (zi, yi).
∗ For each t ∈ Ai, α, β ∈ {0, 1}, we compute rt,α,β = (vi,c ⊕ NAND(vi,a ⊕ α, vi,b ⊕ β)).

We parse ωt,α,β as (ω0, ω1) and set ωt,α,β = ωrt,α,β .
∗ We generate the round-4 message on behalf of Pi exactly as described in the proto-

col using vi, {ωt,α,β}t∈Ai,α,β∈{0,1}.

Note that in Case-1, it follows from the perfect security of the conforming protocol that
Hyb7 is identically distributed to Hyb8. In Case-2, it follows from Property 7.4 that Hyb7 is
identically distributed to Hyb8.

• Hybrids Hyb9 − Hyb12 : In these hybrids, we reverse the changes made in Hyb4-Hyb1. Note
that Hyb12 is identically distributed to the output of the ideal experiment.

Claim 7.5. Hyb0 ≈s Hyb1.

Proof. Note that the only difference between Hyb0 and Hyb1 is that Hyb1 might sometimes output
the special symbol fail. We now show that the probability that Hyb1 outputs the special symbol fail
is negligible.

In every execution of the while loop in Hyb1, the probability that χ 6= guess is 1/2. This is
because the random variable guess is uniformly distributed given the view of the adversary. Thus,
in λ independent iterations, the probability that in every iteration χ 6= guess is 2−λ. Thus, Hyb0 is
statistically close to Hyb1.

Claim 7.6. Assuming the security of the PRF, we have Hyb1 ≈c Hyb2.

Proof. Let p(λ) = (6λ)2. We first argue that in each execution of the while loop, the probability
that χ 6= guess in Hyb2 lies in the interval [1/2 − 1/p(λ), 1/2 + 1/p(λ)]. Assume for the sake of
contradiction that the probability that χ 6= guess in Hyb2 does not lie in the above interval. Then,
we will give a reduction B against the security of the PRF. Consider a PRF challenger that for each
i ∈ H and r ∈ {1, 2}, chooses an independent PRF key kir and when queried on some input x
in (i, r)-th instance either gives the output of the PRF applied on x in the real world or gives the
output of a random function applied on x in the ideal world. B does the following:

• It chooses a random bit guess← {0, 1}.

• If (guess = 1), then for each i ∈ H and r ∈ {1, 2}, it chooses an independent PRF key k′ir and
generates the protocol messages in the first two rounds as in Hyb1 where the randomness is
derived using the PRF.

• If (guess = 0), then for each i ∈ H and r ∈ {1, 2}, B interacts with the PRF challenger and
derives the randomness for generating the protocol messages for Pi in the r-th round by
querying the PRF challenger on the transcript seen so far.

53

• If (χ 6= guess), then B outputs 1. Otherwise, it outputs 0.

Note that probability that B outputs 1 when interacting with an ideal world PRF challenger is
the same as the probability that (χ 6= guess) in Hyb2. On the other hand, the probability that B
outputs 1 when interacting with the real world PRF challenger is the same as the probability that
(χ 6= guess) in Hyb1. This probability is 1/2 from Claim 7.5. Thus, if the probability that χ 6= guess
in Hyb2 does not lie in the interval [1/2 − 1/p(λ), 1/2 + 1/p(λ)], then B breaks the security of the
PRF with advantage 1/p(λ) which is a contradiction.

Thus, in both Hyb1 and Hyb2, the probability that (guess 6= χ) in each execution of the while
loop lies in the interval [1/2 − 1/p(λ), 1/2 + 1/p(λ)]. We will use this fact to show that Hyb2 is
computationally indistinguishable to Hyb1 from the security of the PRF. Assume for the sake of
contradiction that there is a distinguisher D that can distinguish between Hyb1 and Hyb2 with
non-negligible advantage. Then via a standard averaging argument, there exists two distributions
Hyb1,k and Hyb1,k−1 (described below) such that D can distinguish between Hyb1,k and Hyb1,k−1

with non-negligible advantage µ(λ). In both Hyb1,k and Hyb1,k−1, whenever count < k, we gener-
ate the messages inside the while loop as in Hyb2 and when count > k, we generate these messages
as in Hyb1. The only difference is in how the messages corresponding to count = k are generated.
In Hyb1,k, these are generated as in Hyb2 whereas in Hyb1,k−1, these messages are generated as
in Hyb1. We now use D to give a reduction C against the security of PRF. C interacts with a PRF
challenger that for each i ∈ H and r ∈ [4], chooses an independent PRF key kir and when queried
on some input x in (i, r)-th instance either gives the output of PRF(kir, x)) in the real world or
gives the output of a random function applied on x in the ideal world. C does the following in
generating the messages in the while loop when count = k:

• It chooses a random bit guess← {0, 1}.

• If (guess = 1), then for each i ∈ H and r ∈ {1, 2}, it chooses an independent PRF key k′ir and
generates the protocol messages in the first two rounds as in Hyb1 where the randomness is
derived using the PRF.

• If (guess = 0), then for each i ∈ H and r ∈ {1, 2}, C interacts with an independent PRF
challenger and derives the randomness for generating the protocol messages for Pi in the
r-th round by querying the PRF challenger on the transcript seen so far.

• If χ 6= guess, then C outputs a random bit. If χ = guess, C continues with the rest of the exe-
cution steps (if guess = 0) where the randomness needed to generate the protocol messages
for honest Pi in rounds 3 and 4 are derived by querying the PRF challenger. C finally runs D
on the view of the adversary and the outputs of the honest parties and outputs whatever D
outputs.

We now lower bound the probability that C is able to correctly guess whether it is interacting with
the real world or the ideal world PRF challenger.

Pr[C correctly guess real/ideal] = Pr[χ 6= guess](1/2) + Pr[χ = guess](1/2 + µ(λ))

= Pr[χ 6= guess](1/2) + (1− Pr[χ 6= guess])(1/2 + µ(λ))

= 1/2 + µ(λ)− Pr[χ 6= guess]µ(λ)

> 1/2 + µ(λ)− (1/2 + 1/p(λ))µ(λ)

> 1/2 + µ(λ)− (2/3)µ(λ)

= 1/2 + µ(λ)/3

54

Thus, C breaks the security of the PRF with non-negligible advantage µ(λ)/3 which is a contradic-
tion.

Claim 7.7. Assuming the equivocal receiver security of the oblivious transfer protocol and the security in
the no corruption setting, we have Hyb2 ≈c Hyb3.

Proof. Let p(λ) = (6λ)2. We first argue that in each execution of the while loop in Hyb3, the prob-
ability that χ 6= guess lies in the interval [1/2 − 2/p(λ), 1/2 + 2/p(λ)]. This proof is similar to the
one given in Claim 7.6 and relies on a reduction to the equivocal receiver security property of the
oblivious transfer and the security in the no corruption setting. In this proof, we consider an inter-
mediate hybrid distribution Hyb′3 which is same as Hyb2 except that for every i ∈ H and for every
j ∈ M , and for each of the m OT executions between Pi and Pj in rounds 1 and 2 of the protocol
where Pi acts as the receiver, we generate the receiver OT message from Pi using Simeq

OT. We first
show that in Hyb′3, the probability that χ 6= guess lies in the interval [1/2− 3/2p(λ), 1/2 + 3/2p(λ)].
Suppose this is not the case, then we give a reduction B that breaks the equivocal receiver secu-
rity property of the oblivious transfer. B interacts with a challenger oracle which can be queried
multiple times. In each query, B sends a bit b to the oracle and obtains (otm1, ω). In the real mode,
the response from the oracle is computed using the real algorithms whereas in the ideal mode,
the response is computed using Simeq

OT. The goal of B is to guess whether it is interacting with the
oracle set in the real mode or in the ideal mode. B interacts with A and generates the first round
messages from honest parties to the corrupt parties by querying the challenger oracle on uniform
random bits. If χ 6= guess, then B outputs 1 and otherwise, it outputs 0. Note that it follows from
Claim 7.6 that in Hyb2, the probability that χ 6= guess lies in the interval [1/2−1/p(λ), 1/2+1/p(λ)].
This means that B breaks the equivocal receiver security of the oblivious transfer protocol with ad-
vantage 1/2p(λ) and this is a contradiction. By using a similar argument, we can give a reduction
to the security in the no corruption setting and show that in Hyb3, the probability that χ 6= guess
in Hyb3 lies in the interval [1/2− 2/p(λ), 1/2 + 2/p(λ)].

Thus, in Hyb2, Hyb′3 and Hyb3, the probability that χ 6= guess in each execution of the while
loop lies in the interval [1/2 − 2/p(λ), 1/2 + 2/p(λ)]. We now use this fact to show that Hyb3 is
computationally indistinguishable to Hyb2. To prove this, we show that Hyb2 is computationally
indistinguishable to Hyb′3 using the equivocal receiver security of the oblivious transfer and that
Hyb′3 is computationally indistinguishable from Hyb3 from the security in the no corruption setting
property.

We start with the former claim. Assume for the sake of contradiction that there exists a dis-
tinguisher D that can distinguish between Hyb′3 and Hyb2 with non-negligible advantage. As in
the proof of Claim 7.6, we can show via an averaging argument that there exists two distributions
Hyb2,k−1 and Hyb2,k such that, (1) these two distributions only differ in how the messages in the
k-th execution of the while loop are generated, and (2) D can distinguish between Hyb2,k−1 and
Hyb2,k with non-negligible advantage µ(λ). We now use D to design a reduction C that break the
equivocal receiver security property of the OT protocol. C is provided access to a challenger ora-
cle which can be queried multiple times. In each query, C sends a bit b to the oracle and obtains
(otm1, ω). In the real mode, the response from the oracle is computed using the real algorithms
whereas in the ideal mode, the response is computed using Simeq

OT. The goal of C is to guess
whether it is interacting with the oracle set in the real mode or in the ideal mode.
C does the following in generating the messages in the while loop when count = k:

• It chooses a random bit guess← {0, 1}.

• If (guess = 1), then for each i ∈ H and r ∈ {1, 2}, it generates the first two round protocol
messages as in Hyb2,k−1.

55

• If (guess = 0), then for each i ∈ H , for each j ∈ M and for each of the m OT executions,
C chooses a random bit b and sends this to the oracle. C receives (otm1, ω). It uses otm1 to
generate the first round message on behalf of honest Pi.

• If χ 6= guess, then C outputs a random bit. If χ = guess, C continues with the rest of the
execution steps (if guess = 0) and uses ω received from the challenger to compute the receiver
OT correlation at the end of the second round. C finally runs D on the view of the adversary
and the outputs of the honest parties and outputs whatever D outputs.

Since 2/p(λ) < 1/6, we can use the exact same analysis as in the proof of claim 7.6 and argue that
C breaks the equivocal receiver security with advantage µ(λ)/3.

To show that Hyb′3 is computationally indistinguishable to Hyb3, the argument is similar to the
one above. The only difference is that when guess = 0, we provide the external challenger oracle
with two sets of inputs (0,⊥,⊥) and (b,m0,m1) where b,m0,m1 are uniformly chosen. The oracle
provides with otm1, otm2 and then we use this to generate the messages in the first two rounds.
When guess = χ, to generate the round-3 and round-4 messages on behalf of the honest parties,
we use (b,mb) as the receiver correlation and (m0,m1) as the sender correlation.

Claim 7.8. Assuming the sender security property of the OT protocol, we have Hyb3 ≈c Hyb4.

Proof. Let p(λ) = (6λ)2. Using a similar argument given in Claim 7.6, we can rely on the sender
security of the OT protocol and show that in each execution of the while loop, the probability that
χ 6= guess in Hyb4 lies in the interval [1/2− 3/p(λ), 1/2 + 3/p(λ)].

Thus, in both Hyb3 and in Hyb4, the probability that (χ 6= guess) in each invocation of the while
loop lies in the interval [1/2 − 3/p(λ), 1/2 + 3/p(λ)]. Assume for the sake of contradiction that
there exists a PPT distinguisherD that can distinguish between Hyb3 and Hyb4 with non-negligible
advantage. As in the proof of Claim 7.6, we can show via an averaging argument that there exists
two distributions Hyb2,k−1 and Hyb2,k such that, (1) these two distributions only differ in how the
messages in the k-th execution of the while loop are generated, and (2) D can distinguish between
Hyb2,k−1 and Hyb2,k with non-negligible advantage µ(λ). We now use D to design an adversary
C that breaks the sender security of the special OT protocol. C is provided access to a challenger
oracle which can be queried multiple times. In each query, C sends otm1, (b, r), (m0,m1)) to the
oracle (where otm1 := OT1(1λ, b; r)) and obtains otm2. In the real mode, the response from the
oracle is computed as OT1(otm1,m0,m1) whereas in the ideal mode, the response is computed as
OT2(otm1,mb,mb). The goal of C is to guess whether it is interacting with the oracle set in the real
mode or in the ideal mode.
C does the following in generating the messages in the while loop when count = k:

• It chooses a random bit guess← {0, 1}.

• If (guess = 1), then for each i ∈ H and r ∈ {1, 2}, it generates the first two round protocol
messages as in Hyb3,k−1.

• If (guess = 0), we non-uniformly fix the messages until A sends {πi1}i∈[m]. For every i ∈ H
and j ∈ M and for each of the m OTs between Pi acting as the sender and Pj acting as the
receiver in the first two rounds of Π in the main thread, we check if there exists b ∈ {0, 1}
and r ∈ {0, 1}∗ such that the first round receiver message from Pj in that OT execution can
be written as OT1(1λ, b; r). If some checks do not pass, then C generates the second round
OT message as in Hyb3,k−1.

56

• For each of the received first round OT message from a corrupt party, C queries the chal-
lenger oracle on this message, b, r (obtained non-uniformly) and two independently chosen
random inputs m0,m1. It receives otm2 from the challenger and uses this to generate the
second round message of the protocol.

• If χ 6= guess, then C outputs a random bit. If χ = guess, C continues with the rest of the
execution steps as in Hyb3,k−1. C finally runs D on the view of the adversary and the outputs
of the honest parties and outputs whatever D outputs.

Since 3/p(λ) < 1/6, we can use the exact same analysis as in the proof of claim 7.6 and argue that
C breaks the sender security with advantage µ(λ)/3.

Claim 7.9. Assuming the sender privacy property of the oblivious transfer, we have Hyb4 ≈s Hyb5.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb4 and Hyb5 with non-negligible advantage. We now give an adversary C that uses
D and breaks the sender privacy property of the OT. C is provided access to a challenger oracle
which can be queried multiple times. In each query, C sends otm1, (b, r), (m0,m1)) to the oracle
and obtains otm2. In the real mode, the response from the oracle is computed as OT1(otm1,m0,m1)
whereas in the ideal mode, the response is computed as OT2(otm1,mb,mb) where b ∈ {0, 1} and
r ∈ {0, 1}∗ are such that (otm1, ·)← OT2(1λ, b; r). The goal of C is to guess whether it is interacting
with the oracle set in the real mode or in the ideal mode.
C interacts withA as in the Hyb4 until it has to send the last round message on behalf the honest

parties. If χ 6= 0 or if {xi, ri}i∈M provided by adversary are not consistent with the messages in
the main thread, then Hyb4 and Hyb5 are identically distributed. Let us assume that this is not the
case. For each t ∈ [T], α, β ∈ {0, 1}, and for each i ∈ H , C sends a query to the oracle with the
input (otmt,α,β

1 , (rt,α,β, st,α,β), labi,t+1
c,0 , labi,t+1

c,1) (where φt = (i∗, a, b, c), rt,α,β, st,α,β (obtained from
{xi∗ , ri∗} if i∗ ∈ M or obtained from the input and random tape of i∗ if i∗ ∈ H) are such that
otmt,α,β

1 := OT1(1λ, rt,α,β; st,α,β)). The oracle gives otmt,α,β
2,i as the response. C uses this to generate

the final round message on behalf of each honest Pi. C finally runs D on the view of the adversary
and the outputs of the honest parties and outputs whatever D outputs.

Note that if the oracle generated the responses in the ideal mode, then the inputs to D are
distributed identically to Hyb5. Otherwise, they are identically distributed to Hyb4. Thus, if D can
distinguish between Hyb4 and Hyb5 with non-negligible advantage, then C can break the sender
privacy of the OT with the same advantage which is a contradiction.

Claim 7.10. Assuming the equivocal receiver security of the oblivious transfer protocol, we have Hyb5 ≈c
Hyb6.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb5 and Hyb6 with non-negligible advantage. We now give an adversary C that uses
D and breaks the equivocal receiver security of the oblivious transfer. C is provided access to a
challenger oracle which can be queried multiple times. In each query, C sends a bit b to the oracle
and obtains (otm1, ω). In the real mode, the response from the oracle is computed using the real
algorithms whereas in the ideal mode, the response is computed using Simeq

OT. The goal of C is to
guess whether it is interacting with the oracle set in the real mode or in the ideal mode.

If χ = 0, we now explain how C generates the messages on behalf of the honest parties. For
each i ∈ H , t ∈ Ai and α, β ∈ {0, 1}, C makes a query to the challenge oracle with the input bit
rt,α,β and receives (otmrt,α,β

1 , ωt,α,β). C uses otmrt,α,β
1 to generate the third round message and uses

57

ωt,α,β to generate the final round message. C finally runs D on the view of the adversary and the
outputs of the honest parties and outputs whatever D outputs.

Note that if the oracle generated the responses in the ideal mode, then the inputs to D are
distributed identically to Hyb6. Otherwise, they are identically distributed to Hyb5. Thus, if D can
distinguish between Hyb5 and Hyb6 with non-negligible advantage, then C can break the equivocal
receiver security property of the OT with the same advantage which is a contradiction.

Claim 7.11. Assuming the security of garbled circuits, we have Hyb6 ≈c Hyb7.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between the outputs of Hyb6 and Hyb7 with non-negligible advantage. Then, by a standard av-
eraging argument there exists two distributions Hyb6,t−1 and Hyb6,t for some t ∈ [T] such that
Hyb6,0 ≡ Hyb6 and Hyb6,T ≡ Hyb7 such that (1) they differ only in how the garbled circuits gener-
ated corresponding to round-t of the conforming protocol is generated. Specifically, in Hyb6,t they
are simulated and in Hyb6,t−1 they are generated honestly. For every t∗ > t, the garbled circuits in
both these distributions are generated honestly and for every t∗ < t, the garbled circuits in both
these distributions are generated using the simulator; (2) D can distinguish between Hyb6,t−1 and
Hyb6,t with non-negligible advantage. We now use D to construct an adversary C that breaks the
security of garbled circuits. C is given access to an oracle that can be queried multiple times. When
C sends a query with a circuit C and an input x, the oracle returns C̃, {labk}k∈|x|. In the real mode,
the query is answered using the actual garbling algorithm and in the ideal mode, these are gener-
ated using the simulator for the garbling scheme. The goal of C is to guess whether the oracle is in
the real mode or in the ideal mode.
C interacts withA as in the Hyb6 until it has to send the last round message on behalf the honest

parties. If χ 6= 0 or if {xi, ri}i∈M provided by adversary are not consistent with the messages in
the main thread, then Hyb6 and Hyb7 are identically distributed. Let us assume that this is not the
case. C computes the transcript Z and the final state st∗ as described in the protocol. To generate
the garbled circuits corresponding to round t of the computation phase, C does the following:

• For each t∗ > t, it generates the garbled circuits for round t∗ as in Hyb6,t−1.

• Let φt := (i∗, a, b, c).

• We set α∗ := st∗a, β∗ := st∗b , and γ∗ := st∗c .

• Let st∗t be the state of the parties at the beginning of the t-th round.

• If i∗ ∈ H , then C parses ωt,α,β as (ω0, ω1) for each α, β ∈ {0, 1} and sets ωt,α
∗,β∗ = ωγ∗

sends a query to its oracle with the input f i
∗,t[vi∗ , {ωt,α,β}α,β,⊥, labi

∗,t+1] and st∗t . It obtains
(f̃ i
∗,t, {labi

∗,t
k }k∈[`]).

• For every i ∈ H \ {i∗}, C queries the oracle on input f i,t[vi,⊥, {otmt,α,β
2,i }α,β, lab

i,t+1] and st∗t s

and obtains (f̃ i,t, {labi,tk }k∈[`]).

• For each t∗ < t, it generates the garbled circuit for round t∗ as in Hyb6,t−1.

• C finally runs the distinguisherD on the view of the adversary and the outputs of the honest
parties and outputs whatever D outputs.

Note that if the oracle generated the responses in the ideal mode, then the inputs to D are dis-
tributed identically to Hyb7. Otherwise, they are identically distributed to Hyb6. Thus, if D can
distinguish between Hyb7 and Hyb6 with non-negligible advantage, then C can break the security
of garbled circuits with the same advantage which is a contradiction.

58

8 Two-Round Protocol in the Watchlist Correlations Model

In this section, we describe a simple two-round protocol in watchlist correlations model that se-
curely computes arbitrary multiparty functionalities. This protocol makes black-box use of a two-
round, semi-malicious MPC protocol with first message equivocality (see the formal definition
below).

We start with the description of the building blocks.

• We use a 2-round, n-client, m-server MPC protocol satisfying privacy with knowledge of
output property (see Remark A.3) against a malicious, adaptive adversary corrupting up
to n − 1 clients and t = (m − 1)/3 servers. Such a protocol was constructed in [IKP10,
Pas12] making black-box use of a pseudorandom generator (PRG). We set m = 16λn2. See
Section 6.1.1 for the syntax of this protocol.

• We use a two-round inner protocol (Π1,Π2, outΠ) with the following syntax. Π1 takes the
index i for the party, its private input xi, uses random tape ri and outputs the first round
message πi1 along with an output key ski. Π2 takes the transcript of the first round π(1), the
private input xi, uses random tape ri and outputs the second round message πi2. The output
function outΠ takes the index i, the transcript π(2) of the first two rounds and the output key
ski and gives the output of the functionaly.

Definition 8.1. We say that (Π1,Π2, outΠ) is a two-round, inner protocol for computing a function
f if it satisfies the following properties:

– Correctness: We say that the protocol Π correctly computes a function f if for every choice of
inputs xi for party Pi and for any choice of random tape ri, we require that for every i ∈ [n],

Pr[outΠ(i, π(2), ski) = f(x1, . . . , xn)] = 1

where π(2) denotes the transcript of the protocol Π when the input of Pi is xi with random tape
ri and ski is the output key generated by Π1.

– Security. Let A be an adversary corrupting a subset of the parties indexed by the set M and let
H be the set of indices denoting the honest parties. We require the existence of a simulator SimΠ

such that for any choice of honest parties inputs {xi}i∈H , we have:

Real(A, {xi, ri}i∈H) ≈c Ideal(A, SimΠ, {xi}i∈H)

where the real and ideal experiments are described in Figure 10 and for each i ∈ H , ri is
uniformly chosen.

Theorem 8.2. Let f be an arbitrary multiparty functionality and assume black-box access to a two-round
inner protocol for computing arbitrary multiparty functions satisfying Definition 8.1. Then, there exists a
two-round protocol that computes f against static, malicious adversaries satisfying security with selective
abort in the watchlist correlations model (described in Figure 11). The communication and computation
costs of the protocol are poly(λ, n, |f |), where |f | denotes the size of the circuit computing f , and where
communication is over point-to-point channels.

For simplicity of exposition, we give the description of the protocol over a broadcast channel.
As in the case of our five-round protocol, we can relax the communication channel to be point-to-
point by relying on the special CDS protocol given in Section F.1. We also note that the watchlist
correlation functionality is universal and is “short." Specifically, the size of the watchlist correla-
tions setup phase in our protocol is dependent only on the security parameter and the number of
parties and is otherwise, independent of the size of the function to be computed.

59

Real(A, {xi, ri}i∈H)

1. For each i ∈ H , compute (πi1, ski) :=
Πr(1

λ, i, xi; ri).

2. Send {πi1}i∈H to A.

3. Receive {πi1, (xi, ri)}i∈M from A.

4. Check if the messages sent by corrupt parties in
π(1) are consistent with {xi, ri}i∈M .

5. Semi-Malicious Security: If they are consistent:

(a) For each i ∈ H , compute πi2 :=
Π2(1λ, i, xi, π(1); ri).

6. Equivocality: If they are not consistent:

(a) For each i ∈ H , compute πi2 :=
Π2(1λ, i, xi, π(1); ri).

7. Send {πi2}i∈H to A.

8. Receive {πi2}i∈M from A.

9. Output the view ofA and {outΠ(i, π(2), ski)}i∈H .

Ideal(A, SimΠ, {xi}i∈H)

1. For each i ∈ H , compute πi1 := SimΠ(1λ, i).

2. Send {πi1}i∈H to A.

3. Receive {πi1, (xi, ri)}i∈M from A.

4. Check if the messages sent by corrupt parties in
π(1) are consistent with {xi, ri}i∈M .

5. Semi-Malicious Security: If they are consistent:

(a) For each i ∈ H , compute πi2 ← SimΠ(1λ,
i, f(x1, . . . , xn), {xj , rj}j∈M , π(1)).

6. Equivocality: If they are not consistent:

(a) For each i ∈ H , compute πi2 ←
SimΠ(1λ, i, {xi}i∈H , π(1)).

7. Send {πi2}i∈H to A.

8. Receive {πi2}i∈M from A.

9. If the transcript π(2) is consistent
with {xi, ri}i∈M , output view of A
and {f(x1, . . . , xn)}i∈H . Else, run
SimΠ({xi}i∈H , π(2)) to obtain {ski}i∈H and out-
put view of view ofA and {outΠ(i, π(2), ski)}i∈H .

Figure 10: Security Game for the Two-Round Inner Protocol

8.1 Construction

We now describe our two-round, black-box MPC construction in Figure 12 in the watchlist corre-
lations model. Let n be the number of parties and let f be the multiparty function to be securely
computed. Let f ′ be a related functionality that takes zi := (χi, ki) from Pi where ki is a MAC
key and computes y = f(χ1, . . . , χn) and outputs (y,MAC(k1, y), . . . ,MAC(kn, y)). The protocol
for computing f makes use of the outer MPC protocol (Φ1,Φ2, outΦ) for securely computing the
function f ′, m instances of the inner MPC protocol where i-th instance Πi = (Πi,1,Πi,2, outΠi)
implements the computation done by the i-th server in the outer protocol.

8.2 Simulator

In this subsection, we give the description of the ideal world simulator Sim for our black-box MPC
protocol.

Let A be an adversary that corrupts the set of parties indexed by M and let H := [n] \M . The
simulator Sim is given below:

• Watchlist Correlation Setup:

– For every i ∈ M and j ∈ H , Sim intercepts the query Ki,j that corrupt Pi sends as
the receiver to the watchlist correlation functionality where Pj acts as the sender. Sim

samples {ki,jh }h∈Ki,j uniformly at random and sends this to Pi.

– For every i ∈ H and j ∈M , Sim intercepts the query {ki,j1 , . . . , ki,jm } that Pj sends to the
watchlist correlations functionality and records it.

60

The watchlist correlations model is defined by the following ideal functionality for generating
a multiparty correlation between a receiver Pi and n−1 senders P1, . . . , Pi−1, Pi+1, . . . , Pn. The
setup for the watchlist correlations model includes n independent instances of this function-
ality, where in each instance a different party Pi acts as a receiver.
Let A be an adversary that corrupts a set M ⊂ [n] of the parties and let H = [n] \M be the set
of uncorrupted parties. The functionality is parameterized by m = m(λ) and κ = κ(λ)

• If Pi ∈ H , then for every j ∈ [n] \ {i} s.t. j ∈M , Pi receives m strings (ki,j1 , . . . , ki,jm) from
A.

• For each j ∈ [n] \ {i} s.t. j ∈ H , the functionality samples uniform random strings
(ki,j1 , . . . , ki,jm).

• If Pi ∈ H , then the functionality does the following. It samples a set Ki ⊆ [m] of size
κ uniformly. It outputs (Ki, {ki,jh }j∈[n]\{i},h∈Ki) to Pi and (ki,j1 , . . . , ki,jm) to Pj for each
j ∈ [n] \ {i}.

• If Pi ∈M , then the functionality receives fromA a set Ki,j of size κ for each j ∈ [n] \ {i}.
It outputs (Ki,j , {ki,jh }j∈([n]\{i})∩H,h∈Ki,j) to Pi and (ki,j1 , . . . , ki,jm) to Pj for each j ∈ ([n] \
{i}) ∩H .

Figure 11: Watchlist Correlations Model

• Let C = ∪i∈M,j∈HKi,j . Sim invokes SimΦ by corrupting the set of clients indexed by M and
corrupting the set of servers indexed by C. SimΦ provides {φi→j1 }i∈H,j∈C .

• For each h ∈ C, Sim chooses an uniform random tape {ri,h}i∈H . For every i ∈ H and h ∈ C,
Sim uses φi→h1 as the input and ri,h as the random tape of Pi to generate the first round
message in the protocol Πh.

• For each i ∈ H and j ∈ M , Sim computes ctj,ih as per the protocol if h ∈ Kj,i using the key
kj,ih . Otherwise, it generates it as an encryption of a junk value under a uniformly chosen
key. For each i ∈ H and j ∈ H , Sim computes ctj,ih as an encryption of a junk value for each
h ∈ [m] under a uniformly chosen key.

• For each h 6∈ C, Sim invokes SimΠh to generate the first round message {πih}i∈H . It sends
{πih,1, {ct

j,i
h }j∈[n]\{i}}h∈[m] on behalf of each i ∈ H . It receives the first round message from

A.

• It uses the sampled keys {kj,ih }j∈H,i∈M,h∈[m] in the watchlist correlations setup phase to com-
pute {yi,j}i∈M,j∈H from the ciphertexts {ctj,ih }j∈H,i∈M,h∈[m].

• For each h ∈ [m], Sim checks if there exists some j ∈ H such that for every i ∈ M , yi,j
contains the input and randomness that explains the messages sent by corrupt parties in
Πh as well as contains the correct PRG computations. If not, it adds h to a set C ′ (which is
initially empty). If such a j exists, then for every i ∈ M , Sim uses (φi→h1 , ri,h) present in yi,j
as the consistent input and randomness used by corrupt party Pi in the protocol Πh.

61

• Watchlist Correlations Setup: For each i ∈ [n], Pi does the following:

1. Pi invokes the watchlist correlation functionality with parameter m and κ = 2λ acting as the receiver
and for every j ∈ [n] \ {i}, Pj acting as the sender.

2. Pi receives (Ki, {ki,jh }j∈[n]\{i},h∈Ki
) from the functionality and for every j ∈ [n] \ {i}, Pj obtains

(ki,j1 , . . . , ki,jm) from the functionality.

• Round-1: In the first round, the party Pi with input χi does the following:

1. It chooses a random MAC key ki ← {0, 1}∗ and sets zi := (χi, ki).

2. It computes (φi→1
1 , . . . , φi→m1)← Φ1(1λ, i, zi).

3. It chooses a random string ri,h ← {0, 1}∗ for every h ∈ [m] and sets yi,j = {ri,h, φi→h1 }h∈[m] for every
j ∈ [n] \ {i}.

4. For each j ∈ [n] \ {i} and h ∈ [m], it computes ctj,ih := Enc
k
j,i
h

(ri,h, φ
i→h
1).

5. For each h ∈ [m], it computes (πih,1, sk
i
h) := Πh,1(1λ, i, φi→h1 ; ri,h).

6. It broadcasts {πih,1, {ctj,ih }j∈[n]\{i}}h∈[m].

• Round-2: In the second round, Pi does the following:

1. It decrypts {cti,jh }j∈[n]\{i},h∈Ki
using {ki,jh }j∈[n]\{i},h∈Ki

to obtain {rj,h, φj→h1 }j∈[n]\{i},h∈Ki
.

2. Choose a random subset K′i of Ki having size λ.

3. For each j ∈ [n] \ {i} and h ∈ K′i, it checks:

(a) If the PRG computations in φj→h1 are correct.
(b) If πjh,1 := Πh,1(1λ, j, φj→h1 ; rj,h).

4. If any of the above checks fail, it aborts.

5. Else, for each h ∈ [m], it computes πih,2 := Πh,2(1λ, i, φi→h1 , πh(1); ri,h).

6. It broadcasts {πih,2}h∈[m] to every party.

• Output Computation. To compute the output, Pi does the following:

1. If any party has aborted, then abort.

2. For every j ∈ [n] \ {i} and h ∈ Ki \K′i,
(a) If the PRG computations in φj→h1 are correct.
(b) For each ` ∈ [2], whether πjh,` := Πh,`(1

λ, j, φj→h1 , πh(` − 1); rj,h) where πh(0) is set to be the
null string.

3. If any of the checks fail, then abort.

4. Else, for every h ∈ [m], it computes φh2 := outΠh(i, πh(2), skih).

5. It computes outΦ({φh2}h∈[m]) to recover (y, σ1, . . . , σn).

6. It checks if σi is a valid tag on y using the key ki. If yes, it outputs y and otherwise, it aborts.

Figure 12: Description of the Two-Round MPC Protocol in the Watchlist Correlations Model

• If |C ′| > λn2, then Sim instructs the ideal functionality to send abort to all the honest parties
and outputs the view of the adversary.

• If |C ′| ≤ λn2, then Sim instructs SimΦ to adaptively corrupt the servers indexed by C ′ and
obtains {φi→h1 }i∈H,h∈C′ . For each i ∈ H , Sim chooses a random subset Ki of [m] of size 2λ
and a random subset K ′i ⊆ Ki of size λ. If for any h ∈ K ′i, {yj,i}j∈M contains inconsistent
input and randomness, then Sim instructs the ideal functionality to send abort to i. Let H ′

62

be the subset of honest parties that have not aborted.

• For every h ∈ [m] \ {C ∪ C ′}, Sim sends {φi→h1 }i∈M to SimΦ. SimΦ queries the ideal func-
tionality f ′ on inputs {zi := (χi, ki)}i∈M . Sim sends {χi}i∈M to its ideal functionality f and
obtains y. For each i ∈ M , it computes σi := MAC(ki, y) and for each i ∈ H , it chooses σi
uniformly at random. It forwards (y, σ1, . . . , σn) as the response to SimΦ. SimΦ replies with
{φh2}h∈[m]\{C∪C′}.

• To generate the final round message,

– For each h ∈ [m]\{C∪C ′}, Sim sends {(φi→h1 , ri,h)}i∈M as the input and the randomness
of corrupt parties and φh2 as the output of the function computed by Πh to SimΠh . SimΠh

generates the last round message on behalf of the parties in H ′ in Πh.

– For each h ∈ C ′, Sim sends {φi→h1 }i∈H as the inputs of the honest parties to SimΠh and
obtains the last round message on behalf of H ′.

– For each h ∈ C, Sim uses {ri,h, φi→h1 }i∈H to generate the final round message on behalf
of H ′ ⊆ H .

• To compute the output for each Pi where i ∈ H

– If H ′ 6= H , then Sim instructs the ideal functionality to output abort to all the honest
parties.

– For each h ∈ [m], Sim checks if there exists some j ∈ H such that for every i ∈ M , yi,j
contains the input and randomness that explains the messages sent by corrupt parties
in Πh as well as contains the correct PRG computations. If not, it adds h to a set C ′′

(which is initially empty).

– If |C ′′| > λn2, then Sim instructs the ideal functionality to send abort to all the honest
parties and outputs the view of the adversary.

– Else, if |C ′′| ≤ λn2, then Sim instructs SimΦ to adaptively corrupt the servers indexed by
C ′′ and obtains {φi→h1 }i∈H,h∈C′′ . If for any h ∈ Ki \K ′i, {yj,i}j∈M contains inconsistent
input and randomness, then Sim instructs the ideal functionality to send abort to i.

– For each h ∈ C ′ ∪ C ′′, Sim runs SimΠh on inputs {Φi→h
1 }i∈H to obtain skih.

– For each h ∈ C ∪ C ′ ∪ C ′′, Sim computes φh2 as outΠh(i, πh(2), skih).

– It then computes (y′, σ′1, . . . , σ
′
n) := outΦ({φh2}h∈[m]).

– Sim checks if y′ = y and for each i ∈ H , that σ′i = σi. For every i ∈ H , such that above
check passes, Sim instructs the ideal functionality to deliver the outputs to Pi. For all
other parties, Sim instructs them to abort.

8.3 Proof of Indistinguishability

We now show that the real and ideal worlds are computationally indistinguishable via a hybrid
argument.

• Hyb0 : This corresponds to the view of the adversary and the outputs of the honest parties in
the real execution of the protocol.

• Hyb1 : In this hybrid, we make the following changes to the first round message generated
by the honest parties. Specifically, for every i ∈ H ,

63

– If j ∈ M and h 6∈ Kj,i, we generate ctj,ih as an encryption of a junk value under a
uniformly chosen key.

– If j ∈ H , then for each h ∈ [m], we generate ctj,ih as an encryption of a junk value under
a uniformly chosen key.

The computational indistinguishability between Hyb0 and Hyb1 follows immediately from
the semantic security of the encryption scheme.

• Hyb2 : In this hybrid, we define the set C as in the simulation. For every h 6∈ C, we generate
the protocol messages in Πh using the simulator SimΠh . Specifically,

– For every h 6∈ C, to generate the first round message on behalf of the honest parties, we
run SimΠh and obtain {πih}i∈H .

– We then use the sampled keys {kj,ih }j∈H,i∈M,h∈[m] in the watchlist correlations setup
phase to compute {yi,j}i∈M,j∈H from the ciphertexts {ctj,ih }j∈H,i∈M,h∈[m].

– For each h ∈ [m], we check if there exists some j ∈ H such that for every i ∈ M , yi,j
contains the input and randomness that explains the messages sent by corrupt parties
in Πh as well as contains the correct PRG computations. If not, we add h to a set C ′

(which is initially empty). If such a j exists, then for every i ∈ M , we use (φi→h1 , ri,h)
present in yi,j as the consistent input and randomness used by corrupt party Pi in the
protocol Πh.

– For each i ∈ H , we chooses a random subset Ki of [m] of size 2λ and a random subset
K ′i ⊆ Ki of size λ. If for any h ∈ K ′i, {yj,i}j∈M contains inconsistent input and random-
ness, then we instruct the honest Pi to abort. Let H ′ be the subset of honest parties that
have not aborted.

– For each h ∈ [m] \ {C ∪C ′}, we send {(φi→h1 , ri,h)}i∈M as the input and the randomness
of corrupt parties and φh2 (computed honestly using {φi→h1 }i∈H) as the output of the
function computed by Πh to SimΠh . SimΠh generates the last round message on behalf
of the parties in H ′ in Πh.

– For each h ∈ C ′, we send {φi→h1 }i∈H as the inputs of the honest parties to SimΠh and
obtain the last round message on behalf of H ′.

– For each h ∈ C, we uses {ri,h, φi→h1 }i∈H to generate the final round message on behalf
of H ′ ⊆ H .

– To compute the output, we do the same steps as described in the simulation.

We show in Claim 8.3 that Hyb2 is computationally indistinguishable to Hyb1 from the secu-
rity of the inner protocol.

• Hyb3 : In this hybrid, we define the set C ′ and C ′′ as in the simulation and if |C ′| > λn2 or if
|C ′′| > λn2, then we abort.

Note that the set C ′ and C ′′ are random subsets of [m] of size λ. It follows via an identical
proof to Claim 6.7 that if either |C ′| > λn2 or if |C ′′| > λn2, then every honest party aborts
with overwhelming probability and thus, Hyb2 ≈s Hyb3.

• Hyb4 : In this hybrid, we use the simulator SimΦ to generate the protocol messages for the
outer protocol, instead of running honest party strategy.

We argue in Claim 8.4 that Hyb3 is computationally indistinguishable to Hyb4.

64

• Hyb5 : In this hybrid, we make the following two changes:

– When SimΦ queries the ideal functionality f ′ on {χi, ki}i∈M , we query f on {χi}i∈M
and obtain the output y. For each i ∈ M , we compute σi := MAC(ki, y) and for each
i ∈ H , we choose σi uniformly at random.

– In the output phase, we recover (y′, σ′1, . . . , σ
′
n) as in the previous hybrid and then check

if y′ = y and if for each i ∈ H , if σ′i = σi. For every i ∈ H , such that above check passes,
we instruct the ideal functionality to deliver the outputs to Pi. For all other parties, we
instruct them to abort.

Note that Hyb5 is identically distributed to the ideal execution. We can show via an identi-
cal argument to the one given in Claim 6.9 that Hyb4 is statistically close to Hyb5 from the
security of the MAC scheme.

Claim 8.3. Assuming the security of the inner MPC protocol, we have Hyb2 ≈c Hyb3.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
Hyb1 from Hyb2 with non-negligible advantage. By a standard averaging argument, this implies
that there exists h ∈ [m] \ C and two distributions (described below) Hyb1,h and Hyb1,h−1 (where
Hyb1,0 ≡ Hyb1) such that D can distinguish between Hyb1,h and Hyb1,h−1 with non-negligible
advantage. In both these distributions, for every k < h such that k ∈ [m] \ C, the messages in the
protocol Πk are generated using the simulator SimΠk and for every k > h and k ∈ [m] \ C, the
messages in the protocol Πk are generated using the real algorithms. The only difference between
these two distributions is how the messages in protocol Πh are generated. In Hyb1,h, they are
generated using SimΠh and in Hyb1,h−1, they are generated using the real algorithms. Note that
Hyb1,|[m]\C| is distributed identically to Hyb2. We now construct an adversary B that uses D and
breaks security of the inner protocol.
B interacts with the external challenger and sends {φi→h1 }i∈H as the inputs of the honest par-

ties. It obtains the first round message {πih,1} from the external challenger and it generates the rest
of the components in the first round message on behalf of each honest party as in Hyb1,h−1. It sends
the first round message on behalf of each honest party to A and receives the first round message
sent byA on behalf of the malicious parties. B then uses the sampled keys {kj,ih }j∈H,i∈M,h∈[m] in the
watchlist correlations setup phase to compute {yi,j}i∈M,j∈H from the ciphertexts {ctj,ih }j∈H,i∈M,h∈[m]

received from A.
B checks if there exists some j ∈ H such that for every i ∈ M , yi,j contains the input and ran-

domness that explains the messages sent by corrupt parties in Πh as well as contains the correct
PRG computations. If yes, for every i ∈ M , B uses (φi→h1 , ri,h) present in yi,j as the consistent
input and randomness used by corrupt party Pi in the protocol Πh. It sends this to the external
challenger. Otherwise, B sends some dummy input and the randomness on behalf of each mali-
cious party to the external challenger. B receives the final round message {πih,2}i∈H and uses this
to generate the final round message of the overall protocol exactly as in Hyb1,h−1. To compute
the output, it checks if the input and randomness {(φi→h1 , ri,h)}i∈M is consistent with the second
round messages {πih,2}i∈M received from A. If not, it sends {φi→h1 }i∈H to the challenger. It finally
obtains the output φh2 . It computes {φh′2 }h′ 6=h as in Hyb1,h−1 and uses this to compute the output
of each honest party. Finally, B runs D on the view of the adversary and the outputs of the honest
parties and outputs whatever D outputs.

Note that if the protocol messages in Πh were generated by the external challenger using the
real algorithms, then the input to D is distributed identically to Hyb1,h−1. Otherwise, it is dis-

65

tributed identically to Hyb1,h. Since D can distinguish Hyb1,h−1 and Hyb1,h with non-negligible
advantage, B can break the security of the inner protocol which is a contradiction.

Claim 8.4. Assuming the privacy with knowledge of outputs property of the outer MPC protocol, we have
Hyb3 ≈c Hyb4.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb3 and Hyb4 with non-negligible advantage. We now use D to construct an adversary
B that can break the security of the outer MPC protocol.
B chooses a random MAC key ki for each i ∈ H and sends {zi := (χi, ki)}i∈H as the inputs of

the honest clients in the outer MPC protocol to the external challenger.
During the watchlist correlations phase B intercepts the queries {Ki,j}i∈M,j∈H sent by corrupt

parties and sets C := {xi,j}i∈M,j∈H . B instructs the external challenger to corrupt the set of clients
given by M and the set of servers given by C.

The challenger provides {φi→j1 }i∈H,j∈C . B uses this to generate the messages in the protocol
{Πh}h∈C . At the end of the first round, B constructs the set C ′ as in Hyb3. If |C ′| ≤ λn2, then B
instructs the external challenger to corrupt the servers indexed by C ′ and obtains {φi→h1 }i∈H,h∈C′ .
For every h ∈ [m]\{C∪C ′}, B sends {φi→h1 }i∈M as the first round messages generated by corrupted
client to the honest server indexed by h. B obtains {φh2}h∈[m]\{C∪C′}. B uses this to generate the
final round message of the protocol as in Hyb3.

On receiving the final round message from A, B constructs the set C ′′ as in Hyb3 and instructs
the challenger to adaptively corrupt the servers in C ′′ if |C ′′| ≤ λn2. It obtains {φi→h}i∈H,h∈C′′ .
B uses this to adaptively corrupt the honest parties in the inner protocol and obtain the secret
key for those executions in C ′ ∪ C ′′. Thus, B computes {φh2}h∈[m] as in Hyb3. It runs outΦ on the
second round messages and computes (y′, σ′1, . . . , σ

′
n). It then performs the MAC checks as in the

description of the protocol. B runs D on the view of the adversary and the outputs of the honest
parties and outputs whatever D outputs.

Since |C| < 2λn2 and |C ′| ≤ λn2, |C ′′| ≤ λn2, the size of |C∪C ′∪C ′′| < 4λn2 < (m−1)/3. Note
that if the messages of the outer protocol are generated by the real algorithms, then the inputs to
D are distributed identically to Hyb3. Else, they are identically distributed to Hyb4. Thus, if D can
distinguish between Hyb3 and Hyb4 with non-negligible advantage then B breaks the security of
the outer MPC protocol, which is a contradiction.

8.4 Instantiating the Inner Protocol

In this subsection, we give different instantiations of the inner protocol.

Using 2-sided Yao’s protocol in the Two-party Case. In the case where there are only two par-
ties, we observe that the two-sided Yao’s protocol (where P1 acts as the receiver in one side and P2

acts as the receiver in the other side) in the OT correlations model satisfies all the required proper-
ties of the inner protocol. The first round message is equivocable since the receiver’s message in
an OT execution in the presence of OT correlations is equivocable.

Using [GIS18]. We can instantiate the inner protocol using the protocol given in [GIS18] in the
OT-correlations model (where the correlations needed for this protocol can be generated using
the watchlist functionality). We note that this protocol readily satisfies equivocality as a result
of Property 7.4 and the observation that the receiver message of the information-theoretic OT
protocol based on random OT correlations is equivocable. For the case where there are constant

66

• Input: P1’s input is x1, z1 ∈ F and P2’s input is x2, z2 ∈ F.

• OLE correlations: Sample random a1, a2, b1, b2 from F such that a1a2 = b1 + b2. P1 gets
(a1, b1) and P2 gets (a2, b2).

• Round-1: P1 sends m1,1 = x1 + a1 and P2 sends m2,1 = x2 + a2.

• Round-2: P1 sends m1,2 = x1(m2,1)− z1 + b1 and P2 sends m2,2 = x2(m1,1)− z2 + b2.

• Output Computation: A party outputs m1,1m2,1 −m1,2 −m2,2.

Figure 13: Protocol for computing Degree-2 Polynomials taken verbatim from [LLW20].

number of parties, we can instead use standard λ-out-of-m OT correlations between each pair of
parties rather than the complex watchlist correlations. For this, we can rely on the combinato-
rial result (see for instance, an argument given in Claim C.10) that if we choose random subsets
K1,K2, . . . ,Kn (for constant n) of [m] where each set is of size λ, then with overwhelming proba-
bility, the size of their intersection is O(λ).

Using [LLW20]. We now show that the protocol given in [LLW20] satisfies all the properties
required by the inner protocol. We start with description of a protocol for computing degree-2
polynomials over a finite field F in Figure 13 from their work.

We now argue that the protocol described in Figure 13 satisfies Definition 8.1. Let us assume
without loss of generality that P1 is corrupted. In the correlations generation phase. the simulator
samples random a1, b1 and provides it to the adversary. In the first round, the simulator samples
a random m2,1 and sends on behalf of the honest P2. At the end of the first round, the adversary
provides an input x1, z1 and the correlations (a′1, b

′
1) and the simulator checks if the first round

message, m1,1 is consistent with x1 and the correlation given in the generation phase. We show
that when adversary gives a correlation (a′1, b

′
1) 6= (a1, b1) provided in the generation phase, then

the probability that the honest party accepts this correlation is at most 1/|F|. This is because if
the honest party accepts, then (a′1 − a1)a2 = (b′1 − b1) and this holds with probability 1/|F| over
the randomness of a2. If the adversary’s first round message is consistent, then the simulator
obtains the output of the function and samples random m2,2 such that m1,2 +m2,2 −m2,1 ·m1,2 =
x1x2 + z1 + z2 (where m1,2 is honestly computed second round message of P1). Otherwise, the
simulator uses the input x2, z2 of P2 and a2 = m2,1 − x2 and b2 = a1a2 − b1 and computes m2,2

honestly. It follows that except with probability 1/|F| the view of the adversary when interacting
with the simulator is identical to its view when interacting with the honest party.

In [LLW20], the first step is to construct an effective degree-2 MPRE [ABT18] in the presence
of OLE correlations for arithmetic NC1 circuits. To reduce the degree from 3 to 2, the paper used
OLE correlations that are shared between two parties. Again, via an argument mentioned above,
the probability that the adversary corrupting one of these two parties submits an OLE correlation
that is different from the correlation given by the generator but forces an honest party to accept is
at most 1/|F|. Then, the protocol described in Figure 13 is used to compute all the degree-2 terms
in the MPRE. Thus, via a simple union bound, the view of the adversary when interacting with
the honest parties is poly(|C|)/|F|-close to its view when interacting with the simulator.

67

8.5 Towards Improving the Concrete Efficiency

We now suggest methods to improve the concrete computational cost of the 2-party variant of the
protocol. The concrete computational cost of this protocol is dominated by two parameters: (i)
the concrete cost of the outer protocol, and (ii) the total amount of server computation across all
instances of the inner protocol. We now elaborate on techniques to reduce both these costs.

If we settle for the weaker notion of covert security [AL07], which is good enough for many
applications, then we need to only invoke the the inner protocol a constant number of times.
Concretely, we can follow the approach of [LOP11] and have a watchlist that consists of only
a single server, invoking the outer [IKP10] protocol with 7 servers. This gives a 2-sided NISC
protocol where the inner protocol is invoked only 7 times and the resultant protocol has covert
security with a constant probability of detecting cheaters.

A better approach, which does not require settling for a weaker notion of security, is to im-
prove the amortized cost of the protocol from [IKP10]. The complexity of the original proto-
col scales cubically with the number of servers (a statistical security parameter in the 2-sided
NISC application). This overhead comes from two sources: (1) using a bivariate polynomial for
sharing each input (as in the BGW protocol [BGW88]), to support a reduction of a global con-
sistency check to pairwise consistency checks; (2) using a multiparty conditional disclosure of
secrets mechanism to enforce pairwise consistencies. Both kinds of overhead can be amortized
over big computations. The first by encoding a quadratic number of inputs in a single bivariate
polynomial, analogously to the standard share packing technique for the univariate case [FY92].
(This comes at the cost of slightly decreasing the corruption threshold.) The second overhead can
be amortized by using a standard hybrid encryption technique. We leave a full exploration of
this approach to future work, but given the success of similar ideas in leading to practical proto-
cols [GMO16, AHIV17, CDG+17, KKW18, HIMV19], we expect 2-sided NISC to follow a similar
path.

9 Acknowledgments

We thank Saikrishna Badrinarayanan for useful discussions about this work.
Y. Ishai was supported by ERC Project NTSC (742754), NSF-BSF grant 2015782, BSF grant

2018393, and ISF grant 2774/20. D. Khurana was supported in part from a DARPA SIEVE award.
A. Sahai was supported in part from a DARPA SIEVE award, NTT Research, NSF Frontier Award
1413955, BSF grant2012378, a Xerox Faculty Research Award, a Google Faculty Research Award,
an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is
based upon work supported by the Defense Advanced Research Projects Agency through Award
HR00112020024 (for D. Khurana and A. Sahai). Work done in part when A. Srinivasan was at
UC Berkeley and supported in part by AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF
CNS Award 1936826, DARPA/ARL SAFEWARE Award W911NF15C0210, a Hellman Award and
research grants by the Sloan Foundation, Okawa Foundation, Visa Inc., and Center for Long-Term
Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the authors and do not
reflect the official policy or position of the funding agencies.

References

[AAG+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant
Pandey, and Manoj Prabhakaran. Optimal computational split-state non-malleable

68

codes. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563
of LNCS, pages 393–417, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg,
Germany.

[ABG+20] Benny Applebaum, Zvika Brakerski, Sanjam Garg, Yuval Ishai, and Akshayaram Srini-
vasan. Separating two-round secure computation from oblivious transfer. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020,
January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 71:1–71:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[ABT18] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Perfect secure computation
in two rounds. In TCC 2018, Part I, LNCS, pages 152–174. Springer, Heidelberg, Ger-
many, March 2018.

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 468–499, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[ADKO15] Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski.
Leakage-resilient non-malleable codes. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, TCC 2015, Part I, volume 9014 of LNCS, pages 398–426, Warsaw, Poland,
March 23–25, 2015. Springer, Heidelberg, Germany.

[ADN+19] Divesh Aggarwal, Ivan Damgård, Jesper Buus Nielsen, Maciej Obremski, Erick Pur-
wanto, João Ribeiro, and Mark Simkin. Stronger leakage-resilient and non-malleable
secret sharing schemes for general access structures. LNCS, pages 510–539, Santa Bar-
bara, CA, USA, 2019. Springer, Heidelberg, Germany.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17,
pages 2087–2104, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 119–135, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

[AJL+12a] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In David Pointcheval and Thomas Johans-
son, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501, Cambridge,
UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[AJL+12b] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In David Pointcheval and Thomas Johans-
son, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer Science, pages 483–
501. Springer, 2012.

69

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In Salil P. Vadhan, editor, Theory of Cryptography, 4th
Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February 21-
24, 2007, Proceedings, volume 4392 of Lecture Notes in Computer Science, pages 137–156.
Springer, 2007.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 387–404, Copenhagen, Den-
mark, May 11–15, 2014. Springer, Heidelberg, Germany.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. LNCS,
pages 489–518, Santa Barbara, CA, USA, 2019. Springer, Heidelberg, Germany.

[BD18] Zvika Brakerski and Nico Döttling. Two-message statistically sender-private OT from
LWE. In TCC 2018, Part II, LNCS, pages 370–390. Springer, Heidelberg, Germany,
March 2018.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private compu-
tations. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Sympo-
sium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages
479–488. ACM, 1996.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit
Sahai. Round optimal concurrent MPC via strong simulation. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 743–775, Baltimore,
MD, USA, November 12–15, 2017. Springer, Heidelberg, Germany.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita
Khurana, and Amit Sahai. Promise zero knowledge and its applications to round opti-
mal MPC. LNCS, pages 459–487, Santa Barbara, CA, USA, 2018. Springer, Heidelberg,
Germany.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Janos
Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 1–10. ACM, 1988.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure com-
putation without setup. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 645–677, Baltimore, MD, USA, November 12–15, 2017.
Springer, Heidelberg, Germany.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. LNCS, pages 500–532. Springer, Hei-
delberg, Germany, 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, pages 503–513, 1990.

70

[CCG+20] Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Ostro-
vsky. Round optimal secure multiparty computation from minimal assumptions. In
TCC 2020, Part II, pages 291–319, 2020.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-
knowledge and signatures from symmetric-key primitives. In Proceedings of the 2017
acm sigsac conference on computer and communications security, pages 1825–1842, 2017.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail
Ostrovsky, and Vinod Vaikuntanathan. Reusable non-interactive secure computation.
LNCS, pages 462–488, Santa Barbara, CA, USA, 2019. Springer, Heidelberg, Germany.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes,
with their many tampered extensions. In Daniel Wichs and Yishay Mansour, editors,
48th ACM STOC, pages 285–298, Cambridge, MA, USA, June 18–21, 2016. ACM Press.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent
non-malleable commitments (and more) in 3 rounds. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 270–299,
Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[COSV17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Four-round
concurrent non-malleable commitments from one-way functions. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages
127–157, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 378–394, Santa Barbara, CA, USA, August 14–18, 2005. Springer,
Heidelberg, Germany.

[DPW18] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. J.
ACM, 65(4):20:1–20:32, 2018.

[FMV19] Daniele Friolo, Daniel Masny, and Daniele Venturi. A black-box construction of fully-
simulatable, round-optimal oblivious transfer from strongly uniform key agreement.
In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part I, vol-
ume 11891 of Lecture Notes in Computer Science, pages 111–130. Springer, 2019.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computa-
tion (extended abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A.
Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
May 4-6, 1992, Victoria, British Columbia, Canada, pages 699–710. ACM, 1992.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49, Berkeley, CA, USA, October 26–29, 2013. IEEE
Computer Society Press.

71

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC: information-
theoretic and black-box. In Amos Beimel and Stefan Dziembowski, editors, Theory of
Cryptography - 16th International Conference, TCC 2018, Panaji, India, November 11-14,
2018, Proceedings, Part I, volume 11239 of Lecture Notes in Computer Science, pages 123–
151. Springer, 2018.

[GJK15] Vipul Goyal, Aayush Jain, and Dakshita Khurana. Witness signatures and non-
malleable multi-prover zero-knowledge proofs. IACR Cryptology ePrint Archive,
2015:1095, 2015.

[GK96a] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptology, 9(3):167–190, 1996.

[GK96b] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput., 25(1):169–192, 1996.

[GKP+18] Vipul Goyal, Ashutosh Kumar, Sunoo Park, Silas Richelson, and Akshayaram Srini-
vasan. Non-malleable commitments from non-malleable extractors. Manuscript, ac-
cessed via personal communication, 2018.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-
malleable commitments: A black-box approach. In 53rd FOCS, pages 51–60, New
Brunswick, NJ, USA, October 20–23, 2012. IEEE Computer Society Press.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge
for boolean circuits. In 25th {usenix} security symposium ({usenix} security 16), pages
1069–1083, 2016.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The
exact round complexity of secure computation. In EUROCRYPT, pages 448–476, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cam-
bridge University Press, 2004.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 695–704, San Jose,
CA, USA, June 6–8, 2011. ACM Press.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In STOC, pages 1128–1141, 2016.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach
to non-malleability. In 55th FOCS, pages 41–50, Philadelphia, PA, USA, October 18–21,
2014. IEEE Computer Society Press.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. LNCS, pages 468–499. Springer, Heidelberg, Germany,
2018.

72

[GSZ20] Vipul Goyal, Akshayaram Srinivasan, and Chenzhi Zhu. Multi-source non-malleable
extractors and applications. Cryptology ePrint Archive, Report 2020/157, 2020. https:
//eprint.iacr.org/2020/157.

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Round-optimal secure multi-party computation. LNCS, pages
488–520, Santa Barbara, CA, USA, 2018. Springer, Heidelberg, Germany.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-
box constructions of protocols for secure computation. SIAM J. Comput., 40(2):225–266,
2011.

[HIMV19] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan Venkitasub-
ramaniam. Leviosa: Lightweight secure arithmetic computation. In Lorenzo Caval-
laro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, Lon-
don, UK, November 11-15, 2019, pages 327–344. ACM, 2019.

[HIV17] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Actively
secure garbled circuits with constant communication overhead in the plain model. In
Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of LNCS, pages
3–39, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidelberg, Germany.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. Journal of Cryptology, 25(1):158–193, January 2012.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161,
Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai.
Efficient non-interactive secure computation. In Kenneth G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 406–425, Tallinn, Estonia, May 15–19, 2011.
Springer, Heidelberg, Germany.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th
ACM STOC, pages 21–30, San Diego, CA, USA, June 11–13, 2007. ACM Press.

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with
minimal interaction. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
577–594, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[IKP+16] Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-Hua Yu.
Secure protocol transformations. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture
Notes in Computer Science, pages 430–458. Springer, 2016.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on obliv-
ious transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 572–591, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidel-
berg, Germany.

73

https://eprint.iacr.org/2020/157
https://eprint.iacr.org/2020/157

[IR90] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS,
pages 8–26, Santa Barbara, CA, USA, August 21–25, 1990. Springer, Heidelberg, Ger-
many.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer.
In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 78–95,
Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

[Khu17] Dakshita Khurana. Round optimal concurrent non-malleability from polynomial hard-
ness. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of
LNCS, pages 139–171, Baltimore, MD, USA, November 12–15, 2017. Springer, Heidel-
berg, Germany.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero
knowledge with applications to post-quantum signatures. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 525–537. ACM, 2018.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 335–354, Santa
Barbara, CA, USA, August 15–19, 2004. Springer, Heidelberg, Germany.

[KS17] Dakshita Khurana and Amit Sahai. How to achieve non-malleability in one or two
rounds. In 58th FOCS, pages 564–575. IEEE Computer Society Press, 2017.

[LLW20] Huijia Lin, Tianren Liu, and Hoeteck Wee. Information-theoretic 2-round MPC with-
out round collapsing: Adaptive security, and more. In Rafael Pass and Krzysztof
Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC 2020,
Durham, NC, USA, November 16-19, 2020, Proceedings, Part II, volume 12551 of Lecture
Notes in Computer Science, pages 502–531. Springer, 2020.

[LOP11] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Optimizations,
variants and concrete efficiency. In Phillip Rogaway, editor, CRYPTO 2011, volume
6841 of LNCS, pages 259–276, Santa Barbara, CA, USA, August 14–18, 2011. Springer,
Heidelberg, Germany.

[MR17] Payman Mohassel and Mike Rosulek. Non-interactive secure 2PC in the offline/online
and batch settings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part III, volume 10212 of LNCS, pages 425–455, Paris, France, May 8–12,
2017. Springer, Heidelberg, Germany.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao
Kosaraju, editor, Proceedings of the Twelfth Annual Symposium on Discrete Algorithms,
January 7-9, 2001, Washington, DC, USA., pages 448–457. ACM/SIAM, 2001.

[ORS15] Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal black-box
two-party computation. In Rosario Gennaro and Matthew J. B. Robshaw, editors,

74

CRYPTO 2015, Part II, volume 9216 of LNCS, pages 339–358, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany.

[Pas12] Anat Paskin-Cherniavsky. Secure Computation with Minimal Interaction. PhD thesis,
Technion, 2012. Available at http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/
2012/PHD/PHD-2012-16.pdf.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS, pages 366–375, 2002.

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
1–20, Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg, Germany.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability am-
plification. In 51st FOCS, pages 531–540, Las Vegas, NV, USA, October 23–26, 2010.
IEEE Computer Society Press.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE
Computer Society Press.

A Secure Multiparty Computation

Here, we provide a formal definition of secure multiparty computation. Parts of this section have
been taken verbatim from [Gol04].

A multi-party protocol is cast by specifying a random process that maps pairs of inputs to pairs
of outputs (one for each party). We refer to such a process as a functionality. The security of a pro-
tocol is defined with respect to a functionality f . In particular, let n denote the number of parties. A
non-reactive n-party functionality f is a (possibly randomized) mapping of n inputs to n outputs.
A multiparty protocol with security parameter λ for computing a non-reactive functionality f is
a protocol running in time poly(λ) and satisfying the following correctness requirement: if parties
P1, . . . , Pn with inputs (x1, . . . , xn) respectively, all run an honest execution of the protocol, then
the joint distribution of the outputs y1, . . . , yn of the parties is statistically close to f(x1, . . . , xn). A
reactive functionality f is a sequence of non-reactive functionalities f = (f1, . . . , f`) computed in a
stateful fashion in a series of phases. Let xji denote the input of Pi in phase j, and let sj denote the
state of the computation after phase j. Computation of f proceeds by setting s0 equal to the empty
string and then computing (yj1, . . . , y

j
n, sj) ← fj(s

j−1, xj1, . . . , x
j
n) for j ∈ [`], where yji denotes the

output of Pi at the end of phase j. A multi-party protocol computing f also runs in ` phases, at
the beginning of which each party holds an input and at the end of which each party obtains an
output. (Note that parties may wait to decide on their phase-j input until the beginning of that
phase.) Parties maintain state throughout the entire execution. The correctness requirement is
that, in an honest execution of the protocol, the joint distribution of all the outputs {yj1, . . . , y

j
n}`j=1

of all the phases is statistically close to the joint distribution of all the outputs of all the phases in
a computation of f on the same inputs used by the parties.

A.1 Defining Security.

We assume that readers are familiar with standard simulation-based definitions of secure multi-
party computation in the standalone setting. We provide a self-contained definition for complete-

75

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf

ness and refer to [Gol04] for a more complete description. The security of a protocol (with respect
to a functionality f) is defined by comparing the real-world execution of the protocol with an
ideal-world evaluation of f by a trusted party. More concretely, it is required that for every adver-
saryA, which attacks the real execution of the protocol, there exist an adversary Sim, also referred
to as a simulator, which can achieve the same effect in the ideal-world. Let’s denote x = (x1, . . . , xn).

The real execution In the real execution of the n-party protocol π for computing f is executed
in the presence of an adversary A. The honest parties follow the instructions of π. The adversary
A takes as input the security parameter k, the set I ⊂ [n] of corrupted parties, the inputs of the
corrupted parties, and an auxiliary input z. A sends all messages in place of corrupted parties and
may follow an arbitrary polynomial-time strategy.

The interaction of A with a protocol π defines a random variable REALπ,A(z),I(λ,x) whose
value is determined by the coin tosses of the adversary and the honest players. This random
variable contains the output of the adversary (which may be an arbitrary function of its view)
as well as the outputs of the uncorrupted parties. We let REALπ,A(z),I denote the distribution
ensemble {REALΠ,A(z),I(λ,x)}k∈N,〈x,z〉∈{0,1}∗ .

The ideal execution – security with abort. In this second variant of the ideal model, fairness
and output delivery are no longer guaranteed. This is the standard relaxation used when a strict
majority of honest parties is not assumed. In this case, an ideal execution for a function f proceeds
as follows:

• Send inputs to the trusted party: As before, the parties send their inputs to the trusted
party, and we let x′i denote the value sent by Pi. Once again, for a semi-honest adversary we
require x′i = xi for all i ∈ I .

• Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary.

• Adversary instructs trusted party to abort or continue: This is formalized by having the
adversary send either a continue or abort message to the trusted party. (A semi-honest ad-
versary never aborts.) In the latter case, the trusted party sends to each uncorrupted party
Pi its output value yi. In the former case, the trusted party sends the special symbol ⊥ to
each uncorrupted party.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the
values obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf,A(z)(λ,x) as above,and
we let {IDEALf,A(z),I(λ,x)}k∈N,〈x,z〉∈{0,1}∗ . Having defined the real and the ideal worlds, we now
proceed to define our notion of security.

Definition A.1. Let k be the security parameter. Let f be an n-party randomized functionality, and Π be
an n-party protocol for n ∈ N. We say that Π t-securely computes f in the presence of malicious (resp.,
semi-honest) adversaries if for every PPT adversary (resp., semi-honest adversary) A there exists a PPT
adversary (resp., semi-honest adversary) Sim such that for any I ⊂ [n] with |I| ≤ t the following quantity
is negligible:

|Pr[REALΠ,A(z),I(λ,x) = 1]− Pr[IDEALf,A(z),I(λ,x) = 1]|

where x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

76

Remark A.2 (Security with Selective Abort). We can consider a slightly weaker definition of security
where the ideal world adversary can instruct the trusted party to send aborts to a subset of the uncorrupted
parties. For the rest of the uncorrupted parties, it instructs the trusted functionality to deliver their output.
This weakened definition is called as security with selective abort.

Remark A.3 (Privacy with Knowledge of Outputs). Ishai et al. [IKP10] considered a further weakening
of the security definition where the trusted party first delivers the output to the ideal world adversary which
then provides an output to be delivered to all the honest parties. They called this security notion as privacy
with knowledge of outputs and showed a transformation from this notion to security with selective abort
using unconditional MACs.

A.2 Security Against Semi-Malicious Adversaries

We take this definition almost verbatim from [AJL+12b]. We consider a notion of a semi-malicious
adversary that is stronger than the standard notion of semi-honest adversary and formalize secu-
rity against semi-malicious adversaries. A semi-malicious adversary is modeled as an interactive
Turing machine (ITM) which, in addition to the standard tapes, has a special witness tape. In each
round of the protocol, whenever the adversary produces a new protocol message msg on behalf
of some party Pk, it must also write to its special witness tape some pair (x, r) of input x and
randomness r that explains its behavior. More specifically, all of the protocol messages sent by the
adversary on behalf of Pk up to that point, including the new message m, must exactly match the
honest protocol specification for Pk when executed with input x and randomness r. Note that the
witnesses given in different rounds need not be consistent. Also, we assume that the attacker is
rushing and hence may choose the message m and the witness (x, r) in each round adaptively, af-
ter seeing the protocol messages of the honest parties in that round (and all prior rounds). Lastly,
the adversary may also choose to abort the execution on behalf of Pk in any step of the interaction.

Definition A.4. We say that a protocol Π securely realizes f for semi-malicious adversaries if it satisfies
Definition A.1 when we only quantify over all semi-malicious adversaries A.

B Special Oblivious Transfer Protocol

In this section, we give a construction of the special two-round oblivious transfer protocol from
Section 7.2. This construction makes black-box use of a two-round oblivious transfer (OT′1,OT

′
2,OT

′
3)

with security against semi-malicious adversaries. We give the construction below.

• OT1(1λ, b) : Choose random strings r0, r1 ← {0, 1}∗ and compute otm′b,1 ← OT′1(1λ, 0; r0)

and otm′1−b,1 ← OT′1(1λ, 1; r1). Set otm1 := (otm′0,1, otm
′
1,1) and ω := rb.

• OT2(otm1,m0,m1) : For each b ∈ {0, 1}, generate otm′b,2 ← OT′2(otm′b,1, (mb,⊥)). Set otm2 :=
(otm′0,2, otm

′
1,2).

• OT3(otm2, (b, ω)): Run OT′3(otm′b,2, (0, ω)) to recover mb.

Correctness follows directly from the correctness of the protocol (OT′1,OT
′
2,OT

′
3). We now

show the security properties:

• Equivocal Receiver Security. The equivocal simulator Simeq
OT generates otm′0 and otm′1 as

OT′1(1λ, 0). The indistinguishability follows directly from the receiver security of OT′ which
guarantees that OT′1(1λ, 0) ≈c OT′1(1λ, 1).

77

• Security in the No Corruption Setting. We consider a couple of intermediate hybrids.

– Hyb0 : Distribution of otm1 and otm2 when the inputs are b and m0,m1 respectively.

– Hyb1 : In this hybrid, we change otm′b,1 in otm2 to OT′1(1λ, 1). This hybrid is computa-
tionally indistinguishable to the previous hybrid from the receiver security of OT′.

– Hyb2 : In this hybrid, we change the inputs used in generating both otm′0,2 and otm′1,2
to (⊥,⊥). This hybrid is computationally close to the previous one from the sender
security of OT′ against semi-malicious adversaries.

Via an identical argument, we can show that Hyb2 is computationally indistinguishable to a
distribution of otm1 and otm2 when the inputs are b′ and m′0,m

′
1 respectively.

• Sender Security. This follows directly from the semi-malicious security property of OT′.

C Rewinding Secure Two-party Computation

In this section, we will describe a 4-round, black-box two-party computation protocol for NC1

functions that satisfies 1-rewind sender security (see Definition 4.3). This is used as a building
block in constructing the watchlist protocol in Section 5.

Theorem C.1. Assume black-box access to a public key encryption with pseudorandom public keys. There
exists a four-round protocol Π that is 1-rewinding sender secure with delayed function selection for NC1

circuits (see Definition 4.3).

C.1 Construction

In this subsection, we describe our construction of a 1-rewinding sender secure computation pro-
tocol with delayed function selection.

Building Blocks. We use the following building blocks in our construction.

• A two-round information-theoretic 2 client, m server MPC protocol for computing NC1 cir-
cuits and satisfying security with selective abort against a malicious, adaptive adversary
corrupting 1 client and at most t = (m − 1)/3 servers from [IKP10, Pas12]. Here, we fix
m = 8λ. We need the protocol to satisfy the following two properties which can be added to
the protocol from [IKP10, Pas12]:

– We require the first round message of the protocol to be independent of the function
description and only depends on its size. We note that this property can be generically
added to any two-round client server MPC protocol. Specifically, assume the existence
of a virtual client who holds the description of the function, uses some default random-
ness to generate the first round message using the description of the function as input.
All the other clients send their messages to the servers using their input for comput-
ing the universal circuit. Since, the virtual client uses some default randomness, the
messages from this client can be emulated by the servers.

– Given a first round message from the clients, the servers in the second round, are given
descriptions of two functions f0, f1 and should be able to generate the second round
message corresponding to these two functions on the same first round message from

78

the client. In other words, we require the protocol’s first round message to be reusable
once. We observe that this additional requirement can be added to the protocol of
[IKP10, Pas12]. Specifically, the first round message from the client comprises of three
parts, a secret sharing of its input, a random secret sharing of 0 and a multiparty con-
ditional disclosure of secrets (MCDS) message. We note that the secret sharing of its
input can be reused whereas the random secret sharing of 0 and the MCDS message
cannot be reused. For this purpose, instead of generating a single MCDS message and
a random secret sharing of 0, we generate 2 × |f | of them in the first round, where |f |
denotes the size of the function description. In the second round, the servers use the
description of the function and for each i ∈ [|f |], they use MCDS message and the se-
cret sharing of 0 corresponding to the bit fi. Specifically, the server adds all the chosen
secret sharings of 0 to obtain a single share and it adds all the chosen MCDS secrets to
obtain a single secret. It then generates the second round MCDS message for each of
the chosen indices. This ensures that if f0 6= f1, there exists at least one index i ∈ [|f |]
such that the MCDS message and the random secret sharing of 0 is only used once in
the two server executions.

• A 4-round, 1-out-of-2 parallel-composable14 OT protocol OT = (OT1,OT2,OT3,OT4, outOT)
that satisfies the receiver security as described in Definition 4.3 and a slightly modified 1-
rewinding sender security. The first difference is that there is no delayed function selection
as the function to be computed is that of an oblivious transfer (i.e., f0 = f1 = OT). The
second difference is that in Expt2 given in Figure 4, Sim1

OT,S outputs the receiver’s choice
bits along with the first round OT messages and skOT. We will call this protocol as a 1-out-
of-2 parallel-composable OT with 1-rewinding sender security. In Appendix D, we give a
construction of this primitive that makes black-box use of any public key encryption with
pseudorandom public keys.

• A pseudorandom function PRF : {0, 1}λ×{0, 1}∗ → {0, 1}∗ and a symmetric key encryption
scheme (KeyGen,Enc,Dec).

• A 1-rewinding secure extractable commitment scheme (ECom1,ECom2,ECom3) from Sec-
tion 3.3.

• A garbling scheme (Garble,Eval).

We show the following Theorem which implies Theorem C.1 as a corollary of Theorem D.1.

Theorem C.2. Assume black-box access to a 4-round, 1-out-of-2 parallel composable OT protocol with
1-rewinding sender security. Then there exists a four-round protocol Π that is 1-rewinding sender secure
with delayed function selection for NC1 circuits (see Definition 4.3).

Description of the Protocol. We give the formal description of the protocol below.

• Round-1: In the first round,R does the following:

1. It computes (x1, . . . , xm) ← Φ1(xR). For each i ∈ [m], we assume that xi ∈ {0, 1}` and
let xi,j denote the j-th bit of xi for each j ∈ [`].

14A parallel-composable OT is one that remains secure when the sender and receiver invoke (unbounded) polyno-
mially many executions in parallel. Unlike the watchlist protocol, in each of these executions the parties which play the
role of the sender and the receiver are the same.

79

2. For each i ∈ [m] and j ∈ [`], it chooses λ bits xi,j,1, . . . , xi,j,λ such that ⊕k∈[λ]xi,j,k = xi,j .

3. For each i ∈ [m], j ∈ [`] and k ∈ [λ], it computes otsi,j,k1 := OT1(1λ, xi,j,k).

4. It chooses a random subset K ⊂ [m] of size λ and let (K1, . . . ,Km) ∈ {0, 1}m denote its
characteristic vector.

5. It computes otsi1 := OT1(1λ,Ki) for each i ∈ [m].

6. It sends {otsi1}i∈[m], {ots
i,j,k
1 }i∈[m],j∈[`],k∈[λ] to the sender.

• Round-2: The sender S does the following.

1. It computes (y1, . . . , ym)← Φ1(xS).

2. For each i ∈ [m], j ∈ [`] and k ∈ [λ],

(a) It samples ski,j,k0 , ski,j,k1 from KeyGen(1λ).
(b) It computes otmi,j,k

2 ← OT2(otmi,j,k
1 , ski,j,k0 , ski,j,k1).

3. It chooses random strings s1, . . . , sm uniformly from {0, 1}∗.
4. For each i ∈ [m],

(a) It samples ski0, sk
i
1 from KeyGen(1λ).

(b) It computes otmi
2 ← OT2(otmi

1, sk
i
0, sk

i
1).

(c) It chooses a random PRF key keyi ← {0, 1}∗.
(d) It computes Comi

1 := ECom1(1λ, (yi, keyi, {sk
i,j,k
0 , ski,j,k1 }j∈[`],k∈[λ]); si).

5. It sends {Comi
1, ots

i
2}i∈[m], {ots

i,j,k
2 }i∈[m],j∈[`],k∈[λ] toR.

• Round-3: In the third round,R does the following:

1. For each i ∈ [m], j ∈ [`] and k ∈ [λ], it computes otmi,j,k
3 ← OT3(otmi,j,k

2 , xi,j,k).

2. For each i ∈ [m],

(a) It computes otmi
3 ← OT3(otmi

2,Ki).
(b) It samples Comi

2 using ECom2(Comi
1).

3. It sends {Comi
2, ots

i
3}i∈[m], {ots

i,j,k
3 }i∈[m],j∈[`],k∈[λ] to S.

• Round-4: In the final round, S does the following:

1. For each i ∈ [m],

(a) It computes otmi
4 ← OT4(otmi

1, otm
i
3, (sk

i
0, sk

i
1)).

(b) It computes C̃, {labib}i∈[m],b∈{0,1} ← Garble(1λ, C[s1, . . . , sm]) where C checks if the
input (K1, . . . ,Km) has hamming weight exactly k and if it is the case, it outputs
{si}i:Ki=1.

(c) For each b ∈ {0, 1}, it computes ctib := Enc(skib, lab
i
b).

(d) It computes Comi
3 := ECom3(Comi

2, (yi, keyi, {sk
i,j,k
0 , ski,j,k1 }j∈[`],k∈[λ]); si).

(e) Let Φ2,i be the function that takes {yi,j}j∈[`] and {xi,j,k}j∈[`],k∈[λ] as inputs and first
reconstructs {xi,j}j∈[`] and then applies the function computed by the i-th server in
the outer protocol Φ on f, {xi,j , yi,j}j∈[`] .

(f) It computes Φ̃2,i, {lab
i,j
0 , lab

i,j
1 }j∈[`], {lab

i,j,k
0 , labi,j,k1 }j∈[`],k∈[λ] ← Garble(1λ,Φ2,i; ri) where

ri := PRFkeyi(f). Here, {labi,j0 , lab
i,j
1 }j∈[`] are the input labels for the sender and

{labi,j,k0 , labi,j,k1 }j∈[`],k∈[λ] are the input labels for the receiver.

80

2. For each i ∈ [m], j ∈ [`] and k ∈ [λ],

(a) It computes otmi,j,k
4 ← OT4(otmi,j,k

1 , otmi,j,k
3 , (ski,j,k0 , ski,j,k1)).

(b) It samples two PRF keys keyi,j,k0 , keyi,j,k1 .

(c) It computes cti,j,kb := Enc(ski,j,kb , labi,j,kb ;PRF
keyi,j,kb

(f)) for each b ∈ {0, 1}.

3. It sends C̃, {cti0, cti1,Comi
3, ots

i
4, Φ̃2,i}i∈[m] and {otmi,j,k

4 , lab
i,j
yi,j , ct

i,j,k
0 , cti,j,k1 }i∈[m],j∈[`],k∈[λ]

toR.

• Output: To compute the output,R does the following:

1. It recovers skiKi for each i ∈ [m] from otmi
2, otm

i
4 using the input Ki and the random

tape used in generating otmi
1, otm

i
3. It then computes labiKi := Dec(skiKi , ct

i
Ki

).

2. It computes {si}i∈K ← Eval(C̃, {labiKi}i∈[m]).

3. For each i ∈ [m], j ∈ [`] and k ∈ [λ],

(a) It computes ski,j,kxi,j,k from otmi,j,k
2 and otmi,j,k

4 using the input xi,j,k and the random
tape used in generating otmi,j,k

1 , otmi,j,k
3 .

(b) It computes labi,j,kxi,j,k
:= Dec(ski,j,kxi,j,k , ct

i,j,k
xi,j,k).

4. For each i ∈ K,

(a) It recovers (yi, keyi, {sk
′i,j,k
0 , sk′i,j,k1 }j∈[`]) from (Comi

1,Com
i
3) and randomness si.

(b) It computes ri ← PRFkeyi(f).

(c) It computes Φ̃2,i, {l̃ab
i,j

0 , l̃ab
i,j

1 }j∈[`], {lab
′i,j,k
0 , lab′i,j,k1 }j∈[`] ← Garble(1λ,Φ2,i; ri).

(d) It checks if Φ̃2,i that is received in the fourth round is the same as the one computed
above.

(e) For each j ∈ [`],

i. It checks if labi,jyi,j = l̃ab
i,j

yi,j .

ii. For each k ∈ [λ], it checks if ski,j,kxi,j,k = sk′i,j,kxi,j,k .

iii. For each b ∈ {0, 1}, it computes labi,j,k1−xi,j,k := Dec(sk′i,j,k1−xi,j,k , ct
i,j,k
1−xi,j,k).

iv. For each b ∈ {0, 1} and k ∈ [λ], it checks if labi,j,kb = lab′i,j,kb .

5. If any of the checks fail, then it aborts.

6. For each i ∈ [m], it computes zi ← Eval(Φ̃2,i, {lab
i,j
yi,j}j∈[`], {labi,j,kxi,j,k

}j∈[`],k∈[λ]).

7. It finally computes out by running outΦ on {zi}i∈[m], the input xR and the random tape
used in generating (x1, . . . , xm).

C.2 Proof of Security

In this subsection, we show that the above described protocol satisfies Definition 4.3. We start
with the 1-rewinding sender security property.

C.2.1 1-Rewinding Sender Security

We begin with the descriptions of simulators (Sim1
S , Sim

2
S).

81

Description of Sim1
S .

1. Sim1
S constructs an adversary A1 that interacts with A internally and receives the messages

corresponding to the first three rounds of the OT protocol externally. Specifically, A1 does
the following:

• A1 initializesA and obtains the first round messages {otmi,j,k
1 }i∈[m],j∈[`],k∈[λ], {otmi

1}i∈[m]

from A. It forwards these messages externally.

• A1 receives {otmi,j,k
2 }i∈[m],j∈[`],k∈[λ], {otmi

2}i∈[m] externally.

• For each i ∈ [m], A1 generates Comi
1 ← ECom1(1λ,⊥).

• A1 now runs A on {otmi,j,k
2 }i∈[m],j∈[`],k∈[λ], {Comi

1, otm
i
2}i∈[m].

• A1 receives {fb}b∈{0,1}, {otm
i,j,k
3 [b]}i∈[m],j∈[`],k∈[λ],b∈{0,1}, {Comi

2[b], otmi
3[b]}i∈[m],b∈{0,1} from

A and forwards {otmi,j,k
3 [b]}i∈[m],j∈[`],k∈[λ],b∈{0,1}, {otmi

3[b]}i∈[m],b∈{0,1} externally.

2. Sim1
S now runs Sim1

OT,S onA1 and obtains xOT, skOT and {otmi,j,k
1 }i∈[m],j∈[`],k∈[λ], {otmi

1}i∈[m].

3. If xOT is the special symbol abort, then

(a) Sim1
S sets xR to be abort and sets sk to be the aborting transcript of the first three rounds

that is obtained from the random tape of Sim1
OT,S and the random tape of A1.

4. If xOT = ({xi,j,k}i∈[m],j∈[`],k∈[λ], {Ki}i∈[m]), then

(a) Sim1
S runs independent executions of Sim1

OT,S on A1 until it obtains 12λ executions
where xOT is not equal to the special symbol abort. Let T be the total number of ex-
ecutions needed. Sim1

S sets ε̃ = 12λ/T .

(b) Sim1
S sets sk = (skOT, ε̃, xOT) and π1 = {otmi,j,k

1 }i∈[m],j∈[`],k∈[λ], {otmi
1}i∈[m].

5. Sim1
S maintains an internal step counter, and if it runs for more than 2λ time steps then it

aborts and outputs a special symbol timeout.

Description of Sim2
S .

1. If xOT corresponds to the special symbol abort, then Sim2
S outputs sk.

2. Else, it parses xOT as ({xi,j,k}i∈[m],j∈[`],k∈[λ], {Ki}i∈[m]).

3. Let K be the set of all i ∈ [m] such Ki = 1. If K > λ, then we reset K = ∅.

4. Sim2
S now runs SimΦ by corrupting the client corresponding to the receiver and the set of

servers indexed by K and obtains {yi}i∈K .

5. For each i ∈ K, Sim2
S chooses a PRF key keyi ← {0, 1}∗. Additionally, for each i ∈ [m], it

chooses ski0, sk
i
1 from KeyGen(1λ) and for each j ∈ [`] and k ∈ [λ], it samples ski,j,k0 , ski,j,k1

from KeyGen(1λ).

6. Sim2
S now constructs an adversary A2 that interacts with A internally and obtains the mes-

sages of the last three rounds of the OT protocol externally. Specifically, A2 does the follow-
ing:

82

• A2 receives {otmi,j,k
2 }i∈[m],j∈[`],k∈[λ], {otmi

2}i∈[m] externally.

• For each i ∈ K, A2:

– Samples si ← {0, 1}∗.
– Computes Comi

1 := ECom1(1λ, (yi, keyi, {sk
i,j,k
0 , ski,j,k1 }j∈[`],k∈[λ]); si).

• For each i 6∈ K, A2:

– Computes Comi
1 ← ECom1(1λ,⊥).

• A2 runs A on {otmi,j,k
2 }i∈[m],j∈[`],k∈[λ], {Comi

1, otm
i
2}i∈[m].

• A1 receives {fb}b∈{0,1}, {otm
i,j,k
3 [b]}i∈[m],j∈[`],k∈[λ],b∈{0,1}, {Comi

2[b], otmi
3[b]}i∈[m],b∈{0,1} from

A and forwards {otmi,j,k
3 [b]}i∈[m],j∈[`],k∈[λ],b∈{0,1}, {otmi

3[b]}i∈[m],b∈{0,1} externally.

7. Sim2
S now runs Sim2

OT,S on A2 with the input {ski,j,kxi,j,k}i∈[m],j∈[`],k∈[λ] and {skiKi}i∈[m] for λ2/ε̃

times (using independent random tapes). If in each of these executions, Sim2
OT,S outputs the

error symbol fail, then Sim1
S outputs the error symbol fail and aborts.

8. Otherwise, let {fb}b∈{0,1}, {otm
i,j,k
3 [b]}i∈[m],j∈[`],k∈[λ],b∈{0,1}, {Comi

2[b], otmi
3[b]}i∈[m],b∈{0,1} be

the third round message and let {otmi,j,k
4 [b]}i∈[m],j∈[`],k∈[λ],b∈{0,1}, {otmi

4[b]}i∈[m],b∈{0,1} be the
final round message output by Sim2

OT,S in a successful execution.

9. To generate the final round message,

(a) If f0 = f1, then Sim2
S generates the final round message for b = 0 as shown below and

sends the same final round message for b = 1.

(b) Sim2
S recovers {xi,j}i∈[m],j∈[`] from xOT.

(c) Sim2
S runs SimΦ by giving {xi}i 6∈K as the first round message sent by the malicious client

and (f0, f1) as the function to be computed. When SimΦ makes a query to the ideal
functionality on input xR, Sim2

S intercepts this query and makes a query on (xR, f0, f1)
to its own functionality and obtains out0, out1. It then provides (out0, out1) as the output
from the ideal functionality to SimΦ and obtains {zi[b]}i 6∈K,b∈{0,1}.

(d) It computes C̃, {labi}i∈[m] ← SimGC(1λ, 1|C|, 1m, {si}i∈K) (where {si}i∈K is recovered
from the random tape of A2).

(e) For each i ∈ [m] and b ∈ {0, 1},
i. Sim2

S computes Comi
3[b] honestly using the input and randomness used in generat-

ing Comi
1 (obtained from the random tape of A2).

ii. It computes cti0 := Enc(ski0, lab
i) and cti1 := Enc(ski1, lab

i).
iii. If i ∈ K, then

• It computes ri[b] := PRFkeyi(fb).

• It computes Φ̃2,i[b], {lab
i,j
0 [b], lab

i,j
1 [b]}j∈[`], {lab

i,j,k
0 [b], labi,j,k1 [b]}j∈[`],k∈[λ] ← Garble(1λ,

Φ2,i[b]; ri[b]).
iv. If i 6∈ K, then

• It computes Φ̃2,i[b], {lab
i,j

[b]}j∈[`], {labi,j,k[b]}j∈[`],k∈[λ] ← SimGC(1λ, 1|Φ2,i[b]|, 12`, zi[b]).

• For each j ∈ [`] and k ∈ [λ], it sets labi,j,k0 [b] = labi,j,k1 [b] = labi,j,k[b].

v. For each j ∈ [`] and k ∈ [λ], it computes cti,j,k0 [b] := Enc(ski,j,k0 , labi,j,k0 [b]) and
cti,j,k1 [b] := Enc(ski,j,k1 , labi,j,k1 [b]).

83

(f) It finally outputs C̃, {cti0, cti1,Comi
3[b], otsi4[b], Φ̃2,i[b]}i∈[m],b∈{0,1} and {otmi,j,k[b]4, lab

i,j
[b], cti,j,k[b]0,

cti,j,k[b]1}i∈[m],j∈[`],k∈[λ],b∈{0,1} as the final round message.

(g) Sim2
S has an internal step counter and if it runs for more than 2λ time, it aborts and

outputs a special symbol time-out.

Running time of Sim1
S and Sim2

S . Let ε be the probability that Sim1
OT,S outputs xOT 6= abort in the

description of Sim1
S . Then the expected running time of Sim1

S is given by poly(λ)+poly(λ)ε(12λ/ε) =
poly(λ). Via a standard argument (see [GK96a]), we can show that ε̃ is within a factor of 2 of
the value of ε except with probability 2−λ. Thus, the expected running time of Sim2

S is given by
poly(λ) + poly(λ)ε(O(λ2/ε) + 2λ(1/2λ)) = poly(λ).

Proof of Indistinguishability. We now show that the real experiment and the ideal experiment
involving (Sim1

S , Sim
2
S) are computationally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to the output of the real experiment (i.e., Expt1) in Figure 4.

• Hyb1 : In this hybrid, we make the following changes. We define an adversary A′ that inter-
acts withA internally and receives the messages corresponding to the OT protocol externally.
Specifically, A′ does the following:

– A′ initializesA and obtains the first round messages {otmi,j,k
1 }i∈[m],j∈[`],k∈[λ], {otmi

1}i∈[m]

from A. It forwards these messages externally.

– A′ receives {otmi,j,k
2 }i∈[m],j∈[`],k∈[λ], {otmi

2}i∈[m] externally.

– For each i ∈ [m], A1 generates Comi
1 ← ECom1(1λ, (yi, keyi, (sk

i,j
0 , ski,j1)); si) (for uni-

formly chosen si).

– A′ now runs A on {otmi,j,k
2 }i∈[m],j∈[`],k∈[λ], {Comi

1, otm
i
2}i∈[m].

– A′ receives {fb}b∈{0,1}, {otm
i,j,k
3 [b]}i∈[m],j∈[`],k∈[λ],b∈{0,1}, {Comi

2[b], otmi
3[b]}i∈[m],b∈{0,1} from

A and forwards {otmi,j,k
3 [b]}i∈[m],j∈[`],k∈[λ],b∈{0,1}, {otmi

3[b]}i∈[m],b∈{0,1} externally.

We run Sim1
OT,S and Sim2

OT,S on A′ and obtain the view of A′ as well the messages in the OT
protocol. We generate the final round message to A using the internal randomness of A′.
In Claim C.3, we show that Hyb0 and Hyb1 are computationally indistinguishable from the
1-rewinding sender security property of the OT protocol.

• Hyb2 : In this hybrid,

– We estimate ε̃ as in the simulation using A′. We output the special symbol timeout, if
we run for 2λ steps.

– We run Sim2
OT,S on A′ for λ2/ε̃ independent executions and we output the special sym-

bol fail, if Sim2
OT,S outputs fail, in each of these executions. We output the special symbol

timeout, if we run for 2λ steps.

In Claim C.4, we show that Hyb1 ≈s Hyb2.

• Hyb3 : In this hybrid, we run Sim1
OT,S on the adversaryA1 (defined in the simulation), instead

of running it on A′ as in the previous hybrid.

We show in Claim C.5 that Hyb2 ≈c Hyb3 from the 1-rewinding security of the extractable
commitment scheme.

84

• Hyb4 : In this hybrid, we compute cti1−Ki as Enc(ski1−Ki , lab
i
Ki

) instead of Enc(ski1−Ki , lab
i
1−Ki)

for each i ∈ [m]. It now follows from the semantic security of the encryption scheme that
Hyb3 ≈c Hyb4.

• Hyb5 : In this hybrid, we generate C̃, {labiKi}i∈[m] using SimGC(1λ, 1|C|, 1m, {si}i∈K) instead of
using the Garble procedure. It follows from the security of the garbling scheme that Hyb4 ≈c
Hyb5.

• Hyb6 : In this hybrid, we run Sim2
OT,S on A2 instead of A′.

We show in Claim C.6 that Hyb5 ≈c Hyb6 from the 1-rewinding security of the extractable
commitment scheme.

• Hyb7 : In this hybrid, for each i ∈ [m], j ∈ [`], k ∈ [λ], and b ∈ {0, 1}, we generate the
randomness used in computing cti,j,k0 [b] as the output of truly random function on input fb
instead of using a PRF.

It follows directly from the security of the PRF that Hyb6 ≈c Hyb7.

• Hyb8 : In this hybrid, for each i 6∈ K and b ∈ {0, 1}, we compute ri[b] (used as randomness in
computing Φ̃2,i) as the output of a random function on the input fb rather than using a PRF.

As in the previous hybrid, it follows directly from the security of the PRF that Hyb7 ≈c Hyb8.

• Hyb9 : In this hybrid, for each i 6∈ K, j ∈ [`], k ∈ [λ] and b ∈ {0, 1}, we compute cti,j,k1−xi,j,k [b]←
Enc(ski,j,k1−xi,j,k , lab

i,j,k
xi,j,k

[b]).

In Claim C.7, we show that Hyb8 ≈c Hyb9 from the semantic security of the symmetric key
encryption.

• Hyb10 : In this hybrid, for each i 6∈ K and b ∈ {0, 1}, we generate Φ̃2,i[b], {lab
i,j
yi,j [b]}j∈[`] and

{labi,j,kxi,j,k
[b]}j∈[`],k∈[λ] as the output of SimGC rather than using Garble procedure.

It follows from the security of garbling scheme that Hyb9 ≈c Hyb10.

• Hyb11 : In this hybrid, we use the simulator SimΦ to generate the first round messages {yi}i∈K
from honest sender as well as the second round messages {zi[b]}i 6∈K,b∈{0,1} from the honest
servers.

In Claim C.8, we show that Hyb10 ≈s Hyb11 from the security of the outer protocol. Note that
Hyb11 is identical to the output of the ideal experiment (i.e., Expt2 in Figure 4).

Claim C.3. Assuming the 1-rewinding sender security of the oblivious transfer, we have Hyb0 ≈c Hyb1.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb0 and Hyb1 with non-negligible advantage. We will use D to construct an adversary
B that breaks the 1-rewinding sender security of the OT protocol.

• For each i ∈ [m], B samples ski0, sk
i
1 from KeyGen(1λ) and for each j ∈ [`] and k ∈ [λ], it

samples ski,j,k0 , ski,j,k1 from KeyGen(1λ). It sends {ski0, ski1}i∈[m] and {ski,j,k0 , ski,j,k1 }i∈[m],j∈[`]

as the challenge sender inputs to the external challenger.

• B constructs A′ as in the description of Hyb1 and forwards the messages from A′ to external
challenger and vice-versa.

85

• The external challenger finally outputs the view ofA′. B uses this to generate the final round
message of the protocol Π and generate the view of A.

• B finally runs D on the above generated view of A and outputs whatever D outputs.

Note that if the view of A′ is generated using the real algorithms then the inputs to D are identi-
cally distributed to Hyb0. Otherwise, they are distributed identically to Hyb1. Thus, if D can dis-
tinguish between Hyb0 and Hyb1 with non-negligible advantage, then A breaks the 1-rewinding
sender security property of the OT protocol and this is a contradiction.

Claim C.4. Hyb1 ≈s Hyb2.

Proof. Via a standard argument (see [GK96a]) that, ε̃ is within a factor of two of ε except with
probability 2−λ. Therefore, the expected running time to generate the output of Hyb2 is poly(λ) +
poly(λ)ε(12λ/ε + 1/2λ ∗ 2λ + O(λ2/ε)) = poly(λ). Thus, from Markov’s inequality, it follows that
the probability that we output the special symbol timeout in Hyb2 is negligible. Furthermore, it
follows from claim C.3 that the probability that Sim2

OT,S outputs the special symbol fail in any
execution is negligible. Thus, we output the special symbol fail in Hyb2 is negligible.

Claim C.5. Assuming the 1-rewinding security of the extractable commitment protocol, we have Hyb2 ≈c
Hyb3.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb2 and Hyb3 with non-negligible advantage. We will use D to construct an adversary
B that breaks the 1-rewinding security of the extractable commitment scheme.

• For each i ∈ [m], B sends (yi, keyi, {sk
i,j,k
0 , ski,j,k1 }j∈[`],k∈[λ]) and ⊥ as the challenge messages

to the external challenger.

• Whenever Sim1
OT,S sends a fresh second round OT message {otmi,j,k

2 }i∈[m],j∈[`],k∈[λ], {otmi
2}i∈[m],

B queries the external challenger and receives {Comi
1}i∈[m]. B runsA on {otmi,j,k

2 }i∈[m],j∈[`],k∈[λ],

{Comi
1, otm

i
2}i∈[m] and forwards the third round OT messages to Sim1

OT,S .

• B generates the rest of the protocol messages in Hyb2 and finally generates the view of the
adversary A at the end of the execution.

• B finally runs D on the view of A and outputs whatever D outputs.

Note that if the commitments generated by the external challenger contain the message ⊥, then
the inputs to D are distributed identically to Hyb3. Otherwise, it is distributed identically to Hyb2.
Thus, if B can distinguish between Hyb2 and Hyb3 with non-negligible advantage, then B can break
the 1-rewinding security property of the extractable commitment scheme which is a contradiction.

Claim C.6. Assuming the 1-rewinding security of the extractable commitment protocol, we have Hyb5 ≈c
Hyb6.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb5 and Hyb6 with non-negligible advantage. We will use D to construct an adversary
B that breaks the 1-rewinding security of the extractable commitment scheme.

86

• For each i 6∈ K, B sends (yi, keyi, {sk
i,j
0 , ski,j1 }j∈[`]) and ⊥ as the challenge messages to the

external challenger.

• Whenever Sim2
OT,S sends a fresh second round OT message {otmi,j,k

2 }i∈[m],j∈[`],k∈[λ], {otmi
2}i∈[m],

B queries the external challenger and receives {Comi
1}i∈6∈K . B generates {Comi

1}i∈K as in
Hyb5.

• B runsA on {otmi,j,k
2 }i∈[m],j∈[`],k∈[λ], {Comi

1, otm
i
2}i∈[m] and obtains forwards the third round

OT messages to Sim2
OT,S .

• When Sim2
OT,S outputs the third round and the fourth round messages of the OT proto-

col, B recovers the corresponding {Comi
2[b]}i 6∈K from its interaction with A and it sends

{Comi
2[b]}i 6∈K to the external challenger and obtains {Comi

3[b]}i 6∈K .

• B generates the rest of the protocol messages in Hyb5 and finally generates the view of the
adversary A at the end of the execution.

• B finally runs D on the view of A and outputs whatever D outputs.

Note that if the commitments generated by the external challenger contain the message ⊥, then
the inputs to D are distributed identically to Hyb6. Otherwise, it is distributed identically to Hyb5.
Thus, if B can distinguish between Hyb5 and Hyb6 with non-negligible advantage, then B can break
the 1-rewinding security property of the extractable commitment scheme which is a contradiction.

Claim C.7. Assuming the semantic security of the encryption scheme, we have Hyb8 ≈c Hyb9.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb8 and Hyb9 with non-negligible advantage. We will use D to construct an adversary
B that breaks the semantic security of the encryption scheme.

• For each i 6∈ K, j ∈ [`], k ∈ [λ] and b ∈ {0, 1}, A provides labi,j,kxi,j,k
[b] as the left challenge

message and labi,j,k1−xi,j,k [b] as the right challenge message. It receives cti,j,k1−xi,j,k [b] from the
challenger.

• It generates the rest of the protocol messages as in Hyb8. Note that this does not require
knowledge of ski,j,k1−xi,j,k .

• It generates the view of the adversary A and finally runs D on this view and outputs what-
ever D outputs.

Note that if the challenge ciphertexts correspond to the encryption of the left message, then the
inputs to D are identical to Hyb9. Otherwise, the inputs are identical to Hyb8. Thus, if D can
distinguish between Hyb8 and Hyb9 with non-negligible advantage, then B can break the semantic
security of the encryption scheme and this is a contradiction.

Claim C.8. Assuming the security of the outer MPC protocol Φ, we have that Hyb10 ≈s Hyb11.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb10 and Hyb11 with non-negligible advantage. We will useD to construct an adversary
B that breaks the security of the protocol Φ.

87

• B corrupts the receiver client and sends xS as the input of the sender client to the external
challenger.

• B runs Sim1
OT,S on A1 and obtains {Ki}i∈[m] and {xi,j,k}i∈[m],j∈[`],k∈[λ]. Let K be the set of

indices i such that Ki = 1. If |K| > λ, it resets K = ∅.

• B asks the challenger to corrupt the set of servers corresponding to the set K and obtains
{yi}i∈K .

• B sends {xi}i 6∈K as the first round message from the malicious receiver to the honest servers.

• At the end of execution of Sim2
OT,S , B recovers (f0, f1) from the third round message, and

sends this to the external challenger.

• The challenger replies with {zi[b]}i 6∈K,b∈{0,1}. It uses this information to compute {Φ̃2,i[b]}i 6∈K,b∈{0,1}.

• It generates the view of the adversary and then runs D on this view.

Note that if the outer protocol messages given by the challenger are generated using the real
algorithms then the inputs to D are identical to Hyb10. Otherwise, they are identical to Hyb11.
Thus, if if D can distinguish between Hyb10 and Hyb11 with non-negligible advantage, then B can
break the security of the outer protocol Φ and this is a contradiction.

C.2.2 Receiver Security

We begin with the descriptions of the simulators (Sim1
R, Sim

2
R).

Description of Sim1
R.

1. Sim1
R constructs an adversary A1 that interacts with A internally and obtains the messages

of the OT protocol externally. Specifically, A1 does the following:

• It receives {otmi,j,k
1 }i∈[m],j∈[`],k∈[λ], {otmi

1}i∈[m] externally and sends this to A.

• It receives {otmi,j,k
2 }i∈[m],j∈[`],k∈[λ], {Comi

1, otm
i
2}i∈[m] fromA and sends {otmi,j,k

2 }i∈[m],j∈[`],k∈[λ],
{otmi

2}i∈[m] externally.

• On receiving {otmi,j,k
3 }i∈[m],j∈[`],k∈[λ], {otmi

3}i∈[m] externally, A1 samples Com2
i using

ECom2(Comi
1) for each i ∈ [m] and runsA on f, {otmi,j,k

3 }i∈[m],j∈[`],k∈[λ], {Comi
2, otm

i
3}i∈[m].

• It receives the last round message fromA and checks if for each i ∈ [m], whether Comi
3 is

valid. If yes, it forwards {otmi,j,k
4 }i∈[m],j∈[`],k∈[λ], {otmi

4}i∈[m] externally and otherwise,
it aborts.

2. Sim1
R runs Sim1

OT,R onA1 and obtains {otmi,j,k
1 , otmi,j,k

2 }i∈[m],j∈[`],k∈[λ], {otmi
1, otm

i
2}i∈[m] along

with {ski,j,k0 , ski,j,k1 }i∈[m],j∈[`],k∈[λ] and {ski0, ski1}i∈[m]. When Sim1
OT,R is interacting with A1,

Sim1
R observes this interaction along with the internal interaction of A1 with A. Whenever

A1 forwards the final round message externally, it means that {Comi
3}i∈[m] is valid. Sim1

R
uses this to extract {yi, keyi, {sk

′i,j,k
0 , sk′i,j,k1 }j∈[`],k∈[λ]}i∈[m].

3. Sim1
R runs SimΦ on input y1, . . . , ym and function f . When SimΦ queries the ideal function-

ality on xS , Sim1
R intercepts this query and records it.

88

4. Sim1
R outputs xS , the first and second round messages of the protocol Π and sk = (skOT,

{yi, keyi, {sk
′i,j,k
0 , sk′i,j,k1 }j∈[`],k∈[λ]}i∈[m], {sk

i,j,k
0 , ski,j,k1 }i∈[m],j∈[`],k∈[λ], {ski0, ski1}i∈[m],

random tape of A1 and SimΦ.).

Description of Sim2
R.

1. Sim2
R runs Sim2

OT,R on A1 with input skOT and obtains {otmi,j,k
3 , otmi,j,k

4 }i∈[m],j∈[`],k∈[λ] and
{otmi

3, otm
i
4}i∈[m]. It also obtains {Comi

2}i∈[m] from the random tape ofA1. Finally, it recovers
the rest of the final round message that A has sent to A1.

2. For each i ∈ [m], Sim2
R does the following:

(a) For each j ∈ [`] and k ∈ [λ], it computes labi,j,kb := Dec(ski,j,kb , cti,j,kb) for each b ∈ {0, 1}.
(b) It computes labib := Dec(skib, ct

i
b) for each b ∈ {0, 1}.

(c) It computes ri := PRFkeyi(f).

(d) It computes Φ̃2,i, {l̃ab
i,j

0 , l̃ab
i,j

1 }j∈[`], {lab
′i,j,k
0 , lab′i,j,k1 }j∈[`] ← Garble(1λ,Φ2,i; ri).

(e) It checks if Φ̃2,i that is received in the fourth round is the same as the one computed
above.

(f) For each j ∈ [`] and k ∈ [λ], it checks if ski,j,kb = sk′i,j,kb for each b ∈ {0, 1}. It then checks
if labi,j,kb = lab′i,j,kb for each b ∈ {0, 1}.

(g) For each j ∈ [`], it checks if l̃ab
i,j

yi,j is same as the label obtained fromA in the last round.
(h) If any of the checks fail, it adds i to a set C (which is initially empty).

3. If |C| > λ, then Sim2
R sends an abort to the ideal functionality.

4. If |C| ≤ λ then Sim2
R continues the execution of SimΦ and instructs SimΦ to adaptively cor-

rupt the servers indexed by the set C and obtains {xi}i∈C .

5. It then chooses a random subset K of size λ and computes {si}i∈K ← Eval(C̃, {labiKi}i∈[m]).

6. It then instructs SimΦ to adaptively corrupt the set of servers indexed by K and obtains
{xi}i∈K . It then does the exact same checks as the honest party in output computing phase.
If any of the checks fail, then Sim2

R sends abort to the ideal functionality.

7. For each i ∈ C ∪K, Sim2
R computes zi := Eval(Φ̃2,i, {lab

i,j
yi,j}j∈[`], {labi,j,kxi,j,k

}j∈[`],k∈[λ]).

8. It then sends {zi}i∈C∪K as the second round message from the corrupted servers to SimΦ.
If SimΦ instructs the honest client to abort, then Sim2

S sends abort to the ideal functionality.
Otherwise, it asks the ideal functionality to deliver outputs to the honest receiver.

Proof of Indistinguishability. We now show that the real experiment and the ideal experiment
are computationally indistinguishable using a hybrid argument.

• Hyb0 : This corresponds to the output of the real experiment.

• Hyb1 : In this hybrid, we generate the OT protocol messages by running (Sim1
OT,R,Sim

2
OT,R)

on the adversary A1 (described in the simulation).

We show that the Hyb0 is computationally indistinguishable from Hyb1 from the receiver
security of the OT protocol in Claim C.9.

89

• Hyb2 : In this hybrid, we extract (yi, keyi, {sk
i,j,k
0 , ski,j,k1 }j∈[`],k∈[λ]) for each i ∈ [m] from the

extractable commitment scheme as explained in the simulation.

This hybrid is identical to the previous hybrid as it does not affect the view of the adversary
or the outputs of the honest parties.

• Hyb3 : In this hybrid, we construct the set C as explained in the simulation and if |C| > λ,
we instruct the honest party to abort.

In Claim C.10, we show that Hyb2 ≈s Hyb3.

• Hyb4 : In this hybrid, we use the simulator SimΦ to generate the messages {xi}i∈C∪K and the
output of the honest receiver. Note that Hyb4 is identical to the output of the ideal experi-
ment.

In Claim C.11, we show that Hyb3 ≈s Hyb4 from the security of the outer MPC protocol.

Claim C.9. Assuming the receiver security property of the oblivious transfer, we have Hyb0 ≈c Hyb1.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb0 and Hyb1 with non-negligible advantage. We will use D to construct an adversary
B that breaks the receiver security of the OT protocol.

• B provides {xi,j,k}i∈[m],j∈[`],k∈[λ] and {Ki}i∈[m] as the receiver inputs to the external chal-
lenger.

• It constructs the adversary A1 as described in the simulation. It interacts with the external
challenger and forwards the messages from it to A1. The messages sent by A1 are conveyed
back to the challenger.

• Finally, B obtains the view of A′ and the output of the honest receiver in the OT protocol. It
uses the view of A′ to generate the view of A. It then uses the output of the honest receiver
in the OT protocol to do the exact same checks as in Hyb0 and computes the output of the
honest receiver in protocol Π.

• B finally runs D on the view of A and the output of the honest receiver in Π and outputs
whatever D outputs.

Note that if the OT protocol messages are generated by the challenger using the real algo-
rithms, then the inputs to D are distributed identically to Hyb0. Otherwise, they are distributed
identically to Hyb1. Thus, if D can distinguish between Hyb0 and Hyb1 with non-negligible advan-
tage, then B can break the receiver security of the OT protocol and this is a contradiction.

Claim C.10. Hyb2 ≈s Hyb3.

Proof. We first argue that for each i ∈ C ∩ K, one of the checks done by the honest receiver in
Hyb2 independently fails with probability at least 1/2. To see why this is the case, consider some
i ∈ K ∩C. If i was added to C as a result of the check in Step 2.(e) failing, then the honest receiver
also catches this with probability 1. If i was added to C as a result of a check in Step 2.(f) fails,
then it means that there exists j, k and b ∈ {0, 1} such that sk′i,j,kb 6= ski,j,kb . In this case, the honest
receiver catches this with probability at least 1/2 since xi,j,k = b with probability 1/2. If i was
added to C as a result of the check in Step 2.(g) failing, then honest receiver in Hyb2 catches this

90

with probability 1. This shows that for each i ∈ C ∩ K, one of the checks done by the honest
receiver in Hyb2 independently fails with probability at least 1/2.

To complete the proof of the claim, we now show that ifK is chosen uniformly at random then
the probability that |K ∩ C| ≤ λ/100 is 2−O(λ). Consider an arbitrary subset C ′ ⊆ C of size λ/100.
We first upper bound the probability that K ∩ C ⊆ C ′.

Pr[K ∩ C ⊆ C ′] =

(
m− |C \ C ′|

λ

)
(
m
λ

)

<

(
m− 99λ/100

λ

)
(
m
λ

)
<

(m− 99λ/100)!

λ!(m− 199λ/100)!
· λ!(m− λ)!

m!

=
(m− 99λ/100)!(m− λ)!

m! · (m− 199λ/100)!

< (1− 99λ/100m)λ

< e−99λ/800.

The total number of subsets of C of size λ/100 is at most
(

m
λ/100

)
< (100em/λ)λ/100 =

(800e)λ/100 < e8λ/100 (since 800e < e8). Thus, via a standard union bound, the probability that
there exists a subset C ′ of C of size λ/100 such that |K ∩C| ⊂ C ′ is upper bounded by e−O(λ). This
completes the proof of the claim.

Claim C.11. Assuming the security of the outer MPC protocol, we have Hyb3 ≈s Hyb4.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb3 and Hyb4 with non-negligible advantage. We will use D to construct an adversary
B that breaks the security of the protocol Φ.

• B corrupts the sender client and sends xR as the input of the receiver client to the external
challenger.

• B extracts (y1, . . . , ym) as the first round message from the corrupted client to the servers.

• Before receiving the second round message from the challenger, it asks the challenger to
adaptively corrupt the servers indexed by the set C and the set K.

• B receives {xi}i∈C∪K .

• It uses this to perform all the checks as in Hyb3 and evaluates the garbled circuits Φ̃2,i for
each i ∈ C ∪K and obtains {zi}i∈C∪K .

• It sends {zi}i∈C∪K to the challenger and obtains the output of the honest receiver.

• It computes the view of the adversary A and then runs D on this view and the output of the
honest receiver.

91

Note that if the outer protocol messages given by the challenger are generated using the real
algorithms then the inputs to D are identical to Hyb3. Otherwise, they are identical to Hyb4. Thus,
if if D can distinguish between Hyb3 and Hyb4 with non-negligible advantage, then B can break
the security of the outer protocol Φ and this is a contradiction.

D Rewind Secure Oblivious Transfer

In this section, we give a construction of 1-rewinding sender secure oblivious transfer protocol
needed to instantiate the 2-party computation protocol in Section C. Our construction is based
on the protocol given in [ORS15] and makes black-box access to a public key encryption with
pseudorandom public keys. The main theorem we show is:

Theorem D.1. Assume black-box access to a public-key encryption with pseudorandom public keys. There
exists a four round, 1-out-of-2 parallel-secure OT protocol with 1-rewinding sender security.

We first show a protocol that is standalone secure and then parallel security follows immedi-
ately when the protocol is repeated in parallel via an argument that is similar to the one given in
[ORS15]. We start with the description of the building blocks.

Building Blocks.

• A four-round parallel secure OT protocol (OT1, . . . ,OT4, outOT) that satisfies the following
properties:

– IND-Based Receiver Security. For any malicious adversary A corrupting the sender
and for any two input bits b0, b1 ∈ {0, 1} of the receiver, we have that the view of
the adversary when interacting with a receiver on input b0 is computationally indistin-
guishable to its view when interacting with a receiver on input b1.

– 1-Rewinding Sender Security. For every malicious adversary A, corrupting the re-
ceiver, there exists an expected polynomial time simulators SimS = (Sim1

S ,Sim
2
S) such

that for every choice of sender’s input xS = (m0,m1), we have:

Expt1(A,Π, xS) ≈c Expt2(A,SimS , xS)

where Expt1 and Expt2 are defined in Figure 14.

In Appendix E, we give a proof sketch that the protocol from [ORS15, FMV19] satisfies this
property. This protocol makes black-box access to a public key encryption with pseudoran-
dom public keys.

• A 1-rewinding secure extractable commitment scheme (ECom1,ECom2,ECom3).

• A (λ+1)-out-of-2λ Shamir secret sharing scheme (Share,Rec) over F = GF[2λ]. Let Ψ : F2k →
Fk−1 be the linear map such that Ψ(c) = 0λ−1 iff c is a valid secret sharing of some secret.

• A symmetric key encryption scheme (KeyGen,Enc,Dec).

92

Expt1(A,Π, xS) = 1]

• Initialize Awith a uniform random tape s.

• π1 ← A(1λ; s).

• Choose r ← {0, 1}λ uniformly at random and
compute otm2 ← OT2(otm1, (m0,m1); r).

• (otm3[0]), (otm3[1])← A(otm2; s).

• otm4[b] ← OT4(otm1, otm3[b], (m0,m1); r) for b ∈
{0, 1}.

• Output (s, otm1, otm2, {otm3[b], otm4[b]}b∈{0,1}).

Expt2(A,SimS , xS)

• Initialize Awith a uniform random tape s.

• Sim1
S interacts withA and produces (b, otm1, sk).

• Sim2
S on input sk andmb interacts withA and pro-

duces (otm2, {otm3[b], otm4[b]}b∈{0,1}).

• Output (s, otm1, otm2, {otm3[b], otm4[b]}b∈{0,1}).

Figure 14: Descriptions of Expt1 and Expt2.

Construction.

• Round-1: R on choice bit c does the following:

1. It chooses a random subset T1−c ⊆ [2λ] of size λ/2 and sets bi = c for each i ∈ [2λ]\T1−c
and sets bi = 1− c for each i ∈ T1−c.

2. For each i ∈ [2λ], it computes otmi
1 ← OT1(1λ, bi).

3. It sends {otmi
1}i∈[2λ] to S .

• Round-2: S does the following:

1. For each b ∈ {0, 1}, it computes (s1
b , . . . , s

2λ
b)← Share(mb).

2. For each i ∈ [2λ], j ∈ [λ] and b ∈ {0, 1},
(a) It samples xi,j,1b , xi,j,2b uniformly from F.

(b) For each k ∈ [2], it computes uj,kb := Ψ(x1,j,k
b , . . . , x2λ,j,k

b).

(c) It sets xi,j,3b = sib − x
i,j,1
b − xi,j,2b .

(d) It samples ri,j,kb uniformly from {0, 1}∗ for each k ∈ [3].

(e) For each k ∈ [3], it computes Comi,j,k
b,1 := ECom1(1λ, xi,j,kb ; ri,j,kb).

3. For each i ∈ [2λ],

(a) It chooses two random secret keys ski0, sk
i
1 from KeyGen(1λ).

(b) It computes otmi
2 ← OT2(otmi

1, sk
i
0, sk

i
1).

4. It sends {Comi,j,k
b,1 }i∈[2λ],j∈[λ],k∈[3],b∈{0,1}, {u

j,k
b }j∈[λ],k∈[2],b∈{0,1} and {otmi

2}i∈[2λ] toR.

• Round-3: R does the following:

1. For each j ∈ [λ], it chooses ci uniformly from [3].

2. For each i ∈ [2λ], j ∈ [λ], k ∈ [3], b ∈ {0, 1}, it computes Comi,j,k
b,2 ← ECom2(Comi,j,k

b,1).

3. For each i ∈ [2λ], it computes otmi
3 ← OT3(otmi

2, bi).

4. It sends {otmi
3}i∈[2λ], {Com

i,j,k
b,2 }i∈[2λ],j∈[λ],k∈[3],b∈{0,1} and {cj}j∈[λ].

• Round-4 : S does the following:

93

1. For each i ∈ [2λ],

(a) It computes otmi
4 ← OT4(otmi

1, otm
i
3, sk

i
0, sk

i
1).

(b) It sets vib := {ri,j,kb }j∈[λ],k∈[3] for each b ∈ {0, 1}.
(c) It computes ctib = Enc(skib, v

i
b) for each b ∈ {0, 1}.

2. For each i ∈ [2λ], j ∈ [λ], k ∈ [3], b ∈ {0, 1}, it computes Comi,j,k
b,3 ← ECom2(Comi,j,k

b,2 , xi,j,kb ; ri,j,kb).

3. It sends {otmi
4, ct

i
0, ct

i
1}i∈[2λ], {Com

i,j,k
b,3 }i∈[2λ],j∈[λ],k∈[3],b∈{0,1}, {x

i,j,cj
b , r

i,j,cj
b }i∈[2λ],j∈[λ],b∈{0,1}.

• Output: To compute the outputR does the following:

1. Share Validity Check:

(a) For each i ∈ [2λ], j ∈ [λ] and b ∈ {0, 1}, it checks if Com
i,j,cj
b,1 and Com

i,j,cj
b,3 are

consistent with {xi,j,cjb , r
i,j,cj
b }.

(b) For each j ∈ [λ] and b ∈ {0, 1}, it sets uj,3b = −uj,1b − uj,2b and checks if uj,cjb =

Ψ(x
1,j,cj
b , . . . , x

2λ,j,cj
b).

2. Test Phase:

(a) For each i ∈ [2λ],
i. It recovers skibi by applying outOT on otmi

2, otm
i
4, input bi and the randomness

used in generating otmi
1, otm

i
3.

ii. It computes vibi := Dec(skibi , ct
i
bi

).

iii. It parses vibi as {ri,j,kbi
}j∈[λ],k∈[3] and it recovers {xi,j,kbi

}j∈[λ],k∈[3] from the Comi,j,k
bi,1

,Comi,j,k
bi,3

using ri,j,kbi
.

iv. For each j ∈ [λ], it computes si,jbi =
∑

k∈[3] x
i,j,k
bi

.
(b) It chooses a random subset Tc of [2λ] \ T1−c of size λ/2.
(c) It checks if for each β ∈ {0, 1} and for each i ∈ Tβ , whether si,1β = si,2β = · · · = si,λβ .
(d) If any of the above checks fail, then it aborts.

3. Reconstruction Phase:

(a) For each i ∈ [2λ] \ T1−c, it sets sic = si,1c if si,1c = · · · = si,λc and otherwise, it sets this
value to be ⊥.

(b) It runs Rec({sib}i∈[2λ]\T1−c) and outputs this value.

D.1 Proof of Security

D.1.1 1-Rewinding Sender Security

We start with the descriptions of the simulators (Sim1
S ,Sim

2
S).

Description of Sim1
S .

1. Sim1
S constructs an adversary A1 that receives the messages for the OT protocol externally

and interacts with A internally in the first three rounds. Specifically, A1 does the following:

• It initializes A and obtains {otmi
1}i∈[2λ] from A. It forwards this message externally.

94

• On receiving {otmi
2}i∈[2λ] externally, A2 computes Comi,j,k

b,1 ← ECom1(1λ,⊥) for each
i ∈ [2λ], j ∈ [λ], k ∈ [3] and b ∈ {0, 1}. For each j ∈ [λ] and k ∈ [2], it computes
uj,kb := Ψ(x1,j,k

b , . . . , x2λ,j,k
b) where xi,j,kb is uniformly chosen for each i ∈ [2λ].

• It runs A on {Comi,j,k
b,1 }i∈[2λ],j∈[λ],k∈[3],b∈{0,1}, {u

j,k
b }j∈[λ],k∈[2],b∈{0,1} and {otmi

2}i∈[2λ] and
receives two sets of third round messages.

• It forwards the OT messages in those two sets externally.

2. Sim1
S runs Sim1

OT,S on A1 and obtains xOT, skOT and {otmi
1}i∈[2λ].

3. If xOT corresponds to the special symbol abort, then Sim1
S sets sk = (skOT, random tape of A1)

and outputs abort, sk, {otmi
1}i∈[2λ].

4. Otherwise, it parses xOT as (b1, . . . , b2λ). It sets c = majority(b1, . . . , b2λ). It then runs inde-
pendent executions of Sim1

OT,S on A1 until it obtains 12λ executions where xOT is not abort.
Let T be the number of such executions needed. Sim1

S sets ε̃ = 12λ/T . It finally outputs
c, sk = ((b1, . . . , b2λ), skOT, ε̃, {otmi

1}i∈[2λ]).

5. Sim1
S has an internal step counter and if it runs for more than 2λ steps, it outputs a special

symbol timeout and aborts.

Description of Sim2
S .

1. If the output of Sim1
S corresponds to the aborting transcript, then Sim2

S generates the view of
A in the first three rounds (using the random tape of A1) and outputs the second and third
round messages of the protocol.

2. Otherwise, it obtains mb from the output of the ideal functionality and sets m1−b = 0λ.

3. Sim2
S constructs an adversary A2 that obtains the OT messages externally and interacts with

A internally in the second and third rounds of the protocol as follows:

• On receiving {otmi
2}i∈[2λ] externally,A2 samples {Comi,j,k

b,1 }i∈[2λ],j∈[λ],k∈[3],b∈{0,1} and {uj,kb }j∈[λ],k∈[2],b∈{0,1}
as in the protocol using the newly set values of m0,m1.

• It runs A on {Comi,j,k
b,1 }i∈[2λ],j∈[λ],k∈[3],b∈{0,1}, {u

j,k
b }j∈[λ],k∈[2],b∈{0,1} and {otmi

2}i∈[2λ] and
receives two sets of third round messages.

• It forwards the OT messages in those two sets of third round messages externally.

4. For each i ∈ [2λ], Sim2
S samples two secret keys ski0, sk

i
1 from KeyGen(1λ).

5. Sim2
S runs Sim2

OT,S on A2 with skOT and {skibi}i∈[2λ] as inputs for λ2/ε̃ independent exe-
cutions. If in each of these executions, Sim2

OT,S outputs the special symbol fail, then Sim2
S

outputs fail and aborts.

6. Otherwise, Sim2
S obtains the second round OT protocol message, the two sets of third and

fourth round OT protocol messages from Sim2
OT,S .

7. From the random tape of A2, Sim2
S recovers the rest of the second and third round messages

of the protocol in its interaction with A along with {ri,j,kbi
}i∈[2λ],j∈[λ],k∈[3] which denotes the

randomness used in generating {Comi,j,k
bi
}i∈[2λ],j∈[λ],k∈[3].

95

8. Sim2
S computes ctiβ = Enc(skiβ, {r

i,j,k
bi
}j∈[λ],k∈[3]) for each i ∈ [2λ] and β ∈ {0, 1}.

9. It generates the rest of the last round protocol messages using the random tape of A2 and
outputs the second, two sets of third and fourth round messages of the protocol.

Running time of Sim1
S and Sim2

S . Let ε be the probability that Sim1
OT,S outputs xOT 6= abort in the

description of Sim1
S . Then the expected running time of Sim1

S is given by poly(λ)+poly(λ)ε(12λ/ε) =
poly(λ). Via a standard argument (see [GK96a]), we can show that ε̃ is within a factor of 2 of
the value of ε except with probability 2−λ. Thus, the expected running time of Sim2

S is given by
poly(λ) + poly(λ)ε(O(λ2/ε) + 2λ(1/2λ)) = poly(λ).

Proof of Indistinguishability. We now show that the real and the ideal experiments are compu-
tationally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to the output of the real experiment.

• Hyb1 : In this hybrid, we construct an adversary A′ that receives the OT protocol messages
externally and interacts with A in the first three rounds of the protocol as follows:

– It initializes A and obtains {otmi
1}i∈[2λ] from A. It forwards this message externally.

– On receiving {otmi
2}i∈[2λ] externally,A2 samples {Comi,j,k

b,1 }i∈[2λ],j∈[λ],k∈[3],b∈{0,1} and {uj,kb }j∈[λ],k∈[2],b∈{0,1}
as in the protocol using the honest parties inputs m0,m1.

– It runs A on {Comi,j,k
b,1 }i∈[2λ],j∈[λ],k∈[3],b∈{0,1}, {u

j,k
b }j∈[λ],k∈[2],b∈{0,1} and {otmi

2}i∈[2λ] and
receives two sets of third round messages.

– It forwards the OT messages in those two sets externally.

We generate the OT protocol messages in this hybrid by running Sim1
OT,S ,Sim

2
OT,S on A2. In

Claim D.2, we show that Hyb0 ≈c Hyb1 from the 1-rewinding sender security property of the
OT protocol.

• Hyb2 : In this hybrid,

– We estimate ε̃ as in the simulation using A′. We output the special symbol timeout, if
we run for 2λ steps.

– We run Sim2
OT,S on A′ for λ2/ε̃ independent executions and we output the special sym-

bol fail, if Sim2
OT,S outputs fail, in each of these executions. We output the special symbol

timeout, if we run for 2λ steps.

Via an identical argument to Claim C.4, we can show that Hyb1 ≈s Hyb2.

• Hyb3 : In this hybrid, we run Sim1
OT,S on the adversaryA1 (defined in the simulation), instead

of running it on A′ as in the previous hybrid.

Via an identical argument in Claim C.5, we can show that Hyb2 ≈c Hyb3 from the 1-rewinding
security of the extractable commitment scheme.

• Hyb4 : In this hybrid, we generate cti1−bi for each i ∈ [2λ] as Enc(ski1−bi , {r
i,j,k
bi
}j∈[λ],k∈[3]).

In Claim D.3, we show that Hyb3 ≈c Hyb4 from the semantic security of the encryption
scheme.

96

• Hyb5 : In this hybrid, we run Sim2
OT,S on the adversary A2 instead of running it on A′ as in

the previous hybrid.

In Claim D.4, we show that Hyb4 ≈c Hyb5 from the 1-rewinding security of the extractable
commitment scheme and the perfect secrecy of Shamir sharing.

Claim D.2. Assuming the 1-rewinding sender security property of the OT protocol, we have Hyb0 ≈c
Hyb1.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb0 and Hyb1 with non-negligible advantage. We will use D to construct an adversary
B that breaks the 1-rewinding sender security of the OT protocol.

• For each i ∈ [2λ], B samples ski0, sk
i
1 from KeyGen(1λ) and sends {ski0, ski1}i∈[m] as the chal-

lenge sender inputs to the external challenger.

• B constructs A′ as in the description of Hyb1 and forwards the messages from the external
challenger to A′ and vice-versa.

• The external challenger finally outputs the view ofA′. B uses this to generate the final round
message of the protocol and generate the view of A.

• B finally runs D on the above generated view of A and outputs whatever D outputs.

Note that if the view of A′ is generated using the real algorithms then the inputs to D are identi-
cally distributed to Hyb0. Otherwise, they are distributed identically to Hyb1. Thus, if D can dis-
tinguish between Hyb0 and Hyb1 with non-negligible advantage, then A breaks the 1-rewinding
sender security property of the OT protocol and this is a contradiction.

Claim D.3. Assuming the semantic security of the encryption scheme, we have Hyb3 ≈c Hyb4.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb3 and Hyb4 with non-negligible advantage. We will use D to construct an adversary
B that breaks the semantic security of the encryption scheme.

• For each i ∈ [2λ],A provides {ri,j,kbi
}j∈[λ],k∈[3] as the left challenge message and {ri,j,k1−bi}j∈[λ],k∈[3]

as the right challenge message. It receives cti1−bi from the challenger.

• It generates the rest of the protocol messages as in Hyb3. Note that this does not require
knowledge of ski1−bi .

• It generates the view of the adversary A and finally runs D on this view and outputs what-
ever D outputs.

Note that if the challenge ciphertexts correspond to the encryption of the left message, then the
inputs to D are identical to Hyb4. Otherwise, the inputs are identical to Hyb3. Thus, if D can
distinguish between Hyb3 and Hyb4 with non-negligible advantage, then B can break the semantic
security of the encryption scheme and this is a contradiction.

Claim D.4. Assuming the 1-rewinding sender security of the extractable commitment scheme, we have
Hyb4 ≈c Hyb5.

97

Proof. Let c = majority(b1, . . . , b2λ) and let T1−c be the set of indices such that for each i ∈ T1−c,
bi = 1 − c. By definition, |T1−c| ≤ λ. For each j ∈ [λ], we define an adversary A′j that does the
following:

• On receiving {otmi
2}i∈[2λ] externally, A′j samples si1−b for each i ∈ T1−c uniformly at random

from F. It sets si1−b = si1−b and generates (s1
1−b, . . . , s

2λ
1−b) ← Share(m1−b)|{sib}i∈T1−c and

(s1
1−b, . . . , s

2λ
1−b)← Share(0λ)|{sib}i∈T1−c .

• It then samples {Comi,j′,k
1−b,1}i∈[2λ],j′≤j,k∈[3] and {uj

′,k
1−b}j′≤j,k∈[2] using (s1

1−b, . . . , s
2λ
1−b) and sam-

ples {Comi,j′,k
1−b,1}i∈[2λ],j′>j,k∈[3] and {uj

′,k
1−b}j′>j,k∈[2] using (s1

1−b, . . . , s
2λ
1−b).

• It runs A on {Comi,j,k
b,1 }i∈[2λ],j∈[λ],k∈[3],b∈{0,1}, {u

j,k
b }j∈[λ],k∈[2],b∈{0,1} and {otmi

2}i∈[2λ] and re-
ceives two sets of third round messages.

• It forwards the OT messages in those two sets externally.

We consider a sequence of hybrids Hyb4 ≡ Hyb4,0, . . . ,Hyb4,λ ≡ Hyb5 where the only difference
between Hyb4,j−1 and Hyb4,j (for each j ∈ [λ]) is that in Hyb4,j , we run Sim2

OT,S on A′j whereas in
Hyb4,j−1, we run it on A′j−1.

We now show that for each j ∈ [λ], Hyb4,j−1 ≈c Hyb4,j from the 1-rewinding security of the
extractable commitment scheme.

We consider a couple of intermediate hybrids.

• Hyb′4,j−1 : In this hybrid, we define an adversary C′j−1 that does the following:

– On receiving {otmi
2}i∈[2λ] externally, C′j−1

1. Sets count = 0.
2. While(count ≤ λ)

(a) It chooses a random gj ← [3].
(b) It samples si1−b for each i ∈ T1−c uniformly at random from F. It sets si1−b = si1−b

and generates (s1
1−b, . . . , s

2λ
1−b)← Share(m1−b)|{sib}i∈T1−c and (s1

1−b, . . . , s
2λ
1−b)←

Share(0λ)|{sib}i∈T1−c .

(c) It then samples {Comi,j′,k
1−b,1}i∈[2λ],j′≤j,k∈[3] and {uj

′,k
1−b}j′≤j−1,k∈[2] using (s1

1−b, . . . , s
2λ
1−b)

and samples {Comi,j′,k
1−b,1}i∈[2λ],j′≥j,k∈[3] and {uj

′,k
1−b}j′≥j,k∈[2] using (s1

1−b, . . . , s
2λ
1−b).

(d) It runsA on {Comi,j,k
b,1 }i∈[2λ],j∈[λ],k∈[3],b∈{0,1}, {u

j,k
b }j∈[λ],k∈[2],b∈{0,1} and {otmi

2}i∈[2λ]

and receives two sets of third round messages.
(e) If the cj received A in any of the two sets of third round messages is equal

to gj , then it increments count and goes to the beginning of the while loop.
Otherwise, it forwards the OT messages in those two sets externally.

3. If count = λ+ 1, then it aborts.

We now argue that Hyb′4,j−1 is statistically close to Hyb4,j−1. Note that gj is distributed uni-
formly given the view of the adversary A. Thus, in each execution of the while loop, the
probability that gj is equal to one of the cjs in the two sets of third round messages is at most
2/3. Thus, in each of λ independent executions of the while loop gj is equal to one of the cjs
is at most (2/3)λ = negl(λ).

98

• Hyb′4,j : In this hybrid, we construct an adversary C′j that does is similar to C′j−1, except that in

each execution of the while loop, it samples {Comi,j′,k
1−b,1}i∈[2λ],j′≤j,k∈[3] and {uj

′,k
1−b}j′≤j,k∈[2] us-

ing (s1
1−b, . . . , s

2λ
1−b) and samples {Comi,j′,k

1−b,1}i∈[2λ],j′>j,k∈[3] and {uj
′,k

1−b}j′>j,k∈[2] using (s1
1−b, . . . , s

2λ
1−b).

We now argue that Hyb′4,j−1 ≈c Hyb′4,j from the 1-rewinding sender security of the ex-
tractable commitment scheme.

Assume for the sake of contradiction that there exists a distinguisher D that can distinguish
between Hyb′4,j and Hyb′4,j−1 with non-negligible advantage. We now construct an adversary
B that breaks the 1-rewinding sender security of the extractable commitment scheme.

B constructs an adversary C that is similar to C′j−1 except that:

1. In each execution of the while loop, it samples a random element gj ← [3].

2. For each k 6∈ [3] \ {gj}, it samples (x1,j,k
1−b , . . . , x

2λ,j,k
1−b) uniformly at random.

3. It then computes xi,j,gj1−b = si1−b −
∑

k∈[3]\{gj} x
i,j,k
1−b and x

i,j,gj
1−b = si1−b −

∑
k∈[3]\{gj} x

i,j,k
1−b

for each i ∈ [2λ]. If gj ∈ [2], then it sets uj,gj1−b = −
∑

k∈[3]\{gj}Ψ(x1,j,k
1−b , . . . , x

2λ,j,k
1−b).

4. It interacts with the external challenger and provides {xi,j,gj1−b }i∈[2λ] as the left message

and {xi,j,gj1−b }i∈[2λ] as the right message.

5. It receives {Comi,j,gj
b,1 }i∈[2λ] from the external challenger and generates the rest of the

second round messages exactly as C′j−1.

6. The rest of the steps are same as in C′j−1.

B runs Sim2
OT,S on C as in Hyb′4,j−1 and records the interaction C has with A. When Sim2

OT,S
generates the second, two sets of third and fourth round OT messages, B retrieves the two
sets of second round extractable commitment messages {Comi,j,gj

1−b,2[β]}i∈[2λ],β∈{0,1} from C’s
interaction with A in the third round of the protocol. It sends this to the external challenger
and obtains the two sets of corresponding third round messages. It generates the rest of the
final round messages as in Hyb′4,j−1. B finally runs D on the view of the adversary A and
then outputs whatever D outputs.

Note that if commitments generated by the external challenger correspond to the left mes-
sage, then the inputs to D are identical to output of Hyb′4,j−1. Otherwise, they are identical
to the output of Hyb′4,j . Thus, if D can distinguish between Hyb′4,j−1 and Hyb′4,j with non-
negligible advantage then B can break the 1-rewinding sender security of the extractable
commitment scheme and this is a contradiction.

We can show via an identical argument to the proof that Hyb′4,j−1 is statistically close to Hyb4,j−1

that Hyb′4,j is statistically close to Hyb4,j . This completes the proof of the claim.

D.1.2 Receiver Security.

We start with the descriptions of (Sim1
R, Sim

2
R).

Description of Sim1
R.

1. Sim1
R follows the honest receiver protocol using the input c = 0 and plays the first four

rounds of the protocol.

99

2. Sim1
R rewinds the third and the fourth rounds and gives different second round extractable

commitment challenges and extracts {xi,j,k0 , xi,j,k1 }i∈[2λ],j∈[λ],k∈[3].

3. For each i ∈ [2λ] and j ∈ [λ], it computes si,jb :=
∑

k∈[3] x
i,j,k
b .

4. For each i ∈ [2λ] \ T1 and b ∈ {0, 1}, it sets sib = si,1b if si,1b = si,2b · · · = si,λb and otherwise, it
sets this value to be ⊥.

5. It sets mb = Rec({sib}i∈[2λ]\T1
) for each b ∈ {0, 1}.

6. It outputs (m0,m1), the messages in the first two rounds and sets sk to be its random tape.

Description of Sim2
R.

• Sim2
R plays the third and fourth round of the protocol using the random tape given as part

of sk.

• It performs all the checks that an honest receiver does in the Share validity check and the
Test phase. If any of the checks fail, it instructs the ideal functionality to abort the protocol.

• If all the checks pass, then it instructs the ideal functionality to deliver the outputs to the
honest receiver.

Proof of Indistinguishability. We show that the view of the adversary and the output of the
honest receiver in the real and the ideal experiments are computationally indistinguishable via a
hybrid argument.

• Hyb0 : This corresponds to the output of the real experiment.

• Hyb1 : In this hybrid, we rewind the third and the fourth rounds of the protocol and extract
{xi,j,k0 , xi,j,k1 }i∈[2λ],j∈[λ],k∈[3] from the extractable commitment scheme. We perform the share
validity check and if it aborts then we instruct the honest receiver to abort. In the test phase,
we choose a random subset Tc of [2λ]\T1−c of size λ/2 and recover {skibi}i∈T0∪T1 from outOT.
We then recover {vibi}i∈T0∪T1 by decrypting {ctibi}i∈T0∪T1 and perform the rest of the checks
in the test phase. In the reconstruction phase, we use the extracted values instead of the
values recovered from the OT computation to reconstruct mc.

In Claim D.5, we show that Hyb0 ≈s Hyb1. Notice that if the honest receiver’s choice bit
c = 0, then Hyb1 is identical to the output of the ideal experiment.

• Hyb2 : In this hybrid, for each i ∈ [2λ] \ {T0 ∪ T1}, we change bi from c to 1 − c. Note that
this hybrid is identical to the output of the ideal experiment if the choice bit c of the honest
receiver is 1.

In Claim D.6, we show that Hyb1 ≈c Hyb2 from the Ind-based receiver security of the OT
protocol.

Claim D.5. Hyb0 ≈s Hyb1.

100

Proof. We first argue that with overwhelming probability, there exists at least one j ∈ [λ] such
that {x1,j,k

b , . . . , x2λ,j,k
b }k∈[3] form a 3-out-of-3 secret sharing of the output of Share on some secret.

Suppose this is not the case, then for each j ∈ [λ] there exists at least one kj ∈ [3] such that if
cj = kj , then the share validity check outputs abort. Now, since cj is chosen uniformly at random
for each j ∈ [λ], the probability that cj 6= kj for each j ∈ [λ] is at most (2/3)λ.

Next, we argue that if there exists a subset C ⊆ [2λ] \ T1−c of size λ/8 such that for each i ∈ C
either:

1. There exists some j ∈ [λ], k ∈ [3] such that {Comi,j,k
b,1 ,Comi,j,k

b,3 } is an improperly computed
extractable commitment.

2. There exists a j ∈ [λ] such that si,jb recovered in the test phase is not equal to si,1b .

Then, the test phase aborts with overwhelming probability. This is because if Tc ∩ C 6= ∅, then
the test phase aborts and via an identical argument to the proof of Claim 6.7, we can show that
this happens with probability at least 1 − 2−O(λ). Thus, it now follows from the error correcting
properties of Shamir secret sharing (which can recover upto λ/4 errors) that the output of the
reconstruction phase in Hyb1 is identical to Hyb2 conditioned on the share validity check and the
test phase not aborting.

Claim D.6. Assuming the Ind-based receiver security of the OT protocol, we have Hyb1 ≈c Hyb2.

Proof. Assume for the sake of contradiction that there exists a distinguisherD that can distinguish
between Hyb1 and Hyb2 with non-negligible advantage. We will use D to construct an adversary
B that breaks the Ind-based receiver security of the OT protocol.

• B chooses random subset T1−c ⊆ [2λ] of size λ/2 and then chooses a random subset Tc ⊆
[2λ] \ T1−c of size λ/2.

• For each i ∈ Tc, it uses bi = c and for each i ∈ T1−c, it uses bi = 1− c.

• For each i ∈ [2λ] \ {T0 ∪ T1}, B interacts with the external challenger and provides (c, 1− c)
as the two challenge choice bits. It receives {otmi

1}i∈[2λ]\{T0∪T1}.

• It generates the rest of the first round message as in Hyb1.

• On receiving the second round message from the adversary, B forwards {otmi
2}i∈[2λ]\{T0∪T1}

to the external challenger and obtains {otmi
3}i∈[2λ]\{T0∪T1}.

• It generates the rest of the third round messages as in Hyb2 and computes the output mc as
in Hyb2.

• B runs D on the view of the adversary and the output of the honest receiver and outputs
whatever D outputs.

Note that if the OT messages generated by the challenger contains the choice bit c, then the
inputs toD are identically distributed to Hyb1. Otherwise, they are distributed identically to Hyb2.
Thus, if D can distinguish between the outputs of Hyb1 and Hyb2 with non-negligible advantage,
then B breaks the Ind-based receiver security of the OT protocol which is a contradiction.

Parallel Security. The parallel security follows immediately via a similar argument as in [ORS15].

101

E Proof Sketch for 1-Rewinding Sender Security of [FMV19]

In this subsection, we give a sketch of the proof that the protocol from [FMV19] satisfies 1-rewinding
sender security. We begin with the description of the building blocks and the protocol. The de-
scription of the building blocks and the protocol are taken verbatim from [FMV19].

Building Blocks.

• A commit-and-prove protocol Πco := (P0, P1, V0, V1) from [ORS15] with the following syn-
tax. (i) The randomized algorithm P0 takes a bit d and a string md and returns a string
γ ∈ {0, 1}∗ and auxiliary state information α ∈ {0, 1}∗. The randomized algorithm V0 returns
a random string β ← B. The randomized algorithm P1 takes (α, β, γ,m1−d) and returns a
string δ ∈ {0, 1}∗ ; (iv) The deterministic algorithm V1 takes a transcript (γ, β, (δ,m0,m1))
and outputs a bit. We need this protocol to satisfy the following properties:

– Binding Property. For every PPT malicious prover P ∗ = (P ∗0 , P
∗
1), there exists a negli-

gible function ν : N→ [0, 1] such that probability that the following experiment outputs
1 is ν(λ):15

1. (γ, α)← P ∗0 (1λ).
2. β ← V0(1λ).
3. (δ,m0,m1), (δ′,m′0,m

′
1)← P ∗1 (α, β)

4. Output V1(γ, β, (δ,m0,m1)) ∧ V1(γ, β, (δ′,m′0,m
′
1)) ∧ ∧m′0 6= m0 ∧m′1 6= m1.

– Existence of Committing Branch: For every PPT malicious prover P ∗ = (P ∗0 , P
∗
1), there

exists a negligible function ν : N → [0, 1] such that the probability that the following
experiment outputs 1 is at most ν(λ).

1. (γ, α)← P ∗0 (1λ).
2. β, β′ ← V0(1λ).
3. (δ,m0,m1)← P ∗1 (α, β)

4. (δ′,m′0,m
′
1)← P ∗1 (α, β′).

5. Output V1(γ, β, (δ,m0,m1)) ∧ V1(γ, β′, (δ′,m′0,m
′
1)) ∧m′0 6= m0 ∧m′1 6= m1.

– Committing Branch Indistinguishability: For all PPT malicious verifiers V ∗ and for
all messages (m0,m1) ∈ {0, 1}∗, we have that the view of V ∗ when interacting with
an honest prover on input (m0,m1, 0) is computationally indistinguishable to its view
when interacting with an honest prover on input (m0,m1, 1).

• A public-key encryption (KeyGen,Enc,Dec) with pseudorandom public keys and the public
keys are strings in {0, 1}λ.

Construction. We now describe the protocol from [FMV19].

• Round-1: R does the following:

1. It chooses a random string s1−b ← {0, 1}λ.

2. It runs P0(1λ, 1− b, s1−b) to obtain (α, γ).

15Though not explicitly mentioned, we note that the [ORS15] satisfies this binding property.

102

3. It sends γ to S.

• Round-2: S does the following:

1. It samples two random strings r0, r1 ← {0, 1}λ.

2. It samples β ← V0(1λ).

3. It sends (r0, r1, β).

• Round-3: R does the following:

1. It samples (pkb, skb)← KeyGen(1λ).

2. It sets sb = pkb − rb.
3. It computes (δ, s0, s1)← P1(α, β, γ, sb).

4. It sends (δ, s0, s1).

Round-4: S does the following:

1. It checks if V1(β, γ, (δ, s0, s1)) = 1 and otherwise, it aborts.

2. Else, it computes pk0 = r0 ⊕ s0 and pk1 = r1 ⊕ s1.

3. It then computes ct0 ← Enc(pk0,m0) and ct1 ← Enc(pk1,m1).

4. It then sends ct0, ct1 toR.

• Output: To compute the output,R decrypts ctb using skb and recovers mb.

Proof Sketch for 1-Rewinding Sender Security. It follows from the binding property that for
any two different third round messages ofR, the message s1−b that corresponds to the committing
branch must be the same. Therefore, even if R rewinds the third round once, it follows from the
semantic security of the public key encryption under pk1−b that the messagem1−b must be hidden.
This is formalized using a simulator that generates ct1−b in the main thread as well as the rewind
thread as an encryption of ⊥.

F Five-Round MPC protocol over Point-to-Point Channels

In this section, we give a modification of the protocol from Section 6 that works over point-to-
point channels instead of the broadcast channels. One of the key ingredients in this modification
is a special Conditional Disclosure of Secrets (CDS) protocol.

F.1 Special CDS Protocol

In this special CDS protocol, there are two senders S1 and S2 and one receiver R. The input of the
sender Si is given by (xi, yi) ∈ {0, 1}∗ for each i ∈ [2]. The senders S1 and S2 share some common
randomness r that is unknown to the receiver. We want S1 and S2 to send a single message to
the receiver R such that if x1 = x2 then it can obtain (y1, y2). Otherwise, the receiver learns no
information about (y1, y2). Formally, this special CDS protocol has the following syntax:

• CDS1(i, (xi, yi), r) : It is a PPT algorithm that takes the index i ∈ [2] of the party, its input
(xi, yi) and the shared random string r and outputs cdsi1.

103

• CDS2(cds11, cds
2
1, (x1, x2)) : It is a deterministic algorithm that takes cds11, cds

2
1, (x1, x2) as input

and outputs either (y1, y2) or ⊥.

We require the CDS protocol to satisfy the following properties.

• Correctness: For every input (x1, y1), (x2, y2) such that x1 = x2 and the shared random
string r, we have:

Pr[CDS2(cds11, cds
2
1, (x1, x2)) = (y1, y2)] = 1

where cdsi1 ← CDS1(i, (xi, yi), r) for each i ∈ [2].

• Security: There exists a simulator Sim such that for any inputs (x1, y1), (x2, y2) such that
x1 6= x2, we have:

{cds11, cds21} ≈c {Sim(x1, x2)}

where cdsi1 ← CDS1(i, (xi, yi), r) for each i ∈ [2].

We now give the description of such a protocol. Let us assume that each xi, yi belongs to some
finite Field F of size greater than 2λ. Let the shared random string r be parsed as (a, b, c) where
a, b, c ∈ F. Let us assume that there exists a symmetric key encryption scheme Enc,Dec where the
key space and the message space are F. Further, the keys are uniformly chosen random elements
in F.

• CDS1(i, (xi, yi), r): If i = 1, compute k1 = a ·x1 +b+c. Else, compute k2 = a ·x2 +b. Compute
cti = Encc(yi). Output (ki, cti).

• CDS2(cds11, cds
2
1, (x1, x2)) : Compute yi := Deck1−k2(cti) for each i ∈ [2] and output (y1, y2).

The correctness is easy to observe and to show security notice that if x1 6= x2, then conditioned
on k2, ax1 + b is uniformly distributed in the field F. Thus, conditioned on (k1, k2), c is uniformly
distributed over F. Thus, if we define the simulator Sim to sample two random strings k1, k2 and
a random c, and output {(ki,Encc(0))}i∈[2], it follows from the semantic security of the encryp-
tion scheme that the output of the simulator is computationally indistinguishable to the actual
messages computed in the protocol.

F.2 Modified Five-Round MPC protocol

We now give a five-round, black-box protocol over point-to-point channels below. This is similar
to the protocol given in Section 6 except that we use the special CDS protocol to ensure that ma-
licious parties cannot cheat by sending different messages to different honest parties in the inner
protocol. We note that the watchlist protocol is run over point-to-point channels. Specifically, for
each round r ∈ [4], wlir consists of (wli,1r , . . . ,wl

i,n
r) where the message wli,jr is the message intended

for party Pj .

• Round-1: In the first round, the party Pi with input χi does the following:

1. It chooses a random MAC key ki ← {0, 1}∗ and sets zi := (χi, ki).

2. It computes (φi→1
1 , . . . , φi→m1)← Φ1(1λ, i, zi).

3. It chooses a random subset Ki ⊂ [m] of size λ and sets xi,j = Ki for every j ∈ [n] \ {i}.
4. It chooses a random string ri,h ← {0, 1}∗ for every h ∈ [m] and sets yi,j = {ri,h, φi→h1 }h∈[m]

for every j ∈ [n] \ {i}.

104

5. It computes (wli,11 , . . . ,wli,n1)←WL1(1λ, i, {xi,j , yi,j}j∈[n]\{i}).

6. For each j ∈ [n] \ {i}, and r ∈ [3], sample a random string si,jr to be used as the shared
randomness for the CDS protocol.

7. It sends wli,j1 , {si,jr }r∈[3] to Pj .

• Round-2: In the second round, Pi does the following:

1. For each h ∈ [m], it computes πih,1 := Πh,1(1λ, i, φi→h1 ; ri,h).

2. It computes (wli,12 , . . . ,wli,n2)←WL2(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(1)). (Here, wl(r) denotes
the transcript in the first r rounds of WL.)

3. It sends {πih,1}h∈[m],wl
i,j
2 to Pj .

• Round-3: In the third round, Pi does the following:

1. For every h ∈ [m], it computes πih,2 := Πh,2(1λ, i, φi→h1 , πih(1); ri,h). (Here, πih(r) denotes
the transcript in the first r rounds of Πh received by Pi.) It additively secret shares πih,2
into n shares (πi,1h,2, . . . , π

i,n
h,2).

2. It computes (wli,13 , . . . ,wli,n3)←WL3(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(2)).

3. For each j ∈ [n] \ {i}, it computes cdsi,j2,1 ← CDS1(({πih(1)}h∈[m], {π
i,j
h,2}h∈[m]), s

i,j
1 ⊕ s

j,i
1).

4. It sends {πih(1)}h∈[m], cds
i,j
2,1,wl

i,j
3 to Pj .

• Round-4: In the fourth round, Pi does the following:

1. For each j, k ∈ [n], it recovers {πj,kh,2}h∈[m] from the CDS protocol. It uses this to compute
{πih(2)}h∈[m].

2. For every h ∈ [m], it computes πih,3 := Πh,3(1λ, i, φi→h1 , πih(2); ri,h). It additively secret
shares πih,3 into n shares (πi,1h,3, . . . , π

i,n
h,3).

3. It computes (wli,14 , . . . ,wli,n4)←WL4(1λ, i, {xi,j , yi,j}j∈[n]\{i},wl(3)).

4. For each j ∈ [n] \ {i}, it computes cdsi,j3,1 ← CDS1(({πih(2)}h∈[m], {π
i,j
h,3}h∈[m]), s

i,j
2 ⊕ s

j,i
2).

5. It sends {πih(2)}h∈[m], cds
i,j
3,1,wl

i,j
4 to Pj .

• Round-5: In the fifth round, Pi does the following:

1. It runs outWL on i, {xi,j , yi,j}j∈[n]\{i}, the random tape and wl(4) to obtain {rj,h, φj→h1 }j∈[n]\{i},h∈Ki .

2. For each j ∈ [n] \ {i} and h ∈ Ki, it checks:

(a) If the PRG computations in φj→h1 are correct.

(b) For each ` ∈ [3], whether πjh,` := Πh,`(1
λ, j, φj→h1 , πh(` − 1); rj,h) where πh(0) is set

to be the null string.

3. If any of the above checks fail, then it aborts.

4. For each j, k ∈ [n], it recovers {πj,kh,3}h∈[m] from the CDS protocol. It uses this to compute
{πih(3)}h∈[m].

5. Else, for each h ∈ [m], it computes πih,4 := Πh,4(1λ, i, φi→h1 , πih(3); ri,h). It additively
secret shares πih,4 into n shares (πi,1h,4, . . . , π

i,n
h,4).

105

6. For each j ∈ [n] \ {i}, it computes cdsi,j4,1 ← CDS1(({πih(3)}h∈[m], {π
i,j
h,4}h∈[m]), s

i,j
3 ⊕ s

j,i
3).

7. It sends {πih(3)}h∈[m], cds
i,j
4,1 to Pj .

• Output Computation. To compute the output, Pi does the following:

1. For each j, k ∈ [n], it recovers {πj,kh,4}h∈[m] from the CDS protocol. It uses this to compute
{πih(4)}h∈[m].

2. For every h ∈ [m], it computes φh2 := outΠh(i, πih(4)).

3. It computes outΦ({φh2}h∈[m]) to recover (y, σ1, . . . , σn).

4. It checks if σi is a valid tag on y using the key ki. If yes, it outputs y and otherwise, it
aborts.

Proof Sketch. The proof of security of the modified protocol is almost identical to the original
protocol. The only difference here is that a corrupted party can additionally send different mes-
sages in a particular round of the inner protocol to different honest parties. However, in this case,
we rely on the security of the CDS protocol to show that at least one of the shares of the next
round message of every honest party is hidden. This ensures that the adversary does not learn
any information about the next round message of every honest party.

106

	Introduction
	Our Contributions
	Related Work

	Technical Overview
	Background: Black-box MPC in the OT Hybrid Model
	The Watchlist Protocol
	Two-Round Protocol in the OT Correlations Model
	Fully Black-Box MPC in Five Rounds
	Barriers to 4 Round Black-Box MPC

	Preliminaries and Definitions
	Two-Round Semi-Malicious Secure Oblivious Transfer
	Non-malleable Codes
	Rewinding Secure Extractable Commitment
	Low-Depth Proofs

	Definitions
	Multi-Party Simultaneous OT
	1-Rewind Sender-Secure Two-Party Computation

	The (Multiparty) Simultaneous OT Protocol
	 Non-malleable m-choose-k OT: Construction and Analysis
	From Non-Malleable OT to (Multiparty) Simultaneous OT

	Black-Box Five-Round Secure Multiparty Computation
	Building Blocks
	Construction
	Simulator
	Proof of Indistinguishability

	Inner Protocol
	Conforming Protocols
	Special Two-Round Oblivious Transfer
	Construction
	Simulator
	Proof of Indistinguishability

	Two-Round Protocol in the Watchlist Correlations Model
	Construction
	Simulator
	Proof of Indistinguishability
	Instantiating the Inner Protocol
	Towards Improving the Concrete Efficiency

	Acknowledgments
	References
	Secure Multiparty Computation
	Defining Security.
	Security Against Semi-Malicious Adversaries

	Special Oblivious Transfer Protocol
	Rewinding Secure Two-party Computation
	Construction
	Proof of Security

	Rewind Secure Oblivious Transfer
	Proof of Security

	Proof Sketch for 1-Rewinding Sender Security of FMV19
	Five-Round MPC protocol over Point-to-Point Channels
	Special CDS Protocol
	Modified Five-Round MPC protocol

