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Abstract

This paper presents a new public key cryptography scheme using multivariate polynomials in a
finite field. Each multivariate polynomial from the public key is obtained by secretly and repeatedly
composing quadratic polynomials (of a single variable) with linear combinations of the input vari-
ables. Decoding a message involves recursively computing the roots of these quadratic polynomials,
and finally solving some linear systems. The main drawback of this scheme is the length of the public
key.

1 Introduction

Since the publication of the Diffie–Hellman key exchange [1] and the RSA cryptosystem [2], public key
cryptography has been a major field in cryptography with thousands of applications.

A new threat has appeared with the emergence of quantum computing, leading to the development
of post-quantum cryptography, aiming to replace current standards (RSA and Elliptic-curve protocols).
Many directions have been explored: lattice-based cryptography, code-based cryptography, supersingular
isogeny cryptography, multivariate cryptography...

The scheme presented in this article is part of multivariate cryptography: it is based on the supposedly
hard computational problem of finding the roots of a system of multivariate polynomials over a finite
field.

Famous schemes at the origin of multivariate cryptography are due to Jacques Patarin, including Hidden
Field Equations [3] and Unbalanced Oil and Vinegar (UOV) [4] (with Louis Goubin). Most of the
multivariate public key schemes, like UOV, are based on the same idea: the secret key consists of affine
transformations and quadratic multivariate polynomials with a trapdoor, hidden by composing both
types of functions. The resulting public key is a set of quadratic multivariate polynomials.

This paper proposes a new public key scheme using a different approach. This time, the multivariate
polynomials from the public key have a degree higher than 2. This means that the public key generated
by this protocol is quite long. As a consequence, this new scheme does not claim to overpass the best
known protocols in multivariate cryptography.

A python implementation of the scheme can be found here:
github.com/mi10e3/pkc-quadratic-composition
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2 Preliminaries

2.1 Public-key cryptography

A public key cryptography protocol generates two keys: a secret key and a public key. The secret key
must be kept private, while the public key can be shared publicly. Everyone can use the public key
to encrypt a message. Only the owner of the secret key must be able to reverse the operation and to
decrypt the message.

Figure 1: Example of communication using public key cryptography: only Alice can decrypt the message
sent by Bob thanks to her secret key.

2.2 Context

For what follows, let’s p be a prime number. We will place ourselves in Fp, the finite field of p elements.

The message we want to encrypt will be represented by i elements of Fp: (x1, ..., xi), with i ≥ 2.

The encrypted message will be represented by j elements of Fp: (y1, ..., yj), with j ≥ i.

We will use the ring of polynomials in i variables (x1, ..., xi). However, this scheme also involves polyno-
mials of a single variable. For the sake of clarity, the number of variables in the polynomials will always
be specified.

In this paper, a linear combination of (x1, ..., xi) refers to a function of the form:

(Fp)i → Fp

(x1, ..., xi) 7−→ λ0 +

i∑
u=1

λuxu with λ0, λ1, ..., λi fixed in (Fp)i+1

(We allow ourselves to add a constant coefficient).

2.3 Computing square roots in Fp

The main idea of this scheme lies in the fact that it is easy to compute a square root modulo p. First,
checking if a ∈ Fp admits a square root (when there exists x ∈ Fp with x2 = a) can be done quickly
with Euler’s criterion:

a
p−1
2 =

{
1 (mod p) when a admits a square root

−1 (mod p) otherwise
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This test can be done in O(log(p)) modular multiplications with fast exponentiation. When a square
root x =

√
a exists, its opposite −x is also a square root of a.

The computation of a square root in Fp is also quick:

• If p = 3 (mod 4),
√
a = ±a

p+1
4 (again O(log(p)) modular multiplications with fast exponentiation)

• If p = 1 (mod 4), the Tonelli–Shanks algorithm [5] will compute a square root of a in O(log(p)+ l2)
modular multiplications [6], where l is defined by p− 1 = 2lu, with u odd.

For general values of p, l is negligible compared to log(p), and the Tonelli–Shanks algorithm works in
O(log(p)) modular multiplications.

2.4 Solving quadratic equations in Fp

To solve a quadratic equation in Fp: ax2 + bx + c = 0, we do as if we were in R: we compute the
discriminant: ∆ = b2 − 4ac. If it admits a square root, we compute the 2 solutions with the well known
formula: x = (−b±

√
∆)/2a, otherwise the equation has no solutions. The computational complexity lies

in the square root, which involves O(log(p)) modular multiplications (as mentioned in section 2.3).

2.5 Probability of existence of a solution for quadratic equations

Let’s consider a quadratic polynomial f(x) = ax2 + bx+ c, with x, a, b, c ∈ Fp (a 6= 0).

With y fixed in Fp, the equation (of unknown x) f(x) = y has:

• 1 solution when ∆ = 0⇔ b2 − 4a(c− y) = 0⇔ y = c− b2

4a : it happens only for one value of y

• 2 solutions for n different values of y

• 0 solutions for p− n− 1 different values of y

As there are p different values for x, 1 + 2n = p ⇔ n = p−1
2 . The probability for a random quadratic

equation in Fp to have solutions is almost equal to 1/2.

3 The scheme

3.1 Generate the secret key

The secret key is obtained by randomly choosing a series of quadratic polynomials (of one variable) and
a series of linear combinations of (x1, ..., xi) in Fp.

More precisely, we can consider that the secret key consists of a set of j lines:

The kth line (1 ≤ k ≤ j) consists of m quadratic polynomials (of one variable): P 1
k , ..., P

m
k and one linear

combination of (x1, ..., xi): Ak.

• The quadratic polynomial (of a single variable) P q
k (1 ≤ q ≤ m) is defined as:

P q
k : Fp → Fp

x 7−→ αq
kx

2 + βq
kx+ γqk

• The linear combination Ak is defined as:

Ak : (Fp)i → Fp

(x1, ..., xi) 7−→ λ0k +

i∑
u=1

λukxu

Thus, the secret key is created by randomly choosing (in Fp) the following values:

For k ∈ {1, 2, ..., j}:
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• αq
k, β

q
k, γ

q
k (for q ∈ {1, 2, ...,m})

• λ0k, λ
1
k, ..., λ

i
k

3.2 Generate the public key

The public key consists of j multivariate polynomials (of i variables) on Fp. The kth (1 ≤ k ≤ j)
multivariate polynomial is computed as the composition of the quadratic polynomials (of a single variable)
and the linear combination of the kth line from the secret key.

More precisely, the public key is defined by j multivariate polynomials: M1, ...,Mj .

For k ∈ {1, 2, ..., j}, Mk : (Fp)i → Fp is computed by Mk = P 1
k ◦ P 2

k ◦ ... ◦ Pm
k ◦Ak.

The main idea is that the multivariate polynomials of the public key are given in their expanded form:

Mk(x1, ..., xi) =
∑

u1+...+ui≤2m
η
(u1,...,ui)
k × xu1

1 × ...× x
ui
i

The secret key contains the same multivariate polynomials, but in a factored form: a composition of
simple quadratic polynomials with a linear combination of (x1, ..., xi).

3.3 Encrypt a message

Let’s consider a message (x1, ..., xi) ∈ (Fp)i and a public key M1, ...,Mj .

For each k ∈ {1, 2, ..., j}, we compute:

yk = Mk(x1, ..., xi)

The encrypted message is (y1, ..., yj) ∈ (Fp)j .

3.4 Decrypt a message

Let’s consider an encrypted message (y1, ..., yj) ∈ (Fp)j and a secret key corresponding to the public key
used for encryption: ((P q

k , for q ∈ {1, 2, ...,m}), Ak) for k ∈ {1, 2, ..., j}.

For k ∈ {1, 2, ..., j} :

yk = Mk(x1, ..., xi)

⇔ yk = P 1
k ◦ ... ◦ Pm

k ◦Ak(x1, ..., xi)

⇔ yk = P 1
k (X) with X = P 2

k ◦ ... ◦ Pm
k ◦Ak(x1, ..., xi)

Since yk = P 1
k (X) is simply a quadratic equation of X, we can easily compute its 2 solutions (see section

2.3 and 2.4). If the equation does not admit solutions, it means there is no possible message (x1, ..., xi)
whose encryption gives (y1, ..., yj). If we name X1 and X2 the 2 solutions of the previous equation, it
becomes:

P 2
k (P 3

k ◦ ... ◦ Pm
k ◦Ak(x1, ..., xi)) =

{
X1

X2

In each case (X1 or X2), we can repeat the operation. We can visualize it with a tree (see Figure 2).

Note that some branches of the tree may stop, because the corresponding quadratic equation has no
solutions. However, if (y1, ..., yj) has been obtained by encrypting a message, we can be sure that the
tree will go down to at least 2 solutions of yk = P 1

k ◦ ... ◦ Pm
k (Z) (with unknown Z ∈ Fp).

Let Z1
k , Z

2
k , ..., Z

tk
k be the solutions of the previous equation we found by iterating the process described

above. This process that we can call ’recursive inverse composition’ captures all possible solutions.
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Figure 2: A tree representing the ’recursive inverse composition’ of m = 4 quadratic polynomials (of a
single variable).

Thus, we have: Ak(x1, ..., xi) =


Z1
k

...

Ztk
k

⇔ λ0k +

i∑
u=1

λukxu =


Z1
k

...

Ztk
k

This being true for each k (1 ≤ k ≤ j), we need to check for all the possible configurations between all
the Z. Checking a configuration means:

• Selecting, for each k (1 ≤ k ≤ j), a Z in {Z1
k , ..., Z

tk
k }.

• Solving the resulting linear system (of j lines and i unknowns). There may not be a solution.

Solving all the linear systems will result in finding all the possible messages (x1, ..., xi) whose encryption
gives (y1, ..., yj).

4 Practical aspects

4.1 Parameters of the scheme

This protocol has 4 parameters:

• p: the characteristic of the finite field in which the the calculations are done.

• i: the number of variables representing the message to encrypt.

• j: the number of variables representing the encrypted message.

• m: the number of quadratic polynomials (of a single variable) to compose for each line of the secret
key.

4.2 Size of the keys

The size of the secret key is quite small, it consists of j × (3m + i + 1) elements of Fp, represented by
integers between 0 and p − 1 (for each of the j lines, there are m quadratic polynomials (of a single
variable), defined by 3 numbers, and one linear combination of i variables, plus a constant coefficient).

The main drawback of this protocol is the length of the public key: j ×
(
2m+i

i

)
integers between 0 and

p − 1 (each of the j lines produces a multivariate polynomial of i variables, with degree 2m, because of

the m quadratic compositions, resulting in
(
2m+i

i

)
monomials).
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4.3 Complexity of encryption

The encryption of (x1, ..., xi) consists of the evaluation of j multivariate polynomials in Fp. Each poly-

nomial has i variables and a degree of 2m: it contains
(
2m+i

i

)
monomials. A classical approach for a fast

evaluation is:

• Evaluate first all the monomials without considering the coefficients of the polynomials (compute
X3Y 2Z5, not 134.X3Y 2Z5).

• To do so, start from the monomials of low degree: degrees 0 and 1 need no multiplications.

• Compute the monomials (without coefficient) of degree k + 1 from those of degree k (stored in
memory), as it only involves one multiplication: to compute X3Y 2Z5, multiply X by X2Y 2Z5

(already calculated).

This process requires
(
2m+i

i

)
− i− 1 multiplications. If we now consider the polynomial’s coefficients, we

get to a total of 2×
(
2m+i

i

)
− i− 2 multiplications.

Finally,
(
2m+i

i

)
− 1 additions are needed to get the result of the evaluation.

As a result, the encryption of (x1, ..., xi) can be done in j × (2×
(
2m+i

i

)
− i− 2) modular multiplications

and j × (
(
2m+i

i

)
− 1) modular additions.

4.4 Complexity of decryption

The number of operations needed to decrypt (y1, ..., yj) depends on the number of solutions of:

P 1
k ◦ ... ◦ Pm

k (X) = yk (for each k ∈ {1, 2, ..., j})

Given k ∈ {1, 2, ..., j}, at the step d ∈ {1, 2, ...,m} of the ’recursive inverse composition’, we know that:

P d
k ◦ ... ◦ Pm

k (X) ∈ Γd
k with Γd

k a subset of Fp

(initially d = 1 and Γ1
k = {yk} for instance).

If (y1, ..., yj) was obtained by encrypting (x1, ..., xi), we know for sure that one value τdk ∈ Γd
k leads to

the decrypted message (precisely, τdk corresponds to X = P d+1
k ◦ ... ◦ Pm

k ◦ Ak(x1, ..., xi)). For all the
other values τ ′ ∈ Γd

k\{τdk }, there is a probability 1/2 that P d
k (X) = τ ′ admits solutions (see section 2.5).

When solutions are found, they come as a distinct pair of values, with probability 1− 2
p+1 ≈ 1 (there is

the rare case of a root of multiplicity 2, causing the 2
p+1 term).

Thus, the ’recursive inverse composition’ of P 1
k ◦ ... ◦ Pm

k can be seen as probabilistic binary tree (see
Figure 2):

• Initially, the tree contains only one node, its root.

• At each step d ∈ {1, 2, ...,m}, each of the leaf nodes with maximal depth (in other words, with
depth d − 1) has a probability 1/2 to expand into 2 additional edges, except for one leaf node,
chosen randomly, where this probability is 1.

We denote by Td (d ∈ {1, 2, ...,m}) the random variable counting the number of nodes at depth d. The
description above leads to:

• T1 = 2 (The root node expands with probability 1).

• Td+1 = 2 +

Td−1∑
u=1

(2Xu
d + 0.(1−Xu

d )), with the Xu
d being independent random variables following

the Bernoulli distribution of parameter 1/2.

In the last expression, the +2 comes from the node (present at depth d) which expands with probability
1. For the other Td− 1 nodes, the probability of expansion into 2 additional edges is 1/2, the other issue
being not to expand.
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As a consequence:

E(Td+1) = 2 + E(

Td−1∑
u=1

2Xu
d ) = E(Td) + 1

Leading to E(Td) = d+ 1.

This gives the average number of nodes with depth ≤ m− 1:

E(1 + T1 + T2 + ...+ Tm−1) = 1 + 2 + 3 + ...+m = m(m+ 1)/2 = O(m2)

(the initial 1 stands for the root node, with depth 0).

During the decryption, each of these nodes represents the resolution of a quadratic equation in Fp. As
mentioned in section 2.4, O(log(p)) modular multiplications are needed to solve a quadratic equation in
Fp. As a result, the ’recursive inverse decomposition’ of all the j lines requires on average O(jm2log(p))
modular multiplications.

At the end of the construction of the probabilistic tree, each leaf node with maximal depth (in other
words, with depth m) represents a possible value for Ak(x1, ..., xi) obtained during the decryption. Thus,
the number of possible values found for Ak(x1, ..., xi) is on average equal to E(Tm) = m+ 1.

This being true for each linear combination Ak (k ∈ {1, 2, ..., j}), the decryption of the message involves
on average trying to solve (m + 1)j linear system in Fp. These systems have i variables and j lines,
requiring O(ji2) multiplications with Gaussian elimination. As a result, solving the linear systems
requires on average O(ji2mj) multiplications.

To conclude, decrypting (x1, ..., xi) from (y1, ..., yj) involves on average O(j[m2log(p) + i2mj ]) modular
multiplications.

4.5 Implementation suggestions

Because of the length of the public key, we cannot afford too many compositions: a reasonable value for
m is probably between 2 and 10.

i should share the same order of magnitude, for the same reason.

j should be greater than i to reduce the risk of collisions, j ≈ i+ 2 seems reasonable (note that there is
only a linear dependency between j and the size of the keys).

Choosing a big value for p seems natural to compensate for the small number of variables representing
the message (simply to prevent brute force attacks). Note that this protocol can work very well with
p ≈ 101000 (see the github implementation).

5 Security

The security of this protocol lies in the difficulty of finding the roots of the system of multivariate
polynomials used to encrypt messages. However, the multivariate polynomials from this scheme are not
fully random, as they are obtained with quadratic compositions. The most promising attack is probably
to try to compute back the secret key from the public key.

For k ∈ {1, 2, ..., j}, we need to find:

• αq
k, β

q
k, γ

q
k (for q ∈ {1, 2, ...,m})

• λ0k, λ
1
k, ..., λ

i
k

such that:

(α1
kX

2 + β1
kX + γ1k) ◦ ... ◦ (αm

k X
2 + βm

k X + γmk ) ◦ (λ0k +

i∑
u=1

λukxu) = Mk(x1, ..., xi)︸ ︷︷ ︸
part of the public key
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By developing the left expression, we get a multivariate polynomial of x1, ..., xi. Each coefficient is a
multivariate polynomial of:

• αq
k, β

q
k, γ

q
k (for q ∈ {1, 2, ...,m})

• λ0k, λ
1
k, ..., λ

i
k

By identifying these coefficients with the ones of Mk(x1, ..., xi), publicly known, we obtain another system

of
(
2m+i

i

)
multivariate polynomials with 3m+ i+ 1 unknowns. An attacker would have to solve such a

system for every line of the key (j times in total).

Further work needs to be conducted to understand how this protocol behave against some classical
attacks (Gröbner basis for instance).

6 Conclusion

A new public key protocol in multivariate cryptography has been introduced. It is based on the ease
of solving quadratic equations (of a single variable) modulo p. Its main drawback is the length of its
public key. The choice of the right parameters in order to guarantee security remains unclear. The
open source implementation can be used for further investigation on the security of the multivariate
polynomial systems it generates. Finally, it would be interesting to assess to what extent this idea of
quadratic composition can be used alongside another existing multivariate cryptosystem, to reinforce its
security.
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