
A Practical Forward-Secure DualRing

Nan Li1, Yingjiu Li2, Atsuko Miyaji3, Yangguang Tian3?, and Tsz Hon Yuen4

1 The University of Newcastle, Australia Nan.Li@newcastle.edu.au
2 University of Oregon, USA yingjiul@uoregon.edu

3 Osaka University, Japan {miyaji,jack}@comm.eng.osaka-u.ac.jp
4 University of HongKong johnyuenhk@gmail.com

Abstract. Ring signature allows a signer to generate a signature on
behalf of a set of public keys, while a verifier can verify the signature
without identifying who the actual signer is. In Crypto 2021, Yuen et al.
proposed a new type of ring signature scheme called DualRing. However,
it lacks forward security. The security of DualRing cannot be guaranteed
if the signer’s secret key is compromised. In this work, we introduce
forward-secure DualRing. The singer can periodically update his secret
key using our proposed “split-and-combine” method to mitigate the se-
curity risks caused by the leakage of secret keys. We present a practical
scheme based on the discrete logarithm assumption. We show a detailed
evaluation to validate its practicality.

Keywords: DualRing, Forward Security, Practical Scheme

1 Introduction

Ring signatures [27] allow a signer to sign messages on behalf of a set of public
keys, and a verifier cannot identify who the real signer is. Since ring signa-
tures provide anonymity, they are widely used in the privacy-preserving scenar-
ios such as whistleblowing, e-voting, and privacy-preserving cryptocurrencies.
The classic ring signature scheme [27] requires a signer first to compute n-1
pseudo-signatures for a set of n public keys PK. Then, the signer generates a
real signature on a challenge value c using his signing key. The n signatures
together with the challenge value c form a ring signature under PK.

The state-of-the-art ring signature scheme is called DualRing [29] proposed
in Crypto 2021. The construction of DualRing takes a different approach, which
achieves a significant saving in terms of signature size. Specifically, a signer first
chooses n-1 pseudo-challenge values. Next, the signer derives a real challenge
value c from the n-1 pseudo-challenge values and a set of n public keys PK. The
last step is the signer generating a signature on the challenge value c using his
signing key. The resulting DualRing consists of a single signature and n challenge
values compared to the classical ring signature that consists of a single challenge
value and n signatures. The n challenge values in DualRing can be further com-
pressed to a O(log n)-size argument of knowledge in the discrete logarithm (DL)

? Corresponding author.

setting. However, DualRing lacks forward security. Forward secrecy [13] means
that the unforgeability of the message-signature pair generated in the past is
still guaranteed after the current secret key is leaked (e.g., due to side-channel
attacks).

1.1 Motivations

Forward-secure ring signature is important for privacy-preserving applications.
In the case of whistleblowing [1], an employee Alice intends to leak a secret
as a whistleblower on behalf of all public keys in her company while she is
still in the company, and she does not want to be identified before leaving the
company. If Alice uses a ring signature to reveal the secret, the unforgeability
of the ring signature assumes that no adversary can obtain any secret key from
the members of the ring. However, due to the nature of dynamic ring formation
in ring signatures, it is difficult for such assumption to hold over time. In our
example, Alice may not know each and every user in the company, and she may
not have any control to ensure that all users in her company would keep their
secret keys secure over a certain period of time. Therefore, it is beneficial to
design a cryptographic solution, such that the unforgeability of a ring signature
is guaranteed if and only if the secret keys of the members of the ring are not
compromised at the time of signing.

Forward-secure ring signatures (FS-RS) can be used in the case of remote
(or internet) voting. The internet voting systems like Helios [4], Remotegrity
[31], and VOTOR [19] allow anyone to set up an election, invite voters to cast
a secret ballot, compute a tally, and provide a verifiable tally for the election.
Our forward-secure ring signature scheme is suitable for internet voting for two
reasons: 1) On the usability side, the voters register their credentials once to an
election authority. The registered credentials can be re-used in different elections
without being identified. 2) On the security side, the voters submit their votes
in an election and (privately) updates their credentials for future elections. The
forward security of our ring signature scheme ensures that no user’s updated
credentials can be misused by adversary for tracing or revealing the vote sub-
missions of the user, even if the user is under coercion to reveal their updated
credentials.

1.2 Overview of Our Construction

In this work, we introduce forward-secure DualRing and extend it to forward-
secure linkable DualRing. The proposed construction is built from DualRing
[29] and a key update technique [10, 17]. First, we review a Type-T signature
(three-move type such as Schnorr signature [28]), which is used in building our
scheme. We focus on the DL-based Type-T signature in this work. The signing
process of the Type-T signature includes three functions: 1) a commit function,
which outputs a commitment R = gr̂, where r̂ denotes a randomness; 2) a hash
function, which outputs a challenge ĉ = H(R||pk||m), where pk = gsk denotes
a public key, sk denotes a secret key, and m denotes the signing message. 3) a

2

response function, which outputs a response z = r̂−ĉ·sk. The resulting signature

is σ = (ĉ, z). For verification, one can check ĉ
?
=H(R′||pk||m), where R′ = gz ·pkĉ.

Second, we show a key update technique, which was used in building the
forward-secure schemes [10, 17]. We assume that a secret key at epoch (i.e., a
fixed time period) t includes the following elements,

skt = (c, d, et+1, · · · , eT) = (gr, hsk · F (t)r, hrt+1, · · · , hrT)

where T denotes the upper bound of time periods, r denotes a randomness
(due to security reasons), F (t) represents a public function for time t, and
hrt+1, · · · , hrT is used for key updates. The key update process at epoch t′ is
shown as follows.

skt′ = (c′, d′, et+2, · · · , eT) = (gr+r
′
, hsk · F (t′)r+r

′
, hr+r

′

t+2 , · · · , h
r+r′

T)

where t′ denotes a new time period (note that t is a prefix of t′), r′ denotes a
new randomness. For each key update, it requires a new randomness r′ to ensure
forward security.

The challenge of designing forward-secure Type-T signature (and forward-
secure DualRing) is to replace the static secret key sk by a time-dependent secret
key skt for signing, while the public key pk is fixed. However, the secret key skt
is not suitable to be used directly in generating the response z in forward-secure
DualRing because skt consists of group elements that cannot work with the
response function on finite field Fq (q is prime number). We propose a novel
technique to apply skt in generating forward-secure DualRing signatures. The
key idea is that we use group elements (c, d) as the signing keys, and we use the
randomness r̂ involved in the commit function to link the signing keys (c, d). We
call it “split-and-combine” method. Specifically, we first split the randomness r̂
used in the commit function into two shares (r̂1, r̂2), where r̂ = r̂1 + r̂2. Then,
we use signing keys (c, d) to “sign” two randomness shares (r̂1, r̂2) respectively,
and output two response values. The resulting signature includes a challenge ĉ
(i.e., the hash function’s output) and two response values. The verification of the
signature is performed by computing a commitment R′ from the two response

values, and checking ĉ
?
=H(R′||pk||m). Note that the two randomness shares can

be combined in the generation of R′. To conclude, this split-and-combine method
allows a signer to use the split randomness shares to link group elements (c, d).
The linked group elements are used in generating the response values for forward-
secure DualRing signatures. In the process of signature verification, the split
randomness shares can be combined as a verifier computes a commitment R′

from the response values.

1.3 Related Work

Ring Signatures. Ring signatures [27] allow a singer to sign messages over
a chosen set of public keys (including his/her own) without revealing who the
real signer is. Since ring signatures provide anonymity (i.e., signer-ambiguity),

3

they can be used in constructing various privacy-preserving protocols, including
whistleblowing, electric voting, and privacy-preserving cryptocurrencies (e.g.,
Monero and Zcash).

Abe et al. [3] introduced a generic framework that allows a signer to choose
different types of public keys to form a ring (i.e., public-key set). Specifically, a
singer can choose both RSA-keys and Discrete logarithm (DL)-keys to generate
ring signatures. The ring signature scheme is efficient if it is used only with a
single type of public keys.

Dodis et al. [16] introduced an accumulator-based ring signature scheme. The
resulting signature size is constant, which is independent of the size of the ring.
Specifically, the proposed scheme allows the signer to “compress” n public keys
into a single value, and rely on a witness showing that the signer’s public key is in
the public-key set. However, their scheme requires a trusted setup for generating
system parameters.

Groth and Kohlweiss [18] proposed efficient ring signatures based on one-
out-of-many proofs. The one-out-of-many approach requires a zero-knowledge
proof to prove the knowledge of the secret key with respect to one of the public
keys in the ring. The proof size of this scheme is O(log n), and it is setup-free.
The follow-up works are various. For example, Bootle et al. [12] presented an
accountable ring signature scheme, which extends Groth and Kohlweiss’s scheme
to support accountability. Libert et al. [21] introduced a tightly secure ring signa-
ture scheme. Their scheme is derived from Groth and Kohlweiss’s ring signature
scheme and DDH-based Elgamal encryptions. Recently, Lai et al. [20] intro-
duced Omniring (i.e., Ring Confidential Transactions or RingCT) for RingCT,
and Yuen et al. [30] proposed a new ring signature scheme for RingCT3.0. Both
signature schemes require no trusted setup, and the proof size is O(log n).

Forward Security. Forward security states that the compromise of entities
at the present time will not affect the security of cryptographic primitives in
the past. It is regarded as a basic security guarantee for many cryptographic
primitives, including encryptions, signatures and key exchanges. Here, we focus
on forward-secure signatures. If an attacker compromises a singer (e.g., via side-
channel attacks), she cannot forge a signature from the signer at an earlier time.
Specifically, when the attacker compromises a signer’s signing key for the current
time period, the signing keys from earlier time periods cannot be recovered. In
this case, a one-way key update (or evolve) process is needed.

Bellare and Miner [7] formalized the security for forward-secure signatures.
They also proposed a scheme with a squaring-based key update. So, its forward
security is based on the hardness of factoring (N = pq, where p, q are two primes).
Later, forward-secure ring signature (FS-RS) schemes have been proposed in
the literature [23, 24]. However, they have certain limitations. For example, the
squaring-based key update in [23] is not suitable for the standard RSA/DL-
based forward-secure schemes. The scheme in [24] involves composite-order group
operations, thus less practical.

4

2 Preliminaries

In this section, we present the complexity assumptions and the building blocks
for constructing our proposed protocol.

2.1 Complexity Assumptions

Bilinear Maps. We define a group generation as (q,G,H,GT , ê)← GroupGen(1λ),
where q is a prime number, g, h are two group generators, G, H and GT are
cyclic groups of order q. The asymmetric bilinear map ê : G × H → GT has
the following properties: 1) Bilinearity: for g, h ∈ G and a, b ∈ Zq, we have
ê(ga, hb) = ê(g, h)ab. 2) Non-degeneracy: ∃g ∈ G such that ê(g, h) has order q in
GT .
We introduce a variant of wBDHI assumption, which is used in the unforgeability
analysis.

Definition 1. Given group generators g ∈ G, h ∈ H, and a, b ∈ Zq, we define
the advantage of the adversary A in solving the wBDHI problem as

AdvwBDHI
A (λ) = Pr[A(g, h, ga, gb, ha, hb, hb

2

, · · · , hb
`

) = ê(g, h)a·b
`+1

∈ GT]

The wBDHI assumption is secure if AdvwBDHIA (λ) is negligible in λ.

The wBDHI assumption was originally defined for Type-1 pairings (i.e., G1 =
G2), and its security holds in the generic bilinear group model, as shown in
[10]. The wBDHI assumption also holds for Type-3 pairings (i.e., G1 6= G2),
which is shown in [17]. We use wBDHI to represent the variant used in this
work. The difference between this variant and the wBHDI assumption for Type-

3 pairings is small. If we give gb
2

, · · · , gb` (as well as the above underline part in
group H) to A, it is equal to the wBDHI assumption described in [17]. We omit
the security analysis of this variant since the reduction is straightforward. The

decisional version of the wBDHI problem requires A to distinguish ê(g, h)a·b
`+1

from a random value in GT .

2.2 DualRing

The DL-based DualRing signature scheme consists of the following algorithms
[29].

– Setup(1λ): It takes a security parameter λ as input, outputs public parameters
PP, which are the implicit input for all the following algorithms. It also defines
a hash function H : {0, 1}∗ → Zq.

– Setup(PP): It takes the public parameters PP as input, output a key pair
(sk, pk), where pk = gsk.

– Sign(PP, ski,m, {pkj}l): It takes a signer’s key ski, a message m, and a set of

public keys {pkj}l (j 6= i), outputs a signature σ = (z, c, c1, · · · , cl). Specifi-
cally, the singer pki performs the following operations.

5

1. Choose r ∈ Zq, {cj}l ∈ Zq, and compute a commitment R = gr ·
∑

pk
cj
j .

2. Compute a challenge c = H(R||PK||m)−
∑
cj , where PK = (pki||{pkj})

3. Compute a response z = r − ski · c.
– Verify(PP,PK,m, σ): It outputs 1 if H(R′||PK||m) = c +

∑
cj , where R′ =

gz ·
∑

(pkcii)l+1
i=1.

We present the high-level idea of DL-based DualRing as follows. First, a
signer adds the decoy public keys pkj and their corresponding challenge values
cj to the commitment R. Second, after computing a hash value H(R||PK||m),
the signer with index i can compute a final challenge c from the challenge value
H(R||PK||m) and the challenge values cj . Third, the signer computes a response
z according to Type-T signature scheme. To verify, the commitment R is recon-
structed from all public keys and their corresponding challenge values. The sum
of the challenge values is equal to the hash value H(R||PK||m). For security, Dual-
Ring needs to achieve unforgeability and anonymity. Specifically, unforgeability
means that the adversary cannot produce a valid signature without accessing
the secret key, even if he/she can adaptively corrupt other honest participants
and obtain their secret keys. Anonymity requires that the adversary cannot pin-
point the actual signer given a valid signature and a group of public keys, even if
he/she is given all randomness to generate the secret keys. The formal definition
is given in [29].

2.3 Forward Security

In this sub-section, we show non-interactive forward security. Non-interactive
means that the key holder updates their keys locally, without interacting with
any third parties. First, we show the forward security based on the hierarchy
identity-based encryption scheme (HIBE) in [10]. Second, we show the forward
security with log-linear complexity O(log(T)2) using the binary tree-based ap-
proach in [15, 17], where T denotes the upper-bound of time periods (or epochs).
We mainly focus on how to generate and update keys because they determine the
forward security. We assume a secret key skt is of the following form:

skt = (gr, hsk · (h0

∏
htii)r, hri+1, · · · , hrT)

where r is a randomness, t = t1||t2|| · · · ||ti denotes the current time, (g, h0, h1, · · · ,
hT) denotes the public parameters, and (h0

∏
htii)r = (h0 · ht11 · h

t2
2 · · ·h

ti
i)r. To

derive a new key skt′ at the next time t′ = t||ti+1 from skt, the secret key holder
performs the following operation on the underlined element above

hsk · (h0

∏
h
ti+1

i+1)r+r
′

= hsk · (h0

∏
htii)r · hr·ti+1

i+1 · (h0

∏
h
ti+1

i+1)r
′

where r′ is a new randomness, and the underline part is the second element of
secret key skt. For the first and other elements of the new secret key skt′ , the
key holder can easily update them by multiplying gr

′
, hr

′

i+2, · · · , hr
′

T , respectively.

So, the new secret key is skt′ = (gr+r
′
, hsk · (h0

∏
h
ti+1

i+1)r+r
′
, hr+r

′

i+2 , · · · , h
r+r′

T).

6

The above approach shows that each key update requires new randomness to
unlink the original and the new secret keys, and the complexity is linear to the
number of epochs: O(T). Now, we use a tree-based approach [15, 17] to compress
the secret keys down to O(log(T)2). First, we assume the secret key skt for the
current time t is of the following form:

skt = s̃kt, s̃kt+1, · · · , s̃kT .

where each sub-key ˜skt is generated using independent randomness. Second, we
explain the tree-based approach. It assumes a binary tree that utilizes all tree
nodes (due to the complexity gain from O(log(T)) to O(log(1)) in exponentia-
tion). It relies on a tree traversal method, which is described in Figure 1.

Fig. 1: Tree Traversal Method.

Specifically, a tree of depth `− 1 consists of 2` − 1 nodes, which corresponds
to time periods in [1, 2` − 1]. We use {1, 2}-string to represent time period,
where 1 denotes taking the left branch and 2 denotes taking the right branch.
For instance, for ` = 4, the string (ε, 1, 11, · · · , 222) is corresponding to time
period (1, 2, 3, · · · , 15), where ε denotes the root node or the first time period.
Suppose the current time is t = 121 (a leaf node in color blue in Figure 1), the
tree traversal method states that the key holder will use the sub-key s̃k121 to
represent time 121, and locally store the secret keys of the “right siblings” (or
siblings on the right) of the nodes on the path from the root to 121 for subsequent
key updates. As a result, the key holder stores a set of sub-keys at epoch 121:
skt = (s̃k121, s̃k122, s̃k21, s̃k2). In particular, the sub-keys are organized as a
stack of node keys, with the sub-key s̃k121 on top. The sub-keys at epoch 121

7

are described below

s̃k121 = (gr121 , hsk · (h0 · h1
1 · h2

2 · h1
3)r121 ,⊥)

s̃k122 = (gr122 , hsk · (h0 · h1
1 · h2

2 · h2
3)r122 ,⊥)

s̃k21 = (gr21 , hsk · (h0 · h2
1 · h1

2 · h0
3)r21 , hr213)

s̃k2 = (gr2 , hsk · (h0 · h2
1 · h0

2 · h0
3)r2 , hr22 , h

r2
3)

where r121, r122, r21, r2 are independent randomness, and (g, h0, h1, h2, h3) are
public parameters.

Third, we show the key update from skt to skt+1. The sub-keys s̃k121, s̃k122

cannot be updated further once they are used because their third elements are
empty values ⊥. But, we can derive a new sub-key s̃k211 from the sub-key s̃k21

(which is stored locally) using the following equation.

s̃k211 = (gr21 · gr211 , hsk · (h0 · h2
1 · h1

2 · h0
3)r21 · hr21·13 · (h0 · h2

1 · h1
2 · h1

3)r211 ,⊥)

= (gr21+r211 , hsk · (h0 · h2
1 · h1

2 · h1
3)r21+r211 ,⊥)

where r211 is a new randomness used in this key update. We can derive all the
following sub-keys shown in the tree using the same method described above.
Specifically, sk212 is derived from sk21, and sk22, sk221, sk222 are derived from
sk2.

Next, we show the complexity of key updates, which includes storage cost and
computational cost. The storage cost is O(log(T)2), meaning that each key skt
contains O(log(T)) sub-keys and each sub-key ˜skt consists of O(log(T)) group
elements. The complexity of computational cost includes multiplications (Mul)
and exponentiations (Exp). That is, each key update requires O(log(T)) Muls,
and O(1) Exps (due to using all tree nodes instead of leaf nodes only).

3 Definition and Models

In this section, we present the definition and the security models of forward-
secure ring signature scheme.

3.1 Definition

A forward-secure ring signature (FS-RS) scheme consists of the following algo-
rithms.

– Setup(1λ): It takes a security parameter λ as input, outputs public parameters
PP that include the maximum number of epoch T .

– KeyGen(PP): It takes public parameters PP as input, outputs an initial key
pair (pki, sk(i,0)) for any user. We use pki to represent this user.

– KeyUp(PP, sk(i,t), t
′): It takes a user pki’s key sk(i,t) and an epoch t′ as input,

outputs an updated key sk(i,t′), where t ≤ t′.

8

– Sign(PP, sk(i,t),m,PK, t): It takes a user pki’s key sk(i,t), a message m, a

number of public keys {pkj}l, and an epoch t as input, outputs a signature

σ. We use PK = {pki, {pkj}l} to represent a set of public keys.
– Verify(PP,PK,m, σ, t): It takes a message-signature pair (m,σ), a public key

set PK, and an epoch t as input, outputs 1 to indicate that the signature is
valid and 0 otherwise.

Correctness. The FS-RS is correct if for all security parameters λ, all public
parameters PP ← Setup(1λ), for all keys (pki, sk(i,0)) ← KeyGen(PP), for all
t ≤ t′, sk(i,t′) ← KeyUp(PP, sk(i,t), t

′), for all m and PK = (pki, {pkj}), σ ←
Sign(PP, sk(i,t),m,PK, t), we have 1 = Verify(PP,PK,m, σ, t).

3.2 Security Models

Forward-secure Unforgeability. Informally, an attacker cannot forge a message-
signature pair, even if the attacker can adaptively corrupt some honest partic-
ipants and obtain their epoch-based secret keys. The formal security game be-
tween a probabilistic polynomial-time (PPT) adversary A and a simulator S is
defined as follows.

– S sets up the game by creating n users with the corresponding key pairs
{(pki, ski)} ← KeyGen(PP), where PP ← Setup(1λ). Next, S generates the
initial secret keys {sk(i,0)} for n users. For each user pki, S can update the
epoch-based secret keys to {sk(i,t)}Tt=1. Eventually, S returns all public keys
to A, and S maintains a set Q to record the corrupted users.

– During the game, A can make the following queries to S.

• Key Update. If A issues a key update query with respect to a user pki at
epoch t, then S updates the key sk(i,t) to sk(i,t+1) and increases t, where
t ≤ T . The key update should be queried in a non-decreasing order of epoch.
• Signing. If A issues a signing query on a message m and a public key set
PK = {pki, · · · } at epoch t, then S computes a signature σ using the secret
key sk(i,t) and returns it to A.
• Break In. If A issues a break-in query at epoch t̄ with respect to a user pki,

then S returns the corresponding secret key sk(i,t̄) to A. This query can
be issued once for each user, and after this query, A can make no further
key update or signing queries to that user. In addition, we allow A to issue
different break-in queries with respect to different users.
• Corrupt. If A issues a corrupt query on a user pki, then S returns the

user’s initial secret key sk(i,0) to A, and updates the set Q by including the
corrupted public key pki.

– At some point, A outputs a forgery (PK∗, t∗,m∗, σ∗). A wins the game if the
following conditions hold.

1. The signature σ∗ is a valid under PK∗ for t∗ and m∗.
2. The public key set satisfies PK∗ /∈ Q.
3. The forgery (PK∗, t∗,m∗, ·) was not previously queried to the signing oracle.

9

4. If the break in oracle has been queried at epoch t̄ with respect to any user
in PK∗, the break in epoch must satisfy t̄ > t∗.

We define the advantage of A in the above game as

AdvA(λ) = |Pr[A wins]|.

Definition 2. The forward-secure ring-signature scheme is unforgeable if for
any PPT A, AdvA(λ) is a negligible function in λ.

Strong Anonymity. Informally, an attacker cannot identify a specific signer
given a valid signature and a set of public keys, even if the attacker can access
all randomnesses that were used in generating each user’s secret key. Note that
we consider a strong anonymity model in [9] that the attacker can access all
randomnesses that were used in generating each user’s secret key (i.e., full key
exposure). The formal security game between a PPT adversaryA and a simulator
S is defined as follows.

– S sets up the game using the same method described in the above unforge-
ability game except the following differences. First, S generates a user’s key
pair as (pki, ski) ← KeyGen(PP;wi), where wi denotes the randomness used
in generating user’s secret key. Second, S returns all users’ public keys to A,
and tosses a random coin b which is used later in the game.

– A can make signing queries to S during the training phase. In the end, A
outputs two indices (i0, i1).

– During the challenge phase, A can issue a signing query on a message m∗

under a public key set PK∗ = {pki0 , pki1 , · · · } at epoch t∗, then S returns
a signature σ ← Sign(PP, sk(ib,t∗),m

∗,PK∗, t∗) and all witness {wi} to A.
Finally, A outputs b′ as its guess for b. If b′ = b, then S outputs 1; Otherwise,
S outputs 0. We define the advantage of A in the above game as

AdvA(λ) = |Pr[S → 1]− 1/2|.

Definition 3. The forward-secure ring-signature scheme is anonymous if for
any PPT A, AdvA(λ) is a negligible function in λ.

4 Our Construction

We denote an epoch-based function as F (t) = h0

∏
htii , where t = t1||t2|| · · · ||ti =

{1, 2}i. Let H : {0, 1}∗ → Zq be a collision-resistant hash function. Below, we
show a construction with linear-complexity; one can use the tree-based approach
described in Section 2.3 to convert it to achieve log-linear complexity.

– Setup(1λ): Let ê : G × H → GT be a bilinear pairing. The common system
parameters include PP = (g, h, T, {hi}`), where g ∈ G, h, {hi}` ∈ H, and
T = 2` − 1 denotes the upper bound of epochs. The first epoch is ε = 0, and
the last epoch is t1|| · · · ||t`−1.

10

– KeyGen(PP): A user chooses a secret key ski and computes hski . It computes
an initial key as sk(i,ε) = (gr0 , hski · hr00 , h

r0
1 , · · ·h

r0
`), where r0 ∈ Zq. It also

sets its public key as pki = gski . We denote the second element of sk(i,ε) as
sk(i,ε,2).

– KeyUp(PP, sk(i,t), t
′): Given a key sk(i,t) = (gr, hski · F (t)r, hri+1, · · · , hr`),

where t = t1|| · · · ||ti, the user creates a new key sk(i,t′) = (gr · gz, sk(i,t,2) ·
h
r·ti+1

i+1 · (h0 ·
∏
ht
′

i+1)z, hri+2 · hzi+2, · · · , hr` · hz`), where z ∈ Zq, and epoch
t′ = t1|| · · · ||ti||ti+1.

– Sign(PP, sk(i,t),m,PK, t): Given a signing key sk(i,t), a message m, and a

set of public keys {pkj}l (note that l < `), a signer performs the following
operations.

1. Choose challenge values {cj}l ∈ Zq, and compute a commitment value
R = ê(

∏
pk
cj
j , h)/ê(g, F (t))r̂, where r̂ = r̂1 + r̂2, and r̂1, r̂2 ∈ Zq.

2. Compute a challenge value c = H(R||m||PK)−
∑
cj , where PK = (pki||{pkj}lj 6=i).

3. Output a ring signature σ = (σ1, σ2, {c, cj}l+1), where σ1 = [hski ·F (t)r]c ·
F (t)r̂1 and σ2 = gr̂2/gr·c.

– Verify(PP,PK,m, σ, t): Anyone can verify H(R′||m||PK)
?
=c+

∑
cj , where R′ is

computed as follows.

A = ê(g, σ1) = ê(g, hski)c · ê(g, F (t)r)c · ê(g, F (t))t̂1

B = ê(σ2, F (t)) = ê(gr̂2 , F (t))/ê(grc, F (t))

AB = ê(g, hski)c · ê(gr̂, F (t)),B r̂ = r̂1 + r̂2

C = ê(pkci
∏

pk
cj
j , h)

R′ = C/AB = ê(
∏

pk
cj
j , h)/ê(g, F (t))r̂

Correctness. We associate a user pki’s signing key at epoch t = t1|| · · · ||ti of
the form

sk(i,t) = (c, d, ei+1, · · · , e`) = (gr, hski · (h0 ·
∏

htii)r, hri+1, · · · , hr`) (1)

where r is an independent uniformly distributed exponent. We say that a signing
key sk(i,t) is well-formed if it satisfies the equation (1). Now, we show the honestly
generated and updated secret keys are well-formed. For simplicity, we assume a
key update from epoch t = t1|| · · · ||ti to t′ = t1|| · · · ||ti||ti+1, where t′ contains t
as a prefix (e.g., t = 12 and t′ = 121 or t′ = 122). Note that the epoch cannot
contain bit 0 due to technical reasons (e.g., h0

i = 1).
First, the initial key sk(i,ε) for ε = 1 is trivially well-formed. Then, we show

that the key sk(i,t′) is also well-formed after a key update from t to t′. Specifically,
we show two cases of key update. The first case is of the form

sk(i,t′) = (c, d · eti+1

i+1 , ei+2, · · · , e`) = (gr, hski · (h0 ·
∏

h
ti+1

i+1)r, hri+2, · · · , hr`)

11

which satisfies equation (1) with an independent randomness r. The second case
is of the form

sk(i,t′) = (c · gz, d · eti+1

i+1 · (h0 ·
∏

ht
′

i+1)z, ei+2 · hzi+2, · · · , e` · hz`)

= (gr+z, hski · (h0 ·
∏

htii)r · hr·ti+1

i+1 · (h0 ·
∏

ht
′

i+1)z, hr+zi+2 , · · · , h
r+z
`)

= (gr+z, hski · (h0 ·
∏

ht
′

i+1)r+z, hr+zi+2 , · · · , h
r+z
`).

The above form also satisfies equation (1) with randomness r+z, which is an in-
dependent exponent due to the uniform choice of z. The last step to obtain sk(i,t′)

is crucial to forward security, the signer deletes sk(i,t) and the re-randomization
exponent z used in the second case of key update. The verification of signatures
for epoch t′ = t1|| · · · ||ti+1 is straightforward. The signer generates a signature
using F (t′), while the verifier computes F (t′) and uses it in computing B of the
Verify algorithm.

4.1 Security Analysis

Theorem 1. The FS-DR signature scheme Σ is EUF-CMA secure if the wB-
DHI assumption holds in the underlying asymmetric groups.

Proof. We define a sequence of games Gi, i = 0, · · · , 2 and let AdvΣi denote the
advantage of the adversary in game Gi. Assume that A issues at most q signing
queries in each game.

– G0: This is original unforgeability game.
– G1: This game is identical to game G0 except the following difference: S

randomly chooses g as a guess for a forgery at epoch t∗ with respect to user
pki. S will output a random bit if A’s forgery does not occur in the g-th
query. In this game, S honestly generates all initial signing keys during setup.
In particular, S sets the break in epoch as t̄ = t∗ + 1. If A issues a break-in
query at epoch t̄′ with respect to user pki, such that t̄′ ≥ t̄, then S returns
sk(i,t̄′) to A. Since at most T epochs and n users exist in the system, we have

AdvΣ0 = q · T · n · AdvΣ1

– G2: This game is identical to game G1 except that in the g-th session, S out-
puts a random bit if a Forge event happens where A’s forgery is valid at
epoch t∗ under a public key set PK∗ (that includes pki) while the correspond-
ing signing key sk(i,t∗) is not corrupted. Then we have∣∣AdvΣ1 − AdvΣ2

∣∣ ≤ Pr[Forge].

Let S be a challenger, who is given (g, h, ga, gb, ha, hb, · · · , hb` , ê), aiming to

compute ê(g, h)ab
`+1

. S sets up the game for A by creating n users and T

12

epochs. We assume that each epoch t = t1||t2|| · · · ||t` is a {1, 2}-string of
length `. S pads zeros if an epoch’s length is less than `. S randomly selects
a challenge user and sets its public key as pki = gb. S honestly generates key
pairs for n-1 users. To complete the setup, S computes the system parameters

as h = hb
` ·H̄γ , h1 = H̄γ1/hb

`

, · · · , h` = H̄γ`/hb, and h0 = H̄δ ·hb`·t∗1 · · · ·hb·t∗` ,
where t∗ = t∗1||t∗2|| · · · ||t∗` , and γ, γ1, · · · γ`, δ, z̄ ∈ Zq, H̄ = hz̄ ∈ H. S also sets

the commitment involved in the g-th session as R∗ = ê(ga, F (t∗)r̂
∗
1), where

F (t∗) = h0 · h
t∗1
1 · · ·h

t∗`
` . Note that r̂∗2 is implicitly set as a, and r̂∗1 is chosen by

A. Also note that the value hb
`+1 · H̄b·γ associated with user pki’s signing key

is unknown to S.
During the game, S can honestly answer A’s corrupt queries with respect to all
users except the challenge user pki. IfA queries corrupt oracle on pki, S aborts.
Next, we show S can simulate a signing key at epoch t = t1|| · · · ||tk|| · · · ||t`,
where k ∈ [1, `]. Note that tk 6= t∗k means that t is not prefix of t∗, and k is
the smallest index at epoch t.

Specifically, S first chooses z ∈ Zq, and sets r = bk

tk−t∗k
+ z. Then, S computes

a signing key with the following form

(gr, hb · (h0 · ht11 · · ·h
tk
k)r, hrk+1, · · · , hr`) (2)

This is a well-formed key for epoch t = t1|| · · · ||tk. We show that S can
compute the underline term in (2).

(h0 · ht11 · · ·h
tk
k)r = [H̄δ · hb

`·t∗1 · · · · hb·t
∗
` · (H̄γ1/hb

`

)t1 · · · (H̄γk/hb
`−k+1

)tk]r

= [H̄δ+Σk
i=1ti·γi ·

k−1∏
i=1

h
t∗i−ti
`−i+1 · h

t∗k−tk
`−k+1 ·

∏̀
i=k+1

h
t∗i
`−i+1]r

= Z · hr(t
∗
k−tk)

`−k+1

where Z is shown as follows

Z = [H̄δ+Σk
i=1ti·γi ·

k−1∏
i=1

h
t∗i−ti
`−i+1 ·

∏̀
i=k+1

h
t∗i
`−i+1]r

S can compute all the terms in Z and the underline term in Z is equal to
1 because ti = t∗i for all i < k. The remaining term in (h0 · ht11 · · ·h

tk
k)r is

h
r(t∗k−tk)
`−k+1 . Since we set r = bk

tk−t∗k
+ z, we rewrite it as follows

h
r·(t∗k−tk)
`−k+1 = h

z(t∗k−tk)
`−k+1 · h

(t∗k−tk) bk

tk−t∗
k

`−k+1 =
h
z(t∗k−tk)
`−k+1

hb`+1

Hence, the second element in (2) is equal to

hb · (h0 · ht11 · · ·h
tk
k)r = hb

`+1

· H̄b·γ · Z ·
h
z(t∗k−tk)
`−k+1

hb`+1 = H̄b·γ · Z · hz(t
∗
k−tk)

`−k+1

13

To this end, S can simulate the second element in (2) because the unknown

value hb
`+1

is cancelled out. Besides, the first element gr in (2), and other
elements (hrk+1, · · · , hr`) can be easily computed by S since they do not involve

hb
`+1

. This completes the simulation of signing key at epoch t 6= t∗. S can
simulate signing queries on various messages using the simulated signing keys
at epoch t 6= t∗.

Another case is that S can simulate message-signature pairs at epoch t∗. If A
issues a signing query on a message m for a public key set PK = {pki||{pkj}l}
(note that if pki /∈ PK, S aborts) at epoch t∗, S simulates a valid signature
using a similar approach described in the simulation of Schnorr signature. S
performs the following operations.

• Choose c, {cj}l, r̂1, r̂2 ∈ Zq and h∗ ∈ H, compute σ1 = h∗ ·F (t∗)r̂1 , σ2 = gr̂2 .

• Set c = H(R||m||PK)−
∑
cj , where R =

ê(pkci ·
∏

pk
cj
j ,h)

ê(g,h∗·F (t∗)r̂)
and r̂ = r̂1 + r̂2.

• Return (m,σ) to A, where σ = (c, {cj}l, σ1, σ2).

For key update, S keeps track of the current epoch t without returning any-
thing to A. For break in query, S needs to simulate a signing key sk(i,t̄) with
respect to user pki, such that t∗ < t̄. S can simulate sk(i,t̄) using the same
method described in the case of t 6= t∗, and return it to A.

At some point, if A outputs a forgery on a message m∗ for a public key set
PK∗ and t∗ in the form of (m∗, c∗, {c∗j}l, σ∗1 , σ∗2), such that

σ∗1 = [hb
`+1

· H̄b·γ · H̄r∗(δ+
∑|t∗|

i=1 γi·t
∗
i)]c

∗
· (H̄δ+

∑|t∗|
i=1 γi·t

∗
i)r̂
∗
1

σ∗2 = ga/gr
∗·c∗

where c∗ = H(R∗||m∗||PK∗)−
∑
c∗j , R

∗ = ê(
∏

pk
c∗j
j , h)·ê(ga, (H̄δ+

∑|t∗|
i=1 γi·t

∗
i)r̂
∗
1),

and r∗, r̂∗1 are chosen by A, then S checks the following conditions.

• The forgery occurs on the g-th session.

• The public key set PK∗ includes the challenge user pki.

• The message-signature pair (m∗, c∗, {c∗j}l, σ∗1 , σ∗2) was not previously gener-
ated by S.

• The signature (σ∗1 , σ
∗
2) is valid on message m∗ and public key set PK∗ ac-

cording to the Verify process.

If all the above conditions hold, S regards it as a valid forgery. The next step
is that S rewinds the game according to the forking lemma [8], and obtains
another valid forgery (σ′1, σ

′
2) with a different c∗

′
= H(R∗||m∗||PK∗) −

∑
c∗j

(note that the different value c∗
′

happens with probability 1/n). Eventually,

14

S computes the following equations

E = (σ1/σ
′
1)1/(c∗−c∗

′
) = hb

`+1

· H̄b·γ · H̄r∗(δ+
∑|t∗|

i=1 γi·t
∗
i)

F = (σ′2/σ2)1/(c∗
′
−c∗) = gr

∗

D =
ê(ga, E)

ê(ga, H̄b·γ)ê(F, ha·(δ+
∑|t∗|

i=1 γi·t∗i))

= [
ê(ga, hb

`+1

)ê(ga, H̄b·γ)ê(ga, H̄r∗(δ+
∑|t∗|

i=1 γi·t
∗
i))

ê(ga, hb·r̄·γ)ê(gr∗ , ha·(δ+
∑|t∗|

i=1 γi·t∗i))
]

= ê(g, h)ab
`+1

It is easy to see that D is the solution to the wBDHI problem. Therefore, we
have

|Pr[Forge]| ≤ AdvwBDHI
A (λ).

By combining the above results together, we have

AdvΣA(λ) ≤ q · T · n · AdvwBDHI
A (λ).

Theorem 2. The FS-DR signature scheme Σ is anonymous in the random or-
acle model.

Proof. The simulation is performed between an adversary A and a simulator S.
The goal of simulator S is to break the strong anonymity. In this simulation, S
simulates H as a random oracle.

S setups the game for A by creating n users with the corresponding key pairs
{(pki, ski) ← KeyGen(PP;wi)}, where PP ← Setup(1λ). S gives {pki}n to A to
A. S also chooses a random bit b.

During the training phase, if A issues a signing query on a message m, a
set of public keys PK with the signer index j at epoch t, then S generates
σ ← Sign(PP, sk(j,t),m,PK, t) and returns it to A.

During the challenge phase, if A issues a signing query on a message m∗, a
set of public keys PK∗, two indices (i0, i1) and an epoch t∗, then S simulates the
signature σ∗ = (σ∗1 , σ

∗
2 , c
∗, {cj}l) using the same method described in the above

game G2 (i.e., the case of t = t∗). Eventually, S returns σ∗ and {wi}n to A.
Recall that in the simulation of signature σ∗, S picks c∗, {cj}l at random in Zq,
and sets c = H(R∗||m∗||PK∗)−

∑l
j=1 cj in the random oracle. The distribution of

message-signature pair (m∗, σ∗) is correct. Note that the commutative operation

c +
∑l
j=1 cj is also uniformly distributed in Zq, and S aborts if the hash value

H(R∗||m∗||PK∗) is already set by the random oracle H.

Finally, S outputs whateverA outputs. Since b is not used in the simulation of
message-signature pair in the challenge phase (i.e., S simulates a valid signature
without using the signing key sk(ib,t∗)), A wins only with probability 1/2.

15

5 Extension

Extending our construction, we now introduce a forward-secure linkable Dual-
Ring. The linkability means that anyone can link multiple signatures generated
by a same signer. Based on the technique used in [25], we adapt the proposed
FS-DR as follows

– The setup is almost same as FS-DR, except that the algorithm additionally
generates a one-time signature scheme Σots = (OKGen,OSig,OVer).

– The key generation proceeds as follows. A user generates a key pair (osk, opk)←
OKGen(1λ), computes a linkability tag Ri = H(opk). The user’s secret key is of
the form sk(i,t) = (gr, hski+Ri · hr0, hr1, · · ·hr`), where r ∈ Zq. The user’s public
key is pki = gski+Ri . The key update remains the same as FS-DR.

– For signing, a signer with a signing key sk(i,t), a message m, and a set of

public keys {pkj}l, performs the following operations.

1. Generate a new set of public keys using its linkability tag Ri, such that
pk′i = pki/g

Ri = gski , and pk′j = pkj/g
Ri = gskj−Ri .

2. Choose challenge values {cj}l ∈ Zq, and compute a commitment value

R = ê(
∏

pk
′cj
j , h)/ê(g, F (t))r̂, where r̂ = r̂1 + r̂2, and r̂1, r̂2 ∈ Zq.

3. Compute a challenge value c = H(R||m||PK′)−
∑
cj , where PK′ = (pk′i||{pk′j}lj 6=i).

4. Generate a ring signature σ = (σ1, σ2, {c, cj}l+1), where σ1 = [hski ·F (t)r]c ·
F (t)r̂1 and σ2 = gr̂2/gr·c. Note that hski · F (t)r = hski+Ri ·F (t)r

hRi
.

5. Generate a one-time signature s← OSig(osk;m,σ,PK).
6. Output (PK,m, σ, opk, s).

– For verification, anyone first computes PK′ = (pk′i||{pk′j}lj 6=i) from the public-

key set PK = (pki, {pkj}l) and gRi , where Ri = H(opk). Next, the user runs
the Verify algorithm described in FS-DR under public key set PK′. Last, the
user verifies the signature 1← OVer(opk;m,σ,PK).

– The link process takes two message-signature pairs (PK1,m1, σ1, opk1, s1),
(PK2,m2, σ2, opk2, s2) as input, output either linked or unlinked. Specifically,
the algorithm first verify (m1, σ1) under PK1 and (m2, σ2) under PK2, re-
spectively. Then, the algorithm outputs linked if opk1 = opk2. Otherwise, it
outputs unlinked.

Correctness and Security. The correctness of linkable FS-DR is held if: 1)
the FS-DR and the one-time signature Σots are correct. 2) two legally signed
signatures are linked if they share a same signer. The security of linkable FS-DR
should include the following aspects.

– Forward-secure Unforgeability. The forward-secure unforgeability for linkable
FS-DR remains the same as in Section 3.2.

– Forward-secure Anonymity. Informally, an attacker cannot identify a specific
signer given a valid signature and a set of public keys at epoch t∗, even if
the attacker can corrupt all users’ secret keys after t∗. The formal definition
is adopted from Boyen and Haines [14]. We claim that, the linkable FS-DR

16

is forward-secure anonymous in the random oracle model if the decisional
wBDHI is held in the asymmetric pairing group. The security proof is similar
to Theorem 5 described in [14], except that the hard problem is replaced by
the decisional wBDHI problem.

– Linkability and Non-slanderability. Linkability means that the link process
always outputs “linked” for two signatures generated by a same signer. The
non-slanderability states that a signer cannot frame other honest signers for
generating a signature linked with another signature not signed by the signer.
The formal definitions are adopted from Liu et al. [22]. We claim that, the
linkable FS-DR is linkable and non-slanderable in the random oracle model if
the FS-DR scheme and the one-time signature scheme Σots are unforgeable.
This assumption is valid because if a linkable ring signature scheme is linkable
and non-slanderable, it is also unforgeable [6]. The security proofs are similar
to Theorem 4 and 5 described in [25].

6 Implementation and Evaluation

In this section, we focus on the implementation and evaluation. Specifically, we
compare the proposed scheme with a closely related research work [14] in terms
of execution time and storage cost. First, we remove the linkability described
in [14] for a fair comparison. We stress that the extension to a linkable FS-
DualRing is not our major contribution. Second, we remove the implementation
of the forward-secure key update described in [14]. They use multilinear maps
[11] to update key pairs for different time periods or epochs. But, multilinear
maps are not available in practice due to various attacks [14]. Therefore, they
suggest using (symmetric) bilinear maps to give a forward-secure scheme that
supports a key update for two epochs.

10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

(a) Number of users

R
u
n
ti

m
e

(m
s)

10 20 30 40 50 60 70 80 90 100

2.0

4.0

6.0

8.0

·10−2

(b) Number of users

R
u
n
ti

m
e

(m
s)

10 20 30 40 50 60 70 80 90 100

0.0

2.0

4.0

6.0

·10−2

(c) Number of users

R
u
n
ti

m
e

(m
s)

Fig. 2: Execution time of KeyGen, Sign, Verify algorithms. Red (with solid square)
is for our scheme, Blue (with solid dot) is for [14].

We implement our proposed scheme using Charm framework [5] and evaluate
its performance on a PC with Intel Core i9. We use MNT224 curve [26] for
pairing, which is the commonly-used asymmetric pairing in PBC library, and it
has around 100-bit security level. Our source code is available at Github [2].

17

First, we provide a performance comparison between our scheme and [14].
The execution time of KeyGen, Sign, and Verify algorithms are shown in Figure
2. The execution time of our scheme is relatively slow compared to [14]. This is
because their pairing relies on the symmetric SS512 curve, which is short (thus
fast). But, the security level of SS512 is incomparable to MNT224 (note that
our scheme is insecure in the symmetric pairing setting). We stress that our
scheme’s execution time is acceptable. The signing and verifying processes take
approximately 0.07ms to handle a group of 100 public keys.

Second, we focus on the storage cost and provide a comparison in Table 1.
We evaluate the size of the signing key, public key, and signature. One can see
that the public/signing key size between [24] and our proposed scheme are close
because these two works rely on the same forward-secure technique described in
Section 2.3. However, our scheme’s signature size is much smaller compared to
[24]. The signature size in [24] is linear to the number of public keys because their
construction is based on the classic ring signature scheme [27]. Our proposed
scheme can save the storage cost significantly for ring signature schemes with
relatively small challenges and large signatures. Further, our scheme ensures a
O(log n)-size argument of knowledge in the DL setting. The signature size in [14]
is also larger than our proposed scheme because their resulting signature involves
group elements of GT (note that the size of an element of GT is usually larger
than the size of G/H on commonly-used curves). Besides, the public key in [14]
is not a single group element as in [24] and our proposed scheme. To conclude,
our proposed scheme is practical in terms of execution time and storage cost.

Table 1: Storage comparison with two existing works. n denotes the number of
public keys involved in a signature. T denotes the upper bound for time periods.
Subgroup means subgroup decision problem. (k1, b)-GMDP means generalized
multilinear decoding problem, where k1 is a combinatorial constant, and b (we
assume b = 1 here) is an initial public key level. (k1, b)-(GMDDH) means that
generalized sub-exponent multilinear decisional Diffie–Hellman problem.

|pk| |sk| |σ| Assumption

[24]: G (2 + (log(T))2)G (2n+ 3)G CDH/Subgroup
[14]: k1G k1Zq + 2k1G Zq + GT + nZq (k1, b)-GMDP/GMDDH

Ours: G G + H + (log(T))2H G + H + nZq wBDHI

7 Conclusion

In this work, we proposed a forward-secure DualRing scheme and extended it to
a forward-secure linkable DualRing scheme. We relied on a non-interactive key
update mechanism described in the hierarchy identity-based encryption (HIBE)
[15, 17] to ensure forward security. We proposed a novel “split-and-combine”
method in building our schemes. This method is suitable for the Type-T based
(or random oracle based) signature schemes such as DualRing [29].

18

References

1. Facebook Whistleblower. https://www.nbcnews.com/tech/tech-news/facebook-
whistleblower-documents-detail-deep-look-facebook-rcna3580.

2. Our Source Code. https://github.com/SMC-SMU/Forward-secure-DualRing.

3. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
In ASIACRYPT, pages 415–432, 2002.

4. B. Adida. Helios: Web-based open-audit voting. In USENIX security symposium,
volume 17, pages 335–348, 2008.

5. J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green, and
A. D. Rubin. Charm: a framework for rapidly prototyping cryptosystems. Journal
of Cryptographic Engineering, 3(2):111–128, 2013.

6. M. H. Au, W. Susilo, and S.-M. Yiu. Event-oriented k-times revocable-iff-linked
group signatures. In ACISP, pages 223–234, 2006.

7. M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In
CRYPTO, pages 431–448, 1999.

8. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a
general forking lemma. In CCS, pages 390–399, 2006.

9. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In TCC, pages 60–79, 2006.

10. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with
constant size ciphertext. In CRYPTO, pages 440–456, 2005.

11. D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography.
Contemporary Mathematics, 324(1):71–90, 2003.

12. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit. Short ac-
countable ring signatures based on ddh. In ESORICS, pages 243–265, 2015.

13. C. Boyd and K. Gellert. A modern view on forward security. The Computer
Journal, 64(4):639–652, 2021.

14. X. Boyen and T. Haines. Forward-secure linkable ring signatures. In ACISP, pages
245–264, 2018.

15. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.
In EUROCRYPT, pages 255–271, 2003.

16. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad
hoc groups. In EUROCRYPT, pages 609–626, 2004.

17. M. Drijvers, S. Gorbunov, G. Neven, and H. Wee. Pixel: Multi-signatures for
consensus. In USENIX, pages 2093–2110, 2020.

18. J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and
spend a coin. In EUROCRYPT, pages 253–280, 2015.

19. T. Haines and X. Boyen. Votor: conceptually simple remote voting against tiny
tyrants. In Proceedings of the Australasian Computer Science Week Multiconfer-
ence, pages 1–13, 2016.

20. R. W. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan, and J. Wang.
Omniring: Scaling private payments without trusted setup. In ACM CCS, pages
31–48, 2019.

21. B. Libert, T. Peters, and C. Qian. Logarithmic-size ring signatures with tight
security from the ddh assumption. In ESORICS, pages 288–308, 2018.

22. J. K. Liu, M. H. Au, W. Susilo, and J. Zhou. Linkable ring signature with un-
conditional anonymity. IEEE Transactions on Knowledge and Data Engineering,
26(1):157–165, 2013.

19

23. J. K. Liu and D. S. Wong. Solutions to key exposure problem in ring signature.
Int. J. Netw. Secur., 6(2):170–180, 2008.

24. J. K. Liu, T. H. Yuen, and J. Zhou. Forward secure ring signature without random
oracles. In ICICS, pages 1–14, 2011.

25. X. Lu, M. H. Au, and Z. Zhang. Raptor: a practical lattice-based (linkable) ring
signature. In ACNS, pages 110–130, 2019.

26. A. Miyaji, M. Nakabayashi, and S. Takano. Characterization of elliptic curve traces
under fr-reduction. In ICISC, pages 90–108, 2000.

27. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT,
pages 552–565, 2001.

28. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4(3):161–174, 1991.

29. T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au, and Z. Ding. Dualring: Generic
construction of ring signatures with efficient instantiations. In CRYPTO, pages
251–281, 2021.

30. T. H. Yuen, S.-f. Sun, J. K. Liu, M. H. Au, M. F. Esgin, Q. Zhang, and D. Gu.
Ringct 3.0 for blockchain confidential transaction: Shorter size and stronger secu-
rity. In FC, pages 464–483, 2020.

31. F. Zagórski, R. T. Carback, D. Chaum, J. Clark, A. Essex, and P. L. Vora. Re-
motegrity: Design and use of an end-to-end verifiable remote voting system. In
ACNS, pages 441–457, 2013.

20

