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Abstract. Lattice attacks are threats to (EC)DSA and have been used in cryptanaly-
sis. In lattice attacks, a few bits of nonce leaks in multiple signatures are sufficient to
recover the secret key. Currently, the BKZ algorithm is frequently used as a lattice
reduction algorithm for lattice attacks, and there are many reports on the conditions
for successful attacks. However, experimental attacks using the BKZ algorithm have
only shown results for specific key lengths, and it is not clear how the conditions
change as the key length changes.
In this study, we conducted some experiments to simulate lattice attacks on P256,
P384, and P521 and confirmed that attacks on P256 with 3 bits nonce leak, P384
with 4 bits nonce leak, and P521 with 5 bits nonce leak are feasible. The result for
P521 is a new record. We also investigated in detail the reasons for the failure of the
attacks and proposed a model to estimate the feasibility of lattice attacks using the
BKZ algorithm. We believe that this model can be used to estimate the effectiveness
of lattice attacks when the key length is changed.
Keywords: Lattice Attacks · ECDSA · Hidden Number Problem · BKZ

1 Introduction
Side-channel attacks extract information related to the secret key or the key itself from
cryptographic devices. If a cryptographic device is vulnerable to side-channel attacks, the
secret key can be easily recovered by cryptanalysis. Thus, cryptographic devices are re-
quired to be tolerant of side-channel attacks. To implement secure cryptographic devices,
it is necessary to clarify the side-channel attacks that can be achieved. In particular, for
devices that generate signatures, such as DSA and ECDSA, lattice attacks[14, 25, 26] and
Bleichenbacher’s attack[5, 6, 23, 31] are quite effective cryptanalytic techniques. In such
attacks, only a few bits of the nonce are required to recover the secret key. These attacks
are based on the hidden number problem (HNP), which was introduced by D. Boneh and
R. Venkatesan[10].

To recover the secret key of the (EC)DSA, the attacker must perform two attacks. In
the first attack, the attacker conducts side-channel attacks to obtain information about
some bits of the nonce for multiple signatures. In the second attack, lattice attacks or
Bleichenbacher’s attack are used to recover the secret key. For the attack to work, the
following two conditions must be satisfied:

1. Side-channel attacks can leak some bits of the nonce for multiple signatures.

2. The leaked information via side-channel attacks is sufficient to recover the secret
key.

For condition 1 to hold, it is necessary to consider whether there exists a vulnerability
to side-channel attacks that can obtain information about the nonce. For example, [22]
attacked via timing analysis and [21] attacked via template attacks. Although it is often
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difficult for an attacker to leak a large number of nonce bits in many signatures, we
assume that the attacker can obtain an arbitrary amount of leakage via side-channel
attacks because our goal is to investigate condition 2 in this work.

For condition 2, two types of attacks are possible: lattice attacks and Bleichenbacher’s
attack. The attacker constructs an HNP from the information obtained via side-channel
attacks and uses either type of attack to solve the HNP. Because it is more convenient
for the attacker to reduce the amount of leakage in condition 1, the minimum amount of
leakage to recover the correct secret key has been investigated (summarized in the next
subsection).

The Bleichenbacher attack is based on a Fourier analysis. It can attack with a very
small nonce leak, such as only one bit, and it can handle errors, but it requires a large
number of signatures. However, lattice attacks require a smaller number of signatures.
However, lattice attacks require a certain amount of leakage, and it is difficult to recover
the key when errors are included. Lattice attacks are based on the closest vector prob-
lem (CVP). In practice, CVP is solved via the nearest plane[7] or Kannan’s embedding
method[17] and lattice reduction algorithms such as BKZ[29], but it cannot always be
solved. If the amount of nonce leak is too small, lattice attacks cannot solve the HNP
owing to a lack of constraints.

1.1 Related Works
Many previous studies have attacked (EC)DSA via HNP. To solve HNP, [2, 9, 14, 22] used
lattice attacks, and [5, 6, 23, 31] used Bleichenbacher’s attack.

To construct an HNP, we need to obtain nonce leakage in multiple signatures, and
the leakage positions are assumed to be the most significant bits, the least significant
bits, and bits in the middle. In previous studies, nonce leakage of most significant bits
or least significant bits was used in lattice attacks, but as mentioned in [25], HNP can be
constructed with any position of nonce leakage. According to [25], the number of leaked
bits required for a successful attack is one bit more for the most significant bits than for
the least significant bits, and twice as much for bits in the middle for the least significant
bits.

For lattice attacks on 160-bit DSA, [20] succeeded with 2 bits nonce leakage. For 256-
bit (EC)DSA, [22, 27] succeeded with 4 bits nonce leakage, [4, 13] succeeded with three or
more bit nonce leakages, and [19] succeeded with 3 bits nonce leakage. For 384-bit ECDSA,
[3] succeeded with 4 bits nonce leakage. Recently, [2] proposed a new method based on
sieving and enumeration with predicates and showed that 160, 192, 256, 384, and 521-bit
ECDSA can be attacked with 2, 2, 3, 4, and 6 bits nonce leakage, respectively. More
recently, [30] estimated some bits of nonce or the secret key and attacked 160,256,384-bit
ECDSA with 2,3,4 bit nonce leakage using a large number of signatures.

Lattice attacks usually require less than or around 100 signatures, whereas Bleichen-
bacher’s attack requires a large number of them. [6] broke 163-bit ECDSA with 1 bit
nonce leakage for about 223 signatures and 192-bit ECDSA with 1 bit nonce leakage for
about 229 signatures via Bleichenbacher’s attack. For a longer key length, [31] broke a
256-bit ECDSA with 2 bits nonce leak for approximately 226 signatures.

1.2 Contributions
To confirm the effectiveness of lattice attacks experimentally, we conducted lattice attacks
against 256, 384, and 521-bit ECDSA with a wide range of nonce leakage bits. As a result,
we confirmed that attacks on P256 with 3 bits nonce leakage, P384 with 4 bits nonce
leakage, and P521 with 5 bits nonce leakage were feasible. Attacks against P521 with five
bits are a new record in lattice attacks.
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To estimate the effectiveness of lattice attacks theoretically, we developed a model of
lattice attacks based on the experimental results. According to the model, attacks on
P256 with less than 3.29 bits nonce leakage, P384 with less than 4.4 bits nonce leakage,
and P521 with less than 5.59 bits nonce leakage are difficult or infeasible.

2 Preliminaries
2.1 Lattices
The lattice in Rn is a subgroup of Rn. Let b1, · · · , bn be basis of Rn. A lattice Λ is
generated by linear combinations with integer coefficients of the basis b1, · · · , bn.

Λ =

{
n∑

i=1
cibi | ci ∈ Z

}
(1)

We denote the norm of the shortest vector in Λ as λ1(Λ) and the minimum radius r such
that a ball with radius r contains i linearly independent vectors as λi(Λ). In this work,
we consider only regular matrices as basis matrices B, so vol(L) = |det(B)|.

The shortest vector problem (SVP) and the closest vector problem (CVP) are basic
lattice problems. Given the basis of a lattice Λ in Rn , SVP is used to find the shortest
nonzero vector in Λ. CVP is related to SVP: given a basis of a lattice Λ in Rn and a
target point v ∈ Rn, find a vector in Λ closest to v. When the shortest distance between
the target and the vectors in the lattice is limited to a small value, CVP is called bounded
distance decoding (BDD), which can be solved by the nearest plane[7], but in practice,
Kannan’s embedding method[17] is often used to solve CVP. This technique heuristically
reduces CVP into SVP and is said to outperform the nearest plane in [15, 30]. As another
lattice problem, unique SVP is also widely known: given a lattice Λ in Rn such that
λ2(Λ)/λ1(Λ) > γ, find a non-zero shortest vector in Λ.

According to Gaussian Heuristic, λ1(Λ) is expected as

λ1(Λ) ≈
√

n

2πe
· vol(Λ)1/n (2)

2.2 Lattice Reduction
Lattice reduction methods such as LLL[18], BKZ[29], and G6K[1] can be used to solve
SVP or CVP. In particular, the BKZ algorithm is widely used in cryptoanalysis.

The BKZ algorithm is an extension of the LLL algorithm, which achieves lattice re-
duction in polynomial time. The BKZ is executed with a block size β. BKZ proceeds
by focusing on the Euclidean norm of the basis and the shortest basis’s norm of Λ ∈ Rn

is expected to be δn−1
β vol(Λ)1/n using δβ , which depends on β. Some improved versions

have also been introduced, such as BKZ2.0[11].
When a large block size is used as the input, the output basis is expected to be short,

but the execution time increases significantly. The behavior of BKZ (and other lattice
reduction algorithms), including running time, was examined in [12].

In previous studies, BKZ was used to attack (EC)DSA with partially leaked nonce
bits. In those works, the block size β was set to approximately 30, for example, 30 in [13]
and 25 in [27].

2.3 DSA/ECDSA
DSA is a Federal Information Processing Standard[24].

Let p and q be large prime numbers. p − 1 must be a multiple of q.
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Let h ∈ [2, p − 2] be a random integer and compute g ≡ h(p−1)/q mod p (if g = 1, a
different h is selected).

p,q ,and g are the domain parameters for DSA. The secret key d is selected from
[1, q − 1], and the public key is y = gx mod p. To sign a message, the signer selects a
random integer k ∈ [1, q − 1], called the nonce. The signatures r and s for message m are
generated as follows:

r ≡ (gk mod p) mod q (3)
s ≡ k−1(HASH(m) + rd) mod q (4)

If the value is 0, start again from the selection of k.
ECDSA[16, 24] is a variant of DSA that uses elliptic curve cryptography. The domain

parameters for ECDSA are the elliptic curve E and the base point G on E of order n.
The secret key d is selected from [1, n − 1], and the public key is Q = dG. The signer
selects the nonce k ∈ [1, n − 1], and the signatures r and s for message m are generated
as follows:

r ≡ x1 mod n, kG = (x1, y1) (5)
s ≡ k−1(HASH(m) + rd) mod n (6)

If the value is 0, start again from the selection of k.
In both DSA and ECDSA, k must have a different value for each signature, and the

value must be kept secret. If the value of k is known to the attacker, the secret key d can
be calculated by solving the equation for generating signature s. Furthermore, even if a
few bits of k are known, the secret key can be recovered via the HNP, as described in the
next subsection.

2.4 Hidden Number Problem
The HNP was introduced by D. Boneh and R. Venkatesan[10] and has been used in attacks
against (EC)DSA[14, 25, 26]. The HNP recovers the secret α ∈ [1, n − 1] when some of
the most significant bits of tiα mod n are known for all random integers ti and a modulus
n.

To apply HNP to DSA/ECDSA, the attacker uses the equation for signature s. From
here, the prime number q in DSA is rewritten as n in accordance with the notation in the
ECDSA. Let n be an N -bit prime number. From the equation generating s, we have:

k − s−1rd − s−1HASH(m) ≡ 0 mod n (7)

When the signatures are generated K times, we have K equations as follows:

ki − s−1
i rid − s−1

i HASH(mi) ≡ 0 mod n (i = 1, · · · , K) (8)

Assuming that the attacker learns the l most significant bits of the nonce ki (via side-
channel attacks) for all K signatures, ki can be expressed as ki = zi + ai, where ai is a
known integer and zi(0 ≤ zi < 2N−l) is an unknown integer. Then, Equation (8) becomes

zi + ai − s−1
i rid − s−1

i HASH(mi) ≡ 0 mod n (i = 1, · · · , K) (9)

Because the message mi can be selected by the attacker, the value of HASH(mi) can
be calculated. In addition, because ai is a known value, the values of ui = −s−1

i ri and
vi = ai − s−1

i HASH(mi) can be calculated by the attacker. Using ui and vi, we obtain

zi + uid + vi ≡ 0 mod n (i = 1, · · · , K) (10)
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Recalling that 0 ≤ zi < 2N−l, we have −(uid + vi) mod n < 2N−l. Therefore, the secret
key d can be calculated using HNP. To tighten this constraint, Equation (10) is rearranged
as follows: This technique is known as recentering.

(zi − 2N−l−1) + uid + vi + 2N−l−1 ≡ 0 mod n (i = 1, · · · , K) (11)

In this case, we have |uid + vi + 2N−l−1|n ≤ 2N−l−1.
HNP is solved by lattice attacks that calculate the secret key via CVP or Bleichen-

bacher’s attack, which is based on Fourier analysis.
Lattice attacks use lattice basis reduction algorithms, such as BKZ. These attacks

can successfully recover the secret key with a relatively small number of signatures (K)
when sufficient bits (l) of the nonce are known to the attacker, but are vulnerable to error
information of the nonce[6].

2.5 Side-channel Attacks
In this work, we assume nonce leaks, but in practice, the attacker must obtain information
about nonce via side-channel attacks.

For example, in [22], 40,000 signatures were generated to construct an HNP. Another
example is [8], which did not attack ECDSA via HNP but aimed to leak all bits of the
nonce. In the attack, it is theoretically possible to leak all the bits of nonce in a single
signature, but owing to the buffer limit of the oscilloscope, only a few bits are actually
acquired.

As in the example above, it can be difficult to obtain enough leaked information for
HNP, so it is important for the attacker to minimize the number of leaked bits l and the
number of signatures K.

3 Lattice Attacks
3.1 Details of the attack
For lattice construction, we follow [9, 25]. This work assumes that the most significant
bits of nonce k are leaked by side-channel attacks. As discussed in Section 2.4, we assume
the leakage of l most significant bits of nonce k, and we have

(zi − 2N−l−1) + uid + vi + 2N−l−1 ≡ 0 mod n (i = 1, · · · , K) (12)

with the constraints |uid+vi+2N−l−1|n ≤ 2N−l−1. Now, let Z = 2l+1 and v′
i = vi+2N−l−1

and construct the following matrix:

A =


Zn

Zn
. . .

Zn
Zu1 Zu2 · · · ZuK 1

 (13)

Now, considering the lattice Λ = {xA|x ∈ ZK+1} generated by the matrix A and the
target point v = (Zv′

1, · · · , Zv′
K , 0), the lattice A contains a vector x that satisfies

w0 = xA + v = (−Z(z1 − 2N−l−1), · · · , −Z(zK − 2N−l−1), d) (14)

or

w1 = xA + v = (−Z(z1 − 2N−l−1), · · · , −Z(zK − 2N−l−1), d − n) (15)
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Because w0 and w1 are related to d, finding w0 or w1 leads to the recovery of the secret
key. Because of the constraints on the value of zi − 2N−l−1, the norm of w0 or w1 is very
short, so it is possible to find w0 or w1 by using the approach to solve the CVP.

To solve this CVP, we used the Kannan’s embedding method. This heuristic method
reduces the CVP into SVP. Here, matrix A is embedded into a larger matrix A′.

A′ =
(

A 0
v n

)
(16)

=



Zn
Zn

. . .
Zn

Zu1 Zu2 · · · ZuK 1 0
Zv′

1 Zv′
2 · · · Zv′

K 0 n


(17)

The vectors

w′
0 = (−Z(z1 − 2N−l−1), · · · , −Z(zK − 2N−l−1), d, n) (18)

w′
1 = (−Z(z1 − 2N−l−1), · · · , −Z(zK − 2N−l−1), d − n, n) (19)

and −w′
0 and −w′

1 are vectors whose norm is particularly small among the vectors in
the lattice, so they are expected to be found by the SVP approach. However, there is
another short vector, (0, · · · , 0, ±n, 0), and this vector is the shortest vector of the lattice
generated by A′, so we are looking for the second shortest vector. Therefore, we apply
the BKZ algorithm to the matrix A′ to reduce the basis and look for a basis whose last
element is ±n to find the target vector ±w′

0 or ±w′
1. The K + 1 th element of the basis

is the secret key d mod n.
To avoid appearing (0, · · · , 0, ±n, 0) on the first basis, [2, 30] uses a technique to remove

(0, · · · , 0, ±n, 0) from the lattice. With this technique, the target vector is expected to
appear on the first basis. [2] mentioned, however, that this technique "would not be
expected to make a significant difference in the feasibility of the algorithm", so we do not
apply the technique to this work.

3.2 Theoretical success probability
In this section, we discuss the theoretical attack success rates. A similar discussion that
depends on the Gaussian heuristic and unique SVP is found in [30], but it cannot be
applied to our attack scenario because the shortest basis is expected to be (0, · · · , 0, ±n, 0),
and the target vector is expected to be located on the second basis in our attack.

Thus, we assume the existence of a CVP oracle for the infinity norm (CVP∞ oracle)
to estimate the success rates. Considering the constraints of zi −2N−l−1 in equations (14)
and (15), the CVP∞ oracle is more suitable than the CVP oracle for the Euclidean norm.
However, the CVP∞ oracle is an NP-hard problem [25], so it cannot always be feasible to
solve a practical problem.

We now calculate the success rate of the attack based on the assumptions described in
Section 3.1. This discussion is based on [10]. Consider the difference a = xA + v between
a vector xA in lattice L and vector −v. Let x = (x1, · · · , xK , a), and we have that

a = (aZu1 + x1Zn + Zv′
1, · · · , aZuK + xKZn + Zv′

K , a) (20)

The target vectors satisfy a mod n = d and are expressed as follows:

w0 =
(
−Z(z1 − 2N−l−1), · · · , −Z(zK − 2N−l−1), d

)
(21)

w1 =
(
−Z(z1 − 2N−l−1), · · · , −Z(zK − 2N−l−1), d − n

)
(22)
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When d < n
2 , w0 has a smaller infinity norm than w1. Otherwise, w1 has a smaller

infinity norm. In either case, let the vector with a smaller infinity norm be w. Its infinity
norm is

||w||∞ = max
{∣∣Z(z1 − 2N−l−1)

∣∣, . . . ,
∣∣Z(zK − 2N−l−1)

∣∣, min{d, n − d}
}

≤ 2N . (23)

On the other hand, let the vector with a smaller infinity norm be aa under the condition
that a mod n ̸= d. Its infinity norm is

||aa||∞ = max
{∣∣aZu1 + Zv′

1)
∣∣
Zn

, · · · ,
∣∣aZuK + Zv′

K

∣∣
Zn

, |a|Zn

}
(24)

= max
{

Z
∣∣au1 + v′

1
∣∣
n
, · · · , Z

∣∣auK + v′
K

∣∣
n
, |a|Zn

}
(25)

If ||aa||∞ is greater than 2N , then there is no vector whose infinity norm is smaller than
w. The probability of this is

Pr
(
||aa||∞ > 2N

)
≥ Pr

(∃i : Z |aui + v′
i|n > 2N

)
= Pr

(∃i : |aui + v′
i|n > 2N−l−1) (26)

Since |dui + v′
i|n ≤ 2N−l−1,

|aui − dui|n > 2N−l

⇔ |aui + v′
i − (dui + v′

i)|n > 2N−l

⇒ |aui + v′
i|n > 2N−l−1 (27)

Thus,

Pr
(
||aa||∞ > 2N

)
≥ Pr

(∃i : |aui − dui|n > 2N−l
)

= 1 −
(

2N−l+1

n − 1

)K

(28)

Because a mod n can take any n − 1 values except d among 0, · · · , n − 1, the probability
P that there exists a vector with a smaller infinity norm than w when all values of a are
considered is

P ≤ (n − 1)
(

2N−l+1

n − 1

)K

(29)

Therefore, the probability P that there is no vector with a smaller infinity norm than w,
that is, the probability P that the secret key recovery is possible with a CVP oracle for
the infinity norm is

P ≥ 1 − (n − 1)
(

2N−l+1

n − 1

)K

(30)

Table 1-3 shows the minimum conditions under which the success rate of the attack P
exceeds 0.99, as a result of using the parameters of P256, P384, and P521 recommended
in NIST[24], which are the target elliptic curves in this work.

Table 1: Required K to attack P256 with CVP∞ oracle

Leaked bits l 8 7 6 5 4 3 2
Signatures K 38 44 53 66 88 132 263
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Table 2: Required K to attack P384 with CVP∞ oracle

Leaked bits l 8 7 6 5 4 3 2
Signatures K 56 66 79 98 131 196 391

Table 3: Required K to attack P521 with CVP∞ oracle

Leaked bits l 8 7 6 5 4 3 2
Signatures K 76 88 106 132 176 264 528

4 Experimental Results
4.1 Settings
To investigate the conditions under which lattice attacks are possible in terms of the key
length, the number of leaked nonce bits, and the number of signatures, we randomly
generated the matrix represented by Equation (17), recovered the secret key using BKZ
reduction, and confirmed that the attack recovers the correct secret key. In this experi-
ment, ui and vi are not calculated from the actual signatures but are randomly generated
to satisfy Equation (10). When actual signatures are used, the distributions of ui and vi

are not necessarily uniform because the relationship between nonce k and signature r is
not a one-to-one correspondence, and the hash value HASH(mi) may not be uniformly
distributed under modulus n. Therefore, when the results obtained from this experiment
are applied to actual signatures using actual signatures, they can be affected by distri-
bution bias. Specifically, if (ui, vi) has the same value in multiple signatures, duplicated
signatures do not add significant constraints to Equation (10). If the distribution is biased,
the probability of having the same value increases, so the number of signatures required
may increase slightly. However, because the distribution of (ui, vi) is also affected by the
attacker’s message selection and n is a very large number, we assume that the difference
between this attack and the actual signature is negligible.

We ran the attack described previously on the library Sage 9.1[28]. We used the
parameters of P256, P384, and P521 recommended in [24] as the target of the attack,
and measured the total execution time required to finish the BKZ algorithm, to find the
target vector w, and to recover the secret key candidate. This experiment was conducted
on an AMD Ryzen Threadripper 3990X as a single thread.

4.2 Results
The number of trials is 100 times. Because the running time of the BKZ algorithm
becomes very long when the dimension of the lattice becomes large, the number of trials
under such conditions is small. In such cases, the number of trials is specified.

Figure 1-3 shows the results of attacks on P256, P384, and P521. If a certain number
of leaks can be obtained, as shown in the figures, the attack can easily succeed. The
conditions for this are 4 bits for P256, 5 bits for P384, and 7 bits for P521.

For the experiment targeting P256, P384, and P521, the minimum number of signa-
tures K that correctly recovered the secret key in all trials are shown in Table 4-6 respec-
tively. These numbers are smaller than those in Table 1-3. This is probably because the
discussion in Section 3.2 restricts the probability to be calculated with inequalities. When
such many leaks can be obtained, the lattice attacks can be said to perform like a CVP
oracle for the infinity norm.
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Table 4: Required K to attack P256

Leaked bits l 8 7 6 5 4
Signatures K 34 40 48 58 78

Table 5: Required K to attack P384

Leaked bits l 8 7 6 5
Signatures K 52 61 72 93

Table 6: Required K to attack P521

Leaked bits l 10 9 8 7
Signatures K 56 63 71 84

Table 7 shows the attack results for less nonce leakage. Owing to the long execution
time, we were not able to run many experiments with different numbers of signatures K,
but we ran the experiments with the number of signatures derived in Table 1-3.

Table 7: Attacks with less leaks

Target Leaked bits l Signatures K Success rate
P256 3 132 43/100
P384 4 131 136/200
P521 6 106 100/100
P521 5 132 64/100

For P521, attacks with 6 bits leakage are feasible. However, the success rates of
attacks with 3 bits leakage for P256, 4 bits leakage for P384, and 5 bits leakage for P521
are not 100%. Nonetheless, these attacks are still feasible because the success rates are
approximately 50%.

4.3 Detailed investigation
We conducted more detailed experiments on attacks with few leaks in which the attack
could fail. Attacks on P256 with a 3bits nonce leak were conducted, and the results are
shown in Table 8. Owing to the long running time, the number of trials in K ≥ 150 is
limited to only 10.

Table 8: Attacks on P256 with 3bits nonce leak

Signatures K 132 140 150 160 170 180 190 200 210 220 230 240
Success 43 52 5 4 3 7 9 6 2 8 4 2

All 100 100 10 10 10 10 10 10 10 10 10 10

The results seem to have a large variance because of the small number of trials. How-
ever, we found that there was no significant improvement in the success rate of the attacks,
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even if the number of signatures was increased beyond 140. This may be due to the fact
that the reduction in HNP is sufficient. A possible reason is that the target could not be
found because of insufficient lattice basis reduction of BKZ.

We conducted a detailed study in 100 samples for P256 and 100 samples for P384 to
evaluate the performance of BKZ in this attack. In particular, we further investigated the
case in which the number of signatures was 132, 131 for P256, P384 respectively. Here we
denote a vector whose last element is ±n as candidate vector and the vector in Equation
(18) or (19) as the target vector. By outputting the target vector and all the bases after
lattice basis reduction, we found the following:

• Regardless of success or failure, the shortest basis was (0, · · · , 0, n, 0)．

• In case of success, BKZ succeeded in finding the target vector． The target vector
was the second shortest basis.

• In case of failure, BKZ failed in finding the target vector．The second shortest basis
was a candidate vector that are not the target vector, an irrelevant vector in the
lattice, or Zn, that is, a basis in which only one element was Zn and the others
were 0.

• (P256) The norm of the target vector was 6.718n on average.
(P384) The norm of the target vector was 6.689n on average.

• (P256) 8 samples in which the norm of the target vector < 6.351n succeeded.
(P384) 19 samples in which the norm of the target vector < 6.479n succeeded.

• (P256) 12 samples in which the norm of the target vector > 7.027n failed.
(P384) 9 samples in which the norm of the target vector > 7.086n failed.

• (P256) In 80 samples in which 6.351n < the norm of the target vector < 7.027n,
success and failure are mixed.
(P384) In 72 samples in which 6.479n < the norm of the target vector < 7.086n,
success and failure are mixed.

From the first result, we can say that we succeeded in finding the shortest basis. The
second and third results show that when the attack fails, the basis whose norm is larger
than the norm of the target vector is output as the second shortest basis. On the other
hand, the target vector always appears on the second basis when the attack succeeds.

The 4-7th results show the norm of the target vector. From these results, it appears
that it is difficult for lattice attacks to find the target vector when the norm of the target
vector reaches approximately 7n.

4.4 Running time

Figure 4 shows the running time. The running time does not depend significantly on
the key length but depends on the size of the input matrix. The running time increases
exponentially, and the difficulty of the attack increases under the condition that there are
few leaks in terms of execution time.
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Figure 4: Running time of BKZ

5 Effectiveness of lattice attacks
Based on the results in the previous section, we discuss the conditions under which the
secret key can be recovered by the method employed in this work after making some
assumptions for a simplified discussion.

To evaluate the success or failure of lattice attacks, we consider modeling lattice attacks
by focusing on the norm of the target vector. Intuitively, we consider that BKZ can find
the target vector if its norm is significantly small.

In our experiments, we found that the norm of the shortest basis is always n, and we
assume that the BKZ can find this vector as the shortest basis. Therefore, we discuss the
ratio R of the smallest norm n to the norm of the target vector. If the ratio is sufficiently
small, the BKZ will find the target, and if it is large, the target will be concealed by other
bases.

The experimental results in Section 4.3 show that the ratio R is approximately 6 to 7
in the attacks on P256 with 3 bits leakage and P384 with 4 bits leakage, so we can suspect
that when R is approximately 6 to 7, lattice attacks sometimes fail to recover the secret
key. Intuitively, the smaller R is, the easier it is to recover the key.

We calculated the expected value of the norm for the target vector. The target vector
is the shortest vector of the

w′
0 = (−Z(z1 − 2N−l−1), · · · , −Z(zK − 2N−l−1), d, n) (31)

w′
1 = (−Z(z1 − 2N−l−1), · · · , −Z(zK − 2N−l−1), d − n, n) (32)

and −w′
0,−w′

1. Here, we denote the target vector as w′, and its expected square of the
norm is

E(||w′||2) = E

(
K∑

i=1
Z2(zi − 2N−l−1)2 + min{d2, (d − n)2} + n2

)
(33)

Here, we assume that zi independently and randomly takes a value from 0 to 2N−l−1.
Because d is determined independently of zi, we have

E(||w′||2) = E

(
K∑

i=1
Z2(zi − 2N−l−1)2

)
+ E

(
min{d2, (d − n)2}

)
+ n2 (34)
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Since 0 ≤ zi < 2N−l,

E(Z2(zi − 2N−l−1)2) = Z2

2N−l−1∑
i=0

(i − 2N−l−1)2

2N−l
(35)

= Z2

(2N−l−1)2 + 2 ·
2N−l−1−1∑

i=1
i2

2N−l
(36)

= Z2 (2N−l−1)2 + (2N−l−1−1)2N−l−1(2×2N−l−1−1)
3

2N−l
(37)

= 1
3

(22N + 22l+1) (38)

Next, for E
(
min{d2, (d − n)2}

)
, n is a prime number, and thus an odd number. Therefore

E
(
min{d2, (d − n)2}

)
=

2 ·

n−1
2∑

i=1
i2

n − 1
(39)

= n(n + 1)
12

(40)

Therefore,

E(||w′||2) = K · 1
3

(22N + 22l+1) + n(n + 1)
12

+ n2 (41)

Originally, we would like to find E(||w′||), but this is difficult, so we proceed with the
discussion around the expectation value of the square. In this case, we have the relation
E(X2) ≥ (E(X))2, which means that we use a value larger than the original E(||w′||).
We denote the estimated value (not the expected value) of the target norm as:

√
K · 1

3
(22N + 22l+1) + n(n + 1)

12
+ n2 (42)

and consider the ratio R to norm of the shortest basis

R =

√
K · 1

3 (22N + 22l+1) + n(n+1)
12 + n2

n
(43)

Figure 5 plots the R for attacks with 3, 4, and 5 bits against P256, P384, and P521, where
the success rate dropped in 4.2.
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The estimated R in Figure 5 for the 132, 131 signatures where we performed the attack
on P256, P384 is 6.7144 and 6.6895 respectively, which is consistent with the experimental
results (6.718 and 6.689 on average). Depending on this model, we consider the execution
of an attack when the leakage is less than that. The value of R is not significantly
affected by l because 22N >> 22l+1 when the value of l is small. Thus, we approximate
R as follows:

R ≈

√
K · 22N

3 + n(n+1)
12 + n2

n
(44)
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Figure 6: Inf P in Equation (30) (K=115)

The 5th result in Section 4.3 suggests that lattice attacks easily succeed when R is
less than 6.3. In Equation (44), we calculated that the condition on K to satisfy R < 6.3
using parameters P256, P384, and P521. In each case, K < 116 was required. This result
and Table 1-3 show that attacks against P256 with 3 bits, P384 with 4 bits, and P521
with 5 bits are difficult, as shown in the experimental results in Section 4.2. Furthermore,
the value of the right side of Equation (30) when K = 115 is shown in Figure 6. From
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Figure 6, we can infer attacks against P256 with about 3.29 bits, P384 with about 4.4
bits and P521 with about 5.59 bits are easily succeed.

Based on this model, it is necessary to use a lattice reduction algorithm that can
handle a larger R to improve lattice attacks. Recalling equations (30) and (5), when a
larger R is allowed, a larger K and, thus, a smaller l is allowed.
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