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Abstract. In this paper, we study the security of the Legendre PRF
against quantum attackers, given classical queries only, and without quan-
tum random-access memories. We give two algorithms that recover the
key of a shifted Legendre symbol with unknown shift, with a complexity
smaller than exhaustive search of the key. The first one is a quantum
variant of the table-based collision algorithm. The second one uses Ku-
perberg’s abelian hidden shift algorithm in an offline manner. We show
that the latter, although asymptotically promising, is not currently the
most efficient against practical parameters.

Keywords: Legendre PRF, quantum cryptanalysis, quantum algorithms, Ku-
perberg’s algorithm.

1 Introduction

Let P be a prime number and a ∈ FP . The Legendre symbol of a modulo P is
defined as

(
a
P

)
= 1 if a is a square modulo P and −1 otherwise (by convention,( 0

P

)
= 1). Its use in cryptography was first proposed by Damgård in [15], who

conjectured the hardness of the following problem:

Problem 1 (Legendre sequence randomness). Given a sequence of Legendre sym-
bols starting at some given value a ∈ FP and of some length m ∈ poly (log2 P ):( a

P

)
,

(
a+ 1
P

)
, . . . ,

(
a+m− 1

P

)
, then find

(
a+m

P

)
.

That is, the Legendre symbol produces a pseudo-random sequence of bits. A
similar problem can be defined for the Jacobi symbol, which is a generalization of
the Legendre symbol to a composite basis N = P1× . . .×Pr:

(
a
N

)
:=
∏
i

(
a
Pi

)
.

The Legendre PRF. The conjecture of Damgård naturally leads to the definition
of a pseudo-random function based on the shifted Legendre symbol, as in [14]:{

FLeg : FP × FP → {−1, 1}
(s, x) 7→

(
s+x
P

)
or as in [17], by remapping {−1, 1} on {0, 1}. For a given s, distinguishing
FLeg(s, x) from random values is the decisional shifted Legendre symbol problem



(DSLS), the decisional version of the shifted Legendre symbol problem (SLS),
which asks for recovery of the secret s. At the moment, no separation between
the SLS and the DSLS is known, which is why we (as all previous works) focus
on the SLS.

Problem 2 (Shifted Legendre symbol). Let P be a prime number. Given query
access to the function FLeg,s : x 7→

(
x+s
P

)
for some secret s ∈ FP , find s.

The Legendre symbol PRF has recently regained significant interest with the
proposal of Grassi et al. [17] to use it in a multi-party computation scenario.
Indeed, the malleability of the Legendre symbol allows to evaluate the PRF very
efficiently in this setting. Since then, the PRF has been considered for use in
the Ethereum blockchain, and the Ethereum foundation has proposed several
challenges to encourage cryptanalysis research [16].

Previous Results. The SLS problem can be seen as a particular case of the shifted
character problem, which was studied by van Dam et al. [14] in the quantum
setting. When superposition query access to the shifted character is given (in our
case, the Legendre PRF FLeg,s), they showed that the problem could be solved
in polynomial time and with only a single query to FLeg,s.

However, when only classical queries are given, the SLS problem was conjec-
tured by van Dam et al. and by Grassi et al. to remain intractable for a quantum
attacker. In the classical setting, several authors have studied and improved the
Legendre PRF key-recovery attacks [20, 19, 4]. We give a summary in Table 1.
The most advanced results were obtained by Beullens et al. [4] and concurrently
by Kaluderović et al. [19]. Given a sequence of M Legendre symbols, they recover
the secret in about Õ

(
P
M2

)
operations. Their technique is a table-based collision

search, whose principle will be reviewed in Section 3.

Contributions. We perform the first analysis of quantum algorithms to solve the
SLS without quantum random-access memories (we note that an algorithm with
quantum RAM was proposed in [19], and that some remarks on quantum security
were made in [4]). We give two techniques and we discuss their applicability:
first, a quantum table-based collision search that builds over the multi-target
preimage search of [11]. Second, an offline abelian hidden shift algorithm, which is
an offline adaptation of Kuperberg’s algorithm [21], similar to the offline Simon’s
algorithm of Bonnetain et al. [6]. It was already mentioned in [6] that Kuperberg’s
algorithm could undergo the same “offline” treatment as Simon’s, but this had
never been studied before in full detail. We show that the Legendre PRF provides
a nice application for this. However, although it is asymptotically more efficient,
we conclude that the offline Kuperberg’s algorithm would require significant
improvements to be competitive with the quantum table-based collision search.
Our results are summarized in Table 1.

Organization of the Paper. We give some technical preliminaries in Section 2.
In Section 3, we recall the classical table-based attacks and introduce our first
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Method Queries Time Memory Source
Classical algorithms

Pollard’s rho
√
Pm L

√
Pm m [20]

Table M M2 + Pm2/M2 M2/m [4]
Table M M2 + Pm log2 m/M

2 M2 [19]
Quantum algorithms

Sup. queries 2 poly(m) poly(m) [14]
Table (qRAM) M M2 +m2

√
P/M2L M2 qRAM [19]

Grover search m log2 m
√
PL m qubits Sec. 3.2

Distinguished points M M2 +
√
P

M1/3m
11
6 log2 log2 M

M classical
+ m qubits Sec. 3.3

Offline
Kuperberg M Õ

 M2
√
α log2 M+

2 3
2

√
α log2 M

√
P
M

 Õ(2
√
α log2 M )

qubits
Sec. 5.3

Table 1. Comparison of classical and quantum algorithms to solve the SLS problem.
We note m = 3 dlog2 P e, α = 2 log2 3, L ≤ (log2 P )2 the time to compute a Legendre
symbol, and we omit constant factors.

algorithm. In Section 4, we recall Kuperberg’s first algorithm and introduce
its reversible version (most technical details are deferred to Appendix D). In
Section 5, we introduce the offline Kuperberg’s algorithm and apply it to the SLS
problem.

2 Preliminaries

In this section, we introduce some preliminaries of quantum computing.

2.1 Quantum Circuits

We refer to [23] for an introduction to the quantum circuit model. Our quantum
algorithms are described as quantum circuits: the time complexity is counted
as the number of basic quantum gates used (e.g. Clifford + T gates) and the
space complexity is the number of qubits. Sometimes, also, we count the classical
memory used. As our considerations are mainly asymptotic, most implementation
details remain out of scope of our work. For example, we consider that a modular
addition of two n-bit values costs O (n) basic gates [13]. Swapping two n-qubit
registers, comparing two n-qubit registers, or comparing a given n-qubit register
with a classical value all cost O (n) gates. We show in Appendix C that the
Legendre symbol modulo P can be computed with O

(
(log2 P )2) basic gates.

We use the term ancilla qubits for qubits that are initialized to the state |0〉,
used by the circuit and returned to their initial state. We say that a computation
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is performed out of place if its output is written on an additional register and in
place otherwise. We routinely use the standard “ket” notation of quantum states
|ψ〉, the notation Of for a quantum oracle for f and standard operators such as
the M -dimensional Quantum Fourier Transform:

|x〉 QFTM7−−−−→ 1√
M

∑
y∈ZM

exp(2iπ/M)xy |y〉 .

2.2 Quantum Search
In this paper, we make use of Amplitude Amplification [9], a powerful general-
ization of Grover’s algorithm [18]. It allows to speed up the search for a “good”
output of any probabilistic algorithm, including another quantum algorithm.

Theorem 1 ([9], Theorem 2). Let A be a quantum algorithm that uses no
measurements, let f : X → {0, 1} be a boolean function that tests if an output of
A is “good”. Let a be the success probability of A. Let O0 be the “inversion around
zero” operator that does: O0 |x〉 = (−1)x6=0 |x〉 and Of a quantum oracle for f :
Of |x〉 = (−1)f(x) |x〉. Let θa = arcsin

√
a and 0 < θa ≤ π

2 . Let t =
⌊
π

4θa

⌋
. Then

by measuring (AO0A†Of )tA |0〉, we obtain a good result with success probability
greater than max(1− a, a).

Next, we use another result on Grover search using an approximate test oracle.
This notion was introduced in [6]. In this context, the test oracle Of admits
an ancillary state |ψ〉 which must be preserved from one iteration to the next:
|x〉 |ψ〉 Of7−−→ (−1)f(x) |x〉 |ψ〉. However, we have only an imperfect oracle O′f , that

induces a uniform error of amplitude ε: ∀x, |x〉 |ψ〉
O′f7−−→ (−1)f(x) |x〉 |ψ〉 + |δx〉

where maxx ‖ |δx〉 ‖ ≤ ε. In addition to [6], we will also start from an approximate
initial state.

Theorem 2 (Grover search with approximate test (see [6])). Consider
the setting of Theorem 1 with an approximate test O′f of error ε. On an input
|ψ′〉 ⊗ (A |0〉), where ‖ |ψ〉 − |ψ′〉 ‖ ≤ ν, we run t =

⌊
π

4θa

⌋
iterations of Grover

search with O′f . Then measuring the output yields a good result with probability
greater than (1− tε− ν)2 max(1− a, a) .

We give a proof in Appendix B. The idea of the proof is a “hybrid argument”
as in [3] or [1, Lemma 5]. Each iteration with the approximate test adds a global
error of amplitude less than ε, and we start with an error ν. The state after t
iterations differs from the “ideal” one by an error of amplitude less than tε+ ν.
Upon measurement, we project on the “ideal” state with probability greater than
(1− tε− ν)2 and we then measure a good element with probability max(1− a, a).
Note that the fact that ν can be constant, as it is “paid” only once, is particularly
important for us.

Corollary 1. If ν ≤ 1
4 and ε ≤ 1

4t , then the procedure of Theorem 2 succeeds
with probability ≥ 1

8 .
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3 Table-based Attacks

In this section, we recall the classical table-based collision search of [4, 19], which
is the basis of the quantum table-based collision search presented after. Note that
we follow the presentation in [4].

3.1 Classical Algorithm

Let m = 2 dlog2 P e. The attack uses queries to the function
(
x+s
P

)
to create L-

sequences: words of m bits that allow to discriminate a guess of s. The definition
of L-sequences is from [4] and we slightly simplify it. We define:

La =
(( a

P

)
,

(
a+ 1
P

)
, . . . ,

(
a+m− 1

P

))
.

Assuming that the Legendre PRF is “sufficiently random”, a collision of
L-sequences implies the equality of their parameters. With sequences of size
m = 3 dlog2 P e, we will assume that no random collisions occur at all. This is a
stronger heuristic than the one commonly used in the classical cryptanalysis of
the Legendre PRF, which will simplify our analysis of quantum algorithms.

Heuristic 1 For all a, b ∈ Z∗P , La = Lb =⇒ a = b.

In order to recover s, one then looks for a collision between an L-sequence of
unknown parameter (depending on the secret s) and an L-sequence of known
parameter. With M data, we can obtain M −m L-sequences, but the attack
of [4] uses the multiplicativity of the Legendre symbol to increase significantly
this number. Assume that M <

√
P consecutive values of

(
x+s
P

)
are known, then

the attack does:

1. Extract M2

m L-sequences of the form:((
a+ s

P

)
,

(
a+ b+ s

P

)
, . . . ,

(
a+ b(m− 1) + s

P

))
=
(
b

P

)((
a/b+ s/b

P

)
,

(
a/b+ s/b+m− 1

P

)
, . . . ,

(
a/b+ (m− 1) + s/b

P

))
= L(s/b+a/b) mod P . (1)

Naively, we would have extracted only M sequences from the data, but the
multiplicativity of the Legendre symbol allows to extract M

2

m sequences, using
b ≤

⌊
M
m

⌋
and a < M − bm+ 1.

2. Store all the extracted sequences L(s/b+a/b) mod P , a, b in a table.
3. Sample c at random until Lc, a, b is in the table for some a, b. Such a collision

yields a candidate key s such that: s/b+ a/b = c =⇒ s = cb− a mod P . We
can then test if this candidate is the good one with a few more computations.
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This classical attack requires M2 memory of storage for the table, and
expectedly mP/M2 samples must be tested in Step 3 before a collision occurs.
Thus Step 3 requires O

(
m2P/M2) Legendre symbol computations. Further

optimizations allow to reduce the memory to M2/m and to amortize the cost of
computing Legendre symbols in an iteration of the loop.

Quantum Version with qRAM. This procedure yields a quantum attack as
proposed in [19]. The precomputation stage (Step 1) is unchanged, but now
Step 3 is a Grover search. Instead of running O

(
mP/M2) classical iterations, we

need only O(
√
mP/M2) iterates, each of which contains O (m) Legendre symbol

computations and a memory access. However, the memory requires quantum
random-access (qRAM), a powerful model that we do not consider in this paper.

3.2 Grover Search

With M <
√
P queries available, and without quantum RAM, the best quantum

attack available is a direct Grover search of the secret s. We query the L-sequence
Ls (thus using only m data) and search for the single x ∈ Z∗p (by Heuristic 1) such
that Lx = Ls. This first version requires O(m

√
P ) Legendre symbol computations,

thus O(m3
√
P ) quantum gates.

Early-aborting. In a classical search for a sequence matching Ls, we can stop
the computation of Lx at the first bit that does not match. This reduces the
average number of Legendre symbols computed from m to a constant. This
folklore idea allows to save almost a factor m on Grover search: instead of
searching for x such that Lx = Ls, we define subsets of Z∗P : Xi = {x ∈
Z∗P , Lx and Ls match on the first i bits }. Our goal is to find an element of Xm,
but as we have an inclusion X1 ⊆ X2 ⊆ . . . ⊆ Xm, we will search for Xm

only in Xi for some i ≤ m. Assuming that |Xi| ' P
2i , this gives a complexity:

π
4

√
P
2i

(
2π4
√

2i(iL) + (m− i)L
)
, where we use a Grover search to sample from

Xi in time π
4

√
2i(iL), inside an Amplitude Amplification. We can see that taking

i = log2 m reduces the total complexity to O(log2 m
√
PL).

3.3 Distinguished Collisions

Since we do not assume qRAM, we have to modify the table-based collision
strategy if we are to beat the square-root complexity given by Grover search.
We will use the strategy of [11] for multi-target preimage search, and adapt the
algorithm of Section 3.1 as follows:

1. From the M Legendre symbols, extract M2

m L-sequences.
2. Store only the M2

m2t “distinguished” sequences that start with t zeroes (an
arbitrary choice).

3. Sample c such that Lc is distinguished, until it matches one of the stored
sequences.
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We use Amplitude Amplification. Sampling a distinguished Lc is done in
time O(log2 t

√
2t`) with an early-aborted Grover search. Testing whether Lc

matches our table is done with a sequential circuit: since all the values are known
classically, O (m) controlled quantum gates allow to compare a single La to
the current Lc. Assuming that we use all the data, this yields an algorithm of
complexity:

O

(
M2 +

√
P

2t × M2

m2t

(
log2 t

√
2t`+m`+ M2

m2tm
))

.

Note that the number of iterations has been reduced, because the probability of
two distinguished sequences to collide is higher than two random sequences. By
taking t = 4

3 log2(M/m) we get a complexity:

O

(
M2 +

√
Pm

M2

(
M

m

)2/3
(log2 log2 M)m2

)
= O

(
M2 +

√
P

M1/3m
11/6 log2 log2 M

)
.

Note that a memory of size M is required during Step 1 (extraction), and
M2/3m during Step 3 (search). Both are only classical. Also, the memory of
Step 3 is accessed only once per iteration (

√
Pm
M2 in total) and in a sequential

way. Contrary to the classical table-based collision, which can use up to M = P /4

queries, this one will stop improving at M = P 3/14 queries, where it reaches
Õ
(
P 3/7).

4 Kuperberg’s Algorithm and Its Reversible Version

In this section, we recall the abelian hidden shift problem and Kuperberg’s first
algorithm [21]. Its standard depiction highly depends on intermediate measure-
ments. Our new contribution is to describe a reversible variant of the algorithm,
study its time complexity and error probability, and give some simulation results.

4.1 The Abelian Hidden Shift Problem

Quantum algorithms for hidden period or hidden shift problems have seen numer-
ous applications in quantum cryptanalysis. As an example, Shor’s algorithm [27]
solves the abelian hidden period (or abelian hidden subgroup) problem in polyno-
mial time: given a function f with domain (G,+), an abelian group, such that
f(x+ s) = f(x) for some s ∈ G, find s. But the problem becomes harder if we
look for the shift between two functions.

Problem 3 (Abelian hidden shift). Let (G,+) be an abelian group, X a set and
f, g : G→ X a pair of injective functions such that: ∃s,∀x ∈ G, g(x) = f(x+ s).
Then find the shift s.
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As it was already remarked in [14], the SLS problem is an instance of Problem 3,
where g will be the PRF FLeg,s and f will be the Legendre symbol modulo P .
However, if quantum oracle access to g is allowed, the dedicated algorithm of [14]
is much more efficient. In this paper, we will not use Kuperberg’s algorithm to
solve directly the SLS, but a decisional version of Problem 3.

Problem 4 (Decisional abelian hidden shift). Let f, g : Z2n → X be two injective
functions such that either: ∃s,∀x, f(x+ s) = g(x), or Im(f)∩ Im(g) = ∅. Decide
which is the case.

4.2 Kuperberg’s Algorithm

In [21], Kuperberg designed a subexponential-time algorithm to solve Problem 3
(and so Problem 4), using quantum oracle access to f and g. The original
algorithm ran in time Õ(2

√
(2 log2 3) log2 |G|). Multiple subsequent works have

changed the value in the exponent and given trade-offs between classical and
quantum computations [25, 22, 12, 5, 24, 8]. If queries, classical and quantum
time are counted equally, then the best complexity known to date is Õ(2

√
2n)

with Kuperberg’s collimation sieve [22]. In this paper, we focus on the earliest
algorithm, not only because it is easier to present, but also because the other
versions are hybrid algorithms, which tend to replace quantum costs by classical
costs. For example, the variant of Regev [25] requires to solve classical subset-
sum instances. While this is very useful if Kuperberg’s algorithm is used as a
standalone procedure, it helps less if we make it a fully reversible quantum circuit,
which is our goal here.

In this paper, we assume that the underlying abelian group is G = Z2n for
some n. We let M = 2n denote the cardinality of the group. Note that the
generalization to an arbitrary abelian group is technical, but without a significant
incidence on the time complexity [8]. The assumption that the functions are
injective is also helpful and sufficient for our study, but not strictly necessary.

Sample States. We define a sample state as:

|ψf,g〉 =
∑

0≤x≤M−1
(|0〉 |f(x)〉+ |1〉 |g(x)〉) |x〉

where the common amplitude factor is omitted. It is easy to produce such a state
with a single oracle query to quantum oracles for f and g. Kuperberg’s algorithm
starts by producing t = Õ(2

√
αn) such states, where α = 2 log2 3 is obtained from

the complexity analysis. We name (|ψf,g〉)⊗t the sample database of (f, g).

Label States. Each of these states is then transformed into a label state by
measuring a value a in the second register and applying an M-dimensional QFT
on the third register. Since the functions are injective, there exists a single x0
that maps to a through f and by assumption, x0 − s maps to a through g. We
obtain:

|φf,g〉 = QFTM (|0〉 |x0〉+ |1〉 |x0 − s〉)
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=
∑

0≤y≤M−1
(χM (x0y) |0〉+ χM ((x0 − s)y) |1〉) |y〉

=
∑

0≤y≤M−1
χM (x0y)(|0〉+ χM (−sy) |1〉) |y〉

where we define χM (z) = exp
( 2πz
M

)
. The value of a is discarded. Next, we

can measure the register |y〉 to obtain a random value y and a label qubit:
|φy〉 = |0〉+ χM (−sy) |1〉 (the global phase factor does not matter).

Such a qubit contains some information about s, but it is not immediately
exploitable, unless we can obtain specific values of y. For example, if y = 2n−1,
then the qubit is either |0〉+ |1〉 or |0〉 − |1〉 depending on the least significant
bit of s. Recall that we are interested in deciding whether there is a shift or not
(Problem 4). We can do that from many independent copies of |φ2n−1〉. The bulk
of the algorithm is then the combination step, that allows to create the wanted
labels from the random initial ones.

Combining two Labels. Starting from two label qubits |φy1〉 and |φy2〉, we can
obtain a label qubit for y1 ± y2, that is |φy1+y2〉 with probability 1

2 , and |φy1−y2〉
otherwise. Starting from the joint state:

|φy1〉 |φy2〉 = (|0〉+ χM (−y1s) |1〉)(|0〉+ χM (−y2s) |1〉) =
(|00〉+ χM (−y1s) |10〉+ χM (−y2s) |01〉+ χM (−(y1 + y2)s) |11〉)

we CNOT the first qubit into the second one, mapping |10〉 to |11〉 and |11〉 to
|10〉:

(|00〉+ χM (−y1s) |11〉+ χM (−y2s) |01〉+ χM (−(y1 + y2)s) |10〉)
= (|0〉+ χM (−(y1 + y2)s) |1〉) |0〉+ (χM (−y2s) |0〉+ χM (−y1s) |1〉) |1〉

= (|0〉+ χM (−(y1 + y2)s) |1〉) |0〉+ χM (−y2s) (|0〉+ χM (−(y1 − y2)s) |1〉) |1〉

and we then measure the second qubit. Up to a global phase factor (which does
not matter), we obtain either |φy1+y2〉 or |φy1−y2〉. This operation destroys the
qubits |φy1〉 and |φy2〉.

The Classical Procedure. The procedure consists in combining pairs of labels
(y1, y2) having the same valuation modulo 2, that maximize the expected valuation
of y1±y2. Interestingly, it can be described and analyzed classically. In particular,
it is very easy to simulate its behavior by sampling the labels at random, as done
in [7].

Complexity. The complexity analysis in [21] gives that Õ
(
2
√

(2 log2 3)n) initial label
qubits are enough. Simulations in [7] showed that 2

√
(2 log2 3)n were essentially

enough to solve Problem 3 with constant probability.
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4.3 Reversible Variant

The principle of deferred measurements states that measurements are not neces-
sary in a quantum algorithm, and they can simply be not performed. Thus, there
exists a quantum circuit DAHS that solves Problem 4. However, the standard
procedure contains non-trivial memory operations which, without quantum RAM,
may increase significantly the time complexity in a fully reversible variant. We
show in Appendix D that reversibility costs only a polynomial factor in time. An
exponentially small failure probability can be obtained with another polynomial
factor.

Theorem 3. There exists a quantum circuit DAHS that maps: |b〉 |ψf,g〉⊗t to
|b⊕ 1〉 |ψf,g〉⊗t or |b〉 |ψf,g〉⊗t, where the bit b is flipped if and only f is a shift
of g. With t = Õ

(
2
√

2 log2 3n
)
, it contains Õ

(
2
√

2 log2 3n
)
quantum gates and

ancilla qubits. It has a constant probability of error, that can be reduced to 2−m
with a factor m in time and memory complexity.

5 The Offline Kuperberg’s Algorithm

In this section, we describe the offline Kuperberg’s algorithm based on the
reversible circuit DAHS. Its goal is to find a pair of shifted functions g(·) = f(·+s)
over an abelian group, when g is fixed and f goes through a family (fi)i∈I . We
will consider a simple version, similarly to Problem 4, in which the group is Z2n ,
all functions are injective and admit distinct image sets.

Problem 5 (Finding a shifted pair, injective case). Let g : Z2n → X be a
function, and fi : Z2n → X be a family of functions indexed by I, such that:
• g and all fi are injective; • there exists a single i0 ∈ I and a shift s such that:
∀x ∈ Z2n , g(x) = fi0(x+ s); •

⋃
i6=i0 Im(fi) and Im(g) are disjoint. Then find i0.

5.1 High-level Description

We follow the layout of the offline Simon’s algorithm by Bonnetain et al. [6]. We
use Grover’s algorithm to search for the right index i0 ∈ I. Testing a given i
means finding whether fi is a shift of g. For this, we use the circuit DAHS. Recall
that DAHS takes in input the sample database of (f, g): |ψfi,g〉

⊗t and writes a
single output bit. Thus, the naive Grover search would reconstruct the database
at each iteration, then compute DAHS, then return the database to |0〉.

However, due to the asymmetric nature of the problem, the function g in the
database remains the same from one iteration to the next. Thus, we introduce
the sample database of (0, g): |ψ0,g〉⊗t = (

∑
x |0〉 |x〉 |0〉+

∑
x |1〉 |x〉 |g(x)〉)⊗t .

The algorithm then has two steps:

• Precomputation step: Construct the sample database of (0, g): |ψ0,g〉⊗t.
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• Search step: Run the Grover search for i0. At each search iterate, compute fi
inside the database to obtain the state |ψfi,g〉

⊗t, run the circuit DAHS, then
compute fi again to return to the state |ψ0,g〉⊗t. Due to the approximate
nature of DAHS, this is a Grover search with an approximate test (Theorem 2).

The queries to g are now made only in the precomputation step, in an offline
manner. They require no additional storage, since they can be simply consumed
on the fly while constructing |ψ0,g〉⊗t.

Proposition 1. Let α = 2 log2 3. Problem 5 can be solved within a time Õ(2
√
αn
√
I)

using Õ(2
√
αn) qubits, with constant probability. There are Õ(2

√
αn) queries to g

and Õ(2
√
αn
√
I) queries to f (in superposition for both).

Note that the polynomial factors in the Õ in Proposition 1 are not negligible,
and depend on log2 I and n together. We provide more details in Appendix D.

5.2 Approximate Promise

In order to use this algorithm to solve the SLS problem, we need to adapt
the promise. The input group of the functions will now be ZP (since these are
Legendre symbols modulo P ). However, they are still queried on an interval of
length M . In order to run the algorithm as before, we would need sample states
of the form:

|ψexact
0,g 〉 =

∑
0≤x≤M−1

|0〉 |x〉 |0〉+
∑

−s≤x≤M−s−1
|1〉 |x〉 |g(x)〉

which would allow for a total interference between the matching values of f(x)
and g(x), when querying the good f . However, since we do not know the value of
s, such states cannot be created. Instead, we rely on approximate sample states:

|ψapprox
0,g 〉 =

∑
0≤x≤M−1

|0〉 |x〉 |0〉+
∑

0≤x≤M−1
|1〉 |x〉 |g(x)〉 .

We have an error vector |ψerr
0,g〉 such that |ψapprox

0,g 〉 = |ψexact
0,g 〉+ |ψerr

0,g〉:

‖ |ψerr
0,g〉 ‖ =

∥∥∥∥∥∥
∑

−s≤x≤−1
|1〉 |x〉 |g(x)〉 −

∑
M−s≤x≤M−1

|1〉 |x〉 |g(x)〉

∥∥∥∥∥∥ ≤
√

2s
4M (2)

Since there are t such sample states in the database, the total “starting” error is:
ν :=

√
ts

2M . Thus we will need s to be subexponentially smaller than M for the
algorithm to work.
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5.3 Relation to the Legendre Symbol

We will first show how to solve the SLS problem with the offline Kuperberg’s
algorithm. Given a sequence ofM successive outputs

(
s+x
P

)
of the Legendre PRF,

we define a function g(x) = Ls+x on ZM . Next, we choose an integer n such that
2n < M and we write: s = s1 + 2ns2, where s1 < 2n. For a given s2, we define
f(x) = Lx+2ns2 . Then there exists a single s2 such that g(x) = f(x+ s1).

Note that here, there will be a subexponential gap between 2n (n being the
number of bits of the secret handled by the DAHS subroutine) and M (the
amount of data given). It is due to the approximation discussed in Section 5.2
above.

By taking L-sequences of length ≥ 3 log2 P , our Heuristic 1 ensures that the
functions are injective, and that they have distinct image sets (two L-sequences
cannot collide randomly). Thus, we have an instance of Problem 5 with an
approximate promise, and we can apply Proposition 1. We use the M classical
queries to build the approximate sample states |ψapprox

0,g 〉, and then, we run
a Grover search over the remaining secret s2. Note that building the sample
database from the classical queries is costly (O (Mm) quantum gates for each
sample), but done only once in the precomputation step.

Let α = 2 log2 3. In order to make the “initial” error ν smaller than 1
4 , we

must take t labels where
√

t2n

2M ≤
1
4 =⇒ t ≤ M

2n−3 . But since t = Õ
(

2
√
αn
)
, this

means the circuit DAHS can only recover n bits of s, where n+
√
αn = log2 M .

Thus n =
(√

α
4 + log2 M −

√
α

2

)2
≤ log2 M . The remaining (log2 P − n) bits

must be searched with Grover’s algorithm.

Theorem 4. Given a sequence of M outputs of the Legendre PRF, we can solve
the SLS problem using Õ

(
2
√
α log2 M

)
qubits, in quantum time:

Õ
(
M2
√
α log2 M

)
+ Õ

(
2 3

2

√
α log2 M

√
P

M

)
. (3)

The minimum occurs for M ' P 1/3 and reaches Õ
(

2 4
3

√
α log2 PP 1/3

)
.

In Practice. Let us take an example: log2 P = 240 and log2 M = 80. The best
classical table-based collision reaches a complexity roughly 2120. In the DAHS
circuit, we will use 2` labels and recover n bits, where (`+ n− log2 M − 1) ≤ −4.
By our estimates in Appendix D.4, in order to have negligible errors in the DAHS
circuit, we can fit n = 58 and use 219 labels. Thus we need 219 sample states,
each of which requires roughlyM register-wise operations, thus 299 in total. Since
log2 P − n = 182, only π

4 291 iterations of Grover search are required. But each of
them costs at least 58× 192 × 219 ' 232 n-qubit operations, due to the 58 layers
of sorting in DAHS, thus bringing the total complexity above the classical one.

Due to these constraints, the algorithm does not seem fit to achieve quantum
time speedups for a prime P of 300 bits. The improvements for higher values
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(400 or 500 bits) will likely remain outperformed by the distinguished collision
attack of Section 3.3.

6 Conclusion

In this paper, we presented two quantum algorithms for solving the Legendre
hidden shift problem (SLS) when classical queries are given, and without quantum
RAM. The first one (distinguished table-based collisions) allows to reach an
advantage against Grover’s algorithm when more data is given. The second one
is the offline Kuperberg’s algorithm. Our analysis showed that although it is
asymptotically promising, its subexponential factor renders it impractical so far.
But with a refined circuit layout, optimizations and more precise estimates, some
improvements might be possible.

Although a very efficient algorithm exists when superposition queries are
allowed [14], it does not seem amenable to an offline version, which requires to
define reduced instances of the problem (e.g. guessing part of the secret and
finding the remaining bits by searching for a shift). Nevertheless, the algebraic
properties of the Legendre symbol might still find a use in this context, and we
leave this as an open question.
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Appendix

A The Shifted Character Algorithm

In this section, we review the algorithm of [14] for the shifted character problem,
that uses superposition queries. This is a polynomial-time algorithm, thus much
more efficient than Kuperberg’s. Similarly to Simon’s algorithm [28], it relies on
Fourier sampling. But the algebraic properties of characters also play a major
role.

We present it in the case of finite fields ZP with P prime, although it works
in any finite field.

Multiplicative and Additive Characters. Multiplicative characters are functions:
χ : Z∗P → C∗ such that χ(xy) = χ(x)χ(y) for all x and y. They are extended
to Zp by setting χ(0) = 0. Furthermore χ(x) is a complex number of norm 1.
For any such character χ, there exists a generator g of ZP and some k such that
χ(g`) = ωk`P−1, where ωP = exp(2iπ/P ). The Legendre symbol is an example of
such a character.
Problem 6 (Shifted character). Let χ be a multiplicative character of ZP . Given
access to a function f such that f(x) = χ(x+ s) for some s, find s.

Additive characters of ZP are functions: ψ : ZP → C∗ such that ψ(x+ y) =
ψ(x)ψ(y).

Computing in Amplitudes. The characters that we consider are complex-valued
functions which return either 0, or a complex number of modulus 1. Thus, it is
possible to compute them in the amplitude:

∑
x f(x) |x〉 instead of

∑
x |x〉 |f(x)〉.

This is done in [14] as follows: starting with
∑
x |x〉, we find the superposition

such that f(x) 6= 0 (assuming that f(x) = 0 almost never happens, which will be
the case). Then we compute the phase of f(x) into the phase.

Algorithm 1 Shifted multiplicative character algorithm from [14].
Input: query access to x 7→ χ(x+ s)
Output: s

1: Query:
∑
x∈ZP

χ(x+ s) |x〉
2: Compute the Fourier transform over ZP
3: Compute χ(y) into the phase
4: Compute the inverse Fourier transform over ZP
5: Measure −s

Algorithm 1 is the algorithm of [14]. We detail its steps to prove its correctness.
At Step 2 the state becomes:∑

x

(∑
y

χ(x+ s)ωxyP |y〉
)

=
∑
y

(∑
x

χ(x+ s)ωxyP

)
|y〉 .
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In the following, we actually reprove a well-known property of Gauss sums.
We do a change of variables z = (x+ s)y:∑

x

χ(x+ s)ωxyP =
∑
z

χ(z/y)ωz−syP = χ(y)−1ω−syP

∑
z

χ(z)ωzP .

Hence, we can discard the sum
∑
z χ(z)ωzP as a common amplitude factor

and rewrite the state after Step 2 as:∑
y

χ(y)−1ω−syP |y〉 .

At Step 3, we compute χ(y) into the phase, canceling the factor χ(y)−1:∑
y

ω−syP |y〉 .

And finally, we compute an inverse Fourier transform, mapping this to |−s〉.

The Limits of an Offline Variant. The offline Simon’s algorithm of [6] and
the offline Kuperberg’s algorithm that we studied in this paper share the same
structure: the problem of recovering the shift is reduced to a smaller one, with
an exhaustive search on the rest of the secret.

In Simon’s and Kuperberg’s algorithm, only an additive group structure is
used, and it enables to embed such a reduced problem. However, the efficiency of
Algorithm 1 comes from using both a multiplicative and an additive structure.
This is why it does not seem to admit an offline variant. This does not mean,
however, that the multiplicative properties of the Legendre symbol cannot be
used to improve over the offline Kuperberg’s algorithm. But this remains an open
question.

B Proof of Theorem 2

In this section, we prove Theorem 2.

Consider the setting of Theorem 1 with an approximate test O′f of
error ε. On an input |ψ′〉⊗(A |0〉), where ‖ |ψ〉−|ψ′〉 ‖ ≤ ν, we run t =

⌊
π
4θ
⌋

iterations of Grover search with O′f . Then measuring the output yields a
good result with probability greater than (1− tε− ν)2 max(1− a, a) .

Proof. The proof uses a “hybrid argument” as in [3] or [1, Lemma 5]. We will
consider the “perfect” run of the algorithm, that starts with the initial |ψ〉 and
applies the perfect test Of , together with the “imperfect” one, that starts with
|ψ′〉 and applies the imperfect test O′f .

Let |ψ′k〉 be the state after k iterations of the imperfect search, and |ψk〉 after
the perfect search. Our goal is to bound ‖ |ψ′k〉−|ψk〉 ‖. Let U = (I⊗A)O0(I⊗A†),
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then the quantum search iterates are respectively UO′f and UOf . Before the first
iteration, we have:

‖ |ψ′0〉 − |ψ0〉 ‖ = ν

by definition of |ψ′〉. Next, for each k ≥ 0:∥∥|ψ′k+1〉 − |ψk+1〉
∥∥ =

∥∥UO′f |ψ′k〉 − UOf |ψk〉∥∥
=
∥∥O′f |ψ′k〉 −Of |ψk〉∥∥

=
∥∥O′f (|ψ′k〉 − |ψk〉) +O′f |ψk〉 −Of |ψk〉

∥∥
and using the triangle inequality:∥∥|ψ′k+1〉 − |ψk+1〉

∥∥ ≤ ∥∥O′f (|ψ′k〉 − |ψk〉)
∥∥+

∥∥O′f |ψk〉 −Of |ψk〉∥∥
≤ ‖|ψ′k〉 − |ψk〉‖+

∥∥O′f |ψk〉 −Of |ψk〉∥∥ .

In order to bound the second term, we use the fact that O′f induces a uniform error
ε. More specifically, if |ψk〉 =

∑
x αx |x〉, we have: O′f |ψk〉−Of |ψk〉 =

∑
x αx |δx〉

where |δx〉 is the error induced by O′f on the input state x. Then we have∥∥O′f |ψk〉 −Of |ψk〉∥∥2 =
∑
x

α2
x ‖|δx〉‖

2 ≤ ε2 =⇒
∥∥O′f |ψk〉 −Of |ψk〉∥∥ ≤ ε

by definition of ε. Thus, each iteration adds an error ε.
After t iterations, we have |ψ′t〉 = |ψt〉 + |ψerr〉 where ‖|ψerr〉‖ ≤ ν + tε. By

the Cauchy-Schwarz inequality, we have:

| 〈ψt|ψerr〉 | ≤ ‖|ψt〉‖ ‖|ψerr〉‖ ≤ ν + tε .

Measuring |ψ′t〉, we project on |ψt〉 with a probability greater than:

(1− | 〈ψt|ψerr〉 |2) ≥ (1− ν − tε)2

and then, by Theorem 1, we have a probability greater than max(1 − a, a) to
measure a “good” element.

It can seem surprising to require a uniform error ε. Indeed, in a classical
exhaustive search with a single solution, we can afford a constant probability of
false negative (not recognizing the solution), and still obtain a constant probability
of success. Indeed, we expect to look at the solution only once.

Our classical intuition then dictates that the same should be true of a quantum
search: we could afford a much higher probability of false negatives than of false
positives. We found that this was not the case, due to the stateful nature of the
search. Indeed, taking different εFP and εFN changes the error term ε added at
each iteration to a term:√

sin2((2k + 1)θa)ε2FN + cos2((2k + 1)θa)ε2FP .

In order to have a constant probability of success in the end, we must measure
a state in which a constant proportion of the amplitude is on the solution. That
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is, (2k + 1)θa must be sufficiently close to π
2 to have sin2((2k + 1)θa) constant.

This means that in the last iterations, the error term is close to εFN . (Although
in the first iterations, it was close to εFP ). Over all the iterations, the solution
and the bad elements both capture roughly (up to a constant) the same amount
of amplitude, and so both terms εFN and εFP will have roughly the same effect.

C Quantum Circuit for the Legendre Symbol
The prime P is fixed. We detail a quantum circuit that given x, computes

(
x
P

)
.

We will actually adopt the more general view of computing Jacobi symbols. We
recall Algorithm 2 that uses the multiplicativity, the law of quadratic reciprocity
and its supplement:

∀p, q, a, b,
(
q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 ,

(
q

p

)
=
(
q mod p

p

)
,(

2
p

)
= (−1)

p2−1
8 ,

(
ab

p

)
=
(
a

p

)(
b

p

)
.

The situation is similar to the extended GCD algorithm in [26]: in the classical
algorithm, the number of steps depends on the input. The corresponding quantum
circuit must run for a fixed amount of iterates, thus we take the greatest possible
number of iterates and control them depending on whether the algorithm has
finished or not. Note that there exists asymptotically more efficient classical
algorithms, such as [10], but it is not clear whether they can have an impact on
the design of quantum circuits (especially for rather small prime numbers).

Let us analyze briefly Algorithm 2. We can easily prove that if q does not
start even, then in the next loop it is. Thus, the current pair (p, q) is reduced by
one bit at each two loops, and after at most 2(dlog2 pe + dlog2 qe) ≤ 4 dlog2 pe
loop iterations, the computation of

(
q
p

)
terminates.

In order to compute the Legendre symbol modulo P , we thus use a circuit of
4 dlog2 P e iterations. We keep a “flag” qubit indicating whether the computation
has finished, and a “result” qubit containing the value t of Algorithm 2. At each
iteration, we look at the “flag”, the values of p and q and find which case applies:
• Case 1: we must divide q by 2 (q > 0 and q mod 2 = 0)
• Case 2: we must swap q and p (q > 0, q ≤ p and q mod 2 = 1)
• Case 3: we must subtract p to q (q > 0, q > p and q mod 2 = 1)
• Case 4: we must do nothing (q = 0)
Two new qubits indicate the case; their computation requires a comparator

(O (log2 P ) gates). Then we apply all the operations controlled on these qubits.
The division by 2 is implemented as a rotation of the register (we know that the
least significant bit is 0, so we do not need to write a carry). The swap is an
easy operation. The subtraction does not need any carry either. Then t is flipped
depending on the case (this is also reversible, and costs a constant number of
computations).

Since each iteration requires O (log2 P ) gates and writes O (1) new qubits,
the complete circuit requires O

(
(log2 P )2) gates and O (log2 P ) ancilla qubits.
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Algorithm 2 Computation of the Legendre symbol, through the Jacobi symbol.
1: function Legendre(q,p)

Computes:
(
q
p

)
where p is prime and 1 ≤ q < p

2: t = 1
3: while q 6= 0 do
4: if q mod 2 = 0 then
5: q = q/2
6: if p mod 8 = 3 or p mod 8 = 5 then
7: t = −t
8: end if
9: else if q < p then

10: q, p = p, q
11: if p mod 4 = 3 and q mod 4 = 3 then
12: t = −t
13: end if
14: q = q − p . actually q = q mod p in the standard algorithm
15: else
16: q = q − p
17: end if
18: end while
19: return t
20: end function

D A Quantum Circuit for Kuperberg’s Algorithm

In this section, we give the details omitted from Section 4 and describe our
quantum circuit DAHS in detail. We also give detailed simulation results.

D.1 Combining two Labels Reversibly

As we have seen in Section 4, the bulk of the algorithm is the combination step.
We start from a pool of label qubits and we combine them pairwise.

Combination Subroutine. The registers that contain the labels remain unmeasured.
Thus, when combining two labels, we start from the joint state:

|φy1〉 |φy2〉 |y1〉 |y2〉 = (|0〉+ χM (−y1s) |1〉)(|0〉+ χM (−y2s) |1〉) |y1〉 |y2〉 =
(|00〉+ χM (−y1s) |10〉+ χM (−y2s) |01〉+ χM (−(y1 + y2)s) |11〉) |y1y2〉

and afterwards, we obtain:(
|0〉+ χM (−(y1 + y2)s) |1〉

)
|0〉 |y1〉 |y2〉+

χM (−y2s)
(
|0〉+ χM (−(y1 − y2)s) |1〉

)
|1〉 |y1〉 |y2〉 .
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In order to get to the state (|φy1+y2〉 |0〉+ χM (−(y1 − y2)s) |φy1−y2〉 |1〉) |y2〉, we
add or subtract y2 in place, on the register for y1, controlled on the qubit that
we previously discarded.

In our DAHS circuit, we will define a “combination circuit” Combinev. We
flag all the label qubits with additional qubits that inform us whether the label
can be used for combination or not. The circuit Combinev then combines the two
labels if and only if both have valuation v and can be combined. It performs a
controlled addition or subtraction in place, modifies the flag qubits (since one of
the labels cannot be used for combination anymore), and writes a carry qubit.

Choosing which Labels to Combine. Among the pairs of labels y1, y2 having
the same valuation v modulo 2 (v = val2(y1)), we want to select those which
maximize the expected valuation of y1 ± y2. We check whether the second to last
bit of y/2val2(y) is 0 or 1. If it is 0, then our hope is to add y to another label
that maximizes the overlap of least significant bits. If it is 1, then our hope is to
subtract y to another label that overlaps with 2n− y on as many least significant
bits as possible. Thus we can define a function F on labels3:

F (y) =


(1, 0) if y = 0 or y cannot be combined anymore
(−val2(y), rev(2n − y, n)) if the second to last bit of y/(2val2(y)) is 1
(−val2(y), rev(y, n)) otherwise

where val2 is the valuation and rev(y, n) reverses the bits in y (for a total of n
bits). By sorting the labels according to F , we ensure that the best pairs (such
that y1 ± y2 has the best expected valuation) are put together.

D.2 Combining All Labels

We start from a list of t = 2` labels for some integer `. For v = 0, . . . , n− 2:

• We perform a reversible sorting network for F : we compute F in ancillas,
perform a sorting network, and then uncompute F . We consider that the
computation of F can be neglected. The sorting network is a series of com-
parators and swaps (controlled on the results of the comparators). The labels
are moved in place. For reversibility, the outcome of each comparator must
be written in a new qubit.

• we apply the combination circuit Combinev on each pair of labels at positions
(2i, 2i + 1) for i ≤ 2`−1. It writes 2` new qubits that contain carries and
inform whether the combination occurred.

In practice, the combination layer at step v consumes all labels of valuation
v and creates labels of higher valuation. The main difference with the classical
process is that, although the labels are sorted as to ensure a maximal number
of zeroes after combination, since we take them 2 by 2 on arbitrary positions
3 Although we did not find its explicit definition in previous works, it appears in the
simulation code of [7].
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we might create a few suboptimal pairs. This does not change the asymptotic
complexity of the procedure.

Note that all labels equal to 0 mod 2n, and the “junk” labels that cannot be
combined anymore, are moved to the bottom of the list by sorting. The labels
equal to 2n−1 will be moved to the top. Thus, to know if the algorithm succeeded,
it suffices to test the m first registers for equality to 2n−1.

Sorting Network. We use the odd-even mergesort of Batcher [2]. On input a
list of 2` n-bit strings, it uses a total of S(2`) = 2`−1 `(`−1)

2 + 2` − 1 = O
(
`22`

)
comparators and controlled SWAPs. In order to be made reversible, it also needs
to write O

(
`22`

)
new qubits.

The Full Circuit. The full combination circuit CombineAll2`,m contains n−1 layers
of sorting, followed by layers of combination circuits: at layer i (starting from 0),
we combine only the labels having valuation i. The complexity mainly depends
on the sorting steps: there are in total O

(
n2S(2`)

)
= O

(
n2`22`

)
quantum gates

used, mainly for comparators and SWAPs. The circuit writes nS(2`) + (n− 1)2`
ancillas. They are uncomputed afterwards.

If the sequence of initial labels can be combined into m copies of 2n−1, then
after the layer n − 2, the m first label qubits in the circuit contain copies of
|0〉 ± |1〉. We perform a Hadamard transform on them and test if the result is
all-zero or all-one. We write a pair of qubits |Bad(Y ),Result(Y )〉 that indicate
if the combination succeeded and if so, what is the result of the test. Then, we
uncompute the combination layers.

If |Y 〉 is the initial label state, then the circuit CombineAll2`,m maps:

|Y 〉 |0, 0〉 CombineAll7−−−−−−→ |Y 〉 |Bad(Y ),Result(Y )〉 .

If the combination did not succeed, then the result cannot be trusted, and
this will be a source of errors in the circuit DAHS.

D.3 Errors in the Full Circuit

Recall that we input a state |ψf,g〉⊗t |b〉 to the circuit DAHS, where |ψf,g〉⊗t is
the sample database that must be kept unchanged, and |b〉 is a qubit to write the
result DAHS(f, g):

DAHS(f, g) =
{

1 if ∃s, f(x+ s) = g(x) (positive case)
0 if f and g have no image in common (negative case)

.

Layout. We set t = Õ
(

2
√

2 log2 3n
)
. We start by applying a QFT on all sample

states, obtaining the label states:

|φf,g〉⊗t =
∑

x1,...,xt

∑
y1,...,yt

χM

(∑
i

xiyi

)(
(|0〉+ χM (−y1s) |1〉) |y1〉 . . .
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. . . (|0〉+ χM (−y2s) |1〉) . . . (|0〉+ χM (−yts) |1〉) |yt〉
)
|f(x1) . . . f(xt)〉 . (4)

Next, we apply the circuit CombineAllt,m. If |Bad〉 is set, write 0 in the output.
Otherwise we write |Result〉 in the output. Next, we uncompute CombineAllt,m
and we uncompute the QFT.

Errors. The circuit DAHS is not exact. In the positive case, it maps:

|ψtf,g〉 |b〉
DAHS7−−−→ |ψtf,g〉 |b⊕ 1〉+ |δFN〉 |b〉

where ‖ |δFN〉 ‖ ≤ εFN , and εFN is the (small) probability of false negative; and
in the negative case, it maps:

|ψtf,g〉 |b〉
DAHS7−−−→ |ψtf,g〉 |b〉+ |δfFP〉 |b⊕ 1〉

where |δf,gFP〉 may depend on f and g, and ‖ |δFP〉 ‖ ≤ εFP is the (small) probability
of false positive. We now bound both εFN and εFP .

False Negatives. False negatives comes from all the sequences of labels Y on
which the combination fails. As unitary operators preserve the euclidean norm,
we can bound ‖ |δFN〉 ‖ before the QFTs and the combination step. In the state:

|φf,g〉⊗t =
∑
X

∑
Y

χM (X · Y )

 ⊗
1≤i≤t

(|0〉+ χM (−yis) |1〉) |yi〉

 |f(X)〉 , (5)

all the “bad” sequences Y contribute to the probability of false negatives, and
we bound:∥∥∥∥∥∥

∑
X

∑
Y bad

χM (X · Y )
(⊗

i

(|0〉+ χM (−yis) |1〉) |yi〉
)
|f(X)〉

∥∥∥∥∥∥ ≤
√
|bad Y s|
|all Y s| .

Thus, if both f and g are injective, we have εFN =
√
|bad Y s|
|all Y s| . The classical

analysis of Kuperberg’s algorithm gives a constant probability of finding a good
label if we start from O

(
2
√

2 log2 3n
)
of them. Thus, if we take copies of the

combination circuit, we can obtain m good labels with probability 1− εFN if we
start from O

(
− log2 εFNm2

√
2 log2 3n

)
labels. We give more precise estimates in

Section D.4.

False Positives. When the functions are not shifted, the output |Result〉 of the
combination step will still be 1 in some cases. Indeed, while the combination
produces “random” qubits, we are merely going to test if m of them are 1 or 0
altogether. This still happens with some probability.
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We assume that the images of f and g are distinct subsets of the codomain X.
Thus, after the QFT, the current state of the circuit is a superposition of vectors
of the form |Y 〉 |i〉 |φi〉 where Y is the sequence y1, . . . , yt of labels, |i〉 is the
aggregation of the qubits that did not undergo the QFTs, and |φi〉 is an injective
function of i and y1, . . . , yt, that corresponds to a sequence of images by f or g.
But since these images are independent, the basis states |Y 〉 |i〉 cannot interfere
with each other: the combination layer only swaps these states without changing
their amplitude, which remain uniform. Thus, regardless of the combinations of
labels performed, the amplitude on the state |0m〉 or |1m〉 is exactly 1√

2n
, and

for all f : ‖ |δFP 〉 ‖2 = 2
2m =⇒ εFP = 2−(m−1)/2 .

D.4 Estimates of the Number of Labels

As we have seen, in the DAHS circuit, we need to choose the right number of
labels if we are to ensure a small probability of false negatives. We will now make
precise estimates for typical values of n, picturing “practical” applications of the
circuit4. We fix m = 200 in what follows.

n 20 32 32 36 36 40 40 44 48 52 56 60 64 68 72 76
` 15 15 16 16 17 17 18 18 18 18 19 19 19 20 20 21

Samples 103 103 103 103 103 103 50 50 50 50 50 50 50 50 50 50
Mean 810 399 1302 361 1517 408 1259 728 1374 933 1289 565 811 1601 1199 2307
Std. 25 18 31 17 36 19 33 28 37 26 38 21 26 38 29 45

Table 2. Estimates of the number of labels required (in log2). The numbers are rounded
to the nearest integer. We highlight the values of n, ` for which we estimate a probability
of failure (having less than 200 labels) smaller than 2−200.

As an example, we take n = 20, ` = 14 and simulate 103 runs of the combina-
tion circuit on random input labels. The resulting number of good labels follows
a normal distribution with mean µ =' 255.1 and standard deviation σ =' 14.5.
By integrating the density function on ]−∞; 200] we can estimate the probability
to obtain less than 200 labels to be ≤ 2−13. By doubling the number of labels, the
expected m more than doubles: µ = 810.2, σ = 25.2, and the same estimate gives
a probability of failure lower than 2−429. We remark that the standard deviation
obtained is usually small, so when we obtain an average µ ≥ 700, we estimate
that the probability of failure is negligibly smaller than 2−200. We display some
simulation results in Table 2 for different values of n and `. In general, if there
are enough labels for a given n, then the same circuit should work for n′ < n.
This is not always what we observe (see the column (60, 19)), because having a
4 Our code can be found at: https://project.inria.fr/quasymodo/legendre_

quantum_security-tar/
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smaller n′ can increase the number of zero-labels produced, to the detriment of
good labels. In that case we must take a smaller number of labels, but we can
layout the circuit as if there were 2` of them exactly.
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