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ABSTRACT

Password-authenticated key exchange (PAKE) is a major area
of cryptographic protocol research and practice. Many PAKE
proposals have emerged in the 30 years following the original
1992 Encrypted Key Exchange (EKE), some accompanied by
new theoretical models to support rigorous analysis. To re-
duce confusion and encourage practical development, major
standards bodies including IEEE, ISO/IEC and the IETF have
worked towards standardizing PAKE schemes, with mixed
results. Challenges have included contrasts between heuristic
protocols and schemes with security proofs, and subtleties
in the assumptions of such proofs rendering some schemes
unsuitable for practice. Despite initial difficulty identifying
suitable use cases, the past decade has seen PAKE adoption
in numerous large-scale applications such as Wi-Fi, Apple’s
iCloud, browser synchronization, e-passports, and the Thread
network protocol for Internet of Things devices. Given this
backdrop, we consolidate three decades of knowledge on PAKE
protocols, integrating theory, practice, standardization and
real-world experience. We provide a thorough and system-
atic review of the field, a summary of the state-of-the-art, a
taxonomy to categorize existing protocols, and a compara-
tive analysis of protocol performance using representative
schemes from each taxonomy category. We also review real-
world applications, summarize lessons learned, and highlight
open research problems related to PAKE protocols.

1 INTRODUCTION

While user-chosen passwords remain in wide use for authen-
tication [20], many password-based protocols are vulnerable
to offline guessing attacks [100]. This motivates the use of
password-authenticated key exchange (PAKE) protocols, dating
back to Bellovin and Merritt’s 1992 Encrypted Key Exchange
(EKE) [15]. EKE allows two parties to establish a high-entropy
session key with authentication based on a low-entropy shared
password without being subject to offline guessing attacks.
Distinct from earlier work [73], EKE does not require a trusted
third party or any public-key infrastructure (PKI).

A great many PAKE proposals and variants followed, some
with new theoretical models to support rigorous analysis. The
area also attracted strong industrial interest, including pro-
longed patent disputes in the 2000s [21]. To reduce confusion
and encourage deployment, standards bodies including IEEE,
ISO/IEC and IETF have pursued the standardization of PAKE
protocols—helping move them from academic study to com-
mercial use. These activities suggest a PAKE research timeline
with three main periods: 1992-2008, 2008-2018, and 2018—
present. (Fig. 1 in Section 2.1 gives further details.)

Thirty years of PAKE research has left a field rich in theory,
practice, standardization—and also real-world lessons, many
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extending to broader areas of cryptography and security. PAKE
research has also led to many interesting questions. For ex-
ample, a typical PAKE protocol involves only 2 or 3 flows
of messages; why is a protocol involving so few messages,
so difficult to get right? Of the many provable secure PAKE
protocols proposed, why are so few used in practice? How
did the standardization of PAKE proceed, and how is it that
several standardized PAKE protocols are still found to have
vulnerabilities? If PAKE protocols appear naturally resistant
to phishing attacks, why have they not replaced password
authentication in web applications?

Answers to these questions appear not yet to have been
pursued in broad, organized manner in one place, or are absent.
This motivates our comprehensive review and systematization
of PAKE protocols. We review the theory, practice, standard-
ization and real-world applications of PAKE, and draw lessons
accordingly. Our contributions include the following.

e We systematically review major PAKE proposals from
the past 30 years, including recent updates.

e We categorize PAKE protocols by their main properties
and design strategies, and offer a taxonomy.

e Using selected PAKE category representatives, we com-
pare performance of state-of-the-art protocols delivered
by the leading design approaches.

e We review real-world applications that use PAKE, and
discuss the pros and cons of using these protocols versus
non-PAKE alternatives.

Our inclusion of recent work, standardization insights, and
lessons learned complements and updates the extensive survey
of Boyd et al. [21, Chapter 8]. Our taxonomy systematically
highlights critical approach details (e.g., ideal cipher, hash-to-
group/hash-to-curve and trusted setup) within classes of PAKE
protocols, and challenges in implementing certain protocols
including CPace and OPAQUE (both recently selected by IETF
for standards). Our comparative analysis of PAKE performance
takes into account crucial factors often neglected in previous
studies, e.g., group setup and exponent length.

2 LANDSCAPE AND BACKGROUND

Before giving a taxonomy (Section 3), we summarize three
periods of PAKE research (see Figure 1), and review EKE.

2.1 Three periods of PAKE research

During the first period (1992-2008), IEEE P1363.2 played a
major role in the standardization of PAKE. In response to
strong academic and industrial interest in the first half of this
period, in 2000, IEEE formed a P1363.2 working group with the
mission to review existing PAKE proposals in order to choose
a secure subset for standardization. This IEEE project ended in
2008. Protocols in the final 1363.2 specification [51] included
SRP [101], SPEKE [52], PAK [79], AMP [68] and variants.
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Figure 1: Timeline: PAKE protocols. Color-coding is based on the taxonomy explained in Section 3.

This 8-year standardization process served as a touchstone
to test PAKE theory in practice. Unfortunately, nearly all PAKE
protocols selected were found to have security issues. Several,
including SRP, SPEKE and AMP were found vulnerable to
attacks and required revision. In particular, AMP was repeat-
edly revised [69]. Among the schemes selected, only SRP and
SPEKE appeared to be used in practical applications; both con-
tinued to be revised after IEEE 1363.2. The latest respective
versions are SRP-6a and Patched SPEKE [44]. The IEEE P1363.2
group, initially proposed as a four-year project, was extended
annually after 2004 to address various issues in the draft stan-
dard until 2008. After 2008, the IEEE specification was no
longer maintained, and as of November 2019, the proposed
standard in IEEE 1363.2 [51] had been officially withdrawn.

During the second period (2008-2018), ISO/IEC played a
main role in standardizing PAKE. The 8-year IEEE P1363.2
effort was less successful than many had hoped—on ending in
2008, it was clear the PAKE problem remained unsolved. This
spurred researchers to design new PAKE protocols. ISO/IEC in-
herited work from IEEE 1363.2 in an ISO/IEC 11770-4 standard,
and continued in an active role to maintain this standard. In
particular, 11770-4 was revised during 2014 and 2017 to include
two new PAKE schemes, J-PAKE [45] and AugPAKE [93], and
a patched version of SPEKE [44]

After 2008, the next 10 years saw more deployment of PAKE
in real-world applications. SPEKE [52] was adopted in Black-
berry Messager (BBM) for secure messaging. SRP-6a [95] was
adopted to implement credential recovery in 1password, Pro-
tonMail and Apple’s iCloud. J-PAKE [45] was adopted in 2015
by the Thread Group. Section 3.2 also discusses the use of
another PAKE protocol in IEEE 802.11: SAE (Dragonfly) [47].

During the third wave (2018-2021, ongoing at the time of
writing), the IETF has been a main force driving further de-
velopment of PAKE—in particular, integrating PAKE into TLS
1.3. The TLS 1.3 pre-shared key (PSK) ciphersuite allows two

parties with a pre-shared secret to quickly establish secure
communication. This provides a natural use case for PAKE
because, in many cases, the pre-shared secret is a password,
making the PSK ciphersuite vulnerable to offline dictionary
attacks [32]. In June 2019, IETF initiated an open selection
process to standardize PAKE protocols. This selection pro-
cess concluded in March 2020 with two winners declared:
CPace [39] and OPAQUE [55], whose details are given in the

Appendix.

2.2 Balanced and augmented protocols

PAKE protocols are commonly classified as either balanced
or augmented. A balanced PAKE assumes that the two parties
share a secret, which is a password or derived from a password.
Typical requirements for a secure balanced PAKE include [45]:
1) resisting offline dictionary attacks; 2) limiting online attacks
to one password guess per protocol execution; 3) ensuring

session-key security; and 4) providing forward secrecy.

When a balanced PAKE is used in a client-server setting,
if the secret stored on the server is stolen, it can be directly
used to impersonate the client. To address this, an augmented

PAKE adds a “server compromise resistance” requirement:

5)

even if the server is compromised, an offline dictionary attack
is needed in order to impersonate the client. This is typically
realised by requiring that the client remember a password,
while the server stores only a one-way transformation of it.
Jarecki et al. [55] recently suggested an extra “pre-computation
resistance” requirement, such that: 6) an attacker must perform
an offline dictionary attack that cannot make use of any pre-
computed table. Note that these requirements increase the
burden on attackers, but do not stop attacks; once a server is
compromised, an offline dictionary attack should be expected

(one response is to update all passwords [33]).



2.3 EKE: Seeding a new field

EKE was the first PAKE protocol. In Bellovin and Merritt’s
1992 paper [15], EKE referred to a suite of variants: RSA-EKE,
ElGamal-EKE and DH-EKE. They followed the same basic idea:
use a password to encrypt a public key as part of a key trans-
port (RSA and ElGamal) or key agreement (DH) process. As a
main difference, in key transport the session key is generated
by one party; in key agreement it is jointly generated [83].

However, the use of a password to encrypt a public key is
delicate. For the rest of the paper, we use w to denote an (often
weak) password. Public keys have specific algebraic structures;
this provides an oracle enabling offline dictionary attacks. This
is especially problematic for an RSA key—for example, the fact
that an RSA public exponent e must be odd enables a passive
attack to filter out certain passwords. Although this issue may
be mitigated by adding random padding to e, Patel [86] pre-
sented further attacks. Since the RSA modulus n = p X g must
be sent in the clear [15], the attacker can freely manipulate n
to establish an algebraic relationship with the public key e to
be encrypted by a password. This relationship allows the at-
tacker to filter password guesses offline. Patel concludes: “The
attack [against RSA-EKE] is unavoidable unless the protocol
is radically modified”

Other RSA-based PAKE designs have been proposed. One
from 1997 was Open Key Exchange (OKE), by Lucks [74].
Rather than using the password to encrypt an RSA key, OKE
sends RSA public keys in the open (hence the protocol name).
The password is supposedly protected by a combined use of
hash and RSA encryption operations. In 2000, MacKenzie et
al. [80] presented an active attack on OKE to recover a party’s
password; they then modified OKE to obtain a new balanced
PAKE, SNAPI, with an augmented version, SNAP-X. (They
later showed SNAP-X to be insecure, replacing it by SNAP-Z
in a journal version [81].)

A major limitation of RSA-based PAKE designs, including
SNAPI, is that generating per-session RSA keys in realtime is
more costly than Diffie-Hellman (DH) keys. To address this,
MacKenzie et al. proposed reusing RSA key pairs across ses-
sions (this gives up forward secrecy, above). This is a major
reason why nearly all practical PAKE designs are based on
discrete log (DH) rather than factoring (RSA) problems.

Among the three EKE variants, DH-EKE is considered the
most promising—and is particularly important in the provable
security literature, as its security was formally proven in 2000
by Bellare, Rogaway and Pointchevel [12]. The BRP model used
in this proof has been widely adopted by other researchers.
More precisely, this proof was for the EKE2 variant of DH-
EKE, whose key exchange flows are the same as DH-EKE,
except they include also user identities and the key exchange
items in the key derivation function. The protocol works in
the whole range of a multiplicative group Z;, using a primitive
root modulo p as the generator g (Fig. 3, Appendix).

The provable security of EKE2 was disputed by Zhao, Dong
and Wang [103] during the IEEE P1363.2 review process. In
1996, Jaspan [56] discussed a DH-EKE password information
leakage problem: if an eavesdropper captures &,,(g*)—here

&,y denotes a secure block cipher like AES, with a weak pass-
word w as the key—use of the correct password will decrypt
the ciphertext to a value in [1, p—1] while other guesses yield a
value in [0, 21°€2(P)1_1]. This discrepancy provides an oracle
for a passive attacker to partition passwords. The same leak-
age problem applies to EKE2. In the 1992 EKE paper [15], the
authors already noted this issue in a general context of using
a password to encrypt a public key that does not fit precisely
the data range for a symmetric cipher; they proposed adding
a random pad to a public key using non-modulo arithmetic
to fill the data range for encryption, but exact padding details
were not specified. Choosing p as close as possible to a power
of 2 [56] also reduces (without eliminating) secret leakage.

The formal proof of EKE2 avoids this information leakage
by assuming & is an “ideal cipher” (IC) [12]; then encryption re-
veals no information about the content even for a low-entropy
key. It is assumed that the cipher works like a random func-
tion in the encryption, but the decryption function “must take
strings of a fixed size and map them to [group] elements” [21].
However, the EKE2 paper does not instantiate such a cipher.

After the formal proof of EKE2, Bellare and Rogaway [14]
submitted EKE2 (renamed AuthA) to IEEE P1363.2 as a stan-
dardization candidate. This submission was supported in 2003
by Bresson, Chevassut and Pointcheval [23], whose simplified
EKE2 variant, One-Encryption Key-Exchange (OEKE), was
also supported by a security proof. Whereas EKE2 encrypts
both flows in the key exchange process, OEKE only encrypts
one (its proof assuming the same IC as EKE2).

As part of the IEEE P1363.2 submission [14], Bellare and
Rogaway proposed several ways to instantiate an IC. One was:
“Ew(x) = x - H(w) where H is a random oracle”, but they did
not instantiate H (which cannot be just replaced by a one-way
hash). In 2006, Zhao, Dong and Wang [103] analyzed these
IC constructions, and argued that they were inadequate for
practical use. As no secure instantiation of an IC was identified,
EKE2 was not included into IEEE 1363.2, nor its simpler variant
OEKE. However, the AuthA proposal inspired follow-up work
using a password to derive random masks to obscure group
elements, e.g., in PAK [79] and SPAKE2 [6], which in turn
require hash-to-group and a trusted setup, respectively. These
lead to different classes of protocols as explained next.

3 TAXONOMY: PAKE DESIGN CLASSES

The main PAKE designs have used passwords three ways: 1) as
an encryption key; 2) as an input string to derive a generator;
3) as an integer in modular arithmetic (in the exponent for a
multiplicative group, or as a scalar in an additive group over
an elliptic curve). The third case includes protocols having dif-
ferent security properties depending on the design approach
and formal analysis model (e.g., common reference string, ran-
dom oracle). Based on these, we identify five classes of PAKE
protocols as follows (see Table 1 for a summary of major PAKE
schemes, color-coded into these classes; and the Appendix for
further taxonomy details and relationships between classes).

C1 Password used as encryption key. This class includes
using a password as encryption key. Examples: EKE [15],
EKE2 [12], OEKE [23], A-EKE [16], KHAPE [38].



C2 Password-derived generator. A protocol group gen-
erator is derived from a password. Examples: SPEKE [52],
SPEKEZ2 [80], Patched SPEKE [44] and B-SPEKE [53],
PAK [79], SAE (Dragonfly) [47], PACE [30], SRP-5 [99],
CPace/AuCPace [39], OPAQUE [55].

C3 Trusted setup. The protocol relies on a trusted setup,
which defines two (or more) generators whose discrete
logarithm relationship must be unknown. Examples:
KOY [59], KI [64], JG [57], SPAKE2 [6], SESPAKE [89],
TBPEKE/VTBPEKE [87], KC-SPAKE2+ [94].

C4 Secure two-party computation. Here PAKE is viewed
as a two-party secure computation problem on an equal-
ity function; use of a non-interactive zero-knowledge
proof (ZKP) aims to check that parties follow a specifi-
cation honestly. Example: J-PAKE [45].

C5 Password-derived exponent. In this class, a password
is used to derive g* as a verifier in a type of Diffie-
Hellman key exchange. Examples: SRP-3 [101], SRP-
6 [102], AMP [68], revised AMP [69], AugPAKE [93].

As Table 1 shows, PAKE security proofs are generally con-
structed in one or more of three security models:

(1) Ideal cipher (IC),
(2) Common reference string (CRS), and
(3) Random oracle (RO).

IC models a symmetric encryption function that leaks no infor-
mation about content even when using a low-entropy key [12].
CRS models a function that returns a common reference string
trusted by everyone [60]; in PAKE, such a trusted string nor-
mally includes two or more generators whose discrete log
relationship must be unknown (i.e., no one knows how to
represent one generator as the power of another). RO models
a function that returns a random string of fixed length (say n
bits) for any input string but always the same string for the
same input [13], [65], [8, §5.3.1]. So to prove security in the RO
model means: construct a convincing argument by first replac-
ing some function (e.g., a hash) in the actual protocol by an
idealized one that returns a random value as described; prove
the idealized protocol has certain properties; then hope the ac-
tual protocol delivers those properties when using a concrete
hash function, e.g., SHA-3, assumed to behave similarly.

Many PAKE protocols “proven” in the RO model require
the idealized function be instantiated by a secure hash-to-
group function (H2G), or hash-to-curve (H2C) in an elliptic
curve setting [49], similar to a one-way hash but whose output
aims to be a random non-identity element (generator) in a
designated prime-order group.

In the following sections, we consider PAKE specs in two
settings: with a multiplicative group over a finite field (MODP),
and an additive group on an elliptic curve (EC). As selection cri-
teria, we focus on protocols that have attracted academic and
industrial interest, and are used in commercial applications.

3.1 Class-1: Password as an encryption key

Section 2.3 discussed balanced techniques in this category.
Here we discuss augmented versions. In 1993, Bellovin and
Merritt [16] proposed a generic “A” method to transform a

balanced EKE scheme to an augmented version denoted A-
EKE. Their method is based on a digital signature scheme,
with the server storing a password-derived public key for
signature verification. This “A” method is generally applicable
to transform a balanced PAKE to an augmented version.

In 2021, Gu, Jarecki and Krawczyk [38] proposed an aug-
mented scheme called HKAPE (key-hiding asymmetric PAKE).
HKAPE follows the same idea as in EKE by using a password
to encrypt a key exchange protocol. However, instead of en-
crypting an unauthenticated (Diffie-Hellman) key exchange
protocol, the authors proposed to encrypt an authenticated key
exchange protocol based on HMQV [82] or 3DH [67, §5.1].1
The authors proved security of HKAPE in an ideal-cipher-
and-RO model under the Gap CDH assumption. To instantiate
the ideal cipher, they first require hash-to-curve functions to
encode group elements into binary strings in so-called “quasi
bijective” mapping (called quasi as the strict bijective mapping
appears hard). The construction of the hash-to-curve func-
tions depends on an IETF internet draft [49], which remains a
draft (unfinished) at the time we write this paper. Second, they
require “implementations of ideal ciphers of sufficiently long
block length”, i.e., between 512 and 1024 bits for the combined
input length for elliptic curves of 256 bits. The detailed con-
struction and analysis of such an ideal cipher is “left for future
work”. Overall, the difficulty to instantiate an ideal cipher has
prevented wide use of Class-1 protocols to date.

3.2 Class-2: Password-derived generator

Jablon [52] proposed a Class-2 protocol SPEKE (Simple Pass-
word Exponential Key Exchange) in 1992. The key idea is to
use a H2G function, denoted f, to map a password to a gener-
ator (non-identity element) in a prime-order group. Initially,
Jablon defined f = w? mod p, for p a safe prime (meaning
(p — 1)/2 = q is also prime). The square operation maps the
password into an element in a subgroup of Z;; of prime order g.
In 2004, Zhang [104] showed that for this f, an active attacker
can test multiple passwords at once by exploiting the expo-
nential equivalence among passwords. During IEEE P1363.2
standardization, to address this issue, a hash operation was
added before squaring, revising f to: f = H(w)? mod p. In
2014, Hao and Shahandashti [46] noted that the lack of iden-
tity binding in the SPEKE key exchange makes it vulnerable
to an unknown key-share attack. As a result, SPEKE was re-
vised [44] in ISO/IEC 11770-4:2017 to include user identities
in the key derivation function. Figure 4 (Appendix) gives the
latest SPEKE specification as in ISO/IEC 11770-4:2017.

The original SPEKE protocol was supported by heuristic
security arguments. In 2001, MacKenzie [78] presented a for-
mal analysis (in an unrefereed technical report) of a variant of
SPEKE, SPEKE2, based on a new Decision Inverted-Additive
Diffie-Hellman (DIDH) assumption in a RO model. SPEKE2
mandates an explicit key confirmation [83] at the expense of
requiring more rounds; this process is optional in the original
SPEKE paper and specifications per IEEE 1363.2 and ISO/IEC
11770-4. Thus, Mackenzie’s security proofs do not directly ap-
ply to SPEKE. Furthermore, the proofs apply a weaker security

IFor 3DH, see also: https://signal.org/blog/simplifying-otr-deniability/
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Table 1: PAKE landscape (rows ordered by classes, which are colored-coded per the taxonomy)

Class: Scheme Year Security model Assumptions Related standards Properties
47657111 9[11}63 Yy, 1;0"’1
S, fasy, |ty Fea, P,
@ &% \to‘e J[eds p%e er(";?/
‘0‘56, Urpe etllp 4‘1"% W

Balanced PAKE

C1: DH-EKE [15] 1992 - - - ° v

C1: EKE2 [12] 2000 IC CDH - ° v

C1: OEKE [23] 2003 IC CDH - ° v

C2: SPEKE [52] 1996 - - IEEE 1363.2, ISO/IEC 11770-4 [ ) v v

C2: PAK [22] 2000 ROT DDH IEEE 1363.2 [ ] v

C2: PPK [22] 2000 RO¥ DDH IEEE 1363.2 [ ) v

C2: SPEKE2 [78] 2001 RO DIDH - °

C2: PACE v1 [17] 2006 IC,ROfT Adaptive gPACE-DH  ISO/IEC 18013-3 [ ] v

C2: PACE v2 [30] 2008 IC,ROf GCBDH ISO/IEC 18013-3 [ ) v

C2: SAE (Dragonfly) [47] 2008  ROf CDH, DIDH IEEE 802.11 ° v v

C2: Patched SPEKE [46] 2014 - - ISO/IEC 11770-4 [ ) v

C2: CPace [39] 2019  ROf¥ non-uniform sSDD - [ ) v

C3: KOY [59] 2001 CRS DDH - o v

C3: Kobara-Imai [64] 2002 CRS DDH - e v

C3: Jiang-Gong [57] 2004  CRS DDH - e v

C3: SPAKE2 [6] 2005  ROT, [CRS] GCDH - e

C3: SESPAKE [89] 2015  ROT, [CRS] CDH - °

C3: TBPEKE [87] 2017 RO, [CRS] GSDH - o v

C4: J-PAKE [45] 2008 RO CDH, DDH ISO/IEC 11770-4 v v
Augmented PAKE

C1: AEKE [16] 1993 - CDH - ° v

C1: KHAPE [38] 2021  IC,ROf GCDH - [ ] [ ) v

C2: B-SPEKE [53] 1997 - - - [ ] v

C2: PAK-X [22] 2000 ROT DDH - ° v

C2: SRP-5 [99] 2001 - - IEEE 1363.2 [ )

C2: PAK-Z [79] 2002 ROT CDH - °

C2: PAK-Z+ [36] 2005 ROfT CDH IEEE 1363.2 [ )

C2: OPAQUE [55] 2018  ROf One-more DH - ] v

C2: AuCPace [39] 2019  ROfT non-uniform sSDD - [ ] v

C3: VTBPEKE [87] 2017 ROY, [CRS] GSDH - e

C3: KC-SPAKE2+ [94] 2020  ROT, CRS CDH - [ ] v

C5: SRP-3 [101] 1998 - - IETF RFC 2945 v

C5: AMP [68] 2001 - - - v

C5: SRP-6 [102] 2002 - - IEEE 1363.2, ISO/IEC 11770-4 v

C5: Revised AMP [69] 2005 - - IEEE 1363.2, ISO/IEC 11770-4

C5: AugPAKE [93] 2010 RO Strong DH ISO/IEC 11770-4

RO: requires a one-way hash function with appropriate properties. RO7: requires an H2G function with RO-like properties.
CRS: common reference string, explicitly stated in the paper. [CRS]: implicit assumption in the paper. IC: ideal cipher model.

definition whereby an online attacker may test multiple pass-
words in one go (recall that a stricter definition limits online
attacks to one password guess per protocol execution). It also
remains unclear whether formal security proofs can be given
for SPEKE under more standard Computational Diffie-Hellman
(CDH) and Decision Diffie-Hellman (DDH) assumptions. In
2019, Haase and Labrique [39] proposed another SPEKE vari-
ant, CPace, by including the session identifiers and the users’
identities in the f function. They initially gave a security
proof for CPace in a RO model under a standard CDH assump-
tion, but this assumption was disputed during the IETF PAKE
selection process [42], and subsequently changed to strong
simultaneous non-uniform CDH (non-uniform sSDD) [4].
PACE (unrelated to CPace) is a protocol suite proposed in a
2006 report [25] (with corrections and revisions 2006—-2016)
for machine readable travel documents such as e-passports, by
Germany’s Federal Office for Information Security (BSI). As a
core component, a set of functions map passwords to group

elements. The original protocols in the BSI report saw lim-
ited public scrutiny. In 2009, Bender, Fischlin and Kigler [17]
analyzed the initial version (PACE v1) in a random-oracle-and-
ideal-cipher model under a General Password-Based Chosen-
Element DH (gPACE-DH) Problem. In 2012, Coron et al. [30]
analyzed an updated version (PACE v2) in a RO-and-IC model?
under a Gap Chosen-Base Diffie-Hellman (GCBDH) assump-
tion. The main change in v2 is a new Integrated Mapping (IM)
method that hashes a password to points on certain elliptic
curves more efficiently (with curves restricted to p = 2 mod 3;
p is the characteristic of the prime field). The security analysis
is limited to a restricted model: the adversary is not allowed to
interact with a reader, and can only interact with a chip when
it is not already interacting with a reader. In all versions of
PACE [17, 30], user identities are omitted in the key exchange
flow, making the protocol potentially vulnerable to an un-
known key-share attack as reported on SPEKE [46]. However,

2The RO-and-IC model used to analyze PACE v1 and v2 does not require an
ideal cipher (e.g., unlike EKE2), thus allowing use of AES as symmetric cipher.



such an attack is beyond the scope of the restricted model, since
PACE is designed for an RFID reader and an RFID chip with
fixed roles of “reader” and “chip” hardcoded in their respective
software implementations. Applying PACE as a general PAKE
protocol for Internet use will require modifying the protocol;
at least user identities need to be included.

SAE (also called Dragonfly) is among the PAKE protocols
that have been used in practical applications, most notably in
Wi-Fi Protected Access 3 (WPA3), a commercial profiling of the
IEEE 802.11 standard. The protocol was first proposed in 2008
by Harkins [47], unaccompanied by security proofs. In 2014, a
small-subgroup attack was reported by Clarke and Hao [28]
and subsequently fixed by a revision. To support SAE’s stan-
dardization in the IETF, in 2015 Lancrenon et al. [71] offered
an SAE security proof in a RO model under CDH and DIDH
assumptions, adapting the SPEKE2 proof by MacKenzie [80];
the proof does not, however, take into account side-channel
attacks. Shortly after being made mandatory in 2018 in WPA3
(personal mode), SAE was shown vulnerable to side-channel
timing attacks [97]. The problem arises in implementing the
f function (we give details shortly).

PAK s a suite of variants proposed in 2003 by Boyko, MacKen-
zie and Patel [22] (see also [21]). The variants include PAK,
PPK and PAK-X, all relying on the same f function used in
SPEKE; to our knowledge [76], none have been used in practi-
cal applications. A formal security proof of properties of these
variants was given under a decision Diffie-Hellman (DDH)
assumption in the RO model. PAK and PPK are both balanced
schemes, with PAK mandating explicit key confirmation while
PPK makes it optional; PAK-X is an augmented version.

We now briefly discuss augmented Class-2 PAKE schemes.
In 1997, Jablon [53] proposed a generic “B” method to extend
a balanced SPEKE scheme to an augmented version denoted B-
SPEKE. This method is based on a Diffie-Hellman scheme with
the server storing a password-derived Diffie-Hellman public
key. The same “B” method is generally applicable to transform
a balanced PAKE to an augmented version. Other augmented
schemes include PAK-X [77], SRP-5 [99], OPAQUE [55] and
AuCPace [39]. During the IEEE P1363.2 review process, PAK-X
was found vulnerable and replaced by PAK-Z [79], which was
found vulnerable and replaced by PAK-Z+ [36].

A challenge affecting all Class-2 protocols is how to instan-
tiate the f function in different group settings. Recall in an
EC setting, f is called a hash-to-curve (H2C) function. Jablon
originally (1996) defined f only for a MODP setting with safe-
prime modulus. IEEE 1363.2 extended it to work with DSA
(Digital Signature Algorithm) [83] groups and elliptic curves
as discussed below.

In a general MODP setting, p = k-q+1 is the modulus, where
p, q are large primes and k a co-factor. For DSA groups, q is
much shorter than p, for efficiency [83, §11.5]. IEEE 1363.2 [51]
defines the mapping function: f(w) = H(w)k mod p. Here,
there is a theoretical possibility that H(w) falls into a small
subgroup of Z;;. In that case, f in IEEE 1363.2 simply returns
“invalid”. The specification does not mandate any checking on
the output nor provide any exception handling for the “invalid”
case, but notes that when “suitably large values” of the group
parameters are chosen, the probability of this happening by

chance is negligible (on the order of 1/q). For completeness, we
note that when an “invalid” output is returned, the user may
have to change the password. Dragonfly tries to address this
issue by including a counter in a loop so as to guarantee that
a valid output is always returned (see “Hunting and Pecking
with MODP Groups” in [48]). As a consequence, f is no longer
constant-time. Nonetheless, the practical difference between
the methods in IEEE and Dragonfly seems negligible given
that the probability of an “invalid” output occurring by chance
is negligible. (However, it is unclear if an attack action, e.g.,
fault injection [96], could significantly increase the probability
of the “invalid” case.)

In the EC setting, IEEE 1363.2 [51] defines the H2C function
for an elliptic curve y?> = x> + a - x + b in three steps: 1)
first apply a one-way hash to the password to obtain an x-
coordinate value; 2) use a loop with a counter to iteratively
map the x value to a point on the curve; 3) multiply the mapped
point with a co-factor. There is a theoretical possibility that
the mapped point in 2) might fall into a small subgroup, and
then the computed result in step 3) will be an identity point.
In this case, the function simply returns “invalid”. Similar to
the MODP setting, the IEEE specification does not mandate
checking the output nor specify any exception handling, but
notes that the probability for this happening at random is
negligible. The H2C function in IEEE 1363.2 was adopted to
implement an EC version of Dragonfly in 2018 in WPA3, but
found vulnerable in 2020 to timing side-channel attacks [7, 97].
The main problem is that the mapping function in step 2) is not
constant-time. We note that Blackberry Messenger (BBM) [18]
uses an EC version of SPEKE based on the same H2C function
in IEEE 1363.2 [51], and hence is potentially vulnerable to the
same attack. IETF has been trying to address this problem by
defining constant-time mapping [50, 91] in step 2) for selected
curves, but this work is still on-going at the internet draft
stage [49] as we write this paper.

3.3 Class-3: Trusted Setup (TS)

The first Class-3 protocol was KOY by Katz, Ostrovsky and
Yung [59] in 2001. Its underlying motivation was to design
a provably secure PAKE without requiring a RO model, fol-
lowing work to this end in 2000 by Goldreich and Lindell [37].
KOY has 3 rounds for unilateral authentication (4 rounds for
mutual authentication). As a central idea, a trusted setup (TS)
is assumed, including here a set of 5 generators, with no one
knowing the discrete log of any of these generators with re-
spect to any of the others (and the party choosing them must
be trusted on this assumption). While the original paper as-
serts a formal security proof for the KOY protocol under a
DDH assumption in a “standard” model, due to dependence on
TS, a more precise statement is that the proof is in a common
reference string (CRS) model, as acknowledged later [60]. A
general framework for PAKE in a CRS model was given by
Gennaro et al. in 2003 [35] and Katz et al. [61] in 2011; in 2014,
Abdalla reviewed the CRS model for PAKE [1].

After KOY, other TS-based PAKE schemes included Kobara-
Imai [64], Jiang-Gong [57], SPAKE2 [6], SESPAKE [89] and
TBPEKE [87]. Among these, SPAKEZ, from 2005 by Abdalla



and Pointcheval [6], is regarded as the most efficient. SPAKE2
(Fig. 7, Appendix) uses three generators and assumes the dis-
crete log relation between any two of them is unknown. The
authors gave a RO-model proof, initially under a CDH assump-
tion. This proof does not deliver forward secrecy; for that, the
assumption is changed to Gap Computational Diffie-Hellman
(GCDH) [2]. They proposed to obtain a TS as “the output of
a [H2G] random oracle” [2], a proof technique subsequently
adopted by SESPAKE [90], TBPEKE/VTBPEKE [87] and KC-
SPAKE2+ [94]. Given the reliance on TS, the proof is implicitly
in a CRS model, as noted by Becerra et al. [11].

Class-3 augmented PAKE schemes include VTBPEKE and
KC-SPAKE2+. VIBPEKE was proposed in 2017 by Pointcheval
and Wang [87]. They gave a RO-model proof under a gap
simultaneous Diffie-Hellman (GSDH) assumption. Again due
to reliance on a TS, the proof is implicitly in a CRS model.
KC-SPAKE2+ was proposed in 2020 by Shoup [94] as a variant
of SPAKE2+ [26] with mandatory key confirmation. Shoup
analyzed the security of the protocol in the RO and CRS models
under a CDH assumption.

A critical issue for Class-3 protocols is how the TS is instan-
tiated. One frequently suggested way [35, 57, 59] is to employ
a trusted third party (TTP) to choose the parameters used. Of
course, a TTP may also be viewed as “a third party who can
break your security policy” [8]; no universally trusted third
party exists. Another way is using a secure hash function to
generate fixed generators for standardized use (e.g., see the
SPAKE2? internet draft [70]). Note that reliance on the discrete
log relationship of fixed values remaining unknown is a sig-
nificant risk for a system to be used by very large user bases
over many years. In non-TS-based PAKE systems, solving a
single discrete log problem instance breaks a single session;
in TS-based systems, it breaks security for all sessions and all
users (typically without their knowledge).

3.4 Class-4: Secure two-party computation

The only Class-4 protocol to date is J-PAKE, proposed in 2008
by Hao and Ryan [45]. The core idea is to treat PAKE as a
secure two-party computation problem. The aim is that each
party learns only the 1-bit output of a function that tests the
equality of two passwords. J-PAKE extends the traditional
two-party computation problem, by deriving a session key
when the passwords are equal. Its design modifies the 2006
AV-net multi-party computation (MPC) protocol of Hao and
Zielinski [43], by which multiple parties compute a boolean-
OR function, to instead compute an equality function. J-PAKE
requires neither H2C nor a TS, simplifying implementation.
In 2016, Lancrenon et al. [72] proposed two variants which
use less computation, but respectively rely on H2C and TS.
J-PAKE (Fig. 8, Appendix) relies on a zero-knowledge proof
(ZKP) technique, namely Schnorr’s non-interactive ZKP [83,
§10.4.4], to ensure that a sender knows the private key x when
sending g*. ZKP had previously seen little use in PAKE as first,
ZKP can be computationally expensive (J-PAKE uses 3 ZKPs in
each direction); and second, ZKP was viewed as incompatible
with the mainstream BRP model due to the difficulty to use
rewinding arguments to prove extraction of knowledge in

simulation [3]. While the original paper’s security proof for
J-PAKE (in a RO model with CDH and DDH assumptions)
is considered informal by some (it is not constructed in the
formal BRP model), in 2015 Abdalla et al. [3] defined a modified
BRP model with algebraic adversaries (to be compatible with
ZKP), used this for a formal proof of J-PAKE under a Decision
Square DH assumption, and then reduced this assumption to
CDH and DDH by using a RO model.

3.5 Class-5: Password-derived exponent

Class-5 schemes are all augmented. Here g is stored at the
server for use in verification, in a DH-like key exchange with
a client. The first Class-5 protocol was SRP-3, in 1998 from
Wu [101] (“-3” as two earlier versions were abandoned). After
submission to IEEE P1363.2, it was noted that an active attacker
could test two passwords at once; SRP-3 was replaced by SRP-6.
After the P1363.2 group concluded in 2008, security concerns
led to a further update, SRP-6a (Fig. 9, Appendix).

Other Class-5 protocols follow a design similar to SRP. AMP,
proposed in 2001 by Kwon [68], claimed to be the “most effi-
cient” augmented PAKE. After AMP was submitted to IEEE
P1363.2, it was found vulnerable to the two-guess attack re-
ported on SRP-3, and revised to AMP+; efficiency concerns
led to a further revision in 2002. While AMP+ was being stan-
dardized in IEEE P1363.2, it was found to lack the claimed
server compromise resistance, again modified and replaced by
the “the unified variant AMP2” [69]. AugPAKE was initially
proposed in 2010 by Shin and Kobara in an RFC [92], but the
validity of its security proof is challenged by Jarecki et al. [55].

4 COMPARING EFFICIENCY

We now select representative protocols from each class for a
comparative performance analysis. As Table 1 notes, PAKE pro-
tocols use a wide variety of security models and assumptions
in their security proofs—which precludes precise security com-
parisons. Thus we focus here on computational efficiency for
parameter choices, e.g., modulus bitlengths and exponent sizes,
that provide comparable (asserted) security. Our summary (in
Table 3) provides a view of relative performance, while sepa-
rately noting further costs due to required H2C functions or
trusted setup (TS), the latter being a non-computational cost.
We first list the class representatives. Our selection criteria
included academic interest and industrial use, plus simplicity,
maturity and efficiency within classes. We do not distinguish
balanced and augmented schemes as this does not affect our
comparative analysis between different design strategies.

C1: EKE2. It is a classic scheme in its class. Variants cost
roughly the same computationally.

C2: Patched SPEKE. It is the most efficient in its class (with
the same efficiency as SPEKE, while addressing known
attacks). We also include CPace [39] and OPAQUE [55],
based on IETF having selected them for standardization.

C3: SPAKE2. It is the most efficient in this class.

C4: J-PAKE. It is the sole class member.

C5: SRP-6a. It is the only class member widely used in prac-
tice, to our knowledge.



4.1 Long and short exponents

For Diffie-Hellman exponentiation over the range Z}, expo-
nents are mod p—1, so full-sized (long) exponents have bitlength
log, (p). Shorter exponents reduce computational cost, as mod-
ular exponentiation cost is linear in exponent bitlength [83,
§14.6]. However, a too-short exponent compromises security.
For example, Pollard’s rho algorithm (which is parallelizable)
finds discrete logs in running time square-root of the size of the
search space, while a modification of Pollard’s lambda method
allows recovery of a number of exponent bits, depending on
how p — 1 factors [85]; the latter motivates using safe primes,
which help address small-subgroup attacks [84, §4.8], as do
prime-order subgroups as used in DSA.

At first glance, EKE and SPEKE require only two exponen-
tiations, which seems impossibly few, as even unauthenticated
DH requires that many (plus one more, if one charges for
public-key validation). However, simply counting the number
of exponentiations is misleading. Both EKE and SPEKE specify
a safe prime as modulus (in their original specs). Given a 2048-
bit safe prime p, the exponents in EKE and SPEKE are 2048 and
2047 bits resp. (Fig. 3 and 4, Appendix). In contrast, using DSA
groups, exponents of only 224 bits are commonly used. As a
result, for a 2048-bit p, one full-length SPEKE exponentiation
costs about 2047/224 ~ 9 times as much as for a (112-bit secu-
rity) DSA group; and for a 3072-bit p, 3071/256 ~ 12 times as
much as for a (128-bit security) DSA group. Counting this way,
for a given modulus, EKE and SPEKE (with long exponents)
are far less efficient than a regular (DSA-group) DH protocol.

Direct use of short exponents in SPEKE was initially men-
tioned [52], e.g., for a 3072-bit safe prime p, choose a random
256-bit secret exponent; but it was later recommended [54]
to use them while ensuring computations in a prime-order
(DSA) subgroup, consistent with other recommendations [85].
Following this path, IEEE 1363.2 [51] generalized its SPEKE
specification to allow short exponents as in DSA groups, re-
sulting in changing f (as noted in §3.2) to f = H(w)* mod p;
again p = k- ¢+ 1 and k is a co-factor. Compared with a safe-
prime modulus, the probability for getting an “invalid” output
by chance in a DSA group (same modulus size) increases, but re-
mains negligible (without considering attack actions like fault
injection [96]). However, in a DSA group, it now requires one
exponentiation to validate a received public key (exponential).
With a safe prime modulus, validation involves checking only
the exponential is not 1 or p — 1, ruling out small subgroups
([52]; [84, §4.8]).

Table 2 summarizes costs for SPEKE in different groups.
With short exponents reducing exponentiation costs, the f
function now dominates the overall cost. Hence, using the
same DSA group, SPEKE remains far more costly than a DH.

In an EC setting, SPEKE requires an H2C function to map
a password to a random generator. The H2C defined in IEEE
1363.2 (later adopted by ISO/IEC 11770-4 and WPA3), based
on a trial-and-increment method, leaks side-channel infor-
mation about the password [97]. This can be addressed by
Icart’s method [50] to map a string to a point on a curve in
constant-time, suitable for certain curves where p = 2 mod 3.
Another method due to Shallue, Woestijne and Ulas [24, 91],

3072-bit modulus
Safe prime DSA

2048-bit modulus
Safe prime ~ DSA

Hash to group - 1(x8) - 1(x11)
Generate g~ 1(x9) 1 1(x12) 1
Validate g¥ - 1 - 1

Compute g*¥ 1(x9) 1 1(x12) 1

Total 2 (x9) 11 2 (x12) 14

Table 2: SPEKE costs in different MODP groups. Under
“2048-bit/Safe prime”, long exponents are assumed for
prudence; 1 (X9) denotes that the cost of one exponen-
tiation (with 2047-bit exponent) is about the same as 9
typical (224-bit exponent) DSA-group exponentiations.
The hash-to-group function requires an exponentiation
with a 1823-bit exponent (co-factor k), which similarly
has cost equal to 8 exponentiations with 224-bit expo-
nent. Similar scaling applies for a 3072-bit modulus.

suits curves where p = 3 mod 4. These methods require that
one define custom H2C solutions for different curves, and the
mappings may not work for (future) new curves. Furthermore,
existing “constant-time” methods [24, 50, 91] map an input
string to a point on an elliptic curve, including small-subgroup
points [42]. It is possible to check the output iteratively to
ensure it always returns a valid generator (required by Class-
2 schemes, as discussed) but doing so forfeits the (desired)
constant-time property. An IETF internet draft [49] aims to ad-
dress these issues by defining custom H2C functions for (ten)
selected curves; until this work is finalized, the actual H2C
cost remains unknown. For this reason, Table 3 uses “H2C” to
denote this function’s (unknown) cost.

4.2 Performance comparison

Table 3 compares system performance for the selected PAKE
schemes (respective Appendix sections give cost breakdown
details). The aspects noted are: type (balanced/augmented),
class (C1-C5), number of rounds, number of flows, key con-
firmation (implicit/explicit), number of modular exponentia-
tions in MODP groups, number of scalar multiplications in EC
groups, and whether the scheme requires a trusted setup. A
round (different from a flow) is a step which all participants can
complete without depending on each other [21, §1.5.12]. For
example, the original EKE protocol is 1-round, but it requires 2
flows of message exchange. EKE2 [12] breaks the symmetry of
EKE by including the ordered identities in the key derivation
function. As a result, it becomes 2-round, still with 2 flows of
message exchange; the two users cannot send the data at the
same time in one round because of the ordered identities. With
the exception of SRP-6a, selected PAKE protocols generally
support implicit key confirmation; explicit key confirmation
can be realized by adding one more round or flow without
significantly changing the computational costs in the table.
We use a MODP setting with 3072-bit modulus; a 2048-bit
modulus would not change the main results shown. For public
key validation, we note that in a DSA-like group this requires
one exponentiation, but for a safe-prime modulus or in an EC
setting, the cost is negligible.



Class: Scheme Year Type Rnd Flow KC MODP (safe prime) MODP (DSA) EC Other
C1: EKE2 [12] 2000 Bal 2 2 Imp 2 (x12) - -

C2: Patched SPEKE [46] 2014 Bal 1 2 Imp 2(x12) 1(x11)+3 2+H2C

C2: CPace [39] 2019 Bal 3 3 Imp 2 (x12) 1(x11)+3 2+H2C

C2: OPAQUE [55] 2018 Aug 2 2 Imp C:4.5(x12), S: 3.5 (x12) C:1(X11) +6.5,S:5.5 C: 4.5+H2C, S: 3.5

C3: SPAKE2 [6] 2005 Bal 2 2 Imp - 3 2 TS
C4: J-PAKE [45] 2008 Bal 2 3 Imp - 14 11

C5: SRP-6a [95] 2002 Aug 4 4 Exp C:2 (X12) +1,S: 2 (X12) + 1 - -

Table 3: Comparison of selected PAKE protocols with focus on computational costs (protocol specifications and
detailed cost breakdowns can be found in the Appendix). Computational cost columns give the number of exponen-
tiations in the MODP setting (assuming a 3072-bit modulus for concreteness, and to apply scaling to account for long
exponents as explained in Table 2) or the number of multiplications in the EC setting (this is independent of the EC
bitsize). TS implies an extra non-computational cost (trust or risk). C: Client side cost. S: Server side cost.

In Table 3, in OPAQUE we use HMQV [82] as originally
proposed [55] as the “most efficient” way to instantiate the
key exchange scheme. (After OPAQUE’s selection by IETF, the
designers proposed replacing HMQV with a different 3DH
protocol; however, the proposed change remains unfinalized
in an IETF internet draft [66] at the time we write this paper.)
The OPAQUE paper does not explicitly specify whether a party
should validate the received public keys in HMQV. Based on
Menezes [82] and Hao [40], we consider public-key validation
essential in HMQV to prevent known attacks, with the cost
counted accordingly in the table (i.e., one exponentiation in
DSA and negligible cost in safe prime and EC). For both CPace
and OPAQUE, the original papers assume an H2C function
as the main building block, leaving the protocols undefined
for the MODP setting. Neither paper instantiates H2C; both
assume it incurs negligible cost. To give a complete picture,
Table 3 records the cost for CPace and OPAQUE in a MODP
setting based on using the same H2G function as other Class-2
protocols. In an EC setting, since H2C has not been instanti-
ated, the table uses “H2C” to denote this non-zero cost.

On round efficiency, EKE2, Patched SPEKE, SPAKE2 and
OPAQUE have the fewest flows (i.e., 2). Among these, Patched
SPEKE has the theoretical advantage that its 2 flows can be
completed in one round. J-PAKE and CPace require 3 flows;
SRP-6a requires 4 (note that it includes explicit key confirma-
tion by default; other protocols treat it as optional). To add
explicit key confirmation requires one more flow. The round
efficiency of CPace is based on its original paper [39]. After
CPace was selected by IETF, the designers proposed to modify
the protocol by removing one session ID and defining user
identities as optional input to H2C in order to reduce rounds;
but this proposed change remains unfinalized in an internet
draft [5] as we write this paper.

A computational efficiency comparison requires consider-
ing TS and H2C as factors. First, consider TS. From Table 3,
SPAKE2 has the lowest computational cost in both MODP
and EC settings, but its security critically relies on the secure
instantiation of a TS; a compromised TS compromises the
security of all sessions—similar to breaking TS in Dual EC [27].

Next, consider H2C in the EC setting. Since H2C has not
been instantiated in many cases, a direct comparison of Class-2
(Patched SPEKE, CPace, OPAQUE) to other protocols is pre-
cluded. However in the MODP case, with the f function fully

defined in IEEE 1363.2 [51], we can calculate the cost of Class-2
protocols using either a safe-prime modulus or DSA group; we
use the lower cost in our comparisons. As seen from Table 3,
when CPace and OPAQUE are extended in the MODP setting
using known H2G mapping techniques, the cost under DSA is
lower than under safe prime for the same modulus size; in a
DSA group, the overall cost is dominated by H2G. In a MODP
setting, the computational cost is roughly equal for Patched
SPEKE, J-PAKE, CPace and OPAQUE; SRP-6a is higher.

5 REAL WORLD USE CASES

Since EKE’s conception, debate has continued on the best tar-
get applications for PAKE. Many arguments have suggested
replacing password authentication in web applications, includ-
ing to address phishing, but to little effect—apparently due to
major deployment barriers and the inertia of incumbent web
authentication password protocols (see Manulis et al. [75]).
Strong arguments have likewise been made for integrating
PAKE into TLS, prompting a 2019 IETF PAKE selection process;
an earlier 2007 TLS-SRP effort (based on SRP-6) supported by
RFC 5054 failed to result in wide adoption [31]. Participants
on CFRG e-mail® offered the conclusion: “PAKE in SSL has
always been a solution in search of a problem”. PAKE has also
been proposed for use in end-to-end secure email [98]. This
begs the question: what are the real use cases for PAKE?

To pursue this, we review major instances of PAKE adoption
in real-world commercial systems, and compare with non-
PAKE alternatives, in three selected areas: credential recovery,
device pairing, and end-to-end (E2E) secure channels (see
Table 4). We distinguish a method as preventive or detective
with the latter relying on user vigilance to detect attacks.

We note two basic requirements for a practical PAKE ap-
plication: 1) a trustworthy password-entry interface, and 2)
a trustworthy out-of-band channel to share passwords be-
tween two parties (e.g., reading a password from one device
and entering it to another). In existing PAKE applications, the
password-entry interface is usually integrated into the under-
lying operating system, or the app. By contrast, a web page is
not a trustworthy interface since it can be easily manipulated
(e.g., by JavaScript) [8, §3.4]. This, along with other web de-
ployment hurdles as noted above ([31], [75, §9]), has prevented
PAKE from being used in many web applications. However,
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Table 4: Use case properties: PAKE, non-PAKE

the adoption of PAKE in e-passport, Wi-Fi and IoT suggests
the utility and demand for PAKE beyond web applications.

5.1 Credential recovery

SRP-6a has been used in iCloud (and similarly in 1Password
and ProtonMail) to recover user credentials (called “escrow
recovery” in iCloud documentation). To recover a keychain
stored at the iCloud server, users log onto their iCloud account
using username and password plus an SMS code as a second
factor for authentication, then enter another (6-digit) iCloud
security code serving as a low-entropy w for establishing a se-
cure channel with the iCloud server based on SRP-6a (running
on top of TLS) to retrieve the keychain. The SRP-6a registra-
tion phase is done over a TLS channel, but the (PAKE) key
exchange does not rely on TLS.

Google Sync provides an alternative non-PAKE solution
based on a PKI and passwords (Mozilla Sync 1.5 works simi-
larly). In Google Sync, the user’s profile (containing all cached
passwords in Chrome) is stored at the Google server. To retrieve
the sync data, users simply log onto their Google account using
a Chrome browser. The user can optionally provide a further
password to encrypt the sync profile stored at the server.

As Table 4 shows, the partial dependence on TLS or a PKI
appears to give SRP-6a in iCloud an advantage over Google
sync under a specific scenario. In iCloud, TLS is only required
during the registration phase of SRP-6a, not during key ex-
change. Therefore, iCloud may provide more protection than
Google sync during credential recovery if TLS or its underlying
PKI is broken. However, as a major limitation, neither iCloud
nor Google Sync protects against insider attacks. If the service
provider hands over password-encrypted user credentials to
a government agency, the credentials will be vulnerable to
offline dictionary attacks.

5.2 Device pairing

PACE is used by third generation e-passports. An e-passport
reader scans the Machine Readable Zone (MRZ) of a passport

page, with MRZ data used as a shared secret for PAKE mutual
authentication with the e-passport’s embedded RFID chip [30].
WPA3 uses another PAKE protocol, Dragonfly, to establish a se-
cure channel between a Wi-Fi access point and client. However,
as noted in Section 3.2, the trial-and-increment H2C function
used (based on IEEE 1363.2) is vulnerable to side-channel at-
tacks [97]. The non-PAKE alternatives include Passkey Entry
(PE) and Numeric Comparison (NC) in the latest Bluetooth
pairing specification, 5.3 [19]. PE requires a user to read a
6-digit number from one device and enter it to another device,
but has been found vulnerable to impersonation attacks [29].
NC requires a user to manually compare a 6-digit display on
both devices after performing an ECDH protocol in order to
confirm authentication, hence working as a detective measure.
Here, a PKI-based TLS is unsuitable for these pairing applica-
tions as there is no pre-existing PKI.

5.3 End-to-end (E2E) secure channel

Examples of PAKE applications here include use of J-PAKE in
Thread (and similarly in Palemoon and Smoke Chat); and EC-
based SPEKE (EC-SPEKE) in Blackberry Messager (BBM) Pro-
tect to establish end-to-end secure channels between parties
over the Internet. EC-SPEKE uses the same IEEE 1363.2 trial-
and-increment H2C function as Dragonfly in WPA3, which as
noted in Section 3.2, has side-channel issues.

In this category, we note three non-PAKE alternatives to
establish E2E secure channels. One is to rely entirely on TLS—
but in many applications (including IoT), an underlying PKI
is not in place or trusted. Another is to use detective meth-
ods as in Signal [88] or ZRTP [105]. Signal requires users to
manually compare (60-digit) fingerprints of other users’ public
keys before running an authenticated (X3DH) key agreement.
However, studies have shown that users cannot be relied on to
carry out such checks [58, 88]. Similarly, ZRTP first executes
a DH protocol between two phone users and then requires
them to manually compare an authentication string (typically
6 digits) derived from the session key.

6 LESSONS AND OPEN PROBLEMS

Here we extract lessons (Ln) from the theory, practice, stan-
dardization and real-world applications of PAKE protocols.

L1 (Complete specifications). A PAKE protocol should be
completely specified to enable analysis and open implementa-
tions. PAKE schemes face adoption barriers if their published
security proofs assume constructs for which any implemen-
tation details are unavailable. Examples include assumptions
of ideal ciphers, and H2G functions missing for some group
settings. Omitted details also hide subtle issues that must be
addressed in full analysis, and hamper implementation. In fu-
ture standardization of PAKE (and other security techniques),
we recommend open-source full prototypes accompany sub-
mitted candidate protocols as reference implementations, to
ensure all details are defined.

L2 (Realistic assumptions). Security proofs should specify
both the underlying model and realistic assumptions; unrealistic
or questionable assumptions erode the value of proofs and impede
adoption. As an example, the motivation for several provable



PAKE schemes was to remove the RO assumption, to avoid
criticism that equating an RO to a hash function is heuristic in
nature [13]. However, the alternative of employing a trusted
third party (TTP) [59] in a CRS model increases implementa-
tion challenges. To address this, researchers (re)introduced RO
to avoid a TTP defining a CRS [6] (see Table 1). But then, as
§3.3 notes, finding one discrete log relationship between two
hardcoded generators forever breaks all sessions—a concern
limiting the adoption of Class-3 protocols. From this, we learn
that some new models and assumptions remove old issues, but
introduce new ones.

L3 (Revising standards). PAKE standards, like many other
security standards, must be regularly revisited to address new
attacks. Designing public key protocols is notoriously diffi-
cult [9]. Several standardized PAKE schemes with designs
based on heuristic arguments (such as SRP, AMP and SPEKE),
required repeated revisions as new attacks emerged. Many
PAKE schemes with security proofs were accompanied by
incomplete protocol specifications (e.g., lacking details on in-
stantiation of IC, H2C and TS, per L1 and L2 above). While IEEE
P1363.2, initially set out as a 4-year standardization project,
was extended to 8 years, the final spec was eventually with-
drawn in 2019, after flaws continued to be found in the 2008
specification [51].

L4 (Emergent use cases). Use cases for new protocols emerge
or evolve with deployment environments. A motivation for the
original EKE protocol was E2E encrypted telephone calls [15].
This was difficult to implement in 1992 (due to the transcod-
ing of analogue voice data across heterogeneous telecom net-
works [10]) but appears to be less problematic in today’s SIP-
based phone network [63]. Back in 1992, Wi-Fi, e-passports
and the notion of IoT had yet to emerge, or were ahead of tech-
nology evolution; today, they are examples of the large-scale,
real-world use of PAKE (cf. Table 4).

L5 (Trade-offs). PAKE protocols are rarely directly compa-
rable, with different trade-offs between security models, per-
formance and other functionality. It is impossible to declare
any one PAKE protocol “best” for all applications, due to the
variance in the importance of given properties in different
applications and environments, e.g., H2C costs vs. a TS (non-
computational complexity). Thus, we believe a systematization
as given herein offers valuable insights regarding tradeoffs.

Among open problems, we highlight three. First, several
PAKE protocols, including IETF-favored CPace and OPAQUE,
critically depend on an H2C function to map a password to a
base generator on an elliptic curve. However, finding a secure
and efficient H2C that guarantees “valid” output and works
with general elliptic curves remains an open problem (§3.2).
Second, existing augmented PAKE schemes provide limited
protection of stored passwords in the case of server compro-
mise. OPAQUE’s pre-computation resistance aims to ensure of-
fline dictionary attacks cannot employ pre-computation tables
(§2.2), but this is only partial protection. An ideal augmented
PAKE scheme might fully protect stored passwords even in
case of a server compromise (e.g., via hardware security mod-
ules, but doing so adds cost). Third, few PAKE protocols resist
attacks based on quantum computers [8, §5.7]; none of the
PAKE schemes selected by IEEE, ISO/IEC or IETF do so. The

design and standardization of quantum-secure PAKE protocols
remains an open challenge (e.g., see Gao et al. [34]).

As a final remark, PAKE presents an interesting case study
to reflect on how the theory of provable security has been
developed, refined and tested in this field. Heuristic designs,
common in early PAKE research, have been found to be un-
reliable, falling into repeated break-and-patch cycles. Since
2000, provable security has been proposed as the path to es-
cape this cycle. Yet, of many now-available PAKE protocols
accompanied by proofs asserting security properties, few have
been fielded. Most designs swing between difficult choices,
relying on 1) an ideal cipher, 2) a hash-to-group function, or 3)
a trusted setup, but none of these has turned out to be straight-
forward to implement. As knowledge about PAKE protocols
continues to evolve, we have provided a snapshot-in-time pic-
ture of where we are after 30 years of research. We hope that
the insights gained from systematizing knowledge in this do-
main are useful to readers—including lessons on theory vs.
practice, standardization efforts, and real-world deployments.
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A APPENDIX

Here we give further details on the relationships between
the five classes of PAKE protocols in the taxonomy. We also
provide algorithmic summaries for the representative schemes,
both for reference and to support the conclusions in Section 4
regarding computational cost comparisons.

A.1 PAKE taxonomy

1C RO¥ CRS RO N/A

Password || Password-derived

Password as an integer
as a key generator

Figure 2: Taxonomy. IC: ideal cipher model. RO+: ran-
dom oracle model assuming secure hash-to-group func-
tion (hash-to-curve in EC setting). CRS: common refer-
ence string model assuming a trusted setup. RO: ran-
dom oracle model assuming secure one-way hash func-
tion. N/A: no applicable model or established proofs.

Three common ways to use a password in a PAKE protocol
are: 1) as an encryption key; 2) as an input string to derive a
generator; and 3) as an integer used in modular arithmetic.*
The first two ways correspond to Class 1 and 2 resp. (Fig. 2).
When a password is used as an integer in modular arithmetic
(the modulus for exponent arithmetic being p — 1 for protocols
like EKE2 and SRP that use the whole range of Z;, or q in
protocols using a subgroup of Zj; of prime-order g), there are
three further cases depending on a protocol’s design and proof
model. In general, in Class 3 security proofs are in a CRS model,
assuming a trusted setup; Class 4 proofs are in a RO model,
assuming a secure one-way function; and Class 5 protocols
lack commonly accepted security proofs in a formal model.’
Representative schemes from these five classes are listed
in Table 5, with algorithmic summaries given in the sections
below, along with detailed explanations of computational costs
to support the costs summarized in Table 3 (§4.2). Recall that
4The PDM (Password-Derived Moduli) protocol of Kaufman and Perlman [62]
uses a client password to derive a modulus, but PDM is viewed as a password-
authenticated key retrieval (PAKR) protocol [51], with properties distinct from
PAKE protocols. PDM is thus omitted from our taxonomy. We are not aware
of any PAKE protocol based on a password-derived modulus—perhaps due to
per-session modulus derivation adding a considerable cost [21].
> Among Class 5 protocols, only AugPAKE claims to have formal security proofs,

but to date it appears in only an unrefereed technical report [93], and the validity
of the proofs has been questioned [55].

w denotes an (often weak) password, and to simplify our de-
scriptions here, we use a one-way hash H as a key derivation
function. As before, for the MODP case we choose a 3072-
bit modulus for concreteness (allowing Table 3’s pragmatic
comparison of the costs of short and long exponentiations).

A.2 EKE2 protocol (Class 1)

Alice (A) Bob (B)
xer [0,p—1] A Ew(g* mod p)
B,&Ew(gY modp)  yeg[0p-1]
Compute K Compute K

Figure 3: EKE2 protocol [12]

Fig. 3 summarizes EKE2 [12] in Z;. Here p is a safe prime
and g a primitive root (generator) mod p. A and B denote the
identities of Alice and Bob resp. The session key is (|| denotes
concatenation): K = H(A || B|| g°|| gY|| g*Y). Given a 3072-bit
safe-prime modulus p, each party performs two exponentia-
tions (3072-bit exponent): one to compute an ephemeral public
key and one to compute the session key. There appears no
easy way to extend this specification to other groups settings,
e.g., DSA and EC, without modifying the protocol.

A.3 Patched SPEKE protocol (Class 2)

Alice (A) Bob (B)
x€r[Lg-1] A f(w)* modp Validate key
Validate key B, f(w)ymodp yegr[l,q-1]
Compute K Compute K

Figure 4: Patched SPEKE [44] (spec: ISO/IEC 11770-4:2017)

Fig. 4 summarizes Patched SPEKE [44]. It works in a sub-
group of Z; of prime order ¢, with p = 2 - g + 1 a safe prime.
Function f is defined: f(w) = H(w)? mod p. To validate the
received key is to check it is in Z; (non-zero), and not 1 or
p — 1 (small subgroup elements). The session key is computed
as: K = H(sID || f(w)*Y), where sID includes user identities
and exchanged items. Given a 3072-bit safe-prime modulus
p, Alice performs two exponentiations (3071-bit exponent in
Zgq): 1 for computing an ephemeral public key f(w)*, and 1
for computing the session key. The cost for Bob is the same.

[ Class [ Representative scheme(s) [
1 EKE2 |
P Patched SPEKE, CPace, OPAQUE |
3 SINGE |

4 J-PAKE
5 SRP-6a
Table 5: Summary of representative schemes




To extend the protocol to a DSA group requires a hash-
to-group function; see IEEE 1363.2 [51]. Given a DSA group
with 3072-bit p and 256-bit g, Alice performs one exponen-
tiation (2815-bit exponent) to compute f(w) = H(w)(P_l/q),
and three further exponentiations (256-bit exponent): one to
generate an ephemeral public key f(w)*, one to validate the
received public key f(w)Y, and one to compute the session
key. Here, to validate a public key in a DSA group requires
checking that the received value is in Zj (implying also non-
zero), not equivalent (mod p) to 1, then one exponentiation
raising it to the power g and confirming the result equals 1.
This is in contrast to the safe-prime case above, where valida-
tion is simply checking that the received value is in Z;, and
not 1 or p — 1. Extending the protocol to an EC setting requires
a hash-to-curve function to implement f(w). In the EC setting,
the cost of public key validation is negligible. Therefore, the
computational cost for each party becomes one H2C plus two
scalar multiplications.

A.4 CPace protocol (Class 2)

Alice (A) Bob (B)
SID, €g {0,117 A, SID, SIDg €g {0, 1}"
Validate key B, SIDg, f(T)Y yegr [1,q-1]
x €g [Lg—-1] A f(T)* Validate key
Compute K Compute K

Figure 5: CPace protocol [39]

Fig. 5 summarizes CPace [39]. It works in a subgroup of Z;; of
prime order g where ¢ | p — 1. Modular operations are mod p.
SID4 and SIDp are random bit strings generated by A and
B resp., specified to be of length n = 512 bits in the CPace
reference implementation [39]. T = H(SID4||SID||w||Al|B).
The session key is computed as: K = H(SID4||SIDg||f(T)*Y)
where f is the same hash-to-group function as in Patched
SPEKE (f in Fig. 4). To validate a received key is to check if it
is an element in the designated prime-order group. Extending
the protocol to an EC setting requires a hash-to-curve function
to implement f. While the original paper [39] only defines
CPace in an EC setting assuming an unspecified hash-to-curve
function, here we define it for MODP and EC settings using the
same f as in other Class-2 protocols. CPace’s computational
cost is the same as Patched SPEKE (Fig. 4).

A.5 OPAQUE protocol (Class 2)

Fig. 6 summarizes OPAQUE [55]. It operates in a subgroup
of Z; of prime order g, where q | p — 1. Modular operations
are mod p. At the registration phase, the user and the server
run an Oblivious Pseudorandom Functions (OPRF) protocol,
whose central component is a hash-to-group f function (the

same f as in Patched SPEKE in Fig. 4, and CPace in Fig. 5).

The OPAQUE authors emphasize that the registration must be
done over a secure channel, otherwise the protocol security
can be compromised. At the end of the registration process,
the server stores long-term secret keys k and ps (chosen from

Registration

Client (C) Server (S)
pu €R [0,9 — 1] £) k.ps €r [0, 1]
P, = gPu k, Pg Ps = gPs
el

m=H (w,f(w)k)
¢ = Em(pus Pu, Ps) .,
Login

r,x €g [0,q — 1]

Stores (C: k, ps, ¢, Py)

a=f(w)',X=g" CoaX y €gr [0,q—1]
—_—

m=H(w,ﬁ1/r) S, B¢ Y ,Bzak,c,Y:gy
P

Pu> PuPs — Dm(c)
K =KE(py,x,Ps,Y)

K = KE(ps. y, Pu, X)

Figure 6: The OPAQUE protocol [55]

Zq), together with P, = gP* and ¢ = Epy (py, Py, Ps) where &
is an authenticated encryption scheme with key m. The client
has selected py, € Zg, computed P, = gP# and c, and sent ¢ to
the server as shown.

In the login phase, D is an authenticated decryption scheme.
KE is an authenticated key exchange scheme. When HMQV [82]
is used to instantiate KE as originally recommended [55], both
parties compute d = H(X,s),e = H(Y,u) where H is a one-
way hash of [log, q]/2 bits in the output. The session key is
K=H (g<x+d1’u> <y+eps>). Originally [55], OPAQUE is defined

only in an EC setting assuming an unspecified hash-to-curve
function; we generalize this here to MODP and EC settings,
using the same f function as other Class-2 protocols.

For a 3072-bit safe-prime modulus p = 2q+1 (3071-bit expo-
nents in Zg) the client needs 4.5 exponentiations: 1 to compute
f(w)";1to compute g*; 1 to compute 1/7; and 1.5 to compute
session key K = H ((Y : Ps“’)’”dpu) =H (g(x+d1’")(y+eps)).
The server performs 3.5 exponentiations (3071-bit exponent):
1 to compute ;1 for gY; and 1.5 for the session key.

If the protocol is implemented in a DSA group with 3072-bit
p and 256-bit g, the client must perform one exponentiation
(2815-bit exponent) to compute f(w), and 6.5 further expo-
nentiations (256-bit exponent) including 3 to compute f(w)",
g%, and ﬁl/ " resp., 2 to verify ff and Y are valid elements in the
prime-order subgroup, and 1.5 to compute the session key. The
server must perform 5.5 exponentiations (256-bit exponent): 2
to verify the received a and X are valid elements in the prime-
order subgroup resp., 2 to compute a¥ and g¥ resp., and 1.5 to
compute the session key. In the EC setting, the cost of public
key validation is negligible, with client cost H2C plus 4.5 scalar
multiplications, and server cost 3.5 scalar multiplications.

After OPAQUE was selected by the IETF in 2020, the de-
signers replaced HMQV with 3DH [67, §5.1]. (3DH was used
in an early version of Signal as the key exchange protocol;
it was replaced by X3DH.®) As the modified OPAQUE is still
being defined in an IETF internet draft [66] when we write
this paper, we do not analyze its efficiency here.

®For X3DH, see: https://signal.org/docs/specifications/x3dh/
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A.6 SPAKE?2 protocol (Class 3)

Alice (A) Bob (B)
x €g [0,g—1] A g*MY mod p Validate key
Validate key B,gYNYmodp yeg[0,q—1]
Compute K Compute K

Figure 7: SPAKE2 protocol [6].

Fig. 7 summarizes SPAKE2 [6]. It works in a subgroup in Z; of
prime order g, where g | p — 1. The trusted setup includes three
generators {g, M, N}; the discrete log relationship between ev-
ery pair of these must remain unknown. To validate a received
key is to confirm that it is an element in the prime-order sub-
group (cf. §A.3). The session key is K = H(A, B, g*, g¥, w, g*Y).
Given a DSA group with 3072-bit p and 256-bit g, Alice per-
forms three exponentiations (256-bit exponent): one to com-
pute g*M™ (using a simultaneous computation technique [83,
§14]), one to verify the received public key gY N™ is a valid
element in the prime-order subgroup, and one to compute g*¥
in the session key. Bob’s cost is the same. In an EC setting, the
algorithm works the same, but the cost of public key valida-
tion is negligible (so the main cost for each party is two scalar
multiplications).

A.7 J-PAKE protocol (Class 4)

Alice (A) Bob (B)
x1 €R [0, — 1]
x3 €R [Lg—1] A g, g%, ZKP{x1, x2} Validate ZKPs
Y1 €R [0,g - 1]
Validate ZKPs B, g¥1,¢%2, ZKP{y1,y2} y2 €r [1,q—1]

Validate ZKP pY2 ¥, ZKP{yz - w}

a’2 VW, ZKP{x; - w}

Validate ZKP

Compute K Compute K

Figure 8: J-PAKE protocol [45]

Fig. 8 summarizes J-PAKE [45]. It works in a subgroup in
Z; of prime order g where g |p — 1. All modular operations
are mod p. To validate a ZKP (technically, a Schnorr non-
interactive ZKP) means verifying simple equations [41, §2.4]
to confirm that the sender knows the exponent; this takes one
exponentiation to generate the ZKP and two to verify it. Let
a = ghg¥2g*1 and f = g"1g*?gY! serve as new generators
to compute U = ¢®2"" and V = pY2'". Alice computes the
session key: K = H ((V/g¥>X2"W)X2) = H (g(x1+y1)'x2‘92'w).
Symmetrically, Bob computes the same session key: K =
H((U/g¥2¥2W)¥2) = H (g(x1+y1)'x2'yz'w). Given a DSA group
with 3072-bit p and 256-bit g, Alice performs 14 exponentia-
tions (256-bit exponent): 3 to compute g*, g*2, and &*2™%; 3 to
compute the three ZKPs; 6 to validate three received ZKPs; and
2 to compute the session key. The cost for Bob is the same. In

an EC setting the protocol works the same—but here, because
the public key validation incurs negligible cost, it takes one
scalar multiplication to generate the ZKP, and one (vs. two
in a DSA group) to verify it [41, §3.4], so overall each party
performs 11 scalar multiplications.

A.8 SRP-6a protocol (Class 5)

Client (C) Server
acg [2,p-1],A=¢g% CA Look up s, v
_—
berl2,p-1]
x =H(s,w),u=H(A, B) s,B B:k~v+gb
Pl
S=(B-k-g¥)atux u=H(A, B)
K =H(S) S = (Ao%)?
My = H(H(p) ® H(g), K = H(S)
H(C),s, A, B, K) M, Check M,
—
Check M M, My = H(A, M, K)
o

Figure 9: SRP-6a (http://srp.stanford.edu/)

Fig. 9 summarizes SRP-6a. It works in the whole range of a
multiplicative group Z; where p = 2- g+ 1 is a safe prime and
g is a primitive root (generator) mod p. All modular operations
are mod p. At registration, the server stores s and v = gH (S’W),
where s is a salt (e.g., 64-bit). During the login phase (Fig. 9),
k = H(p, g). SRP-6a differs from SRP-6 [102] which uses k = 1,
and from SRP-3 [101] which also uses k = 1 but there u is
a “randomly generated parameter” instead of H(A, B). Also,
while SRP-3 and SRP-6 require 6 flows, SRP-6a needs only
4. SRP-6a improves the round efficiency by sending C and
A in one flow instead of in separate flows. Given a 3072-bit
modulus p and a 256-bit hash function H, the client performs
one exponentiation (3072-bit exponent) to compute g%, one
exponentiation (256-bit exponent) to compute g*, and another
exponentiation (3072-bit exponent) to compute S. The server
performs one exponentiation (3072-bit exponent) to compute
g”, one exponentiation (256-bit exponent) to compute 0¥ and
another exponentiation (3072-bit exponent) to compute S.

There appears no direct way to extend SRP-6a (which sup-
ports MODP, with a safe prime) to other group settings (DSA
and EC). However, the little-known SRP-5 [99] (see also Zhao
et al. [103, §5]) was specifically designed for EC implemen-
tation (on the other hand, not supporting MODP), and is in-
cluded in IEEE 1363.2 [51, §9.9], but is best viewed as a distinct
protocol and has received less analytic attention.
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