
Verifiable Obtained Random Subsets for
Improving SPHINCS+

Mahmoud Yehia, Riham AlTawy(�), and T. Aaron Gulliver

Department of Electrical and Computer Engineering, University of Victoria,
Victoria, BC, Canada.

raltawy@uvic.ca

Abstract. SPHINCS+ is a stateless hash-based digital signature
scheme and an alternate candidate in round 3 of the NIST Post-
Quantum Cryptography standardization competition. Although not
considered as a finalist because of its performance, SPHINCS+may
be considered for standardization by NIST after another round of
evaluations. In this paper, we propose a Verifiable Obtained Random
Subsets (v-ORS) generation mechanism which with one extra hash
computation binds the message with the signing FORS instance (the
underlying few-time signature algorithm). This enables SPHINCS+

to offer more security against generic attacks because the proposed
modification restricts the ORS generation to use a hash key from the
utilized signing FORS instance. Consequently, such a modification
enables the exploration of different parameter sets for FORS to achieve
better performance at the same security level. For instance, when
using v-ORS, one parameter set for SPHINCS+-256s provides 82.9%
reduction in the computation cost of FORS which leads to around 27%
reduction in the number of hash calls of the signing procedure. Given
that NIST has identified the performance of SPHINCS+ as its main
drawback, these results are a step forward in the path to standardization.

Keywords: Digital signatures, Hash-based signature schemes,
Post-quantum Cryptography, Merkle Tree, SPHINCS+.

1 Introduction

Hash-based signature algorithms date back to the 1970s, with the work of Lam-
port and Winternitz (W) on one-time signature (OTS) schemes [19, 11]. Such
algorithms were regarded as impractical because of their low performance, strict
requirements for rekeying, and keys and signature sizes. To overcome the short-
lived keys, Merkle signature scheme (MSS) [21] is proposed where it combines
many instances of OTS with a Merkle tree into one signature algorithm, thus
enabling multiple signatures under the same public key. Lately, with the surge
in research in quantum physics and the recent advances in developing quan-
tum computers [2], research on hash-based signature algorithms has flourished.
WOTS++ and WOTS-T are new enhanced variants of WOTS [15, 18] .

Starting from the early 2000s, a series of few-time signature schemes were
introduced (e.g., Biba [22], HORS [24], HORS++[23], PORS [3], FORS [5], and

DFORS [20]). In such schemes, a given key pair is used to sign only a few
messages to maintain a given security level. To this end, Merkle tree-based con-
structions are proposed to enhance the security and efficiency of MSS, such as
eXtended Merkle Signature Scheme (XMSS) [12], XMSS+ [16], Multi Tree XMSS
(XMSSMT) [17], XMSS with tightened security (XMSS-T) [18], and rapidly ver-
ifiable XMSS signatures [10]. All the aforementioned algorithms use OTS as
the underlying signing scheme, consequently, they are stateful where the signer
needs to update the signing key state to avoid signing with the same key more
than once. Hence, the security of these schemes depends on the keys and on
maintaining an updated state which does not conform to the standard security
notions of digital signatures. Other schemes are stateless such as SPHINCS [6],
Gravity SPHINCS [4], and SPHINCS+ [5, 7]. Such schemes build on Goldreich’s
theoretical stateless hash-based signature proposal which utilizes a binary tree
of OTS keys, where each OTS key pair signs the hash of the public keys of its
child nodes [14].

SPHINCS+ is the only hash-based signature scheme that proceeded to round
2 of the NIST post-quantum cryptography (PQC) competition. Recently, the
third round candidates were announced with SPHINCS+ being considered as
an alternative candidate [1]. Such a candidate is seen by NIST as a potential
candidate for standardization in the future which may require an additional
evaluation round. NIST regards SPHINCS+ as a “mature design” with solid se-
curity assumptions but categorizes it among those candidates that have worse
performance than the finalists. SPHINCS+ adopts Goldreich’s hyper-tree con-
struction [14] and utilizes FORS as its underlying signing algorithm. A hyper-tree
construction ensures that the probability of the intermediate OTS signing keys
being reused is negligible, hence, one does not need to keep a state. However,
the design security claims, which are supported by the huge size of the hyper-
tree structure, comes at the expense of relatively low performance. Specifically,
the signing procedure of SPHINCS+ is considered slow when compared to other
candidates, and the resulting signatures are very large [1]. For instance, com-
pared to the finalist Crystals-Dilithium [13], the smallest SPHINCS+ signature
is four times larger, and signing is a thousand times slower [1]. For this reason,
NIST considers SPHINCS+ a “conservative candidate” but decided to keep it
as an alternate for standardization in the event there are applications that can
tolerate longer signatures and slower signing.

Our contributions. There is a clear need for research that tackles the perfor-
mance issues of SPHINCS+. Given that such a scheme represents the state of
the art in hash-based signatures design, our work provides a step towards the
goal of standardization. In what follows, we summarize the contributions of this
work.

- We propose a Verifiable Obtain Random Subset (v-ORS) mechanism which
enhances the security and performance of SPHINCS+. Using v-ORS in
SPHINCS+, henceforth referred to by vSPHINCS+, the signing algorithm
is modified where the message digest is generated using a secret key from
the underlying addressed FORS instance which makes the process efficiently

2

computable by only the signer. As a consequence, with the same parameters
(see Table 1), vSPHINCS+ offers higher bit security than SPHINCS+ with
respect to generic attacks where a hash randomizer is freely chosen to obtain
the ORS.

- As v-ORS strengthens the security of SPHINCS+, we explore different param-
eter sets for the underlying few-time signing scheme, FORS, and report on
suggested instances that achieve up to a 27% reduction in the signing com-
putational complexity of vSPHINCS+while maintaining the claimed security
(see Table 2).

2 Preliminaries

In this section, we provide the notation and security definitions of hash functions
that will be used throughout the paper. We consider security notions of hash
function families which have been introduced in [18]. In what follows, let n ∈ N
be the security parameter, k = poly(n), m = poly(n), Hn = {HK(M) : {0, 1}k×
{0, 1}m → {0, 1}n be a keyed hash function family, K ∈ {0, 1}k is the hash key,
and M ∈ {0, 1}m is the message. Hash-based signature schemes usually adopt
parameterized hash functions with m, k ≥ n. In the security analysis throughout
the paper, we assume the Quantum Accessible Random Oracle Model (QROM).

Definition 1 ((Post-Quantum) Distinct-function, Multi-target Second
Preimage Resistance (PQ-DM-SPR)) Given a (quantum) adversary A who
is provided with p message-Key pairs (Mi,Ki), 1 ≤ i ≤ p, the success probability
that A finds a second preimage of any pair (j), 1 ≤ j ≤ p using the corresponding
hash function key (Kj) is given by:

SuccPQ-DM-SPR
Hn,p (A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;

(j,M
′
)← A((K1,M1), . . . , (Kp,Mp)) :

M
′
6= Mj ∧HKj (Mj) = HKj (M

′
)]

A generic attack by a classical (resp. quantum) DM-SPR adversary who makes
qh queries to an n-bit hash function has a success probability of qh+1

2n (resp.

Θ((qh+1)2

2n)). Note that if the keys of the hash function family are chosen ran-
domly, then the above security notion in Definition 1 is referred to as Multi-
Function, Multi-target Second-Preimage Resistance (MM-SPR).

Definition 2 ((Post-Quantum) Multi-target Extended Target Colli-
sion Resistance (PQ-M-eTCR)) Given a (quantum) adversary A who is given
a target set of p message-key pairs (Mi,Ki), 1 ≤ i ≤ p, and they are required to
find a different message-key pair (possibly the same key) whose image collides
with any of the pairs in the target set. The success probability of A is given by:

SuccPQ-M-eTCR
Hn,p (A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;

(j,K
′
,M

′
)← A((K1,M1), . . . , (Kp,Mp)) :

M
′
6= Mj ∧HKj (Mj) = HK′ (M

′
)]

3

A generic attack by a classical (quantum) M-eTCR adversary who is given p
targets and makes qh queries to an n-bit hash function has a success probability

of p(qh+1)
2n + pqh

2k
(resp. Θ(p(qh+1)2

2n +
pq2h
2k

)) when k ≥ n.

Definition 3 ((Post Quantum) Pseudorandom Function (PQ-PRF)) Hn
is called a PRF function family, if it is efficiently computable and for any (quan-
tum) adversary A who can query a black-box oracle O that is initialized with
either Hn function or a random function G where G : {0, 1}m → {0, 1}n. A
is required to distinguish the output of O by determining which function it is
initialized with. The success probability of A is given by:

Succ PQ-PRF
Hn (A) =| Pr[O ← Hn : AO(·) = 1]− Pr[O ← G : AO(·) = 1] |

A generic attack by a classical (resp. quantum) PQ-PRF adversary who makes

qh queries to an Hn has a success probability of qh+1
2n (resp. Θ((qh+1)2

2n)).

Quantum Accessible Random Oracle Model (QROM). In the security
analysis throughout the paper, we assume the QROM model [8], where all honest
parties perform classical computations and only the adversary has quantum
capabilities. Hence, all oracles that reply on behalf of unknown keyed function
work in the classical setting where no superposition queries to the quantum oracle
are allowed. For the unkeyed functions which an adversary is assumed to be able
to evaluate independently, the quantum adversary is assumed to have access to
these quantum oracles that reply on behalf of unkeyed functions. The reader is
referred to [8] and [9, 18] for more details on QROM model. Considering hash
functions where a quantum adversary is searching for (second) preimages, it is
assumed that Grover’s algorithm is used. The generic security of the following
security notions of hash function families against quantum attacks based on
Grover’s algorithm are formally analyzed in [18].

3 Specifications of SPHINCS+

In this section, we give a brief description of SPHINCS+ which consists of the
following three types of trees. (i) The hyper-tree is the main tree for the whole
construction. It has height h and contains d layers of subtrees, numbered 0 to
d−1, where each subtree has height h/d. The root of the top layer subtree (layer
d−1) is part of the SPHINCS+ public key. (ii) The subtrees are the Merkle trees
that build the hyper-tree. These subtrees adopt the XMSS-T construction [18].
Their leaf nodes are the public keys of WOTS+. The corresponding secret keys
of each leaf node are used to sign the root of the subtree at the lower layer. Note
that since these roots are fixed, a given WOTS+ leaf node always sign the same
value. In any layer, j, there are 2(d−1−j)(h/d) subtrees where 0 ≤ j ≤ d− 1. (iii)
FORS instances correspond to the 2h leaf nodes of the hyper-tree. Each FORS
instance contains κ trees, each of τ levels and 2τ leaves which contain secret keys
that are used to sign the message. Each FORS instance root is the hash of the
concatenation of its κ trees Merkle roots, and is signed by a WOTS+ leaf from
the corresponding subtree at layer 0. Figure 1 gives a simplified depiction of the
SPHINCS+ construction where the FORS trees and subtrees have 3 levels. In

4

root0,0

L 0

root0,1
.

root0,2h−h/d−1

rootd−2,0

.........

L d-2

rootd−2,2h/d−1

rootd−1,0 ≡ PK.root

L d-1

.

rootκ−1root1root0

Fig. 1: Simplified SPHINCS+ depiction where the FORS trees and subtrees are
3 levels high. The diamond, circle, and square nodes denote FORS leaves, inter-
mediate hash nodes, and WOTS+ leaves, respectively.

this figure, the message digest is signed by a FORS instance at the bottom layer
whose root is coloured in red. Such a root is in turn signed using the WOTS+ leaf
node, coloured green, in the corresponding subtree at layer 0. The authentication
paths are coloured gray and the roots of the used subtrees are coloured in yellow,
which are similarly iteratively signed by intermediate WOTS+ nodes until the
root of the top subtree is reached. The top subtree root is the public key of
SPHINCS+.

3.1 Parameters

SPHINCS+ has the following parameters:

- h is the total height of the SPHINCS+ hyper-tree and the bit-length of the
FORS instance index.

- d is the number of tree layers.
- κ is the number of (i) sub-strings, correspondingly, the number of the ORS

elements, in the message digest and (ii) hash trees in a FORS instance where
each tree has t secret keys.

- τ is the bit length of a sub-string of the message digest and the FORS hash
tree height.

- t is the number of secret keys corresponding to the leaves in each tree in a
FORS instance, t = 2τ .

- w is the Winternitz parameter of WOTS+.
- n is the security parameter and it is the bit-length of (i) the secret seed,
SK.seed, and the secret pseudorandom number SK.prf, (ii) FORS secret keys,

5

SKi,j,z (0 ≤ i ≤ 2h − 1, 0 ≤ j ≤ κ − 1, 0 ≤ z ≤ t − 1), (iii) the public key,
PK.root, and the public seed PK.seed, (iv) the output of the one way function,
F , hash function, H, and tweakable hash Th (see [5] for the details), and (v)
the hash randomizer, R.

Since our mechanism modifies the signing algorithm, in th following we pro-
vide SPHINCS+ signing algorithm. See [5, 7] for the details of the key generation
procedure which outputs the secret key SK=(SK.seed, SK.prf, PK.seed, PK.root)
and the public key PK= (PK.seed, PK.root), and the verification algorithm.

3.2 Signing Algorithm

The signing algorithm defines the ORS generation and the message signing steps.

ORS generation. This procedure takes a message M , SK.prf, and PK as in-
puts, and outputs the index of the FORS instance that will be used in the signing
procedure and the indexes of the secret keys (ORS elements) which are revealed
from that instance in the signature. More precisely, using a pseudorandom key
generation function PRF, the hash randomizer R is calculated as

R = PRFmsg(SK.prf,OptRand,M) (1)

where OptRand is a 256 bit value which by default is set to 0 and can be
any random value to prevent deterministic signing. An h-bit indx of the FORS
instance that is used to sign the message, and a κτ -bit message digest, md =
b0||b1||. . . ||bκ−1 are evaluated using Hmsg with R as a hash randomizer as follows

md||indx = Hmsg(R,PK,M), (2)

The ORS is the set of κ substrings (b0, b1, . . . , bκ−1), each of length τ bits.

Message signing. The FORS signature contains the set of σi which is the bi-th
secret key leaf from the i-th FORS tree of the indexed I-th FORS instance, i.e.,
SKI,i,bi , and its corresponding authentication path Authi, 0 ≤ i ≤ κ− 1

SIGFORS = (σ0, Auth0), (σ1, Auth1), . . . (σκ−1, Authκ−1) (3)

The κ roots of the trees in the FORS instance are concatenated and hashed to
get an n-bit FORS root

FORS.root = Th(PK.seed||ADRSI ||rooto||root1||. . . ||rootκ−1) (4)

FORS.root is then signed using the WOTS+ of the corresponding leaf node in
the corresponding subtree at layer 0 to get the WOTS+ signature (σW0

), and
its authentication path AuthW0

of h/d hash nodes, i.e., SIG(FORS.root) =
σW0 , AuthW0 (see [5] for the details of WOTS+). Then the root of this subtree
at layer 0 is signed using the WOTS+ at the corresponding subtree at layer 1.
This process is iterated until the top layer is reached, i.e., for 0 ≤ i ≤ d − 1,
SIG(tree.rooti−1) = σWi

, AuthWi
. The signature, Σ, contains the randomizer R,

the FORS signature, and d WOTS+ signatures with their authentication paths

Σ = (R,SIGFORS , (σW0 , AuthW0), . . . , (σWd−1
, AuthWd−1

)) (5)

6

4 SPHINCS+ with Verifiable ORS

We observe that the randomizer R is sent as part of the signature to be used
by the verifier to compute the ORS elements without a means of verifying its
correct computation. In other words, consider a forging adversary who is allowed
to query the signing oracle with messages of their choice (see Appendix A for
EU-CMA security). Such an adversary is always free to choose a randomizer that
generates ORS elements which collide with the ORS sets revealed in the previous
(queried) signatures without any restriction on the signing FORS instance, i.e.,
the message digest md and FORS index indx in Equation 2 are not bound
together. Such a security notion in SPHINCS+ is captured by its ORS function
Interleaved Target Subset Resilience (ITSR) (See Definition 5) which requires
specific parameterization in terms of the number and height of the FORS trees
to reach the claimed bit security. In what follows, we propose a modification to
the ORS generation in the SPHINCS+ signing algorithm that binds the message
digest md, correspondingly the ORS, with the FORS instance that is used for
signing. Our modification restricts the freedom of the adversary when attempting
the previous attack steps, hence, increasing the ITSR bit security of the modified
ORS function. Consequently, we are able to offer efficient parameter sets for the
underlying FORS scheme to enhance the performance of SPHINCS+.

Verifiable ORS (v-ORS) Generation. The signer first generates a hash ran-
domizer, R, as given in Equation 1. Then R is used as a hash randomizer to calcu-
late the index of the FORS instance used for signing and a secret key index within
that same FORS instance. Formally, given H1 : {0, 1}n × {0, 1}2n × {0, 1}∗ →
{0, 1}n, we obtain

hmsg = H1(R,PK,M), (6)

Let the first h+dlog2 κe+τ bits of hmsg an index for a secret key in a FORS tree
within a FORS instance. Specifically, the first h bits denote the I-th index for
a FORS instance, the following dlog2 κe bits denotes the J-th index of a FORS
tree within the I-th FORS instance, and 0 ≤ J ≤ κ − 1, and the last τ bits
denotes the Z-th index of a secret key, (SKI,J,Z), within the J-th FORS tree.
Note that the bit length of J is dlog2 κe, so if κ is not a power of 2, J is reduced
to J mod κ. SKI,J,Z is then used as a hash key to compute the message digest
md. Formally, consider H2 : {0, 1}n × {0, 1}2n × {0, 1}2n → {0, 1}κτ , then

md = b0||b1||. . . ||bκ−1 = H2(SKI,J,Z , PK,R||hmsg), (7)

where bj indexes a FORS signature secret key from the j-th FORS tree in the I-th
FORS instance. Hence, the ORS is given by the set of indexes {b0, b1, . . . , bκ−1}.
Note that such an ORS is valid if it can be generated using the hash randomizer,
(SKI,J,Z), which is sent as part of the signature to the verifier. Hence, the reason
for naming the modified ORS generation v-ORS, is that only a legitimate signer
can efficiently generate it and this fact is verifiable. We refer to a SPHINCS+

using v-ORS by vSPHINCS+.

Signing and verification in vSPHINCS+. The FORS signature, SIGFORS ,
is evaluated as in SPHINCS+, see Equation 3. However, a vSPHINCS+ signature

7

includes (SKI,J,Z) along with its authentication path

Σ = (R, (σ′, Auth′), SIGFORS , (σW0
, AuthW0

), . . . , (σWd−1
, AuthWd−1

)),

where σ′ is the secret key SKI,J,Z and Auth′ is its corresponding authenti-
cation path. Note that since the same FORS instance is used in signing, Auth′

is generated when the J-th FORS tree is built to evaluate (σJ , AuthJ). In the
verification procedure, the signature verifier uses R as a hash randomizer to cal-
culate the FORS index I, FORS tree index J , and the key index Z, from the
selected tree from the FORS instance, see Equation 6.

During verification, the received signature element σ′ is used to generate the
message digest md (respectively the ORS), as shown in Equation 7. After that,
(σ′ and Auth′) are used to calculate the root of the FORS tree J , and compare
it with the root obtained from the FORS signature elements (σJ , AuthJ). If they
are different, the signature is invalid, otherwise, the FORS root is calculated and
the same verification process as in SPHINCS+ is performed.

4.1 Rationale of Design Choices

Binding the ORS generation with the signing FORS instance restrains the ad-
versary freedom to generate an ORS set which also has to be a valid subset of the
ORSs of the queried messages. Precisely, Equation 6 in v-ORS restricts choosing
the hash randomizer that generates the ORS in Equation 7 to a specific FORS
secret key, which is infeasible for the adversary to guess unless it was revealed
through the queried messages (this event occurs with low probability as given in
Equation 8).

For evaluating the ORS, i.e., md in Equation 7, we initially planned to
hash the message itself by applying H2(SKI,J,Z , PK,M) but we realized that
such a decision reduces the signing performance if the message size is large.
Specifically, the message is going to be hashed twice; once to generate, hmsg
in Equation 6, which provides the FORS secret key that is used as a hash
randomizer. The second time is during the ORS evaluation using H2. Accord-
ingly, we decided on hashing the message hash output, hmsg, in Equation 7
by applying H2(SKI,J,Z , PK, hmsg). Nevertheless, we found that for a valid
forgery, an adversary needs to find a message-randomizer pair (M ′, R′) which
outputs hmsg = H1(R′, PK,M ′) where hmsg is a second preimage of any of the
queried messages. Such an attack is equivalent to breaking the security of multi-
target extended target collision resistance M-eTCR of the hash function H1 of
vSPHINCS+ as given in Definition 2.

An M-eTCR attack has a success probability of qs·(q+1)
2n + q·qs

2n [18], where qs
is the number of targets, i.e., the queried messages and q is the computational
cost that the adversary needs to query the hashing oracle. In case of an M-eTCR
attack on H1, a forgery is certain because hmsg leads to the same SKI,J,Z and
consequently same ORS as ORS = H2(SKI,J,Z , PK, hmsg). Consequently, we
decided to include the hash randomizer R with hmsg as an input to the second
hash call H2(SKI,J,Z , PK,R||hmsg). In such a case, a valid forgery requires
the adversary to find a message M ′ that outputs hmsg = H1(Rj , PK,M

′) =
H1(Rj , PK,Mj) were Rj is the hash randomizer used with a message Mj out of

8

the queried messages and 0 ≤ j < qs. Such an attack is equivalent to breaking
the security of multi-function multi-target second preimage resistance (MM-SPR)
of the hash function H1 of vSPHINCS+ (see Definition 1) which has a success
probability of q+1

2n [18], where q is the computational cost that the adversary
needs to query the hashing oracle. Note that an MM-SPR of H1 leads to SKI,J,Z

and an ORS where ORS = H2(SKI,J,Z , PK,R||hmsg). Note that by increasing
the length of message digest, one may get SKI,J,Z plus the ORS elements using
one hash evaluation, however, using the second hashing H2 decreases the freedom
of the choice of the hash randomizer R as it is verifiable via H2.

4.2 Performance Implications

Compared to SPHINCS+, the signature size is increased by (τ + 1) × n bits
because SKI,J,Z and its authentication path are included in vSPHINCS+ sig-
natures. Note that different key sets are used for each ORS element to mitigate
the weak-message attack [3], which means that the ORS elements are not dis-
tinct. Hence, it is not necessary to dedicate an extra FORS tree to choose the
key (SKI,J,Z) from because it is a single value and even if it has the same in-
dex value, Z, as one of the ORS elements, they might come from a different
key sets (tree). To counter the effect of increasing the signature size, one can
leverage the increase in the security due to the restrictions imposed by ORS
generation using v-ORS (See Sect. 5) to explore more efficient parameters for
FORS. More precisely, if we can decrease the number of ORS elements by one,
then the number of FORS trees is decreased by one, so the signature size is the
same as in SPHINCS+. Accordingly, we achieve a better performance by saving
the computations required to generate a FORS tree. Various FORS parameter
sets are explored in Section 7, with some achieving around 27% reduction in the
number of hash calls to generate a signature. On top of that, the majority of
SPHINCS+ instances when using v-ORS maintain the same signature size while
offering reduction in signing computation. For some instances, we obtain better
performance and smaller signatures, e.g., for SPHINCS+-192s, v-ORS achieves
around 11% reduction in the signing computation with 0.44% decrease in the
signature size when compared to SPHINCS+-192s. In what follows, we analyze
the interleaved target subset resilience of v-ORS.

5 Interleaved Target Subset Resilience of v-ORS

The notion of target subset resilience (TSR) of ORS functions has been used to
evaluate the security of HORS and other few-time hash-based signature schemes
against (non) adaptive chosen message attacks [24]. For such schemes, an adver-
sary is successful in forging signatures if they are successful in generating a valid
ORS for a message when given the ORSs of previously queried messages. Simi-
larly in SPHINCS+where its security with respect to forgery attacks is reduced
to the TSR security of the ORS function of FORS.

Definition 4 An ORS function is r-target subset resilient if for any polynomial
time adversary A who is given the ORSs of r messages

⋃r
i=1ORSκ(mi), it is

infeasible to find a message mr+1 such that its κ-element ORSκ(mr+1) is a
subset of the union of the ORSs of the r messages.

9

Following the analysis in [7], to map such a security notion to FORS, which may
be viewed as a huge HORS instance with interleaved key sets, we analyze its
interleaved target subset resilience. In vSPHINCS+, we may view all the FORS
instances as one large FORS instance that consists of 2h key pools, and each
pool contains κ sets of t n-bit keys. The two successive calls to H1 and H2 in
Equations 6 and 7 bind and map the message to a specific key pool and generates
a set of values, {bj}κ−1

j=0 , such that each FORS signature secret element is the
bj-th value in the j-th key set. We define our v-ORS function by

H2 ◦H1
def
= H2(SKI,J,Z , PK,R||H1(R,PK,M)),

where each of H1 and H2 can be viewed as a composition of a keyed hash
function and a mapping function. Formally, let H1 and H2 denote two keyed
hash functions where H1 : {0, 1}k × {0, 1}∗ → {0, 1}n and H2 : {0, 1}k ×
{0, 1}2n → {0, 1}md. Consider the following two mapping functions, MAP1

and MAP2, where MAP1 : {0, 1}n → {0, 1}h × [0, κ − 1] × [0, t − 1], and
MAP2 : {0, 1}md → [0, t− 1]κ. For the parameters h, κ, t, let G1 = MAP1 ◦H1

map a message of arbitrary length to the Z-th secret key within the J-th tree
of the I-th FORS instance. Such a key is then used for keying H2. Moreover, let
G2 = MAP2 ◦H2 map 2n-bit message (the concatenation of the hash key, R, of
H1 and the hash output of H1) to a set of κ indices within the I-th FORS in-
stance, ((I, 0, b0), (I, 1, b1), . . . , (I, κ− 1, bκ−1)). To this end, our v-ORS function
is represented by G = G2 ◦ G1. In what follows, we give a formal definition of
the (post-quantum) interleaved target subset resilience ((PQ)-ITSR) of v-ORS.

Definition 5 ((PQ)-ITSR) Let A denote a (quantum) adversary who has
access to the signing oracle which on input of an m-bit message Mi,
samples a key Ki at random and returns Ki, KG1 ← G1(Ki,Mi), and
G2(KG1

,Ki||H1(Ki,Mi)). A is allowed to query qs messages of their choice.
The success probability of (PQ)-ITSR adversary on v-ORS is given by

Succ
(PQ)-ITSR
H2◦H1

,qs (A) = Pr[(K ′,M ′)← A(1n)

s.t. G(K ′,M ′) ⊆
qs⋃
i=1

G(Ki,Mi) ∧M ′ /∈ {Mi}qsi=1],

The (PQ)-ITSR insecurity of keyed hash functions H1 and H2 against any (quan-
tum) adversary A who runs in time ≤ ξ and makes no more than qs-queries is
given by

InSecPQ-ITSR(H2 ◦H1; ξ; qs) = max
A

Succ
(PQ)-ITSR
H2◦H1,qs

(A).

Note that for the target subset resilience problem used in SPHINCS [6], the
adversary A was able to freely choose the HORST index I in the multi-target
setting, while in SPHINCS+, the FORS instance I is verifiable by applying the
hash on the message to be signed. Moreover, A was also able to freely generate
an ORS by freely choosing a hash randomizer R, but in v-ORS the generation
of an ORS is restricted by using a secret key from the the FORS instance used

10

as the hash randomizer, which should be verified at the verification process. In
what follows we analyze the complexity of a generic attack on the interleaved
target subset resilience of v-ORS.

ITSR security of v-ORS. A PQ-ITSR adversary wants to find a message with
ORS elements which are revealed in the ORSs of the queried qs messages. The
adversary considers the following part of the signature

(R, (σ′, Auth′), SIGFORS) =R, (SKI,J,Z , AuthJ), (SKI,0,b0 , Auth0), . . . ,

(SKI,κ−1,bκ−1 , Authκ−1),

where R is the randomizer that chooses the hash function which evaluates the
FORS instance index I and secret key index, (J, Z). The secret key, SKI,J,Z is
used as a new verifiable randomizer that generates the ORS = b0||b1||. . . ||bκ−1.
First the forger needs to find a message-randomizer pair (R′,M ′) such that the
obtained FORS secret key, SKI,J,Z ← H1(R′, PK,M ′), is revealed in the qs
queries. Assuming that, the I-th FORS instance is used r times out of the qs
queries, and the secret key SKI,J,Z is revealed in those r signatures (κ+1 FORS
secret keys are revealed in each signature), then the probability of getting an
SKI,J,Z that is also a previously revealed FORS secret key is given by.

Pr(SKIr,J,Z) = Pr(Ir)× Pr(SKI,J,Z |Ir)

=

(
qs

r

)(
1− 1

2h

)qs−r
1

2hr
×
(

1−
(

1− κ+ 1

κ2τ

)r)
, (8)

where Pr(Ir) denotes the probability of hitting a FORS instance I such that
I was used to sign r messages out of the qs queries. Pr(Ir) is given by the
binomial probability formula

(
qs
r

)
(1 − 1

2h
)
qs−r 1

2hr
where

(
qs
r

)
is the number of

outcomes we want, i.e., the targeted FORS instance I is used r times out of qs.
(1− 1

2h
)qs−r 1

2hr
is the probability of each outcome, where 1

2hr
is the probability

of targeting the I-th (out of 2h) FORS instance for r times, and (1 − 1
2h

)qs−r

is the probability of not targeting the I-th FORS instance for the remaining
qs− r times. Pr(skI,J,Z |Ir) denotes the probability that the secret key SKI,J,Z

is revealed in the queries where the I-th FORS instance is used r times and it is
given by (1−(1− κ+1

κ2τ)
r
). Note that each query reveals (κ+1) secret keys from the

same FORS instance, i.e., κ secret keys from the FORS trees corresponding to the
ORS elements and one secret key that is used as the verifiable ORS randomizer.
To this end, the forger uses (SKI,J,Z) as a new verifiable hash randomizer to
generate the message digest md and correspondingly a valid ORS. Note that
(SKI,J,Z) could be any secret key that was previously revealed, whether as a
hash randomizer, σ′, which is the output of G1, or as a FORS signature element,
σi which is an output of G2.

For successful forgery, the elements of the generated ORS should be previ-
ously seen in the r queries for that I-th FORS instance. Recall that in each
query, there are κ + 1 revealed n-bit secret key elements. Let P(r-TSR) denote
the success probability of breaking the r-target subset resilience of v-ORS which
is the probability that all the generated ORS κ elements by an adversary are

11

revealed in the r queries that are signed by the I-th FORS instance. Such a
probability is given by P(r-TSR) = (1− (1− κ+1

κ2τ)
r
)
κ
.

Let Pr(ITSR) denote the success probability of a classical adversary in break-
ing the interleaved target subset resilience vSPHINCS+. Specifically, it denotes
the probability of an adversary that is successful in finding an (R′, M ′) pair such
that SKI,J,Z ← H1(R′, PK,M ′) where SKI,J,Z is revealed in r signatures and
that when such an SKI,J,Z is used to evaluate md, the resulting ORS elements
are revealed in the r messages signed using the I-th instance. Formally, Pr(ITSR)
is the combination of Pr(SKIr,J,Z) and P(r-TSR) over all r possible values and
is given by

Pr(ITSR) =
∑
r

Pr(SKIr,J,Z)× Pr(r-TSR)

=
∑
r

(
qs

r

)(
1− 1

2h

)qs−r 1

2hr
×
(

1−
(

1− κ+ 1

κ2τ

)r)κ+1

(9)

Therefore, a classical adversary that makes qh queries to H2 ◦ H1 has success
probability

(qh + 1)
∑
r

(
qs

r

)(
1− 1

2h

)qs−r 1

2hr
×
(

1−
(

1− κ+ 1

κ2τ

)r)κ+1

A quantum adversary that is running a second preimage Grover search for the
hash functions H1 and H2 has a success probability

O
(

(qh + 1)2
∑
r

(
qs

r

)(
1− 1

2h

)qs−r 1

2hr
×
(

1−
(

1− κ+ 1

κ2τ

)r)κ+1)
6 vSPHINCS+ Security Reduction

The security of SPHINCS+ is evaluated with respect to existential unforgeabil-
ity under adaptive chosen message attack (PQ)-EU-CMA, see Appendix A for
definition. It has been shown that the insecurity function of SPHINCS+ with
respect to (PQ)-EU-CMA is bounded by the summation of the insecurity func-
tions of the underlying hash and PRF functions with respect to specific security
notions [5]. We follow similar strategy to evaluate the insecurity function of
vSPHINCS+ with respect to PQ-EU-CMA. However in vSPHINCS+, an adver-
sary that is successful in breaking either the ITSR of v-ORS or the MM-SPR
of H1 is also successful in forging signatures. In what follows, we present the
insecurity function of vSPHINCS+.

Theorem 1 For security parameter n ∈ N and parameters w, h, d,m, t, κ, τ ,
vSPHINCS+ is (PQ)-EU-CMA if

- F,H, and Th are PQ-DM-SPR hash function families,
- PRF,PRFmsg are post-quantum pseudorandom function families,
- H2 ◦H1 is post-quantum ITSR hash function families.
- H1 is a PQ-DM-SPR hash function family.

12

The insecurity function, InSecPQ-EU-CMA(vSPHINCS+, ξ, 2h), that describe the
maximum success probability over all adversaries running in time ≤ ξ against
the PQ-EU-CMA security of vSPHINCS+ and making a maximum of qs = 2h

queries is bounded by

InSecPQ-EU-CMA(vSPHINCS+, ξ, 2h) ≤ 1

2n
+ InSecPQ-PRF(PRF, ξ)

+ InSecPQ-PRF(PRFmsg, ξ) + InSecPQ-MM-SPR(H1, ξ) + InSecPQ-ITSR(H2 ◦H1, ξ)

+ InSecPQ-DM-SPR(H, ξ) + InSecPQ-DM-SPR(Th, ξ) + InSecPQ-DM-SPR(F, ξ)

Proof. The proof is based on the approach of the proof given in [18, 7]. In what
follows, let the original PQ-EU-CMA game denote the game in Appendix A where
A is allowed to make qs queries to a signing oracle running vSPHINCS+. A wins
the game if they find a valid forgery (M ′,Σ′) where the message M ′ is not in
the queried set of qs messages. The success probability of A is reduced to the
probability of winning any of the following games.

- GAME0 is the original PQ-EU-CMA game.
- GAME1 is GAME0 except the outputs of the PRF functions are replaced by

values generated by a truly random generator. The difference in the success
probabilities between GAME1 and GAME0 is bounded by InSecPRF(PRF).
Otherwise, A can be used to distinguish the PRF function from a truly ran-
dom generator which contradicts the assumption of the used PRF functions.

- GAME2 is similar to GAME1 except that the hash randomizer R is gener-
ated using truly number generator instead of the PRFmsg function. Follow-
ing the same reasons as GAME1, the difference in the success probability
between the two games is bounded by the insecurity function of the used
PRFmsg function (InSecPRF(PRFmsg)).

- GAME3 is similar to GAME2 except that the game is considered lost if the
resulting valid forgery (M ′,Σ′) satisfies either of the following three cases.

• Case 1: In such a case, the adversary A could find M ′ such that
H1(Rj , PK,M

′) = H1(Rj , PK,Mj) = hmsg where Mj is in the
queried messages. In other words, A finds a second preimage M ′,
for any message of the qs queried messages, (w.l.o.g., Mj) using
the j-th hash randomizer Rj . Accordingly, the output of G1 is the
same FORS secret key index, SKI,J,Z , thus, the ORS of M ′ is the
same as that of Mj , i.e., H2(SKI,J,Z , PK,Rj ||H1(Rj , PK,M

′)) =
H2(SKI,J,Z , PK,Rj ||H1(Rj , PK,Mj)). Consequently, the rest of the
signature will be the same. This case describes an adversary A that
is able to break the multi-target multi-function second preimage resis-
tance of the hash function H1 (PQ-MM-SPR for the H1 function), this
happens with success probability equals q+1

2n , where q is the number of
queries to the hash function H1 (see [18] for the proof of success proba-
bility of MM-SPR).

• Case 2: In this case, the adversary could find a message-randomizer pair
(M ′, R′) where both of the following condition hold.

13

- G1 = MAP1 ◦H1(R′, PK,M ′) function maps to an index of a pre-
viously revealed FORS secret key, SKI,J,Z , i.e., it is one from those
keys that were revealed through the qs queried messages.

- G2 = MAP2 ◦H2(SKI,J,Z , PK,R
′||H1(R′, PK,M ′)) function maps

to indexes of previously revealed FORS secret keys, SKI,j,bj for 0 ≤
j ≤ κ− 1.

In this case, the adversary can break the security of post-quantum in-
terleaved target subset resilience of H2 ◦H1, PQ-ITSR(H2 ◦H1), which
has the success probability that is given in Equation 9.

• Case 3: In the case where the adversary does not find a message-
randomizer pair (M ′, R′) that satisfies Case 2, then there is at least one
signature element (except the randomizer R) of the message signature
Σ was not revealed through the qs signatures i.e. there is at least one
element (FORS secret key) of the FORS signature that is not revealed
previously. Accordingly, the forged signature must result in a second
preimage of a revealed node of any of the following

- A FORS tree node in which the secret key corresponding to ORS
element is not previously revealed: the adversary is required to find
a value (the corresponding secret key that supposed to be revealed)
along with an authentication path in which there is a node that is a
second preimage of any node of the revealed authentication paths for
the same FORS tree. Accordingly from that colliding node and up,
the authentication path will be the same as in the previous revealed
signature. Hence, the adversary needs to break the PQ-DM-SPR se-
curity of the H function,

- The FORS instance root, i.e., the adversary is required to find a
value (the corresponding secret key that is supposed to be revealed)
along with an authentication path that results in a FORS tree root
such that when concatenated with the other FORS tree roots of
the FORS instance, collides with the revealed FORS instance root.
Hence, the adversary needs to break the PQ-DM-SPR security of the
Th function

- A WOTS+ node from the d leaf nodes that sign the root of the down
layer tree. Hence, the adversary needs to break the PQ-DM-SPR for
the F function or the Th function that evaluates WOTS+.PK,

- Any node of the d subtrees except the leaf nodes (breaking the PQ-
DM-SPR of the H function)

The difference in the success probability between GAME3 and GAME2

is bounded by InSecPQ-MM-SPR(H1) + InSecPQ-ITSR(H2 ◦ H1) + 2−n +
InSecPQ-DM-SPR(H)+ InSecPQ-DM-SPR(Th)+ InSecPQ-DM-SPR(F), otherwise,
the adversary could break the security of the post-quantum multi-
function multi-target second-preimage resistance of H1 hash function,
or the security of the post-quantum interleaved target subset resilience
of H2 ◦H1, or the security of the post-quantum distinct-function multi-
target second-preimage resistance of F,H, or Th. Combining all the

14

games together gives the bound of the insecurity function of vSPHINCS+

with respect to EU-CMA.

vSPHINCS+ bit security. The EU-CMA bit security of vSPHINCS+ is
calculated by − log2 of the InSecEU-CMA(vSPHINCS+) which is bounded by com-
bining the success probabilities of the ITSR of the hash functions H1 ◦ H2 in-
troduced in Sect. 5 and those security notions in Theorem 1, where the classical
adversary makes qh queries to the hash function. Note that in such a case, the
PRF, MM-SPR, and DM-SPR success probabilities are given by qh+1

2n , and con-

sequently the InSecEU-CMA(vSPHINCS+) is bounded by.

InSecEU-CMA(vSPHINCS+, qh) ≤ qh + 1

2n
+
qh + 1

2n
+
qh + 1

2n

+
qh + 1

2n
+ InSecITSR(H2 ◦H1, ξ) +

qh + 1

2n
+
qh + 1

2n
+
qh + 1

2n

≤ 7 · qh + 1

2n
+ (qh + 1)

∑
r

(
2h

r

)(
1− 1

2h

)2h−r 1

2hr

(
1−

(
1− κ+ 1

κ2τ

)r)κ+1

≤ O
(qh + 1

2n
+ (qh + 1)

∑
r

(
2h

r

)(
1− 1

2h

)2h−r 1

2hr

(
1−

(
1− κ+ 1

κ2τ

)r)κ+1)
,

The classical bit security of vSPHINCS+ is given by

b = − log2

(
1

2n
+
∑
r

(
2h

r

)(
1− 1

2h

)2h−r 1

2hr

(
1−

(
1− κ+ 1

κ2τ

)r)κ+1
)

(10)

The quantum bit security is given by

b = −1

2
log2

(
1

2n
+
∑
r

(
2h

r

)(
1− 1

2h

)2h−r 1

2hr

(
1−

(
1− κ+ 1

κ2τ

)r)κ+1
)

7 vSPHINCS+: Comparison and New Parameters

The success probability of an ITSR adversary on vSPHINCS+is provided in
Equation 9, the corresponding success probability for SPHINCS+ is given by∑

r

(
2h

r

)(
1− 1

2h

)2h−r 1

2hr

(
1−

(
1− 1

2τ

)r)κ
Our modification enhances the security of SPHINCS+ because the power of the
last term is greater than the corresponding one in SPHINCS+. Note that we
can approximate κ+1

κ2τ by 1
2τ for 2τ � κ, but this is not considered in the results

presented in this section. In Table 1, we provide the ITSR bit-security, signature
size, and the signing computational cost (i.e., the number of hash calls required
to generate a signature, where the inputs to all of these hash calls have the same
length) for both SPHINCS+ and vSPHINCS+ using the original parameters of
different versions of SPHINCS+. The signature size for SPHINCS+ is given by

(h+ κ(τ + 1) + d.l + 1)n bits.

15

For vSPHINCS+, this signature size is given by

(h+ (κ+ 1)(τ + 1) + d.l + 1)n bits.

The number of hash calls required for signing in SPHINCS+ is given by

2(d(l · 2w · 2h/d + 2h/d − 1) + 2 · κ · 2τ + κ(2τ − 1)).

In vSPHINCS+, one more hash call is required which is negligible when compared
to the large number of hash calls. SPHINCS+ provides two instantiations, simple
and robust. The former istantiation does not require the use of bismasks, hence,
provides faster signing. Our calculations in this work consider the instances of the
simple instantiation. Nevertheless, for robust instantiations, vSPHINCS+ attains
the same performance ratios when compared to SPHINCS+ as it does with
the simple instantiations. In both instantiations, SPHINCS+ offers 6 instances
with different parameters at different security levels. Specifically, for each n-bit
security, SPHINCS+ offers one parameter set for fast computation, denoted by
SPHINCS+-nf and another for small signature size, denoted by SPHINCS+-ns.

Table 1: ITSR bit security, signature size, and number of hash calls for SPHINCS+

and vSPHINCS+ with the original recommended SPHINCS+ round-three parameters

SPHINCS+ instance h d τ κ
SPHINCS+ vSPHINCS+

bitSec size Hash calls bitSec size Hash calls

SPHINCS+-128s 63 7 12 14 133 7856 4372438 141 8064 4372439

SPHINCS+-128f 66 22 6 33 128 17088 210386 132 17200 210387

SPHINCS+-192s 63 7 14 17 193 16224 7534544 203 16584 7534545

SPHINCS+-192f 66 22 8 33 194 35664 338514 198 35880 338515

SPHINCS+-256s 64 8 14 22 255 29792 6561732 265 30272 6561733

SPHINCS+-256f 68 17 9 35 255 49856 691672 260 50176 691673

As depicted in Table 1, vSPHINCS+ provides higher bit-security than
SPHINCS+. Note that, SPHINCS+ parameters were chosen to achieve a certain
n-bit security, hence, using the same parameters, vSPHINCS+ achieves higher
than n bits of security. On the other hand, the corresponding signature size of
vSPHINCS+ is slightly increased by (τ + 1)n bits. For instance, for SPHINCS+-
128s (128 bit-security is required), SPHINCS+ achieves 133 bit security while
vSPHINCS+ achieves 141 bit security. Since the recommended parameters for
SPHINCS+-128s enable vSPHINCS+ to offer 13 bits more than the required
128-bit security, we can search for different parameters for the FORS scheme to
improve the performance of vSPHINCS+.

7.1 Efficient Parameter Sets

Our initial goal was to have the same signature size as SPHINCS+while providing
a bit security equal to or greater than that required. Accordingly, we chose to
decrease the value of κ by one which means a FORS instance in vSPHINCS+

has one less FORS tree than in SPHINCS+. This enables vSPHINCS+ to have
the same signature size as SPHINCS+ while maintaining an ITSR bit security
that is higher than that required. Note that we are comparing the ITSR bit

16

security of the two schemes because if the chosen parameters enable an ITSR-
bit security more than the targeted n bits, then an adversarial forgery is more
efficient through a generic SPR attack on one of the used hash functions. Table 2
presents the security level, signature size, computational cost, the percentage
difference in signature size and hash calls when vSPHINCS+ with newly explored
parameters is compared to the original SPHINCS+ instances. A red +x (resp.
green −y) denotes an increase (resp. decrease) by x% (resp. y%) relative to that
of an SPHINCS+instance.

Table 2: ITSR bit security, signature size, and number of hash calls for vSPHINCS+

with the new FORS parameters.

SPHINCS+ instance h d τ κ
vSPHINCS+

bitSec size Hash calls % size % calls

SPHINCS+-128s 63 7 12 13 132 7856 4347864 0 -0.56

SPHINCS+-128s 63 7 10 17 131 8112 4132816 +3.25 -5.48

SPHINCS+-128f 66 22 6 32 129 16976 210004 0 -0.18

SPHINCS+-192s 63 7 14 16 192 16224 7436242 0 -1.3

SPHINCS+-192s 63 7 13 17 192 16152 6698960 -0.44 -11

SPHINCS+-192f 66 22 8 32 193 35664 336980 0 -0.45

SPHINCS+-256s 64 8 14 21 254 29792 6463430 0 -1.5

SPHINCS+-256s 64 8 11 30 256 31136 4767668 +4.5 -27

SPHINCS+-256f 68 17 8 41 255 50752 647116 +1.8 -6.4

The small instances, e.g., SPHINCS+-128s, have fewer tree layers and FORS
trees than the fast instances, e.g., SPHINCS+-128f, which results in a smaller
signature size but more hash calls for signing as the tree has more leaves than
the fast instance. Accordingly, by decreasing the value of κ in vSPHINCS+, we
are removing a FORS tree from the original instance which maintains the same
signature size as in SPHINCS+. As the number of FORS trees within a FORS
instance in the fast construction is larger and the FORS tree itself is smaller
than those in the small construction, removing a FORS tree results in a lesser
effect (i.e., reduction in signature size and saving more hash calls) than deleting
a FORS tree in the small construction. Note that the computation savings is a
percentage of all SPHINCS+ hash calls, including the hash calls for the subtrees.
As a result, the percentages in Table 2 for instances with just one FORS tree
deleted (denoted by 0 % for the size change) are not large.

We have looked for other parameters that achieve better computational cost.
For each instance, we were able to find around two parameter sets that lead
to computation saving and either no or slight increase in the signature size.
For instance, we found parametrizations that attain computational savings of
around 27% in vSPHINCS+-256s (resp. 5.5% for vSPHINCS+-128s) with a very
small increase in the signature size, 4.5% (resp. 3.25%). Note that the signature
size increase in the case of the vSPHINCS+-256s instance is slightly higher than
the other instance because these new parameters enable vSPHINCS+ to achieve
the required 256-bit security while SPHINCS+ attains 255 bits of security. For
vSPHINCS+-192s, we achieve computational saving of 11% and a signature size
saving of 0.44% relative to SPHINCS+-192s with the original parameters.

17

7.2 SPHINCS+ Re-parameterization in Round Three Submission

On October 23, 2020, 4 instances of SPHINCS+ had their parameters modi-
fied in the round three submission to the NIST PQC. For SPHINCS+-128f and
SPHINCS+-256f, the parameter change improved the computational cost by
22.6% and 9.9%, and increased the signature sizes by 0.66% and 1.3%, respec-
tively. For SPHINCS+-128s, the new parameters resulted in an increase of 2.4%
in the computation cost and decrease of 2.8% in the signature size. Table 3 de-
picts the new round 3 parameters for SPHINCS+ instances and the percentage
change relative to round 2 parameters. As shown in Table 2, even with the new
round 3 parameters, v-ORS improves the computational cost of all SPHINCS+

instances, with one instance, i.e., SPHINCS+-256s, attaining around 27% de-
crease in the signing computation.

Table 3: ITSR bit security, signature size, H calls number for SPHINCS+ rounds 2
and 3 parameters, and the percentage change in the signature size and H calls number

SPHINCS+ instance
SPHINCS+ R3 SPHINCS+ R2 % change

bitSec size Hash calls bitSec size Hash calls % size % H calls

SPHINCS+-128s 133 7856 4372438 133 8080 4267996 -2.8 +2.4

SPHINCS+-128f 128 17088 210386 128 16976 271900 +0.66 -22.6

SPHINCS+-192s 193 16224 7534544 196 17064 8855508 -4.9 -14.9

SPHINCS+-192f 194 35664 338514 194 35664 338514 0 0

SPHINCS+-256s 255 29792 6561732 255 29792 6561732 0 0

SPHINCS+-256f 255 49856 691672 254 49216 768482 +1.3 -9.9

Note on the small instances. We observed that in the re-parameterized small
instances, SPHINCS+-128s and SPHINCS+-192s, the hyper-tree height h and
the number of layers d are decreased from 64 to 63 and from 8 to 7, respectively.
We can tweak this strategy for vSPHINCS+ to achieve more computational
saving. Concretely, for vSPHINCS+-128s, we can choose the number of layers,
d, to be 9 instead of 7 with τ = 12, and κ = 13, which leads to 63.08% saving in
the hash calls, while increasing the signature size by 14.25% when compared to
SPHINCS+-128s with round 3 parameters.

8 Conclusion

We proposed v-ORS, a new ORS generation mechanism that enables SPHINCS+

to provide better performance at the same security level. Using v-ORS, a signed
message is bound with the signing FORS instance which restricts a forging adver-
sary to searching among those queries that use that specific FORS instance. The
increased restrictions allow some freedom in exploring efficient parameters for
the underlying FORS scheme, which in turns enable SPHINCS+ using v-ORS
to achieve better performance. More precisely, v-ORS allows some versions of
SPHINCS+ to offer around 27% savings in the signing computational cost with
minimal effect on the signature size. Given that the high computational cost is
the main reason for selecting SPHINCS+ as an alternate candidate in round 3
of the NIST post quantum cryptography competition, the results presented here
are a positive step towards making its practical adoption widely accepted.

18

A Existential Unforgeability Under Adaptive Chosen
Message Attacks

Digital Signature Schemes are analyzed with respect to existential unforgeability
under adaptive chosen message attacks (EU-CMA). EU-CMA is usually defined
by a security game in which the adversary A who has access to the scheme’s
public key is allowed to ask the signing challenger, Chall, for signatures of the
messages of their choice. A wins the game if they are able to return a message
and signature pair such that the signature is valid for that message and the
message is not one of the queried ones. A digital signature scheme is secure with
respect to EU-CMA if the probability of A winning the game (SuccEU-CMA

Σ(n) (A) =

Pr[Game: EU-CMAΣ(n) = 1]) is negligible. For a digital signature scheme Σ and
a security parameter n, the formal EU-CMA security game is given by.

Game: EU-CMAΣ(n)

(SK,PK)← Σ.kGen(1n)
while σj ← A(query(Mj), PK, Challsign(SK,.)) , j++ do;
(M ′, σ′)← A(forge, PK)
if M ′ /∈ {M1,M2, . . . ,Mq} // where q < j

Return Σ.verify(PK,M ′, σ′)

References
[1] Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Liu,

Y., Miller, C., Moody, D., Peralta, R., Perlner, R., et al. Nistir 8309
status report on the second round of the nist post-quantum cryptography stan-
dardization process. National Institute of Standards and Technology (NIST), US
Department of Commerce (2020).

[2] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends,
R., Biswas, R., Boixo, S., Brandao, F. G., Buell, D. A., et al. Quantum
supremacy using a programmable superconducting processor. Nature 574, 7779
(2019), 505–510.

[3] Aumasson, J.-P., and Endignoux, G. Clarifying the subset-resilience problem.
IACR Cryptology ePrint Archive 2017 (2017), 909.

[4] Aumasson, J.-P., and Endignoux, G. Improving stateless hash-based signa-
tures. In Cryptographers’ Track at the RSA Conference (2018), Springer, pp. 219–
242.

[5] Bernstein, D., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag, S.,
Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen, M., et al.
SPHINCS+–submission to the NIST post-quantum project, 2017.

[6] Bernstein, D. J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen,
R., Papachristodoulou, L., Schneider, M., Schwabe, P., and Wilcox-
O’Hearn, Z. SPHINCS: practical stateless hash-based signatures. In Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques (2015), Springer, pp. 368–397.

[7] Bernstein, D. J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J.,
and Schwabe, P. The sphincs+ signature framework. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security (2019),
pp. 2129–2146.

19

[8] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., and
Zhandry, M. Random oracles in a quantum world. In International Conference
on the Theory and Application of Cryptology and Information Security (2011),
Springer, pp. 41–69.

[9] Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., and
Schrottenloher, A. Quantum attacks without superposition queries: the offline
simon’s algorithm. In International Conference on the Theory and Application of
Cryptology and Information Security (2019), Springer, pp. 552–583.

[10] Bos, J. W., Hülsing, A., Renes, J., and van Vredendaal, C. Rapidly ver-
ifiable XMSS signatures. IACR Transactions on Cryptographic Hardware and
Embedded Systems (2021), 137–168.

[11] Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., and Rückert, M. On
the security of the Winternitz one-time signature scheme. In International Con-
ference on Cryptology in Africa (2011), Springer, pp. 363–378.

[12] Buchmann, J., Dahmen, E., and Hülsing, A. XMSS-a practical forward se-
cure signature scheme based on minimal security assumptions. In International
Workshop on Post-Quantum Cryptography (2011), Springer, pp. 117–129.

[13] Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., and Stehlé, D. Crystals-dilithium: A lattice-based digital signature scheme.
IACR Transactions on Cryptographic Hardware and Embedded Systems (2018),
238–268.

[14] Goldreich, O. Two remarks concerning the goldwasser-micali-rivest signature
scheme. In Conference on the Theory and Application of Cryptographic Techniques
(1986), Springer, pp. 104–110.

[15] Hülsing, A. W-OTS+–shorter signatures for hash-based signature schemes. In
International Conference on Cryptology in Africa (2013), Springer, pp. 173–188.

[16] Hülsing, A., Busold, C., and Buchmann, J. Forward secure signatures on
smart cards. In International Conference on Selected Areas in Cryptography
(2012), Springer, pp. 66–80.

[17] Hülsing, A., Rausch, L., and Buchmann, J. Optimal parameters for XMSS-
MT. In International Conference on Availability, Reliability, and Security (2013),
Springer, pp. 194–208.

[18] Hülsing, A., Rijneveld, J., and Song, F. Mitigating multi-target attacks in
hash-based signatures. In Public-Key Cryptography–PKC 2016. Springer, 2016,
pp. 387–416.

[19] Lamport, L. Constructing digital signatures from a one-way function. Tech.
rep., Technical Report CSL-98, SRI International Palo Alto, 1979.

[20] Mahmoud Yehia, Riham AlTawy, T. A. G. Hash-based signatures revisited:
A dynamic FORS with adaptive chosen message security. In International Con-
ference on Cryptology in Africa (2020), Springer, pp. 363–378.

[21] Merkle, R. C. A certified digital signature. In Conference on the Theory and
Application of Cryptology (1989), Springer, pp. 218–238.

[22] Perrig, A. The BiBa one-time signature and broadcast authentication protocol.
In Proceedings of the 8th ACM conference on Computer and Communications
Security (2001), ACM, pp. 28–37.

[23] Pieprzyk, J., Wang, H., and Xing, C. Multiple-time signature schemes against
adaptive chosen message attacks. In International Workshop on Selected Areas in
Cryptography (2003), Springer, pp. 88–100.

[24] Reyzin, L., and Reyzin, N. Better than BiBa: Short one-time signatures with
fast signing and verifying. In Australasian Conference on Information Security
and Privacy (2002), Springer, pp. 144–153.

20

