
GMMT: A Revocable Group Merkle Multi-Tree
Signature Scheme

Mahmoud Yehia, Riham AlTawy, T. Aaron Gulliver

Department of Electrical and Computer Engineering, University of Victoria,
Victoria, BC, CANADA.

Abstract. G-Merkle (GM) (PQCrypto 2018) is the first hash-based
group signature scheme where it was stated that multi-tree approaches
are not applicable, thus limiting the maximum number of supported
signatures to 220. DGM (ESORICS 2019) is a dynamic and revocable
GM-based group signature scheme that utilizes a computationally ex-
pensive puncturable encryption for revocation and requires interaction
between verifiers and the group manager for signature verification. In
this paper, we propose GMMT, a hash-based group signature scheme
that provides solutions to the aforementioned challenges of the two
schemes. GMMT builds on GM and adopts a multi-tree construction
that constructs new GM trees for new signing leaves assignment while
keeping the group public key unchanged, Compared to a single GM in-
stance which enables 220 signature, GMMT allows growing the multi-tree
structure adaptively to support 264 signatures under the same public
key. Moreover, GMMT has a revocation mechanism that attains linkable
anonymity of revoked signatures and has a logarithmic verification
computational complexity compared to the linear complexity of DGM.
The group manager in GMMT requires storage that is linear in the
number of members while the corresponding storage in DGM is linear
in the number of signatures supported by the system. Concretely, for
a system that supports 264 signatures with 215 members and provides
256-bit security, the required storage of the group manager is 1 MB
(resp. 108.7 TB) in GMMT(resp. DGM).

Keywords: Digital signatures, Hash-based signature schemes, Group
signature schemes, Post-quantum cryptography, Merkle trees.

1 Introduction

A Group Signature Scheme (GSS) is a signature scheme where N members
share one public key and any member is allowed to sign anonymously on be-
half of the whole group [19]. Such a scheme designates a group manager that
is responsible for setup, revealing the signer’s identity when needed, and revok-
ing the membership of group members when required. Group signature schemes
are usually adopted by applications in which the signer’s identity is required to
be maintained private while attaining accountability when required. Relevant

applications include vehicle safety communication systems in which authorized
vehicles share their status information with other nearby vehicles while keep-
ing their identity private in order to prevent tracking [31]. Remote attestation
protocols benefit from group signatures where the identities of the attested plat-
forms should be kept private to thwart dedicated platform vulnerability-based
attacks[13]. Other applications of group signatures include e-voting and privacy
preserving applications on blockchains [13, 4]. Several group signature schemes
have been proposed [17, 18, 13, 11, 29, 30]. However, the security of most of these
algorithms rely on the hardness of finding discrete logarithms and factoring in
finite groups which are solved by Shor’s algorithm in polynomial time and thus,
they are not post quantum secure [36].

In 2010, Gordon et al. proposed the first post quantum (PQ) lattice-based
group signature scheme [23]. Later, several theoretical lattice-based constructions
were developed [26, 27, 32, 33, 28]. In 2018, the first lattice-based group signa-
ture scheme with an experimental implementation was proposed [20]. Although
lattice-based signature scheme candidates have been deemed suitable in the cur-
rent NIST post-quantum cryptography standardization competition (PQC) [34],
their group signature constructions are not efficient [40]. Code-based group sig-
nature schemes were introduced as a quantum resilient alternative [2, 3, 22], but
they have much larger signature sizes on the order of Megabytes [7]. Moreover,
the size of the associated public keys and signatures increases with the number
of group members.

Hash-based group signature schemes [21, 14] have recently attracted research
interest due to recent advances in the design of stateless hash-based signa-
ture schemes and the confidence in their PQ security [9, 6, 10, 1]. In 2018,
El Bansarkhani and Misoczki introduced Group Merkle (GM), the first post-
quantum stateful hash-based group signature scheme [21]. GM is a one-layer
Merkle tree construction which limits the maximum achievable tree height and
thus restricts the maximum number of signatures that can be issued by the
group under one public key. The authors claimed that multi-tree approaches are
not applicable for group hash-based schemes without justification and stated
that the required storage for each member is a limiting factor. Dynamic Group
Merkle (DGM) is a recent hash-based group signature scheme where the group
manager can assign signing keys to group members who have used all their keys
and add new group members after the group public key has been generated [14].
Additionally, the group manager stores the indexes of the assigned leaves for each
user in order to reveal their identity and revoke their membership when required.
Challenges to the practical adoption of DGM such as the fact that a verifier needs
to interact with the group manager to ensure the validity of the signature were
discussed. Moreover, the revocation mechanism utilizes a puncturable encryp-
tion algorithm [37] for membership verification with a computational cost that is
linear in the number of revoked signatures of the members. The authors of DGM
claim that anonymity of revoked signatures is maintained. However, linkability
of revoked signatures is possible if the adversary have two subsequent states
of the revocation list. Privacy-preserving group membership revocation for PQ

2

schemes is still an open research problem. The works in [38, 39] enable members
revocation without compromising their anonymity or requiring a trusted third
party. However, the protocols either have linear proving complexity in the num-
ber of revocations or rely on history-dependent accumulators through updated
certificates. Camenisch at al. proposed member revocation by periodically up-
dating member credentials in which a specific attribute encodes a validity period
[16]. Unfortunately, the technique would place extra effort on the group manager
who would be essentially running a periodic updates setup phase. All the afore-
mentioned works are also not quantum secure as they rely on non-interactive
discrete logarithm based zero knowledge (zk) proofs. The adoption of zk-based
revocation schemes in PQ group signature schemes may be attainable if research
on generic PQ zk proofs enable their practical implementation.

Our contributions. The contributions of this work are as follows.

- We propose GMMT, a hash-based group signature scheme that enables 264

signatures per group public key. It utilizes an adaptively growing multi-tree
Merkle approach which periodically creates a new GM tree. Consequently,
GMMT enables the group members to renew their signing leaves without
changing the group public key.

- We introduce a revocation algorithm that maintains the anonymity of revoked
members while enabling the linkability of their revoked signatures. GMMT re-
lies on symmetric encryption and hashing such that the membership verifica-
tion cost is logarithmic in the number of revoked signatures and the required
storage at the group manager is linear in the number of members.

- We provide detailed comparisons between GMMT and both GM and DGM. To
demonstrate the validity of GMMT, we implement its procedures using the C
language and present the performance in terms of the number of clock cycles.

2 Preliminaries

A Group Signature Scheme (GSS) is a tuple of five polynomial-time algorithms
GS = (GKGen,GSign,GV erify,GRevoke,GOpen), which are given as follows.

– GKGen(1n, N): The group key generation Alg. takes as inputs the security
parameter n and the number of the group members N . It outputs the group
public key GPK, the group members secret keys ski for 1 ≤ i ≤ N , and the
group manager secret key skgm that is used to reveal signer identities.

– GSign(M, ski): The group signing Alg. takes as inputs a message M and a
group member secret key ski. It outputs the signature Σ of the message.

– GV erify(M,Σ, GPK,RevList): The group verification Alg. is a determin-
istic algorithm that takes as inputs a message M and the corresponding
signature Σ, the group public key GPK, and the revocation list RevList. It
outputs 1 for a valid signature and 0 otherwise.

– GRevoke: The revocation Alg. updates the revocation list based on the re-
voked members/signatures to revoke their ability to generate valid signature.

– GOpen(Σ, skgm): The open Alg. takes as input the signature Σ and the
group manager secret key skgm, and outputs the identity of the signer.

3

In what follows, we provide definitions of the standard security notions for
analyzing group signature schemes.

Definition 1 (Correctness). A group signature scheme GS with a group public
key GPK achieves correctness if for an honest signer with a secret key ski

Pr[GV erify(GSign(M, ski),M,GPK) = 0] < negl(n)

Other notions that capture the required GSS security include unforgeability,
anonymity, unlinkability, collusion resistance, exculpability, and framing resis-
tance. It was shown in [8] that full-anonymity and full-traceability ensures that
a given GSS achieves all the aforementioned security requirements. The no-
tion of full-anonymity [8] is very strong as it assumes that an adversary has
access to the secret keys of all members and the group manager. Camenisch
and Groth introduced a relaxed type of anonymity in which an adversary can-
not corrupt the group manger and at least two group members, i.e., challenge
identities in the anonymity experiment in Figure 1. In our scheme, we follow
the anonymity notion introduced by Camenisch and Groth [15] because in our
scheme, only secret keys of the group manager are used to reveal signer identities,
and knowledge of the signing keys along with the associated signatures also un-
covers the corresponding identities. Such a security notion is formally defined in
ExpAnon−b

GS,A (n,N) in Figure 1. Hence in our analysis, we focus on the anonymity
and full-traceability security definitions. In their security experiments, we as-
sume an adversary is allowed a training phase where they can call the following
oracles.

– Corrupt(idi): The adversary A has access to all secret keys of member idi.
– chalb(id0, id1,M): The oracle returns the signature of message M for a ran-

domly chosen group member idb for b ∈ {0, 1}.
– Sign(M, idi): The oracle returns the signature of a message M for a ran-

domly chosen group member idi where 1 ≤ i ≤ N .
– Open(Σ, GPK,M): The oracle returns the identity idi of the member who

issued the valid signature Σ of message M .

Following [21, 14], we present the security definitions and analysis in the
classical setting, i.e., PPT adversaries. For quantum security we consider the
Quantum Accessible Random Oracle Model (QROM) [12], where all legitimate
users and oracles perform classical computations while adversaries have quantum
capabilities. Given that the security of GMMT relies on the standard assumptions
of hash functions, it is assumed that Grover’s search algorithm is used to acceler-
ate exhaustive search in an unstructured space. In such a case, a QPT adversary
achieves a maximum of quadratic speed over the considered PPT adversary. The
work in [25] gives more details on the generic security of hash function security
notions with respect to QPT adversaries in QROM.

Anonymity. In the security experiment ExpAnon−b in Figure 1, the adversaryA
is allowed a training phase, train, with unrestricted access to both the signing and
opening oracles and they have the ability to corrupt some of the group members.

4

At the end, A returns an un-queried random message, M and the identities of
two uncorrupted members, id0 and id1. Then in the challenge phase, challange,
A calls chalb(id0, id1,M) which return the signature on M signed by one of two
uncorrupted users i0 or i1. A wins if they are able to identify the signer’s identity
with a non-negligible advantage.

Definition 2 (Anonymity [15]). A group signature scheme GS achieves
anonymity if a probabilistic polynomial time (ppt) adversary A who is not the
group manager but has access to the signing and opening oracles and is able to
corrupt all but two group members i0 and i1, is not able to reveal the identity
of the signer when challenged with a signature of a message that is signed by ei-
ther i0 or i1. A has a negligible advantage in the experiment ExpAnon−b

GS , where
b = {0, 1} denotes the index of the identity of the signer.

AdvAnon−b
GS,A (n,N) =| Pr[ExpAnon−0

GS,A (n,N) = 1]− Pr[ExpAnon−1
GS,A (n,N) = 1] |≤ negl(n)

ExpAnon−b
GS,A (n,N)

- b ∈ {0, 1}
- (GPK, skgm, sk∗)← GKGen(1n, N)
- (id0, id1,M)← ASign(·,idi),Corrupt(·),Open(·,skgm)(train, GPK)
- b← Achalb(id0,id1,M)(challenge, GPK)
- Return b

Fig. 1: Anonymity experiment

Full-traceability. This security notion requires that the group manager is al-
ways able to reveal the identity of a signer of a valid signature and trace back
every signature to the corresponding signer. Moreover, full-traceability ensures
that even if an adversary is capable of corrupting some group members, they are
not able to generate a valid signature which is traced by the group manager to
an uncorrupted member.

Definition 3 (Full-traceability [8]). A group signature scheme GS satisfies full-
traceability if a ppt adversary A that is given unrestricted access to the signing
and opening oracles and is able to corrupt some of the group members is not
able to generate a valid signature which cannot be opened or traced back by the
group manager to an uncorrupted member. A has a negligible advantage in the
experiment ExpFull−Trace

GS,A as defined in Figure 2

AdvFull−Trace
GS,A (n,N) =| Pr[ExpFull−Trace

GS,A (n,N) = 1] |≤ negl(n)

3 GMMT Hash-Based Group Signature Scheme

GMMT is a revocable hash-based group signature scheme that is constructed
using a multi-tree approach and utilizes a One Time Signing Scheme (OTS) as
the underlying signing scheme. It is designed as a generic construction such that
any stateful hash-based Merkle signing scheme with an OTS leaves can be used.

5

ExpFull−Trace
GS,A (n,N)

- (GPK, skgm, sk∗)← GKGen(1n, N)
- (Σ′,M ′)← ASign(·,idi),Corrupt(·),Open(·,skgm)(GPK)
- Return GV erify(Σ′,M ′, gpk) == 1 ∧GOpen(Σ′) =⊥

or idj(non corrupted idj)

Fig. 2: Full-traceability experiment

However, we recommend instantiating GMMT with XMSS-T [25], to mitigate
multi-target and path attacks. For more details on the security analysis of hash-
based group signature schemes instantiated by XMSS-T, the reader is referred
to [41]. GMMT provides a flexible setup phase where the group manager generates
the group public key independent of the parameters of the group members (OTS
public keys and their indexes). Figure 3 shows that GMMT can be regarded as
a hybrid construction that encompasses several Group Merkle (GM) signature
trees (denoted by clusters) at layer 0, and one stateful hash-based signature
scheme consuming all higher layers, i.e., layers 1 to d − 1. Each GM tree at
layer 0 contains a subset of the OTSs of all group members while the multi-
tree stateful hash-based signature scheme is used by the group manager to sign
the roots of the GM trees at layer 0. The group public key, GPK, is the root
of the top layer tree which is generated using the group manager’s secret key.
Such a construction allows layer 0 GM trees to be constructed adaptively as
the signing leaves are used up. Specifically, all group members signing leaves
are clustered into GM trees where each GM tree has a subset of the signing
leaves of all members. This allows the group manager to manage leaf assignment
for all members in a clustered manner. Hence, the scheme enables a practical
setup phase with less storage requirements for each group member compared
to GM [21] because not all the signing leaves for each group member have to
be assigned upfront, and a member can reuse the storage that was allocated to
their used leaves. In the following, we give detailed specifications of the setup,
signing ,verifying, membership revocation, and opening procedures in GMMT. An
algorithmic description of these procedures is provided in Algorithm 1. Table 1
gives the parameters and notation used in the specification of GMMT.

3.1 Setup Phase and Key Generation

The setup phase is an interactive procedure that involves communication be-
tween the group members and group manager for signing leaves assignment.
However, since GMMT is a multi-tree structure, the group public key is com-
puted by the group manager independent of the inputs from members. Hence,
the setup phase is divided into two procedures, group public key generation and
signing leaves assignment. The former is performed once during initial group
setup while the latter is repeated periodically with the addition of new cluster
trees at layer 0.

Key Generation Algorithm. The algorithm randomly samples the secret keys
SK = (sk.encgm, sk.seedgm) ∈ {0, 1}n × {0, 1}n, where sk.encgm is the group

6

Layer 0

Cluster layer

Cluster 0 Cluster 1 Cluster 2 Cluster 3

· · · · · · · · · Future clusters · · · · · · · · ·
hc

· · · · · · · · · · · · · · ·
...

...

hgm

Layer 1

Layer d− 1
GPK

Fig. 3: A simplified Ex. of the GMMT initial setup phase. The gray nodes and
the first red node in cluster 0 are the auth. path for signing with the first yellow
leaf in cluster 0, while the black leaves are the group manager signing leaves.

Table 1: GMMTparameters and notation.

n security parameter

N initial number of group members

B initial number of signing indexes for each group member

BCmax maximum number of signing leaves for a member in a GM tree (cluster)

Bumax maximum number of signing leaves for a member in the scheme

d number of tree layers

h maximum tree height

hc GM/cluster tree height

hgm group manager tree height, hgm = h− hc

w Winternitz parameter of the used OTS

l number of elements, each of length n bits, in the OTS signature

GPK group public key which is the root of the top layer tree

manager encryption secret key that is used to reveal the signer identity and
sk.seedgm is used to generate the trees of the multi-tree signing scheme, e.g.,
XMSS-T scheme [25], at layers 1 to d − 1 (the top layer). Each tree has height
hgm/(d − 1). In an actual instantiation, sk.seedgm may be used in a manner
similar to the random secret seed in [25]. The root of the top layer tree is the
group public key GPK.

Signing leaves assignment. This procedure adds a new GM cluster tree con-
taining a subset of the signing leaves of all N members to the construction.
The trees at layer 0 are GM trees, each of height hc = h − hgm, and the first
tree (cluster 0), contains B signing leaves of each group members so there are
NB = 2hc signing leaves in total. Note that each cluster tree contains an equal

7

number of signing leaves for each member. However, GMMTallows revocation
and hc is a constant, so the number of leaves assigned per member in the i-th
cluster, 0 < i < 2hgm , B, may increase because N may decrease. The assignment
procedure is the interactive part of the setup phase and involves the following
three steps.

- Label Assignment. The group manager sets the maximum number of leaves
that can be assigned to a member for the lifetime of the scheme, and assigns to
each member a sequence of numbers corresponding to their identity, denoted as
labels. Specifically, letBCmax > B be the maximum number of leaves that can be
assigned to a group member in a cluster, so the maximum number of signatures
that a group member can sign is Bumax = 2hgm×BCmax. Consequently, the i-th
group member is assigned Bumax labels denoted by b0,i, b1,i, . . . , bBumax−1,i =
iBumax, iBumax+1, . . . , iBumax+Bumax−1 where 0 ≤ i ≤ N−1. Since GMMT

provides member revocation, BCmax is chosen to be greater than B to simplify
label assignment, so all labels dedicated to a member may not be assigned.
Hence, we use the term label to differentiate from a cluster signing leaf index
because unlike indexes, not all labels may be assigned. However, each cluster leaf
signing index assigned to a member is associated with a label in the dedicated
range. Finally, the group manager stores the last assigned label for each group
member in the users list, UList. Henceforth, the last assigned label of the i-th
member is denoted by la = UList[i] and it is used to evaluate their identity
by bUList[i]/Bumaxc = i. When a new cluster is being generated, the group
manager retrieves the last assigned label, la = UList[i], for each group member,
i, and a new range of labels, B, is dedicated to their new cluster signing leaves
starting from the next value from the last stored label. More precisely, for a
new cluster, the i-th member is given B labels b0,i, b1,i, . . . , bB−1,i = UList[i] +
1, UList[i] + 2, . . . , UList[i] + B. The group manager then updates the stored
label in UList with the last label in the new range, i.e., UList[i] = UList[i]+B.

- Signing keys generation. Each group member, i, generates B OTS public keys
(pk0,i, pk1,i, . . . , pkB−1,i) using their own secret key ski, and sends them to the
group manager, where pkj,i denotes the j-th public key of the i-th group member
within a cluster for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ B − 1.

- Shuffling and clustering. The group manager retrieves the last as-
signed label for each group member and assigns the next set of la-
bels to their public keys (the cluster leaves), in ascending order i.e.
(pk0,0, b0,0), (pk1,0, b1,0), . . . , (pkB−1,0, bB−1,0), , (pk0,N−1, b0,N−1),
(pk1,N−1, b1,N−1), . . . , (pkB−1,N−1, bB−1,N−1), where pkj,i is the j-th pub-
lic key of group member i, and bj,i is the corresponding label for 0 ≤ i ≤ N − 1
and 0 ≤ j ≤ B − 1. The group manager then updates the last assigned label for
each member.

Let E(k,M) denote a symmetric encryption of a plaintext M us-
ing the key k. The group manager encrypts the labels assigned to
the members by sk.encgm and generates the corresponding encrypted la-
bels (Eb0,0, . . . , EbB−1,0), , (Eb0,N−1, . . . , EbB−1,N−1), where Ebj,i =
E(sk.encgm, bj,i). The group manager then generates the cluster leaves,

8

L0,0, L1,0, . . . , LB−1,0, , L0,N−1, L1,N−1, . . . , LB−1,N−1, by hashing the
concatenation of each group member public key and its corresponding encrypted
label, i.e. Lj,i = H(pkj,i||Ebj,i) is the j-th leaf node of group member i. Next,
the group manager permutes the group members leaves by reordering their en-
crypted labels in ascending order. Then, the group manager builds the cluster
tree, and signs its root, rootc, by the corresponding upper tree leaf node and
this continues until the top layer. Finally, the group manager broadcasts to the
group members 2hc tuples of the encrypted labels, cluster tree leaves, and the
corresponding signature of its root. Each member, i, identifies their leaf nodes
using their public keys, the corresponding encrypted labels, and authentication
paths, all of which are referred to by group member parameters, parami.

After a specific time determined by the group manager, by which the group
members are expected to have used up almost all their current cluster leaves, the
signing leaves assignment procedure is repeated and a new cluster is generated.
This is continued until the last cluster is constructed. Figure 3 depicts a simplified
example of the initial setup phase. It shows a d layer GMMT with 4 clusters
in the bottom layer. It is assumed that the group has N = 4 members and
each member has two signing leaves colored blue, green, yellow, and red in each
cluster. Cluster1 is generated after some time period (when the Cluster0 leaves
are almost all used up), to provide new signing leaves to the members.

3.2 Signing Algorithm

The signing algorithm takes as input a message M of arbitrary length, the
signer’s secret key (ski), which contains the state of the signer (i-th member),
which is the signing index t. The algorithm outputs the signature Σ that contains
the OTS signature σOTS,0 of the message M and the corresponding authentica-
tion path Auth0 = (Eb,A0,0, A0,1, . . . , A0,hc−1) from the cluster tree in layer 0.
Moreover, Σ contains the signature of the group manager on the cluster root,
σrootc = σOTS,1, Auth1, . . . , σOTS,d−1, Authd−1, where σOTS,j is the OTS sig-
nature of the lower layer tree root, rootj−1, and Authj is the corresponding
authentication path Authj = (Aj,0, Aj,1, . . . , Aj,

hgm
d−1 −1

). The GMMT signature is

then given by Σ = σOTS,0, Auth0, . . . , σOTS,d−1, Authd−1.

3.3 Verification Algorithm

The verification algorithm takes as input the message M , the signature Σ, the
public key GPK, and the revocation list RevList. It first checks if the received
signature has been revoked (see Sec. 3.4). If the signature has not been revoked,
the algorithm continues with verification by calculating the OTS public key,
pk′, from the message digest and the signature element σOTS,0 Next, the leaf
node is calculated by hashing the concatenation of this OTS public key and
the signature element Eb of Auth0, i.e., L′ = H(pk′||Eb). Then, the leaf node,
L′, leaf index, and (A0,0, A0,1, . . . , A0,hc−1) from Auth0 are used by the Root
Computation Algorithm, RCA, (cf. Algorithm 1 in [25] for details) to calculate
the cluster root that is used with σOTS,1 to get the OTS public key at layer 1.
Next, this public key and its index along with the authentication path Auth1 are
used to calculate the tree root at layer 1 using RCA. This procedure is repeated

9

until the top layer tree root is calculated, GPK ′. If it is equal to the public root,
GPK ′ = GPK, the algorithm outputs 1 for a valid signature, and 0 otherwise.

Algorithm 1 GMMT Algorithm. Red (resp. blue) denotes the procedures which are performed by the group manager
(resp. member) .

Setup Phase
Input: n,N, d, hgm, hc, BCmax

(sk.seedgm, sk.encgm, GPK)← GKGen(1n)
Bumax = hgm ×BCmax

for 0 ≤ i ≤ N − 1 do
UList[i] = (i×Bumax)− 1

end for
for 0 ≤ i ≤ N − 1 do

idi : ski
R←− {0, 1}n

end for
Return: sk.seedgm, sk.encgm, GPK,UList

Cluster Generation
Input: N,hc, UList, sk.encgm, andBumax

for 0 ≤ i ≤ N − 1 do
idi : (pki,0, . . . , pki,B−1)← OTS.KGen(1n, ski)

end for
for 0 ≤ i ≤ N − 1 do

b = UList[i] + 1
for 0 ≤ j ≤ B − 1 do

Ebi,j ← E(sk.encgm, b+ j)
TupleList[iB + j, 0] = (pki,j)
TupleList[iB + j, 1] = (Ebi,j)

end for
UList[i] = b+B − 1

end for
SortedList← sort(TupleList)
for 0 ≤ p < NB do

leaf [p] = H(SortedList[p, 0]||SortedList[p, 1])
end for

rootc ←MerkleTree(leaf)
σrootc ← Sign(rootc, sk.seedgm)

for 0 ≤ i < N do
for 0 ≤ j < B do

p = 0
while p < NB do

if pki,j = SortedList[p, 0] then
param1i[j, 0] = p
param1i[j, 1] = SortedList[p, 1] = Ebi,j
param1i[j, 2] = Auth
Break

end if
end while

end for
param2i = σrootc

end for

Signing Algorithm
Input: M,param1i, param2i, ski, statei
σOTS,0 ← OTS.Sign(M, ski, statei)
GMMT.Σ = M, indx, σOTS,0, Eb,Auth0, param2i

statei = statei + 1
Return: GMMT.Σ

Verification Algorithm
Input: M,GPK,Σ, RevList
if Eb ∈ RevList then

Return 0
else

pk′ ← OTS.V erify(σOTS,0)
L′indx ← H(pk′||Eb)
root′c ← RCA(indx, L′, Auth0)
for 1 ≤ i ≤ d− 1 do

L′ ← OTS.V erify(root′i−1, σOTS,i)
root′i ← RCA(indx, L′, Authi)

end for
if root′d−1 = GPK then

Return 1
else

Return 0
end if

end if

Revocation Algorithm
Input: UList, Bumax, RevList, sk.encgm, i
j = UList[i]
while j ≥ i×Bumax do

Add E(sk.encgm, j) to RevList
j−−

end while
RevList← sort(RevList)
Return RevList

Opening Algorithm
Input: Σ, sk.encgm, Bumax, N, UList
b′ ← D(sk.encgm, Eb)
if b′ ≥ N ·Bumax ∨ b′ > Ulist[bb′/Bumaxc] then

return ⊥
else

Return bb′/Bumaxc
end if

3.4 Revocation Algorithm

The group manager retrieves the last assigned label of the revoked i-th mem-
ber, la = UList[i], and then regenerates all the encrypted labels which were
assigned to that member, i.e., for the i-th member, the manager generates
E(sk.encgm, iBumax), E(sk.encgm, iBumax + 1), . . . , E(sk.encgm, la). The gen-
erated encrypted labels are added to the revocation list, RevList, which is then
permuted using a sorting algorithm so that successive entries in the revocation
list are not grouped by members.

Revocation Check: The verifier checks if the received signature is revoked or
not by first extracting the encrypted label, Eb, from the signature and checking

10

if it exists in the revocation list, RevList. If Eb ∈ RevList, then the received
signature has been revoked, otherwise the verifier continues the verification steps.

3.5 Opening Algorithm

The opening algorithm takes as input a message M , a signature Σ, and the
group manager secret key sk.encgm, and outputs the identity of the signer
i. The algorithm first decrypts the signature element Eb to recover the la-
bel b = D(sk.encgm, Eb). Next, the manager calculates the member’s identity
i = bb/Bumaxc and checks that b is less than the last assigned label to the i-th
group member, b ≤ Ulist[i], if not it aborts.

3.6 Recommended Parameters

GMMT parameterization follows the NIST PQC requirements which state that a
given signing key pair should produce up to 264 signatures while maintaining the
claimed security [35]. Thus, we recommend that GMMT be instantiated with a
four layer (d = 4) XMSS-T where the tree height in the bottom layer (clusters),
hc, has three possible values, hc = {16, 18, 20}, depending on the number of
group members and their signing requirements and storage capabilities. The
height of the group manager trees in layers 1 to 3 is 16. The GMMT signature size
depends on the required security level. More precisely, the GMMT signature size
is d× l+h+2 elements, each of length n bits, where n is the security parameter,
n = {128, 192, 256}, and l is the number of OTS signature elements, i.e, XMSS-T
utilizes WOTS, then l = {35, 51, 67} for the respective aforementioned security
parameters [25]. Table 2 gives our recommended parameters for GMMT such
that it supports at least 264 signatures under the same group public key and the
corresponding signature size in bytes (B).

Table 2: GMMT recommended parameters and signature sizes.
Instance bit security d h hc hgm N B l w Signature (B)

GMMT-128a 128 4 64 16 48 2 < N ≤ 26 210 < B ≤ 215 35 16 3296

GMMT-128b 128 4 66 18 48 26 < N ≤ 210 28 < B ≤ 212 35 16 3328

GMMT-128c 128 4 68 20 48 210 < N ≤ 216 24 < B ≤ 210 35 16 3360

GMMT-192a 192 4 64 16 48 2 < N ≤ 26 210 < B ≤ 215 51 16 6480

GMMT-192b 192 4 66 18 48 26 < N ≤ 210 28 < B ≤ 212 51 16 6528

GMMT-192c 192 4 68 20 48 210 < N ≤ 216 24 < B ≤ 210 51 16 6576

GMMT-256a 256 4 64 16 48 2 < N ≤ 26 210 < B ≤ 215 67 16 10688

GMMT-256b 256 4 66 18 48 26 < N ≤ 210 28 < B ≤ 212 67 16 10752

GMMT-256c 256 4 68 20 48 210 < N ≤ 216 24 < B ≤ 210 67 16 10816

4 Security Analysis

In this section we show that GMMTsatisfies the security requirements of correct-
ness, anonymity [15], and full-traceability [8]. We also analyze the security of
the proposed revocation mechanism and discuss the drawbacks of adopting a
dynamic approach.

Theorem 1 (Correctness) Let GMMT be the multi-tree group Merkle signa-
ture algorithm described in Sec. 3. Then GMMT achieves correctness as defined
in Definition 1.

11

Proof (Sketch). GMMTutilizes a multi-tree Merkle signing scheme for gen-
erating signatures and only uses extra shuffling and clustering procedures to
assign the signing leaves to different members. Thus, the correctness of GMMT

is achieved by the correctness of the underling Merkle signature scheme.

Theorem 2 (Anonymity) Let GMMT be the multi-tree group Merkle signa-
ture algorithm provided in Sec. 3 with secure hash function H and encryption
algorithm E. Then GMMT achieves anonymity for each cluster as defined in
Definition 2.

Proof. We adopt the ExpAnon−b
GS,A game (see Figure 1) on the group members. The

proof follows the strategy in [21]. Assume that each group member is assigned
B signing leaves in each cluster, i.e., each group member is assigned a total of
B × 2hgm signing leaves over all clusters. An adversary A is given access to the
signing and opening oracles, and can corrupt some group members. Assume there
are only two members i0 and i1 that are uncorrupted. Moreover, A queries the
signing and opening oracles for a maximum of 2hgm × (B− 1) messages for each
uncorrupted member such that the signing oracle replies with B − 1 signatures
from each cluster for the two members, i.e., each member has the ability to sign
at least one more message with a leaf from any cluster of the 2hgm clusters.
Recall that the opening oracle when queried by a signature Σ replies with the
decryption of the encrypted label Eb in the signature, b = D(sk.encgm, Eb),
which directly reveals the signing identity i. Thus, A has B − 1 labels and their
corresponding ciphertext pairs (bj,ig , Ebj,ig) for each group member ig from each
cluster where g = {0, 1} and Ebj,ig = E(sk.encgm, bj,ig), 0 ≤ j ≤ B − 2.
A queries the signing oracle with an arbitrary message M of their choice such

that the signing oracle replies with the signature for either i0 or i1. From this
signature, A retrieves the encrypted label EbB−1,ig . Moreover, they are able to
determine the signing cluster, and thus the corresponding B− 1 label-encrypted
label pairs (bj,ig , Ebj,ig), 0 ≤ j ≤ B − 2, for each group member ig collected
in the query phase. Then, A is required to correctly guess the identity of the
signer. Since the labels for each group member are set sequentially, and A knows
the first B − 1 labels for each group member, then A knows with certainty the
B-th labels for both group members, i.e., bB−1,i0 and bB−1,i1 . Accordingly, A
must determine which label is the plaintext corresponding to the encrypted label
EbB−1,ig received in the queried signature. In other words, the adversary needs
to win a distinguishability game that distinguishes the encryption of different
plaintexts. As the encryption algorithm used is semantically secure, A has a
negligible advantage in winning the ExpAnon−b

GS,A game.

Theorem 3 (Full-traceability) Let GMMT be the multi-tree group Merkle sig-
nature algorithm specified in Sec. 3 with secure hash function H, encryption
algorithm E, and an underlying existentially unforgeable Merkle signing scheme.
Then, GMMT achieves full-traceability as in Definition 3.

Proof. Recall that the group manager opens a signature by decrypting the en-
crypted label Eb in the signature. Assume that an adversary A collects all the

12

signatures from all clusters. i.e., A knows (Ebt, pkt) where pkt is the OTS public
key at leaf index t for 0 ≤ t ≤ 2h − 1. Assuming A corrupts a set of mem-
bers C, then A wins the traceability game ExpFull−Trace

GS,A in Figure 2 if they are
successful in either of the following scenarios.

- A generates a valid signature of the i-th member where i ∈ N ∧ i /∈ C. Since
opening a signature depends on the signature element Eb, then A should in-
clude in the signature an element Eb? from one of the signatures of any of
the uncorrupted members so that it decrypts to a valid label assigned to an
uncorrupted member. Furthermore, A should pair Eb? with one of the OTS
public keys of a corrupted member so that they can sign using the correspond-
ing secret key. More precisely, A must find a pair (pkj,ic , Eb

?) that is a second
preimage of the pair (pkj,ic , Ebj,ic), i.e., H(pkj,ic ||Eb?) = H(pkj,ic ||Ebj,ic)
where pkj,ic is the j-th OTS public key of a corrupted member ic and Ebj,ic is
the corresponding encrypted label. The existence of such an adversary contra-
dicts the assumption of a secure hash function. Conversely, A does not use any
of the OTS public keys of the corrupted members, but rather uses some Eb?

with a forged signature of the underlying Merkle signature scheme such that
it passes verification and then decrypts to a valid assigned label. However,
this contradicts the existential unforgeability assumption of the underlying
signature scheme.

- A generates a valid signature which the group manager cannot open. In this
case, A includes in the signature an encrypted label Eb′ that is not equal to
any of the valid encrypted labels which were collected in the query phase.
Then following the steps in the previous scenario, A needs to either pair Eb′

with an OTS public key of a corrupted member, or include it with a forgery of
the underlying signature scheme. In both cases, the existence of A contradicts
the assumptions of a secure hash function and an existentially unforgeable
signing scheme.

4.1 Revocation Security

For revoking a member with identity i, our revocation mechanism updates
a revocation list, Revlist, by adding the member’s encrypted labels that
were assigned to their signing leaves, i.e., Eb0,i, Eb1,i, . . . , Ebla−iBumax,i =
E(sk.encgm, iBumax), E(sk.encgm, iBumax+1), . . . , E(sk.encgm, la), where la =
Ulist[i] denotes the last assigned label. Each of these encrypted labels is part
of a signature. Hence, an adversary A is able to recover the new set of en-
crypted labels that is added to Revlist with updates by comparing the contents
of Revlist before and after the update. If A has collected signatures generated
by the system before an update of the revocation list, then A can check if the
encrypted labels in some of the collected signatures are in the newly revoked set.
Accordingly, if such a set belongs to one revoked member, then A is able to link
these signatures to the same revoked member. Otherwise, the signatures are for
more than one revoked member and A is required to distinguishes the signatures
over a small anonymity set (the newly revoked members). In all cases, only the
encrypted labels of the revoked members are added to the revocation list, hence,

13

it is infeasible to reveal the identities associated with these labels because they
are encrypted. Note that if A is given only the last updated revocation list, then
A cannot distinguish the newly revoked signatures from the old ones, and hence
cannot link a set of signatures to one signer.

Theorem 4 (Revocation) Let GMMT be the multi-tree Merkle group signa-
ture algorithm provided in Sec. 3 with secure hash function H and encryption
algorithm E. Then, GMMT maintains the anonymity of revoked members and
linkability of their signatures.

Proof. Assume an adversary A has the previous and current states of the revo-
cation list, and a set of signatures that has been collected between two updates
of the revocation list. Then, A is able to recover the set of newly revoked sig-
natures by running the revocation check on the collected signatures against the
previous and current states of Revlist. If the update of Revlist corresponds to
revoking one member, then A is able to link these revoked signatures to this
member without revealing their identity. However, if the current states are up-
dated by revoking more than one member, then we adopt an anonymity game
for the revoked members which can be seen as a variant of the ExpAnon−b

GS,A game
that allows A to be challenged with a set of revoked encrypted labels instead of
a signature of their choice. A wins the game if they are able to attribute a subset
of the challenge set to a given revoked signer out of two possible revoked signers.
Precisely, A is given access to the opening algorithm for B − 1 signatures from
each cluster signed by each of two newly revoked members, i.e., A gets B − 1
(label, encrypted label) pairs from each cluster for each revoked member. Then,
they are challenged with the B-th encrypted label from each cluster for each
revoked member and are required to determine which encrypted label belongs
to which set of B − 1 (label-encrypted label) pairs. If A is able to attribute the
challenge encrypted labels to a given signer, then they can build another ad-
versary that is able to distinguish between ciphertexts corresponding to a given
plaintext, which contradicts the assumption of a secure encryption algorithm.

4.2 Security of dynamic GMMT

Our scheme can be adapted to allow adding new members at each cluster gen-
eration. In this case, the number of leaves assigned to each group member de-
creases because the maximum number of leaves in a cluster is 220 and the num-
ber of group members is increased. A drawback of dynamic GMMT is that the
anonymity game cannot be played on all clusters. More precisely, if the two chal-
lenge identities in ExpAnon−b

GS,A given in Figure 1 are for a newly joined member
and an older member, then the game must be played on the clusters which con-
tain signing leaves for both members. This is because if A is given a signature
from clusters created before the new member has joined the group, then A can
determine that this signature is signed by the older member. On the other hand,
if the signature comes from clusters created with both members, the anonymity
security is the same as that for static group construction given in Theorem 2.

14

5 Comparison with GM and DGM

In this section, we compare GMMT with the hash-based group signature schemes
GM [21] and DGM [14]. Due to the multi-tree construction, GMMT has a larger
signature size than either that of GM or DGM, for example, for 256-bit security,
the signature size of GMMT instance of largest signature size, GMMT-256c, is
10.816 KB whereas that of GM (resp. DGM) is 2.88 KB (resp. 2.72 KB).

5.1 GMMT and GM

Unlike GM, GMMT provides a revocation algorithm and is a multi-tree Merkle
construction. Both schemes require comparable computations from the group
manager for the opening and setup phase. Hence, we focus on their maximum
number of signing leaves and the storage requirements for each group member.

Maximum number of signing leaves. GM is a one layer tree with a static
group construction and the maximum number of signing leaves has been stated
to be 220 [21]. On the other hand, GMMTallows the multi-tree structure to grow
once the initial signing leaves are consumed by repeating the last two steps of
the setup phase. Thus, the group members renew their signing keys each time
a new cluster is generated while keeping the group public key unchanged. For
a 4-layer GMMTconstruction, up to 264 signing leaves are created for the group
depending on the tree height h.

Member storage requirements. In GM, the storage required for each group
member is reported to be B(1 + logN) nodes [21]. Note that since the first
node of each authentication path and each leaf node contains an OTS public
key and an AES-256 ciphertext, the required storage is in fact B(3 + logN)
n-bit elements. In GMMT, for a cluster of N members, the required storage is
B(2+logN)+(d−1)l+hgm n-bit elements. More precisely, a member stores the
B nodes at the (logN)-th level, each of which is n bits, and B(1 + logN) n-bit
elements for the authentication paths. Note that in GM, a group member stores 3
n-bit values per leaf node, while in GMMT a group member stores 2 n-bit values
for each leaf node. Additionally, in GMMT each group member needs to store the
signature of the group manager for the cluster tree root, which is composed of
d− 1 OTS signatures, along with the corresponding authentication paths. Table
3 gives the required storage for each group member in GM and GMMT. We
compare GMMT and GM when the total number of supported signatures is 220

for the GM tree and GMMT cluster, which is the maximum number of signatures
for GM, and with N = 210 group members, so the number of signing leaves for
each member is B = 210. We choose GMMT-256 instances for the comparison as
it has the highest storage requirements among all instances. The results show
that GMMT-256c saves at least 5.8% of the required storage compared to GM-
256. Note that the values in Table 3 are for 256-bit security where l = 67.
Thus, the above percentages will increase for lower bit security requirements,
i.e., for 128 and 192 bit security with l = 35 and 51, respectively. Given the
recommended parameters in Table 2, the total required storage for each group
member in GMMT is B(2 + logN) + 3l + 48 n-bit elements.

15

Table 3: Group member storage for GM and GMMTwith N = B = 210.

Algorithm
B = N = 210

Required storage (number of n-bit elements)
GM B(3 + logN) 210 · 13 = 13312

GMMT-256c B(2 + logN) + 3l†+ 48 210 × 12 + 3l + 48 = 12537

† The values are for l = 67 and 256-bit security.

5.2 GMMT and DGM

Both DGM and GMMT are revocable GSSs, but DGM is a dynamic GSS that
allows new members to be added to the group after the group public key is
generated. Unlike GMMT, DGM requires interaction between verifiers and the
group manager to validate the authentication path for each signature verifica-
tion. Moreover, the group manager in DGM generates the signing keys for the
members and thus can sign on their behalf, so it does not satisfy exculpability [5].
A limitation of our scheme is that all group members simultaneously renew their
signing keys periodically. Thus, a group member who has used all their signing
leaves cannot renew them before a specific time as they need to wait until the
new cluster generation occurs. On the other hand, DGM allows new leaves to be
assigned on request. In what follows, we compare GMMTwith DGM with respect
to the efficiency of the revocation mechanism.

Revocation efficiency. DGM utilizes symmetric puncturable encryption [37] in
its revocation mechanism. With each new revoked member, the group manager
punctures the encrypted indexes of the signing leaves of all revoked members.
Hence, the group manager is required to store all the indexes assigned to all mem-
bers. In GMMT, the corresponding storage required is for the last assigned label
of each member because all the encrypted labels assigned to a member can be
regenerated from this label. For example, consider a GMMT-256c instance which
has 215 members, supports 264 signatures, and provides 256-bit security. The re-
quired storage in GMMT (resp. DGM) is 215 × 28= 1 MB (resp. 264 × 28 ≈ 108.7

TB). Both schemes have equal sized revocation lists and the revocation compu-
tational complexity of the group managers are comparable (linear in the size of
the revocation list). However, for a revocation check in DGM, the verifier invokes
a hash function for 3 times the number of revoked positions in the revocation
list [37]. On the other hand, in GMMT, the verifier must search for an n-bit sig-
nature element (the encrypted label, Eb) in a sorted revocation list, RevList,
which has logarithmic complexity. Hence, our revocation algorithm reduces the
computational complexity for verification compared to DGM. Nevertheless, the
revocation list is large, so in Appendix A we provide an alternative revocation
mechanism where the size of the revocation list is linear in the number of revoked
members. The alternative mechanism is equivalent to traditional revocation by
key, and may be suitable for some applications that do not require anonymity
of the revoked members.

16

6 Implementation

In this section, we provide an unoptimized implementation of the main proce-
dures of GMMT for the purposes of performance evaluation. This C language
implementation uses the XMSSMT/WOTS standard implementation given in
RFC 8391 [24], [25] employing SHA2-256 as a hash function, and AES256 for
encryption. Shuffling the signing of leaf nodes is done by reordering the leaf
nodes in ascending order using the sorting algorithm for 256 bit integers.

Table 4 provides the performance in kilocycles and the corresponding mil-
liseconds when the code is executed on an Intel(R) Core(TM) i5-5200U CPU
at 2.20 GHz. The values in the table are the average of 100 runs. This table
gives the performance for group public key generation, group member OTS
public keys generation, (cluster) label encryption, leaf shuffling, cluster root
generation, cluster root signing, signature opening, message signing, and sig-
nature verification. The reported numbers are for the three instances GMMT-
256a with (hc, N,B) = (16, 26, 210), GMMT-256b with (hc, N,B) = (18, 28, 210),
and GMMT-256c with(hc, N,B) = (20, 210, 210). Other parameters are possible
according to the application and member storage capabilities. A process is per-
formed by a user (U) or the group manager (GM).

Table 4: GMMT Performance results in kilocycles (kc) and millisecond (ms).

Process
GMMT-256a GMMT-256b GMMT-256c

(hc, N,B) = (16, 26, 210) (hc, N,B) = (18, 28, 210) (hc, N,B) = (20, 210, 210)
Public key gen. (GM) 1,245,539,484kc - 566,154.3ms

OTS public keys gen. (U) 6,147,667kc - 2,794.4ms
Label encryption (GM) 170,471kc - 77.5ms 680,758kc - 309.5ms 2,721,486kc - 1,237.1ms

Shuffling (GM) 48,436kc - 22.1ms 205,428kc - 93.4ms 854,614kc - 388.5ms

Cluster root gen. †(GM) 3,364,756kc - 1,529ms 13,450,764kc - 6,113ms 53,427,148kc - 24,285ms
Cluster root signing (GM) 33,064kc - 15.1ms

Message signing (U) 2,957kc - 1.4ms
Signature verification (U) 12,174kc - 5.6ms 15,124kc - 6.9ms 19,326kc - 8.8ms
Signature opening (GM) 46kc - 0.03ms

† The Merkle tree is constructed after the leaf nodes have been computed.

7 Conclusion

We proposed GMMT, a revocable hash-based group signature scheme that ad-
dresses some of the challenges identified by the designers of the GM and DGM
hash-based group signature schemes. Unlike GM, GMMT is a multi-tree construc-
tion that allows up to 264 signatures under one group public key. It was shown
that GMMT saves at least 5.8% of the required storage for each group member
compared to GM for an GMMT-256c instance with 210 group members each as-
signed 210 signing leaves. Unlike DGM, GMMT verification procedures do not
require interaction with the group manager. Moreover, the required storage for
the group manager in GMMT is linear in the number of members, while in DGM
it is linear in the total number of signatures supported by the scheme. GMMT

also reduces the computation complexity of checking revocations from linear in
DGM to logarithmic in the size of the revocation list. An analysis of GMMT with
respect to anonymity [15] and full traceability [8] was given which shows that its
security relies on the standard security assumptions of hash functions and sym-

17

metric encryption, and the existential unforgeability of the underlying signing
scheme. Finally, we compared GMMT to both GM and DGM, and presented the
performance of its procedures using an unoptimized C implementation.

Acknowledgment. The authors would like to thank the anonymous reviewers
for their valuable comments that helped improve the quality of the paper.

References
[1] Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Liu,

Y., Miller, C., Moody, D., Peralta, R., Perlner, R., et al. Nistir 8309
status report on the second round of the NIST post-quantum cryptography stan-
dardization process. National Institute of Standards and Technology (NIST), US
Department of Commerce (2020).

[2] Alamélou, Q., Blazy, O., Cauchie, S., and Gaborit, P. A practical group
signature scheme based on rank metric. In WAIFI (2016), Springer, pp. 258–275.

[3] Alamélou, Q., Blazy, O., Cauchie, S., and Gaborit, P. A code-based group
signature scheme. Des Cod.es Crypt 82, 1-2 (2017), 469–493.

[4] AlTawy, R., and Gong, G. Mesh: A supply chain solution with locally private
blockchain transactions. Proc. Priv. Enhancing Technol. 2019, 3 (2019), 149–169.

[5] Ateniese, G., and Tsudik, G. Some open issues and new directions in group
signatures. In FC (1999), Springer, pp. 196–211.

[6] Aumasson, J.-P., and Endignoux, G. Improving stateless hash-based signa-
tures. In CT-RSA (2018), Springer, pp. 219–242.

[7] Ayebie, B. E., Assidi, H., and Souidi, E. M. A new dynamic code-based group
signature scheme. In C2SI (2017), Springer, pp. 346–364.

[8] Bellare, M., Micciancio, D., and Warinschi, B. Foundations of group sig-
natures: Formal definitions, simplified requirements, and a construction based on
general assumptions. In EUROCRYPT (2003), Springer, pp. 614–629.

[9] Bernstein, D. J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen,
R., Papachristodoulou, L., Schneider, M., Schwabe, P., and Wilcox-
O’Hearn, Z. SPHINCS: Practical stateless hash-based signatures. In EURO-
CRYPT (2015), Springer, pp. 368–397.

[10] Bernstein, D. J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J.,
and Schwabe, P. The sphincs+ signature framework. In ACM SIGSAC CCS
(2019), pp. 2129–2146.

[11] Boneh, D., Boyen, X., and Shacham, H. Short group signatures. In CRYPTO
(2004), Springer, pp. 41–55.

[12] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., and
Zhandry, M. Random oracles in a quantum world. In ASIACRYPT (2011),
Springer, pp. 41–69.

[13] Boneh, D., and Shacham, H. Group signatures with verifier-local revocation.
In ACM CCS (2004), pp. 168–177.

[14] Buser, M., Liu, J. K., Steinfeld, R., Sakzad, A., and Sun, S.-F. DGM: A
dynamic and revocable group merkle signature. In ESORICS (2019), Springer,
pp. 194–214.

[15] Camenisch, J., and Groth, J. Group signatures: Better efficiency and new
theoretical aspects. In SCN (2004), Springer, pp. 120–133.

[16] Camenisch, J., Kohlweiss, M., and Soriente, C. Solving revocation with
efficient update of anonymous credentials. In SCN (2010), J. A. Garay and
R. De Prisco, Eds., Springer, pp. 454–471.

18

[17] Camenisch, J., and Lysyanskaya, A. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In CRYPTO (2002), Springer,
pp. 61–76.

[18] Camenisch, J., and Lysyanskaya, A. Signature schemes and anonymous cre-
dentials from bilinear maps. In CRYPTO (2004), Springer, pp. 56–72.

[19] Chaum, D., and Van Heyst, E. Group signatures. In EUROCRYPT (1991),
Springer, pp. 257–265.

[20] Del Pino, R., Lyubashevsky, V., and Seiler, G. Lattice-based group sig-
natures and zero-knowledge proofs of automorphism stability. In ACM SIGSAC
CCS (2018), pp. 574–591.

[21] El Bansarkhani, R., and Misoczki, R. G-merkle: A hash-based group signa-
ture scheme from standard assumptions. In PQCrypto (2018), Springer, pp. 441–
463.

[22] Ezerman, M. F., Lee, H. T., Ling, S., Nguyen, K., and Wang, H. Provably
secure group signature schemes from code-based assumptions. IEEE Transactions
on Information Theory 66, 9 (2020), 5754–5773.

[23] Gordon, S. D., Katz, J., and Vaikuntanathan, V. A group signature scheme
from lattice assumptions. In ASIACRYPT (2010), Springer, pp. 395–412.

[24] Hülsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J., and Mohaisen, A.
Xmss: Extended Merkle signature scheme. In RFC 8391. IRTF, 2018.

[25] Hülsing, A., Rijneveld, J., and Song, F. Mitigating multi-target attacks in
hash-based signatures. In Public-Key Cryptography. Springer, 2016, pp. 387–416.

[26] Laguillaumie, F., Langlois, A., Libert, B., and Stehlé, D. Lattice-
based group signatures with logarithmic signature size. In ASIACRYPT (2013),
Springer, pp. 41–61.

[27] Langlois, A., Ling, S., Nguyen, K., and Wang, H. Lattice-based group
signature scheme with verifier-local revocation. In PKC (2014), Springer, pp. 345–
361.

[28] Libert, B., Ling, S., Mouhartem, F., Nguyen, K., and Wang, H. Signa-
ture schemes with efficient protocols and dynamic group signatures from lattice
assumptions. In ASIACRYPT (2016), Springer, pp. 373–403.

[29] Libert, B., Peters, T., and Yung, M. Group signatures with almost-for-free
revocation. In CRYPTO (2012), Springer, pp. 571–589.

[30] Libert, B., Peters, T., and Yung, M. Scalable group signatures with revoca-
tion. In EUROCRYPT (2012), Springer, pp. 609–627.

[31] Lin, X., Sun, X., Ho, P.-H., and Shen, X. Gsis: A secure and privacy-preserving
protocol for vehicular communications. IEEE Transactions on vehicular technol-
ogy 56, 6 (2007), 3442–3456.

[32] Ling, S., Nguyen, K., and Wang, H. Group signatures from lattices: Simpler,
tighter, shorter, ring-based. In PKC (2015), Springer, pp. 427–449.

[33] Nguyen, P. Q., Zhang, J., and Zhang, Z. Simpler efficient group signatures
from lattices. In PKC (2015), Springer, pp. 401–426.

[34] NIST. Post quantum crypto project. http://csrc.nist.gov/groups/ST/post-
quantum-crypto.

[35] NIST. Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process. https://csrc.nist.gov/Projects/post-
quantum-cryptography/post-quantum-cryptography-standardization/Call-for-
Proposals.

[36] Shor, P. W. Algorithms for quantum computation: Discrete logarithms and
factoring. In IEEE SFCS (1994), Ieee, pp. 124–134.

19

[37] Sun, S.-F., Yuan, X., Liu, J. K., Steinfeld, R., Sakzad, A., Vo, V., and
Nepal, S. Practical backward-secure searchable encryption from symmetric punc-
turable encryption. In ACM SIGSAC CCS (2018), pp. 763–780.

[38] Tsang, P. P., Au, M. H., Kapadia, A., and Smith, S. W. Blacklistable
anonymous credentials: Blocking misbehaving users without ttps. In CCS (2007),
CCS ’07, ACM, p. 72–81.

[39] Tsang, P. P., Au, M. H., Kapadia, A., and Smith, S. W. PEREA: Towards
practical TTP-free revocation in anonymous authentication. In CCS (2008), CCS
’08, ACM, p. 333–344.

[40] Yang, R., Au, M. H., Zhang, Z., Xu, Q., Yu, Z., and Whyte, W. Efficient
lattice-based zero-knowledge arguments with standard soundness: Construction
and applications. In CRYPTO (2019), Springer, pp. 147–175.

[41] Yehia, M., AlTawy, R., and Gulliver, T. A. Security analysis of DGM and
GM group signature schemes instantiated with XMSS-T. In (Insecrypt) (2021),
Springer.

A Alternative Solution for a Large Revocation List

In this section, we provide a solution for the large revocation list of GMMTwhich
is suitable for some applications that do not require anonymity of revoked mem-
bers. We propose the following modification to the leaf generation procedure.

– The group manager generates a secret key sk∗i for each group member, for
0 ≤ i ≤ N − 1. This key is different from the group member secret key ski
that is used to generate the WOTS signing keys.

– The encrypted label in GMMT is replaced by the output of hashing the
concatenation of the corresponding WOTS.pk and the group member key
A∗ = H(WOTS.pk||sk∗i).

The remaining procedures are the same as in GMMTwith the following three
differences in the revocation, verification and opening procedures.

– To revoke the j-th member, the group manager adds their key sk∗j to the
revocation list, RevList.

– In the verification process, the verifier checks if the calculated WOTS from
the signature and keys in the revocation list gives the value A∗ in the received
signature (which means that the signature has been revoked), if not the
verifier continues with the verification.

– In the opening process, the group manager checks which group member’s
secret key sk∗i gives the value A∗ in the signature A∗ = H(WOTS.pk||sk∗i)
for 0 ≤ i ≤ N − 1.

Applying the above modification has the following consequences.

– The revocation list size is linear in the number of revoked members, while
in GMMT it is linear in the number of revoked leaves.

– Revocation does not maintain the anonymity of revoked members.
– The verification complexity is linear in the number of revoked members, while

GMMT verification has logarithmic computational complexity with respect
to the number of revoked leaves.

– The opening complexity is linear in the number of members, while GMMT

has a constant opening complexity, i.e., one decryption operation.

20

