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Abstract

All-or-nothing transforms (AONTs) were originally defined by Rivest [14] as bijec-
tions from s input blocks to s output blocks such that no information can be obtained
about any input block in the absence of any output block. Numerous generalizations
and extensions of all-or-nothing transforms have been discussed in recent years, many
of which are motivated by diverse applications in cryptography, information security,
secure distributed storage, etc. In particular, t-AONTs, in which no information can be
obtained about any t input blocks in the absence of any t output blocks, have received
considerable study.

In this paper, we study three generalizations of AONTs that are motivated by
applications due to Pham et al. [13] and Oliveira et al. [12]. We term these generaliza-
tions rectangular, range, and restricted AONTs. Briefly, in a rectangular AONT, the
number of outputs is greater than the number of inputs. A range AONT satisfies the
t-AONT property for a range of consecutive values of t. Finally, in a restricted AONT,
the unknown outputs are assumed to occur within a specified set of “secure” output
blocks. We study existence and non-existence and provide examples and constructions
for these generalizations. We also demonstrate interesting connections with combina-
torial structures such as orthogonal arrays, split orthogonal arrays, MDS codes and
difference matrices.

1 Introduction

Rivest [14] defined all-or-nothing transforms in the setting of computational security as
a mode of operation for block ciphers that can impede brute-force attacks. Stinson [16]
introduced and studied unconditionally secure all-or-nothing transforms, i.e., all-or-nothing
transforms in the information-theoretic setting. Various generalizations of these transforms
have been studied in recent years, including the following:

• almost AONTs (see [2, 6, 18]),
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• t-AONTS (see [5, 7, 17]), and

• asymmetric AONTS (see [8, 9]).

In this paper, we study three new types of AONTs motivated by applications due to
Pham et al. [13] and Oliveira et al. [12]. After introducing each of the generalizations,
we study existence and non-existence, and provide examples and constructions.1 We also
demonstrate interesting connections with combinatorial structures such as orthogonal ar-
rays, split orthogonal arrays, MDS codes and difference matrices.

We base all the generalizations in this paper on (t, s, v)-all-or-nothing transforms [2],
which are defined informally as follows.

Definition 1.1. Suppose s is a positive integer and φ : Γs → Γs, where Γ is a finite set of
size v (called an alphabet). Thus φ is a function that maps an input s-tuple x = (x1, . . . , xs)
to an output s-tuple y = (y1, . . . , ys). Suppose t is an integer such that 1 ≤ t ≤ s.

The function φ is a (t, s, v)-all-or-nothing transform (or a (t, s, v)-AONT) provided that
the following properties are satisfied:

1. φ is a bijection.

2. If any s−t of the s outputs y1, . . . , ys are fixed, then the values of any t inputs x1, . . . , xs
are completely undetermined.

It is convenient to define an all-or-nothing transform as a certain combinatorial structure.
We recall the relevant combinatorial definitions (e.g., see [5]) and then we briefly review the
security provided by these combinatorial structures when they are used as AONTs.

First, we require some preliminary definitions. An (N, k, v)-array is an N by k array, say
A, whose entries are elements chosen from an alphabet Γ of order v. Suppose the columns
of A are labeled by the elements in the set C. Let D ⊆ C, and define AD to be the array
obtained from A by deleting all the columns c /∈ D. We say that A is unbiased with respect
to D if the rows of AD contain every |D|-tuple of elements of Γ exactly N/v|D| times.

We record the following lemma for future use.

Lemma 1.1. Suppose that A is an (N, k, v)-array that is unbiased with respect to the set
(of columns) D. Then A is unbiased with respect to D′ whenever D′ ⊆ D.

Here is our combinatorial definition of an AONT.

Definition 1.2. A (t, s, v)-all-or-nothing transform is a (vs, 2s, v)-array, say A, with columns
labeled 1, . . . , 2s, that is unbiased with respect to the following subsets of columns:

1. {1, . . . , s},

2. {s+ 1, . . . , 2s}, and

3. I ∪ J , for all I ⊆ {1, . . . , s} with |I| = t and all J ⊆ {s+ 1, . . . , 2s} with |J | = s− t.

We observe that a (t, s, v)-all-or-nothing transform φ corresponds to a (vs, 2s, v)-array A
in an obvious way. For every input s-tuple x = (x1, . . . , xs), we create a row of A consisting
of the 2s entries

x1, . . . , xs, y1, . . . , ys,

where (y1, . . . , ys) = φ(x1, . . . , xs). We call A the array representation of the AONT φ.

1These generalizations were first formally defined in the PhD thesis of the first author [4].
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Let φ be a (t, s, v)-all-or-nothing transform and let A be its array representation. Prop-
erties 1 and 2 of Definition 1.2 say that φ is a bijection. Property 3 ensures that, if any s− t
outputs are fixed, then any t inputs are undetermined.

The security properties of AONTs satisfying Definition 1.2 are investigated in [7] from
the standpoint of information theory. We assume an a priori distribution on the vs possible
input s-tuples such that every input occurs with positive probability. It is shown in [7] that
an AONT satisfying Definition 1.2 has the property that any t inputs take on any possible
values with positive probability, given the values of any s − t outputs (this is termed weak
security). Furthermore, it is proven in [7] that the a posteriori information about any t
inputs (given the values of any s− t outputs) is equal to the a priori information about the
t specified inputs if the input s-tuples are equiprobable (this is termed strong security).

In the remainder of this paper, we will implicitly be treating AONTs as combinatorial
objects that satisfy Definition 1.2.

The following two results are immediate consequences of Definition 1.2.

Theorem 1.2. [17, Theorem 2.25] A mapping φ : Γs → Γs is a (t, s, v)-AONT if and only
if φ−1 is an (s− t, s, v)-AONT.

Proof. Interchange the first s and the last s columns of the array representation of φ.

Our second result is an existence result phrased in terms of orthogonal arrays. An
orthogonal array OA(s, k, v) is a (vs, k, v)-array that is unbiased with respect to any subset
of s columns.

Theorem 1.3. [2, Corollary 35] An OA(s, 2s, v) is a (t, s, v)-AONT for all t such that
1 ≤ t ≤ s.

Suppose q is a prime power and the alphabet is Fq. If every output of a (t, s, v)-AONT
is an Fq-linear function of the inputs, the AONT is a linear (t, s, q)-AONT. We will write a
linear (t, s, q)-AONT in the form y = xM−1, where M is an invertible s by s matrix over
Fq (as always, x is an input s-tuple and y is an output s-tuple). Of course this is equivalent
to saying that x = yM .

Theorem 1.4. [2, Lemma 1] Suppose q is prime power and M is an invertible s by s
matrix with entries from Fq. Then y = xM−1 defines a linear (t, s, q)-AONT if and only if
all t by t submatrices of M are invertible.

The next result is an immediate consequence of Theorem 1.2.

Corollary 1.5. [17, Theorem 2.26] Suppose that y = xM−1 defines a linear (t, s, q)-AONT.
Then y = xM defines a linear (s− t, s, q)-AONT.

Now, from Corollary 1.5 and Theorem 1.4, we obtain the following.

Corollary 1.6. [17] Suppose M is an invertible s by s matrix with entries from Fq. Then
y = xM defines a linear (t, s, q)-AONT if and only if every (s− t) by (s− t) submatrix of
M is invertible.

In the rest of this section, we will briefly discuss two applications that motivate our three
generalizations of AONTs.

Two of the AONT generalizations discussed in this paper are motivated by the work by
Oliveira et al. [12], where they considered both the confidentiality and the availability of
information distributed and stored on a cloud. More specifically, they studied linear erasure
codes that can encode an s-tuple X ∈ Fs

q to an (s + n)-tuple Y ∈ Fs+n
q , such that any s
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symbols from Y can be used to reconstruct X. Furthermore, for a positive integer t ≤ s, no
information can be obtained about any t symbols of X in the absence of any n+t symbols of
Y (this is an “AONT-like” property.) This motivates our definition of a rectangular AONT
that we give in Section 2.

The paper [12] constructed the desired codes using a generator matrix that is an s by
s+n super-regular matrix.2 As indicated in [12], Cauchy matrices can be modified to obtain
the desired generator matrices.

One consequence of this Cauchy matrix construction method is that the above-mentioned
AONT-like property is satisfied for arbitrary values of t. In fact, Cauchy matrices provide
bijections that are simultaneously t-AONTs for all possible relevant values of t, a fact that
was noted explicitly in [5, Theorem 6]. This motivates our definition of range AONTs (which
include the special case of strong AONTs) that we give in Section 3.

The second motivating application is due to Pham et al. [13], who studied the use of all-
or-nothing transforms in the secure transmission of information across two channels, where
one of the channels is using optical encryption to provide security. Their results are valid
if the secure channel is achieved using another information theoretically secure scheme, for
example, a one-time pad.

In this scenario, the message is broken into input blocks. Output blocks can be computed
by applying the transform on the input blocks. Finally, the output blocks are divided into
two disjoint subsets, where one of the subsets is of size t. The blocks in the t-subset are
sent over the secure channel, while the other blocks are communicated via a public channel.
Since we know which output blocks are transmitted over the secure channel, the all-or-
nothing transform only needs to satisfy a weaker condition, namely that no information can
be obtained about any input block as long as the output blocks that are sent over the secure
channel are not available. Consequently, Pham et al. [13] define restricted AONTs so that
they satisfy this condition. We investigate these AONTs further in Section 4.

2 Rectangular AONTs

We formally define rectangular AONTs as follows.

Definition 2.1. Suppose s, n, and t are positive integers, where t ≤ s ≤ n. A (t, s, n, v)-
recAONT is a (vs, s + n, v) array, with columns labeled 1, . . . , s + n, that is unbiased with
respect to the following sets of columns:

1. {1, . . . , s}

2. any J ⊆ {s+ 1, . . . , s+ n} where |J | = s

3. I ∪ J , for any sets I and J where I ⊆ {1, . . . , s}, |I| = t, J ⊆ {s + 1, . . . , s + n} and
|J | = s− t.

When n = s, we have a (t, s, v)-AONT.

The following result is a straightforward generalization of Theorem 1.3.

Theorem 2.1. An OA(s, s+n, v), where n ≥ s, is a (t, s, n, v)-recAONT for all t, 1 ≤ t ≤ s.
2A matrix is super-regular if all its square submatrices are invertible. The authors of [12] do not require

the matrix entries to be nonzero, but we consider the case where all the 1 by 1 submatrices are invertible,
i.e., the matrix entries are nonzero.
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We now use Theorem 2.1 to give some interesting examples of recAONTs. It is well-
known that an OA(2, k, v) is equivalent to a set of k− 2 mutually orthogonal Latin squares
(MOLS) of order v (see, e.g., [15]). Many results on MOLS can be found in the Handbook
of Combinatorial Designs [1]. These results also provide constructions of recAONTs with
s = 2 for alphabet sizes that are not required to be a prime power.

For example, suppose we consider k = 5. It is well-known that an OA(2, 5, v) exists
for all v ≥ 4, v 6= 6, 10 (see [1, p. 126]). Hence, we have the following existence result for
recAONT.

Corollary 2.2. Suppose v ≥ 4, v 6= 6, 10. Then there exists a (t, 2, 3, v)-recAONT for
t = 1, 2.

We now observe that OA(2, k, v) are equivalent to certain recAONT.

Theorem 2.3. An OA(2, k, v) is equivalent to a (1, 2, k − 2, v)-recAONT.

Proof. Applying Theorem 2.1 with s = 2, t = 1, it follows that existence of an OA(2, k, v)
implies the existence of a (1, 2, k−2, v)-recAONT. For the converse, we observe that the array
representation of a (1, 2, k − 2, v)-recAONT is unbiased with respect to any two columns,
and hence it is also the array representation of an OA(2, k, v).

We now discuss a connection between recAONT and split orthogonal arrays, which are
structures defined by Levenshtein [10]. A split orthogonal array SOA(t1, t2; s1, s2; v) is a
(vt1+t2 , s1 + s2, v)-array A that satisfies the following two properties:

1. the columns of A are partitioned into two sets, of sizes s1 and s2, and

2. A is unbiased with respect to any set of t1 + t2 columns, where t1 columns are chosen
from the first set of columns and t2 columns are chosen from the second set of columns.

The following result due to Bill Martin (private communication) is a straightforward
consequence of Definition 2.1.

Theorem 2.4. Suppose there exists a (t, s, n, v)-recAONT. Then there exists an SOA(t, s−
t; s, n; v).

Proof. From Theorem 2.1 we know that a (t, s, n, v)-recAONT is equivalent to a (vs, s+n, v)-
array, that is unbiased with respect to I∪J , for any sets I and J where I ⊆ {1, . . . , s}, |I| = t,
J ⊆ {s+ 1, . . . , s+ n} and |J | = s− t. If we set n1 = s, n2 = n, t1 = t, and t2 = s− t, then
from the definition of split orthogonal arrays, such an array is an SOA(t, s− t; s, n; v).

Hence, from a design theoretic perspective, rectangular AONTs are structures “between”
orthogonal arrays and split orthogonal arrays, in the sense that existence of a suitable
orthogonal array implies the existence of a certain recAONT, which in turn implies the
existence of a certain split orthogonal array.

Similar to the other types of AONT structures discussed so far, a recAONT is linear
if its outputs are a linear combination of its inputs. We write a linear recAONT in the
form y = xN , where N is an s by n matrix that satisfies certain properties, as given in the
following theorem.

Lemma 2.5. Suppose that q is a prime power and N is an s by n matrix with entries from
Fq. Then y = xN defines a linear (t, s, n, q)-recAONT if and only if the following conditions
are satisfied:

1. every s by s submatrix of N is invertible, and
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2. every (s− t) by (s− t) submatrix of N is invertible.

Proof. Clearly property 1 in Definition 2.1 is satisfied if and only if every s by s submatrix
of N is invertible. We prove that property 2 holds if and only if every (s − t) by (s − t)
submatrix of N is invertible.

Let N ′ be a matrix consisting of any s columns of N . Then y′ = xN ′ is a (t, s, v)-AONT.
Therefore, from Corollary 1.6, any (s− t) by (s− t) submatrix of N ′ is invertible.

3 Range and Strong AONTs

In this section, we will study range AONTs, where the AONT provides the desired security
properties for a continuous range of values for t, i.e., for t1 ≤ t ≤ t2, for specified integers
t1 and t2. In particular, if the range consists of all positive integers not exceeding a given
integer t, we call the AONT a strong AONT. Here is the formal definition, which first
appeared in [4].

Definition 3.1. Suppose s, t1, and t2 are positive integers, where t1 ≤ t2 ≤ s. A
([t1, t2], s, v)-rangeAONT is a (vs, 2s, v) array, with columns labeled 1, . . . , 2s, that is un-
biased with respect to the following sets of columns:

1. {1, . . . , s},

2. {s+ 1, . . . , 2s},

3. I ∪ J , for any sets I and J where I ⊆ {1, . . . , s}, |I| = t and t1 ≤ t ≤ t2, J ⊆
{s+ 1, . . . , 2s}, and |J | = s− t.

Thus, a (t, s, v)-AONT is the exactly the same as a ([t, t], s, v)-rangeAONT. The following
lemma is an immediate consequence of the definition.

Lemma 3.1. Suppose t1 ≤ t′1 ≤ t′2 ≤ t2 ≤ s. Then a ([t1, t2], s, v)-rangeAONT is also a
([t′1, t

′
2], s, v)-rangeAONT.

Definition 3.2. A (t, s, v)-strong AONT is a ([1, t], s, v)-rangeAONT.

The following corollary is an immediate consequence of Lemma 3.1.

Corollary 3.2. A (t, s, v)-strong AONT is a ([t1, t2], s, v)-rangeAONT if 1 ≤ t1 ≤ t2 ≤ t.

We should note that (t, s, v)-AONTs are not automatically strong. For example, the
optimal linear (2, p, p)-AONTs (which exist for all primes p) constructed in [5, 17] are not
strong. This is because the relevant matrices M contain 0 entries and hence they are not
(1, p, p)-AONTs.

The next result follows from Theorem 1.3.

Theorem 3.3. An OA(s, 2s, v) is an (s, s, v)-strong AONT.

Similar to the case of t-AONTs, we define a linear range AONT as a range AONT such
that each output element is a linear function of the input elements. We write a linear range
AONT in the form y = xM−1, where M is an s by s invertible matrix.

Theorem 3.4. Suppose that q is a prime power and M is an invertible s by s matrix with
entries from Fq. Then y = xM−1 is a ([t1, t2], s, q)-rangeAONT if and only if all t by t
submatrices of M are invertible, for all t such that t1 ≤ t ≤ t2.
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We give some small examples of linear (2, p, p)-strong AONTs. The defining matrices
are invertible, they have no 0 entries, and all 2 by 2 submatrices are invertible.

Example 3.1. A linear (2, 2, 3)-strong AONT:(
1 1
1 2

)
.

Example 3.2. A linear (2, 3, 5)-strong AONT: 1 1 1
1 2 3
1 3 4

 .

Example 3.3. A linear (2, 5, 7)-strong AONT:
1 1 1 1 1
1 2 3 4 5
1 3 4 5 6
1 4 5 6 2
1 5 6 2 4

 .

Example 3.4. A linear (2, 6, 9)-strong AONT, where F9 = Z3[x]/(x2 + 1):
1 1 1 1 1 1
1 2 x x+ 1 x+ 2 2x
1 x 2 2x 2x+ 1 x+ 1
1 x+ 1 2x+ 2 x+ 2 2x 2x+ 1
1 x+ 2 2x x 2x+ 2 2
1 2x x+ 2 2 x+ 1 x

 .

An s by s Cauchy matrix over Fq exists if q ≥ 2s. These matrices are constructed as
follows. Let r1, . . . , rs, c1, . . . , cs be 2s distinct elements of Fq. Then the matrix M = (mij)
defined by mij = 1/(ri− cj) is a Cauchy matrix. All square submatrices of an s× s Cauchy
matrix are invertible. Hence, any s× s Cauchy matrix over Fq is an (s, s, q)-strong AONT.

For fixed positive integers t1, t2 with t1 ≤ t2, and any for prime power q, define

SR([t1, t2], q) = {s : there exists a linear ([t1, t2], s, q)-rangeAONT}.

Lemma 3.5. Suppose that q ≥ 2t2. Then b q2c ∈ SR([t1, t2], q)

Proof. Cauchy matrices yield linear ([t1, t2], b q2c, q)-rangeAONTs, for all t1 and t2 such that
1 ≤ t1 ≤ t2 ≤ b q2c.

Lemma 3.6. If s ∈ SR([t1, t2], q) and s > t2, then s− 1 ∈ SR([t1, t2], q).

Proof. The proof is identical to [5, Theorem 20].

Lemma 3.7. If s ∈ SR([t1, t2], q) then s ≤ max{q + t1 − 1, t1 + 1}.

Proof. Suppose s ∈ SR([t1, t2], q). Then there exists a (t1, s, q)-AONT. From [5, Theorem
23], there exists an OA(t1, s, v). Now apply the Bush bound for orthogonal arrays (e.g.,
see [5, Theorem 24]).
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Suppose q ≥ 2t2. In view of Lemmas 3.5–3.7, each set SR([t1, t2], q) is nonempty and
contains a maximum element, which we denote by MR([t1, t2], q). Moreover, SR([t1, t2], q)
contains all positive integers s such that t2 ≤ s ≤MR([t1, t2], q).

The papers [5] and [17] have studied MR([2, 2], q). We now record some results on
MR([1, 2], q) that can be inferred from results in these papers. Note that MR([1, 2], q) is
simply the largest value of s such that a linear (2, s, q)-strong AONT exists.

Theorem 3.8. For any prime power q > 2, MR([1, 2], q) ≤ q − 1.

Proof. Suppose q > 2 is prime power. It is shown in [5, Theorem 14] thatMR([2, 2], q) ≤ q, so
it immediately follows thatMR([1, 2], q) ≤ q. Further, in any (2, q, q)-AONT, say y = xM−1,
M contains 0 entries, so the AONT cannot be a 1-AONT (see [5, Lemma 14]). Hence,
MR([1, 2], q) ≤ q − 1.

We now observe that the upper bound of Theorem 3.8 can be met whenever q − 1 is a
Mersenne prime.

Theorem 3.9. Suppose 2n − 1 is a prime. Then MR([1, 2], 2n) = 2n − 1.

Proof. In [5, Theorem 11], it is shown that the transformation y = xM−1 is a (2, 2n−1, 2n)-
AONT if M is a Vandermonde matrix defined over F2n and 2n − 1 is prime. Since a
Vandermonde matrix does not contain 0 entries, this transformation is also a (1, 2n−1, 2n)-
AONT. Hence MR([1, 2], 2n) ≥ 2n − 1. We also have MR([1, 2], 2n) ≤ 2n − 1 from Theorem
3.8.

We have the following improvement of Theorem 3.8 when q > 3 is odd.

Theorem 3.10. For any odd prime power q > 3, MR([1, 2], q) ≤ q − 2.

Proof. Suppose q > 3 is an odd prime power. In view of Theorem 3.8, we only need to
show that a linear (2, q − 1, q)-strong AONT does not exist. Suppose that y = xM−1 is a
(2, q− 1, q)-strong AONT, where M is a q− 1 by q− 1 matrix over Fq. We can assume that
the first row of M consists of 1 entries. Consider the second and third rows of M (M has
at least three rows because q > 3). Denote the entries in these rows, from left to right, by
a1, a2, . . . , aq−1 and b1, b2, . . . , bq−1, resp. The ai’s comprise all the nonzero elements of Fq,
as do the bi’s.

Now, because q is odd, the product of the ai’s is −1 and the product of the bi’s is also
−1. For 1 ≤ i ≤ q − 1, define ci = ai/bi. Then the product of the ci’s is 1. If the ci’s were
all distinct, their product would be −1 6= 1. Therefore there exist distinct indices i and j
such that ci = cj . Hence aibj = ajbi and the corresponding 2 by 2 submatrix(

ai aj
bi bj

)
of M is not invertible. This is a contradiction.

Theorem 3.11. MR([1, 2], 3) = 2, MR([1, 2], 5) = 3, MR([1, 2], 7) = 5 and 6 ≤MR([1, 2], 9) ≤
7.

Proof. The lower bounds follow from Examples 3.1–3.4. The upper bounds follow from
Theorem 3.8 (for q = 3) and Theorem 3.10 (for q > 3).
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Some of the above results can be interpreted in terms of difference matrices. Let G
be an abelian group of order g, written additively, let 2 ≤ k ≤ g and let λ ≥ 1. Then a
(g, k;λ)-difference matrix is a k by gλ matrix D = (di,j) of entries from G such that, for
any two distinct rows i and j of D, the multiset

{di,k − dj,k : 1 ≤ k ≤ g}

contains every element of G exactly λ times.

Theorem 3.12. Suppose q is a prime power. If a (2, q − 1, q)-strong AONT exists, then a
(q − 1, q − 1; 1)-difference matrix with entries from Zq−1 exists.

Proof. Suppose that y = xM−1 is a (2, q − 1, q)-strong AONT, where M = (mi,j) is a
q − 1 by q − 1 matrix over Fq. M contains no 0 entries and all of its 2 by 2 submatrices
are invertible. Fix a primitive element α ∈ (Fq)∗. Every entry mi,j of M can be written
uniquely as mi,j = αdi,j , where di,j ∈ Zq−1. Define D = (di,j). We claim that D is a
(q − 1, q − 1; 1)-difference matrix with entries from Zq−1.

Clearly D has entries from Zq−1. Suppose that D is not a difference matrix. Then there
are two distinct rows i and j such that

di,k − dj,k = di,` − dj,`

for some k 6= `. Then
mi,k

mj,k
=
mi,`

mj,`
,

so the submatrix (
mi,k mi,`

mj,k mj,`

)
of M is not invertible. This is a contradiction.

We can also prove a partial converse to Theorem 3.12.

Theorem 3.13. Suppose q is a prime power and suppose a (q−1, q−1; 1)-difference matrix
with entries from Zq−1 exists. Then there is a q − 1 by q − 1 matrix M with entries from
Fq, such that all 1 by 1 and all 2 by 2 submatrices are invertible.

Proof. Suppose say D = (di,j) is a (q− 1, q− 1; 1)-difference matrix with entries from Zq−1.
Let α ∈ (Fq)∗ be a primitive element and define M = (mi,j) by the rule mi,j = αdi,j . M is
a q − 1 by q − 1 matrix over Fq. Clearly M contains no 0 entries, so all 1 by 1 submatrices
are invertible. Suppose a submatrix (

mi,k mi,`

mj,k mj,`

)
is not invertible. Then we have

mi,kmj,` = mi,`mj,k,

di,k + dj,` = di,` + dj,k, and

di,k − dj,k = di,` − dj,`,

so D is not a (q − 1, q − 1; 1)-difference matrix. This is a contradiction.
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Remark 3.1. In Theorem 3.13, the matrix M would not yield an AONT unless it is
invertible.

Remark 3.2. In view of Theorem 3.12, Theorem 3.10 can also be derived as a special case
of [3, Theorem 1.10], which states that a (g, 3; 1)-difference matrix over Zg does not exist if
g is even.

Remark 3.3. The existence or nonexistence of (2, q−1, q)-strong AONT is unknown when
q = 2n and q − 1 is not prime. Unfortunately, there are no currently known results on
difference matrices that can help resolve these cases, either positively or negatively. It has
been conjectured (e.g., see [1, Conjecture 5.18, §V.5.3]) that there is no (g, gλ;λ)-difference
matrix over any group whose order is not a prime power, but this conjecture has not been
proven. If it were proven, then the nonexistence of the above-mentioned AONTS would
follow as a consequence of Theorem 3.12.

Remark 3.4. Suppose 2n − 1 is prime. We can give an alternate proof of Theorem 3.9
by starting with a particular (2n− 1, 2n− 1; 1)-difference matrix, namely the multiplication
table of Z2n−1, and applying Theorem 3.12. The resulting matrix M , being a Vandermonde
matrix, is invertible, so it yields an AONT.

4 Restricted AONTs

Pham et al. [13] introduced R-restricted AONTs. Their definition, restated in the language
of unbiased arrays, is as follows:

Definition 4.1. Suppose s is a positive integer and R ⊆ {1, 2, · · · , s}. An R-restricted
AONT is a (vs, 2s, v) array that is unbiased with respect to the following sets of columns:

1. {1, . . . , s},

2. {s+ 1, . . . , 2s},

3. {i} ∪ J , for any sets {i} and J where i ∈ {1, . . . , s}, and J = {s + 1, . . . , 2s} \ R′,
where R′ = {r + s : r ∈ R}. (Note that we add s to each element of R to obtain R′,
because R′ refers to labels of columns corresponding to outputs of the AONT.)

Pham et al. [13] use these R-restricted AONTs in a setting where there is an uncondi-
tionally secure communication channel, with a limited bandwidth, as well as a channel that
can be observed by the adversary. In this setting, a portion of the message is sent through
the secure channel, while the rest is transmitted over the regular one. Pham et al. [13]
design the security of their system based on the adversary’s lack of access to the portion
of the message sent over the secure channel. They wish to guarantee that it is impossible
for the adversary to gain any information about any one input block, in the absence of the
blocks sent over the secure channel. That is, if the output blocks are all known except for
the blocks in R′, then no information can be obtained about any specific input block.

The above definition can be generalized and extended in various ways. One possible
generalization considers the security of any t input blocks, where t ≤ |R|, in the absence
of all the output blocks sent over the secure channel. Our generalization is stronger; we
consider the security of any t ≤ |R| input blocks assuming that the adversary can learn all
the output blocks except for t of the blocks sent over the secure channel. (Of course, if there
are exactly t blocks sent over the secure channel, then the adversary is assumed to have
access to none of them, and in this case the two generalizations are equivalent.)
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Thus, we propose the following more general definition of an R-restricted (t, s, v)-AONT.
This definition was first given in [4].

Definition 4.2. Suppose s is a positive integer, R ⊆ {1, 2, . . . , s}, and t is an integer such
that 1 ≤ t ≤ |R|. An R-restricted (t, s, v)-AONT is a (vs, 2s, v) array with columns, labeled
1, . . . , 2s, that is unbiased with respect to the following sets of columns:

1. {1, . . . , s},

2. {s+ 1, . . . , 2s},

3. I∪J , for any sets I and J where I ⊆ {1, . . . , s}, |I| = t, J ⊆ {s+1, . . . , 2s}, |J | = s−t,
and |R′ \ J | = t, where R′ = {r + s : r ∈ R}.

In other words, in an R-restricted (t, s, v)-AONT, fixing all the outputs—except for t
outputs in R—does not yield any information about any t inputs.

The following result is an immediate generalization of Theorem 1.3.

Theorem 4.1. Suppose there exists an OA(s, 2s, v). Let R ⊆ {1, 2, · · · , s}. Then there
exists an R-restricted (t, s, v)-AONT for all t, 1 ≤ t ≤ |R|.

Suppose R = {1, 2, . . . , `}, where ` ≥ t. The following corollary describes the restricted
AONT property in the matrix representation of linear restricted AONTs.

Corollary 4.2. Suppose that q is a prime power, t ≤ `, and M is an invertible s by s
matrix with entries from Fq. Then the transformation y = xM−1 is a {1, 2, . . . , `}-restricted
(t, s, q)-AONT if and only if all t by t submatrices of M that are contained in the first `
rows of M are invertible.

This relaxation of conditions allows for restricted AONTs with parameters for which an
AONT does not exist. For instance, it was shown in [5] that (2, 6, 5)-AONT and (2, 9, 9)-
AONT do not exist. However, Examples 4.1 and 4.2 present {1, 2}-restricted AONTs for
the same values of s and q.

Example 4.1. A linear {1, 2}-restricted (2, 6, 5)-AONT:
0 1 1 1 1 1
1 0 1 2 3 4
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Example 4.2. A linear {1, 2}-restricted (2, 9, 9)-AONT:

0 1 1 1 1 1 1 1 1
1 0 1 α α2 α3 α4 α5 α6

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


.
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When ` = t, Theorem 4.2 requires that any t columns of the t by s submatrix formed
by the first t rows of M are linearly independent. To construct such a matrix, we can use
the parity check matrix of a maximum distance separable (MDS) code. For example, triply
extended Reed-Solomon codes can be used to construct {1, 2, 3}-restricted (3, 2n + 2, 2n)-
AONTs, as shown in Theorem 4.3.

Theorem 4.3. Let n be a positive integer and let q = 2n. Then a {1, 2, 3}-restricted
(3, 2n + 2, 2n)-AONT exists.

Proof. Let ω1, ω2, . . . , ωq−1 be distinct elements in the finite field Fq. The following matrix

H =

 1 1 · · · 1 1 0 0
ω1 ω2 · · · ωq−1 0 1 0
ω1

2 ω2
2 · · · ωq−1

2 0 0 1


is the parity check matrix of a triply extended Reed-Solomon code over Fq (see [11, Ch. 11,
Theorem 10]). This code has length q+ 2, dimension q− 1 and minimum distance 4, so any
three columns of H are linearly independent. To construct the AONT, we only need to add
q− 1 additional rows in such a way that the resulting matrix is invertible. This goal can be
achieved by choosing rows consisting of a single 1 entry in column i (for 1 ≤ i ≤ q−2) and 0’s
elsewhere. The resulting matrix M gives rise to a {1, 2, 3}-restricted (3, q+2, q)-AONT.

Remark 4.1. If we use the dual code of the code used in Theorem 4.3, we can also construct
a {1, 2, . . . , q − 1}-restricted (q − 1, q + 2, q)-AONT.

Doubly extended Reed-Solomon codes can be utilized in the construction of {1, 2, . . . , t}-
restricted (t, q + 1, q)-AONTs, as Theorem 4.4 states.

Theorem 4.4. Let q be a prime power and let t ≤ q + 1. Then a {1, 2, . . . , t}-restricted
(t, q + 1, q)-AONT exists.

Proof. For any value of k such that 1 ≤ k ≤ q + 1, we can construct a doubly extended
Reed-Solomon code of length q + 1, dimension k and distance q − k + 2 (see [11, Ch. 11,
Theorem 9]). The parity check matrix of this code can be extended by k rows such that
the final matrix is invertible. Since any q − k + 1 columns of the parity check matrix are
linearly independent, the final matrix is a {1, 2, . . . , t}-restricted (t, q + 1, q)-AONT, where
t = q − k + 1.

Remark 4.2. Example 4.1 is an application of Theorem 4.4.

5 Conclusion

In this paper, we have initiated a study of three generalizations and extensions of (t, s, v)-
all-or-nothing transforms: rectangular, range, and restricted AONTs. It is worth noting
that these properties are not necessarily mutually exclusive. An example of this is the
combination of strong and rectangular AONTs that are used in the applications described
by Oliveira et al. [12]. Constructions for most of combinations of these AONT properties
have not been studied yet and could result in interesting outcomes both in theory and in
application.
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