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Abstract. This paper studies quantitative relationships between privacy,
verifiability, accountability, and coercion-resistance of voting protocols.
We adapt existing definitions to make them better comparable with each
other and determine which bounds a certain requirement on one property
poses on some other property. It turns out that, in terms of proposed defi-
nitions, verifiability and accountability do not necessarily put constraints
on privacy and coercion-resistance. However, the relations between these
notions become more interesting in the context of particular attacks. De-
pending on the assumptions and the attacker’s goal, voter coercion may
benefit from a too weak as well as too strong verifiability.
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1 Introduction

Voting is a complex process subject to a number of requirements such as el-
igibility, generality, uniformity, freedom of choice, tally integrity, accessibility,
etc [4, 10, 19, 23]. In order to implement these requirements, a number of mea-
sures can be applied. For example, in order to express one’s preference freely
and withstand coercion, voting privately is often required. Tally integrity, on the
other hand, can be achieved via various verification procedures.

Even though both privacy and verifiability of voting are well-motivated, they
are at least partially contradictory. Intuitively, when targeting full public veri-
fiability without any trust assumptions, it seems necessary to also open all the
personalised votes, but this causes privacy loss and potential coercion issues. Of
course, this intuition is very informal and the situation becomes more compli-
cated when we consider particular definitions for privacy and verifiability.

In order to study the connections between the two notions, the corresponding
definitions must be given in comparable terms. However, it is far from being clear
which terms are the best suited for this comparison. Working towards definitions
that can be quantitatively compared to each other, and coming up with some
comparison results, are the main aims of the current paper.



2 Related Work

There are many definitions of privacy in the context of voting, and an extensive
survey discussing their advantages and drawbacks can be found in [3]. Relations
between privacy and coercion-resistance for certain formal definitions of these
notions have been shown in [9]. In this work, we are using definitions of privacy
and coercion-resistance that originate from [16]. The benefit of these definitions
is that they allow to measure the corresponding properties quantitatively. We
instantiate our definitions of verifiability and accountability in the KTV frame-
work [7, 15,17]. This framework provides generic definitions for verifiability and
accountability, and many other, more specific definitions of verifiability can be
instantiated in this framework. Among other results, [16] shows the relation
between privacy and coercion resistance, and [15] shows the relation between
verifiability and accountability. In all these works, the agents (i.e. the voters and
the authorities) of a voting protocol are modeled as some processes, typically
specified in pi-calculus.

KTV framework relies on the notion of end-to-end (E2E, global) verifiability,
where voters and external observers are able to check whether the final result
corresponds to the actual choices of honest voters. An alternative is to con-
sider universal and individual verifiability as separate properties [22]. Previous
research has established the following:

– There can be no unconditional privacy if there is universal verifiability [5].
– There can be no privacy if there is no individual verifiability [8].

In addition, [5] proves that universal verifiability and receipt-freeness cannot
be achieved simultaneously unless private channels are available. A receipt is
a witness which allows verifying in an unambiguous way the vote of a certain
voter. Intuitively, the existence of a receipt may lead to voter coercion. Different
types of realistic coercion methods, both legal and illegal, are discussed in [11].

It has been noted in [14] that universal and individual verifiability are not
sufficient for E2E verifiability [12]. Indeed, by definition, universal verifiability
only checks that the final result corresponds to the submitted votes, but it does
not require that the votes are well-formed (e.g. that there are no negative votes).
Also by [14], universal verifiability is not necessary for E2E verifiability.

In [8], it is shown how manipulation of even one vote may break privacy
by observing the change that it caused in the tally. It is important that the
attacker knows whose vote he is trying to change, so privacy requires individual
verifiability. The proposed attack breaks a particular privacy definition, which
says that the attacker should not be able to distinguish two protocol transcripts
where some honest voters Alice and Bob have decided to swap their votes. The
attacker may drop the vote of Alice in both transcripts, and observe the difference
in the tally of the two transcripts to determine what the vote of Alice actually
was. Such a privacy definition is very strong, and in practice, the attacker does
not actually have access to two alternative voting transcripts. If there are many
voters, dropping a single vote does not help much in actually guessing some
other votes. Nevertheless, if the attacker has a strong prior knowledge of the



other voters’ choices, such an attack may allow learning the vote of the victim.
In this work, we consider similar attacks w.r.t. the privacy definition of [16],
which allows assessing the severity of the attack quantitatively.

An interesting approach to estimate voting systems in terms of distributional
differential privacy has been proposed in [18]. While differential privacy is often
achieved by adding noise to the system, which is unacceptable for voting, DDP
is achieved by considering the distribution of votes as a source of randomness.

3 Preliminaries

3.1 Protocols

In this section, we present a generic framework for the definitions considered in
this paper. The framework originates from [7, 15, 16] and is provided with some
simplifications, excluding details that are not relevant for this paper.

First of all, we need the notion of a process that can perform internal com-
putation and can communicate with other processes by sending messages via
(external) input/output channels.

Definition 1 (Process). A process is a set of probabilistic polynomial-time inter-
active Turing machines (also named programs) that are connected via named
tapes (also called channels). We denote by Π(I,O) the set of all processes with
external input channels I and external output channels O. A process defines a
family of probabilistic distributions over runs, indexed by the security parameter
η. The concurrent composition of processes π and π′ is denoted by π‖π′.

A protocol is not a process by itself, but rather a collection of building blocks
that will be used to define a process. As noted in [16], since the quantitative level
of privacy, coercion-resistance, and verifiability of a voting protocol depends on
several parameters such as the number of voters and the number of choices, we
consider a protocol instantiation for which these parameters are fixed.

Definition 2 (Protocol instantiation). A protocol instantiation is a tuple P =
(Σ,Ch, In,Out, {Πa}a∈Σ) where

– Σ is a set of protocol agents.
– Ch is a set of protocol channels.
– In and Out are functions from Σ to 2Ch (i.e assignments of input and output

channels for each protocol agent) such that In(a) ∩ In(b) = ∅ and Out(a) ∩
Out(b) = ∅ for all a, b ∈ Σ, a 6= b.

– Πa ⊆ Π(In(a),Out(a)) for a ∈ Σ is the set of honest programs that can be
run by the agent a.

The randomness of agent behaviour, such as probabilistic distribution of
choices of an honest voter, is covered by Πa. Particular probability distributions
are not relevant for the results of this paper.

A protocol instance is the process that will actually be executed.



Definition 3 (Protocol instance, run). Let P = (Σ,Ch, In,Out, {Πa}a∈Σ) be a
protocol instantiation.

– An instance of P is a process πP = πa1‖ . . . ‖πa|Σ| for πai ∈ Πai ,

– A run of P is a run of some instance of P .

Similarly to [7, 16], we have not included processes of dishonest parties into
the definitions of P and πP . Instead, the dishonest parties are subsumed by a
special adversary process.

Definition 4 (Adversary). A protocol instance πP is typically run in parallel with
an adversary process πA as a process π := πP ‖πA.

There is a bidirectional channel between the adversary A and each protocol
agent a ∈ Σ. The adversary can corrupt an agent a ∈ Σ by sending a special
message corrupt. Upon receiving such a message, a reveals its internal state to A
and from then on is controlled by A, i.e. runs a dummy process dum which sim-
ply forwards all messages between A and the interface of a in πP . Some agents
(honest users and incorruptible authorities) ignore corrupt messages. Public in-
formation (such as the election result) is output to A even without corruption.

At the end of a run, πA produces some output y. We use the notation π
A7→ y

to say that the output of πA in a run of π is y.

We say that an agent a ∈ Σ is honest in a run of π := πA‖πP if a has not
been corrupted in this run, i.e has not accepted the message corrupt. We use
notation π � dis(a) to denote an event (viewing π as a probabilistic distribution
over runs) that the agent a has been corrupted.

The condition dis(a) can be viewed as a certain property of a protocol P .
A property is a function that takes as input a run of a process π and returns
a boolean value, telling whether that property is satisfied. For a fixed protocol
instantiation P , a property can be viewed as a subset of runs of P .

Definition 5 (Protocol property). A property γ of P defines a subset of the set
of all runs of P . By ¬γ we denote the complement of γ, i.e. the set of runs that
do not satisfy γ.

In order to reason about probability distributions of protocol runs taking into
account the privacy parameter η, we will need the following definition.

Definition 6 (negligible, overwhelming, δ-bounded [7, 15–17]). A function f :
N→ [0, 1] is negligible if, for every c > 0, there exists η0 such that f(η) ≤ 1

ηc for
all η > η0. The function f is overwhelming if the function 1− f is negligible. A
function f is δ-bounded if, for every c > 0, there exists η0 such that f(η) ≤ δ+ 1

ηc

for all η > η0.

The summary of process-related notation used in this paper is given in Table 1.



Table 1. Table of notations. For events, π is viewed as a distribution of runs.

Notation Type Meaning

π(η) process a process π where all programs use the security parameter η
π1‖π2 process concurrent composition of processes π1 and π2

π(~x) process a process π running with inputs ~x
πP\Σ′ process concurrent composition of all subprocesses of πP

excluding subprocesses πa of agents a ∈ Σ′ ⊆ Σ.

πP\~i process same as πP\Σ′ for Σ′ = {vi1 , . . . , vik}, where ~i ⊆ {1, . . . , |V |}
π 7→ (a : y) event the final output of the agent a ∈ Σ in the run of π is y

π
A7→ y event the final output of the adversary πA in the run of π is y

π � γ event a run of π satisfies a property γ

dis(a) property the agent a ∈ Σ has been corrupted
voted(i, c) property the voter vi ∈ V cast a vote c

Fdis set the set of boolean formulae over literals dis(a) for a ∈ Σ

3.2 Notation Related to Voting Protocols

We will use V to denote the set of voters, C the set of possible choices made
by the voters (a choice does not necessarily represent a single candidate), and
R the set of possible election results. Let V = VH ∪ VD for VH ∩ VD = ∅, where
VH are honest voters, and VD are dishonest voters (controlled by the adversary).
Let |V | = n = nh + nd be the total number of voters, where nh = |VH | and
nd = |VD|. We assume that the voters are somehow ordered, and the voter with
index i ∈ {1, . . . , n} is denoted by vi. The votes are combined using a result
function ρ : Cn → R whose exact definition depends on the used voting rule.

3.3 Verifiability and Accountability

We start from a generic definition of verifiability from [7]. First of all, we need
to state what exactly we are verifying. We assume a certain property γ (Defini-
tion 5) that we want to achieve in each protocol run, e.g. that each voter votes at
most once, or that all ballots are well-formed. If γ is achieved, then everything
is fine. If γ is not achieved, then we at least want to detect such a case.

The definitions of verifiability and accountability used in this paper will be
based on the particular γ for quantitative verifiability proposed in [7]. First, let
us define the protocol runs covered by γ. The idea of the following definition
is that the final tally (i.e. the multiset of ballots before applying ρ) of a voting
protocol may differ from the true tally in at most k votes.

Definition 7 (k-correctness of the protocol run [7]). A protocol run r, where
c1, . . . , cnh are the choices of honest voters, is called k-correct if there exist
valid choices c′1, . . . , c

′
nd

(representing possible choices of dishonest voters) and
c̃1, . . . , c̃n, such that:

– an election result is published in r and it is equal to ρ(c̃1, . . . , c̃n);
– d((c1, . . . , cnh , c

′
1, . . . , c

′
nd

), (c̃1, . . . , c̃n)) ≤ k;



where d is defined as d(~c,~c′) =
∑
c∈C |fcount(~c)[c]− fcount(~c′)[c]|, where C is the

set of possible choices, and fcount : Cn → NC counts how many times each choice
occurs in a vector.

The set of all k-correct runs of a protocol is denoted by γk.

In [7], verifiability w.r.t. a property γ is quantified by an upper bound on the
probability that:

1. γ is not achieved; and
2. this fact remains undetected by a certain designated party J called the Judge.

The particular definition of γ can be very different, and various choices of γ
provide different flavours of verifiability. In this paper, we instantiate the generic
verifiability property of [7] on γk. This leads to the following definition.

Definition 8 ((k, δ)-verifiability). Let πP be an instance of a voting protocol P
with the set of agents Σ. Let δ ∈ [0, 1] be the tolerance, J ∈ Σ be the Judge, and
γk be the set of runs of P such that, for all runs r ∈ γk, r is k-correct according
to Definition 7. We say that πP is (k, δ)-verifiable w.r.t. J if for all adversaries
πA and π = πP ‖πA, the probability

Pr[(π(η) � ¬γk) ∧ (π(η) 7→ (J : accept))]

is δ-bounded as a function of η, and

Pr[π(η) 7→ (J : reject)] = 0

if π 6� dis(a) for all a ∈ Σ.

We do not want that the attacker would be able to abort the elections, so
we need to specify what actually happens after the Judge rejects. As proposed
in [15], in general verifiability is not enough, and in practice, we want account-
ability. This property assumes that, if the Judge rejects, he needs to come up
with a certain verdict, which states which parties have potentially misbehaved.
A verdict is a boolean formula over statements dis(a) for a ∈ Σ. Let Fdis be
the set of all boolean formulae of such a form. It is possible that a verdict has
a form of disjunction, e.g. dis(vi) ∨ dis(a), for a voter vi and a voting authority
a ∈ Σ, which could mean that it is not clear whether a has dropped the message
of the voter vi, or the voter vi has not sent a valid message. An accountability
constraint of a protocol P consists of a property α that we want to be satisfied,
and a set of possible verdicts φ1, . . . , φ` the Judge J must come out in the case
when α is not satisfied.

Definition 9 (Accountability constraint [15]). An accountability constraint of a
protocol P is a tuple (α, φ1, . . . , φ`) where α is a property of P (i.e. a subset of
runs of P ) and φ1, . . . , φ` ∈ Fdis.

In this paper, we will be working with the property α := γk as in Definition 8.
This means that we require accountability if the tally error is at least k, and we
agree to accept smaller errors in the tally.



Definition 10 ((k, δ)-accountability). Let πP be an instance of a voting protocol
P with the set of agents Σ, and let J ∈ Σ be the Judge. Let Φ = (γk, φ1, . . . , φ`)
be an accountability constraint where γk is set of runs of P such that, for all
runs r ∈ γk, r is k-correct according to Definition 7.

We say that πP is (k, δ)-accountable w.r.t. Φ and J if for all adversaries πA
and π = πP ‖πA, the probability

Pr[(π(η) � ¬γk) ∧ ¬∃i(π(η) 7→ (J : φi))]

is δ-bounded as a function of η, and, for all i ∈ {1, . . . , n},

Pr[π(η) 7→ (J : φi)] = 0

if π 6� φi.

Ideally, we would like to have individual accountability where every verdict
blames a particular agent. However, as shown in [15], individual accountability is
typically not achieved by voting protocols, and in [2] it was shown that resolving
a dispute between two agents requires certain assumptions such as undeniable
channels or trusted authorities. The problem is the communication between the
voter and the voting system, where a voter may always say that“the system does
not respond”, and the system may always argue that“the voter has not attempted
to communicate”. In this work, we will consider general accountability.

3.4 Privacy and Coercion-Resistance

We take the definition of voter privacy from [16], defined as the inability to
distinguish whether the voter v ∈ V under observation made the choice c ∈ C
or c′ ∈ C. The parameter k quantifies the number of voters under observation.

Definition 11 ((k, δ)-privacy). Let πP be an instance of a voting protocol P with
n voters. Let δ ∈ [0, 1] be the tolerance. For all i ∈ {1, . . . , n}, let πvi be the
honest process of the voter vi. Let ~i = {i1, . . . , ik} ⊆ {1, . . . , n} be the indices of

honest voters under observation, and let ~c, ~c′ ∈ Ck be two assignments of choices
to the voters ~i. Denote π~i,~c := πA‖πvi1 (c1)‖ . . . ‖πvik (ck)‖πP\~i for an adversary

process πA. We say that πP is (k, δ)-private if the difference of probabilities∣∣∣Pr[π
(η)
~i,~c

A7→ 1]− Pr[π
(η)
~i,~c′

A7→ 1]
∣∣∣

is δ-bounded as a function of the security parameter η for all ~i, ~c, ~c′ and for all
adversaries πA.

In contrary to Definition 8, larger k means stronger privacy guarantees, and
for k = 0, the adversary would need to distinguish two identical distributions.

Proposition 1. Let ` ≤ k. If an instance πP of a voting protocol P is (k, δ)-
private, then it is also (`, δ)-private .



Intuitively, it can only be easier for the adversary to notice the difference between
two distributions if a larger number of voters’ votes is fixed in advance. A formal
proof of Proposition 1 can be found in App. A.1.

Let us now consider the definition of coercion-resistance from [16]. A protocol
is called coercion-resistant if the coerced voter, instead of running the dummy
strategy dum (which simply lets all messages be chosen by the coercer), can run
some counter-strategy πṽ such that:

1. by running this counter-strategy, the coerced voter achieves their own goal,
e.g., votes for a specific candidate; and

2. the coercer is not able to distinguish whether the coerced voter followed
coercer’s instructions or tried to achieve their own goal (by running πṽ).

Similar to the privacy definition, we extend the coercion-resistance of [16] to k
voters, where we allow that up to k voters can be coerced simultaneously. Here
the coerced voters may share a common goal γ. For example, if the goal of k
coerced voters is to give at least ` < k votes to Alice, then it does not matter
who exactly gave a vote to Alice, and only the total multiset of votes in the
group matters.

Definition 12 ((k, δ)-coercion-resistance). Let πP be an instance of a voting pro-
tocol P with n voters. Let δ ∈ [0, 1] be the tolerance. Let ~i = {i1, . . . , ik} ⊆
{1, . . . , n} be the indices of honest voters under observation. Let γ be the joint
goal of the voters ~i. We say that πP is (k, δ)-coercion-resistant w.r.t. γ, if the
exists a joint strategy πṽ of coerced voters such that the following conditions are
satisfied for any adversary πA connected to vi1 , . . . , vik via the interface of dum:

– Pr[(πA‖πṽ‖πP\~i)
(η) � γ] is overwhelming as a function of η.

– Pr[(πA‖dum‖πP\~i)
(η) A7→ 1] − Pr[(πA‖πṽ‖πP\~i)

(η) A7→ 1] is δ-bounded as a
function of η.

Note that the counter-strategy does not necessarily belong to the set of honest
voter processes, and e.g. in order to give k votes to Alice, it is allowed that one
of the coerced voters submits a malformed ballot with k votes, while the other
k − 1 coerced voters abstain from voting.

4 Relations Between Definitions

In this paper, we study relations between the definitions of Sec. 3.3 and Sec. 3.4.
A summary of relations considered in this paper is depicted in Figure 1. We
note that it does not cover all possible relationships between definitions. While
Theorem 1 and Theorem 2 are based on related work and merely adapted to our
definitions, we still reproduce them for the sake of completeness. On the contrary,
Theorems 3, 4, and 5 that establish a bridge between the verifiability-related
definitions of Sec. 3.3 and the privacy-related definitions of Sec. 3.4 comprise a
new contribution. In this section, we formally state the corresponding theorems
and provide proof sketches. The full proofs can be found in App. A.
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Fig. 1. Summary of the results of this paper (informal, simplified). Here nh is the total
number of honest voters, and k and δ are parameters. The graph depicts relations
between these parameters for different properties of a voting protocol. A unidirectional
arrow ⇒ denotes implication, and a negated bidirectional arrow 6⇔ denotes properties
that cannot be achieved simultaneously. The arrows can be composed, but one must
be careful that the assumptions of corresponding theorems are all taken into account.

4.1 Coercion-Resistance and Privacy

Relationships of coercion-resistance and privacy have been studied in [9, 16].
An interesting outcome of [16] is that, while intuitively coercion-resistance is
a stronger notion than privacy, for some protocols it is possible that the level
of privacy is lower than the level of coercion resistance. The reason is that the
counter-strategy of a voter in Definition 12 does not necessarily belong to the
set of valid strategies of honest voters, and may protect the vote in a better way
than following the protocol honestly. However, coercion-resistance is nevertheless
stronger than privacy if we assume that the counter-strategy does not outperform
an honest strategy, defined as follows.

Definition 13 (non-outperforming counter-strategy [16]). Let πP be an instance
of a voting protocol P . Let ~i = {i1, . . . , ik} be the indices of honest voters under

observation. Let π
~c′
A be a process that is only connected to the agents vi1 , . . . , vik

using the interface of dum, and acts on their behalf according to an honest strat-
egy πv(~c′) := πvi1 (c′1)‖ . . . ‖πvik (c′k). Let πv(~c) := πv1(c1)‖ . . . ‖πvk(ck). Let πṽ(~c)

be a joint counter-strategy of the honest voters ~i whose goal is to make choices
~c = {c1, . . . , ck}. We say that the counter-strategy πṽ does not outperform the
honest voting strategy of πP if, for any adversary process πA that is not connected

to π
~c′
A , and any choices ~c and ~c′,

Pr[(πA‖π
~c′
A‖πṽ(~c)‖πP\~i)

(η) A7→ 1]− Pr[(πA‖πv(~c)‖πP\~i)
(η) A7→ 1]

is negligible as a function in the security parameter η.



We adapt a theorem of [16] to our definitions.

Theorem 1. Let an instance πP of a voting protocol P be (k, δ)-coercion-resistant.
Assume that, for any subset of k coerced voters, the coercion counter-strategy πṽ
does not outperform the honest voting strategy of πP (Definition 13). Then, πP
is (k, δ)-private.

Proof (Sketch). Suppose that πP is not (k, δ)-private. There exist k voters ~i,
choices ~c and ~c′, and an adversary process πA such that∣∣∣Pr[π

(η)
~i,~c

A7→ 1]− Pr[π
(η)
~i,~c′

A7→ 1]
∣∣∣

is not δ-bounded as a function of η, where π~i,~c is defined as in Definition 11.
Let us now describe a coercer that breaks coercion-resistance. Consider a

particular setting where the true goals of the voters ~i is to make the choice ~c.

Let π
~c′
A be a coercer that selects for the voters the input ~c′, and otherwise acts

as an honest voter would. By construction of π
~c′
A ,

Pr[(πA‖π
~c′
A‖dum‖πP\~i)

(η) A7→ 1] = Pr[π
(η)
~i,~c′

A7→ 1] .

Let πv = πvi1‖ . . . ‖πvik . By definition of π~i,~c,

Pr[(πA‖πv(~c)‖πP\~i)
(η) A7→ 1] = Pr[π

(η)
~i,~c

A7→ 1] .

Since πṽ does not outperform πv = πvi1 ‖ . . . ‖πvik , and there are no direct con-

nections between πA and π~cA,

Pr[(πA‖πv(~c)‖πP\~i)
(η) A7→ 1]− Pr[(πA‖π

~c′
A‖πṽ(~c)‖πP\~i)

(η) A7→ 1]

is negligible as a function of η.We get that

Pr[(πA‖π
~c′
A‖dum‖πP\~i)

(η) A7→ 1]− Pr[(πA‖π
~c′
A‖πṽ(~c)‖πP\~i)

(η) A
′

7→ 1]

is not δ-bounded as a function of η. Let πA′ := πA‖π
~c′
A be an adversary that

outputs the final output of πA. Such πA′ breaks (k, δ)-coercion-resistance. Since

πA does not interact with ~i (as they are honest), and π
~c′
A′ interacts only with ~i

using interface of dum, πA′ satisfies Definition 12. �

4.2 Accountability and Verifiability

It has been proven in [15] that verifiability can be treated as a special case of
accountability. We adapt a theorem of [15] to our definitions.

Theorem 2. Let an instance πP of a voting protocol P be (k, δ)-accountable w.r.t.
a Jugde J and a property Φ = (γk, φ1, . . . , φ`) where ∀i : φi ∈ Fdis. Then, πP
is (k, δ)-verifiable w.r.t. a Judge J ′ who rejects iff J outputs a verdict φi.



Proof (Sketch). Let π := πA‖πP . Suppose that πP is not (k, δ)-verifiable w.r.t.
J . The verifiability may fail due to one of the following reasons:

1. There is a run where J ′ outputs reject, but all parties are honest. Then,
there is a run where J outputs a verdict φi while all parties are honest. This
violates accountability requirement that Pr[π(η) 7→ (J : φi)] = 0 if π 6� φi.

2. Suppose that there exists an adversary process πA such that

Pr[(π(η) � ¬γk) ∧ (π(η) 7→ (J ′ : accept))]

is not δ-bounded as a function of η.
Let us show that πA breaks accountability as well. By assumption, J ′ outputs
reject iff J outputs a verdict φi. Hence, the event π(η) 7→ (J ′ : accept) is as
likely as the event ¬∃i(π(η) 7→ (J : φi)), hence,

Pr[(π(η) � ¬γk) ∧ ¬∃i(π(η) 7→ (J : φi))]

is also not δ-bounded as a function of η. �

4.3 Privacy and Verifiability

Without additional assumptions, verifiability of Definition 8 is neither essential
for the privacy of Definition 11, nor contradicts it. It is not essential since e.g.
if the adversary violates the property γk by directly interacting with the final
tally, when the ballots are not linked to the identities of voters anymore, it will
not help in breaking privacy. It does not contradict privacy e.g. if the Judge’s
verdict only depends on inputs of dishonest parties.

Considered Attacks. The importance of verifiability for privacy has been demon-
strated in [8]. The necessity of avoiding duplicate ballots in order to preserve
privacy is mentioned in [3]. While our results and definitions are formally dif-
ferent, the considered actual attacks are of similar nature, and are related to
manipulating the ballots which the attacker can link to identities of particular
voters. We consider verifiability against particular types of attacks that could be
applied to violate the goal γk. Let us list the possible cases and briefly summarize
our results.

– Add ballots: suppose that the attacker is capable of ballot stuffing.
• If the added ballots do depend on the votes of honest voters (e.g. some

ballot of an honest voter is replayed), then the attack reduces the privacy
of voters whose ballots are replayed.

• If the added ballots do not depend on the votes of honest voters (e.g. are
chosen by the attacker or are sampled randomly), then the attack does
not directly help in breaking privacy.

– Drop ballots: suppose that the attacker is capable of ballot dropping.
• If the attacker drops ballots of some honest voters, it reduces the privacy

of the remaining voters who are still counted.



• If the attacker drops ballots of some dishonest voters, it does not directly
help in breaking privacy.

– Substitute ballots: This attack can be viewed as a combination of ballot
adding and dropping. The privacy can be reduced in the following two cases:
• The inserted ballot does depend on the votes of honest voters.
• The replaced ballot does not depend on the votes of honest voters.

It is important that the attacker knows whether ballot manipulation has
succeeded or not. For example, if the attacker wanted to replay the ballot of an
honest voter k times, but occasionally has replayed the ballot of some dishonest
voter, this can lead to a completely wrong decision. We need the notion of a
detectable protocol property.

Definition 14 (detectable property). Let π := πA‖πP be a voting protocol in-
stance πP running in parallel with an adversary πA. Let γ be a property of π.
We say that γ is detectable in π if

Pr[(πO‖π)(η)
O7→ 1 | γ]− Pr[(πO‖π)(η)

O7→ 1 | ¬γ] = 1

for a passive observer process πO who has access to the internal state of πA, but
does not directly interact with πP .

We could quantify the probability in Definition 14 as δ, introducing an extra
parameter into relations between privacy and verifiability.

Considered Voting Rules. Many voting systems reveal not just the voting result,
but also the full tally, which shows the exact number of votes per candidate.
Revealing such information can lead to high privacy leakage. For that reason,
some voting systems like Ordinos [13] ensure that only the final result is revealed,
e.g. the identity of the winner, and it has been shown in [13] that doing this may
reduce privacy leakage significantly. In this work, we want to quantify attacks
on privacy that are possible even if only the final result is revealed.

The main idea is that, even if we do not know the particular distribution of
votes and cannot compute privacy parameter δ precisely, we can apply the attack
on verifiability to change the number of votes that are “known in advance” to
the attacker and thus switch between (k, δk) and (k′, δk′)-privacy. This can be
useful for certain kinds of voting rules, satisfying the following definition.

Definition 15 (majority-determined voting rule). Let n be the total number of
voters. A voting rule is called majority-determined if it is sufficient to cast n′ =
bn2 c+ 1 identical votes to determine the election outcome.

While Definition 15 is trivially satisfied in the case where the election result
is a counting histogram of votes, let us show that it holds for a variety of widely
used voting rules. The following descriptions of voting rules are taken from [6].

– Plurality rule. Each voter votes for one favorite candidate, and the winner
is the candidate with the most votes.
Attack. A candidate j who receives a majority of the votes wins the elections.



– Borda rule. Each voter orders candidates by preference and each candidate
j gets m − i points in each vote, where i is the rank of j in the vote, and
m is the number of candidates; the winner is the candidate with the highest
total points.
Attack. If some candidate j has the first rank in a majority of votes, this
ensures the maximum number of points for j.

– Single transferable vote (STV): This rule proceeds through a series of rounds.
Similar to the Borda rule, each voter orders the candidates by preference. In
each round, the candidate that gets the fewest votes ranking it first among
the remaining candidates is eliminated, and each of the votes for the elimi-
nated candidate transfers to the next preferred candidate in that vote. The
winner is the last remaining candidate.
Attack. A majority of voters can ensure that a certain candidate wins even
if some other candidate receives all the other votes.

– Maximin. For any two candidates j and j′, let N(j, j′) be the number of
votes that prefer j to j′. The score of j is minj′ N(j, j′).
Attack. Suppose that the attacker controls a majority n′ of the n votes. If
the attacker lets j be the most preferable candidate in his controlled votes,
then minj′ N(j, j′) ≥ n′. On the other hand, for any other candidate j′, we
have N(j′, j) ≤ n− n′, hence, minj′′ N(j′, j′′) ≤ n− n′ < n′.

– Copeland. For any two candidates j and j′, let C(j, j′) = 1 if N(j, j′) >
N(j′, j), C(j, j′) = 1/2 if N(j, j′) = N(j′, j), and C(j, j′) = 0 if N(j, j′) <
N(j′, j). The Copeland score of candidate j is s(j) =

∑
j′ C(j, j′).

Attack. If the attacker lets j be the most preferable candidate in his controlled
votes, then N(j, j′) > N(j′, j) for all j′, so j gets score m − 1, where m is
the number of candidates. On the other hand, any other candidate j′ will
miss the score C(j′, j), so s(j) > s(j′) for all j′ ≤ j.

– Bucklin. For any candidate j and integer l, let B(j, l) be the number of
votes that rank candidate j among the top l candidates. The winner is
arg minj(minlB(j, l) > n/2).
Attack. If the attacker lets j be the most preferable candidate in his controlled
votes, then j wins already for l = 1.

While these voting rules guarantee success for an attacker who controls a
majority of votes, in practice it is unlikely that all honest voters prefer the same
candidate, and the attacker may be successful even controlling way less than
half of the votes. This is closely related to the notion of manipulability of voting.
The authors of [20] have estimated asymptotic bounds for the fraction of voters
that are being manipulated to make switching the election outcome hard in the
average case. It would be interesting to consider such bounds in future research.

There are some standard voting rules for which Definition 15 does not hold.
E.g. in a veto rule, each voter gives a score of 0 to one least favorite candidate,
and 1 to every other candidate, and the winner is the candidate with the most
votes. Here is possible that all voters that are not controlled by the attacker will
veto the particular candidate chosen by the attacker, but the attacker does not
have enough votes to veto each of the other candidates.



Results. We now show how privacy implies certain types of targeted attacks on
votes, i.e. where the attacker is able to link manipulated ballots to the identities
of corresponding voters who cast these ballots. We will also assume that the
attacker knows whether the attack has succeeded or not. The main idea is that,
for majority-determined voting rules, if k > nh/2, the attacker can always win

in the distinguishability game of Definition 11 by taking choices ~c and ~c′ that
produce different election outcomes. We cannot get a better result without taking
into account a particular vote distribution, since it is possible that there is a
candidate whom the remaining nh − k voters will choose with overwhelming
probability, resulting in a constant election result r that does not say anything
about the victim’s choice.

Proposition 2. Let πP be an instance of a voting protocol P that uses a majority-
determined voting rule, with nh honest voters VH . If πP is (k, δ)-private w.r.t. a
subset of voters Vpr ⊆ VH of size k, then πP is (nh − 2k, δ)-verifiable against an
attacker πA who has access to Out(J) who is only able to drop votes of VH \ Vpr
from the tally, whose success does not depend on the choices of VH , and the
property γnh−2k is detectable in πA‖πP .

Proof (Sketch). Regardless of the prior distribution of votes, if a protocol uses
a majority-determined voting rule, if k > nh/2, the attacker may always choose
votes c1, . . . , ck and c′1, . . . , c

′
k that determine some election results r 6= r′. If

k ≤ nh/2, the attacker can use the attack on verifiability to drop some of the
nh−k ballots of voters that are not under observation, until a majority of ballots
belongs to voters under observation. Suppose that the attacker has managed to
drop ` ballots. He will control k out of n − ` ballots. In order to control a
majority, he needs k > (nh − `)/2, which means ` > nh − 2k dropped ballots. If
dropping ` ballots has failed, the attacker will detect it and output a constant
bit, which will be the same regardless of the choices of Vpr. Since the protocol
is by assumption (k, δ)-private, the attacker should not be able to drop these `
ballots with probability larger than δ. �

Proposition 3. Let πP be an instance of a voting protocol P that uses a majority-
determined voting rule, with nh honest voters VH . If πP is (k, δ)-private w.r.t. a
subset of voters Vpr ⊆ VH , then P is (nh−2k, δ)-verifiable against an attacker πA
who has access to Out(J), who is only able to duplicate votes of Vpr in the tally,
whose success does not depend on the choices of VH , and the property γnh−2k is
detectable in πA‖πP .

Proof (Sketch). Regardless of the prior distribution of votes, if a protocol uses
a majority-determined voting rule, if k > nh/2, the attacker may always choose
votes c1, . . . , ck and c′1, . . . , c

′
k that determine some election results r 6= r′. If

k ≤ nh/2, the attacker can use the attack on verifiability to duplicate some of
the k ballots of voters under observation, until a majority of ballots belongs to
voters under observation. Suppose that the attacker has managed to produce
` duplicates. He will control k + ` out of nh + ` ballots. In order to control a
majority, he needs k + ` > (nh + `)/2, which is ` > nh − 2k additional ballots.



Since the protocol is by assumption (k, δ)-private, the attacker should not be
able to get these additional ` ballots with probability larger than δ. �

Propositions 2 and 3 put the same constraint on verifiability, which does
not depend on whether the attacker adds or drops the votes. This leads to the
following theorem, which is an immediate consequence of the propositions above.

Theorem 3. Let πP be an instance of a voting protocol P that uses a majority-
determined voting rule, with nh honest voters VH . If πP is (k, δ)-private w.r.t. a
subset of voters Vpr ⊆ VH , then πP is (nh − 2k, δ)-verifiable against an attacker
πA capable of duplicating votes of Vpr and dropping votes of VH \ Vpr, assuming
that success of the attack does not depend on the particular choices of the voters
VH , and the property γnh−2k is detectable in πA‖πP .

The attacks of Theorem 3 are mostly oriented to small-scale elections with
few voters. Suppose that the attacker is interested in a vote of a particular
single voter, i.e. k = 1. Let there be nh honest voters for an even nh. The
attacker attempts to drop nh

2 ballots belonging to the remaining nh − 1 voters,
and introduces nh

2 copies of the ballot of the vote under observation instead.
There are still nh votes in the final tally, but nh

2 + 1 of them are copies of the
ballot under observation, so the winner of the election is the main preference of
the victim. It is interesting that when the attacker combines vote adding and
dropping, in the end, the protocol run may still satisfy γnh−2k if the dropped
votes occasionally turn out to be the same as the added votes. Such an attack
is formally treated as unsuccessful, and in practice, we may get tighter bounds
if we measure “success of substituting k votes” instead of “violating γk−1”.

Such types of attack are more interesting in terms of coercion. Suppose that
the attacker already controls nd dishonest voters, and in addition, is able to
manipulate ` ballots with a high probability of success. If nd + ` < n

2 , then it
is not enough to switch the election result and make a certain candidate j the
winner. The attacker tries to convince k = (nh − `)/2 voters to vote for j. If in
the end, j is not the winner, the attacker learns that at least some voters of the
coerced group have not obeyed, and may punish them.

4.4 Verifiability and coercion-resistance

Suppose that the attacker is trying to convince a subset of k voters to misbehave.
It can be viewed as a variant of coercing abstention from voting (since bad votes
are not supposed to be counted), or even an attempt to halt the elections, in
the case when Judge’s rejection does not allow proceeding with publishing the
result. Such kind of attacks, called fault attacks, have been considered in [9],
and the attacker can apply them to test the loyalty of a voter (or a subset of
voters) in a probabilistic way. The following definition allows the attacker to
break k-correctness by taking control of a certain number of dishonest voters.

Definition 16 (ballot-corruptible protocol). An instance πP of a voting protocol
P is called ballot-corruptible if, for all k ∈ N, there exists a subset of voters



V ′ := {vi1, . . . , vi`} of size ` ≤ k+ 1, and a joint strategy bad for these ` voters,
such that

Pr[(πP\V ′‖bad)(η) � ¬γk] = 1

where γk is defined as in Definition 7.

We could quantify the probability in Definition 16 as δ, introducing an extra
parameter into relations between coercion-resistance and verifiability.

Definition 16 allows the attacker to interact with the protocol in such a way
that γk will actually be violated and the judging procedure triggered. In practice,
the bad voting strategy may correspond to submitting corrupted paper ballots,
or malformed digital ballots that e.g. encode several votes in a single ballot.
In practice, ` ≤ k + 1 voters can be sufficient to break γk-correctness, e.g. by
submitting multiple votes in a single corrupted ballot.

The following theorem estimates the relation between verifiability and coercion-
resistance for ballot-corruptible protocols. The idea is that, even if the corrupted
final result is not published, the fact that the cheating was detected may already
leak something. Since the Judge’s decision cannot leak more than a single bit,
the attacker needs to encode information into that bit in such a way that it tells
whether the inputs of the victim voter(s) are ~c or ~c′.

Theorem 4. Let πP be an instance of ballot-corruptible voting protocol P with
nh honest voters. Then the following statements cannot be true at once:

– πP is (k, δ)-coercion-resistant (Definition 12) against an attacker who has
access to Out(J);

– The instance πP ′ of P with nh − k honest voters is (k − 1, 1 − δ)-verifiable
(Definition 8).

Proof (Sketch). Let V ′ be the k voters of πP to be coerced. Consider the protocol
instance πP ′ where V ′ are treated as corrupted. Let πA′ be an adversary who
sends corrupt message to V ′ and follows the strategy bad on their behalf, but
does not corrupt any other agents. Let πA be an adversary that behaves similarly
to πA′ , except that it does not send corrupt message to V ′, but is just connected
to them via the interface of dum. Such πA satisfies Definition 12. The processes
πA′‖πP ′ and πA‖dum‖πP\V ′ differ only in the interface between the protocol and
the adversary, but the output of J is the same in these processes.

– If the voters V ′ obey the attacker in πA‖πP , they follow the strategy dum,
and since P is ballot-corruptible, the goal γk−1 will be violated. Since πP ′ is
(k− 1, 1− δ)-verifiable, the Judge will accept with probability at most 1− δ
in πA′‖πP ′ , and hence also in πA‖dum‖πP\V ′ .

– While the definition of coercion-resistance does not prohibit that the counter-
strategy may violate γk−1, it is reasonable to assume that the goal of the
coerced voters is that the elections end up successfully and the Judge will
accept. Hence, if the voters V ′ do not obey the attacker, the Judge will accept
with a probability 1.



The difference between the probabilities of Judge accepting is at least δ. The
attacker outputs 1 iff the Judge accepts, breaking (k, δ)-coercion-resistance. �

In practice, Theorem 4 could be applied by an attacker who coerces k voters
to put corrupted ballots into the ballot box. The attacker then looks into the
ballot box and sees whether it contains at least k corrupted ballots. In the real
world, however, it is not excluded that the “bad” vote can occasionally be cast
as well by voters who are not controlled by the attacker, even though it is not
intended behaviour. Such voters add certain randomness to the experiment.

If the voting protocol is accountable, the coerced voters might not want
that the Judge would accuse them of misbehaviour, so they might not agree
to follow the strategy bad unless the attacker threatens them by a more severe
punishment than the Judge. However, accountability may in turn provide other
means of coercion, as discussed in the following section.

4.5 Privacy and accountability

If the Judge’s verdict is independent of the choices of honest participants, it will
not harm the privacy of an honest voter in any way. However, as shown in [2], if
we want to get a stronger kind of accountability (the individual accountability)
that allows pinpointing the cheater directly, we may need stronger assumptions.
In order to resolve all possible disputes between a voter vi and a non-voter agent
a (such as a voting machine), we need to either assume a semi-trusted a (who
processes all received ballots honestly), or the existence of reliable and/or unde-
niable channels between the voter and the machine, such as voting authorities
who actually saw that the voter indeed has interacted with the machine. While
an undeniable channel does not leak the exact choice of a voter, it would still at
least leak the fact that a voter has voted. Let us formally define an accountability
property Φ that does not threaten the privacy of honest voters.

Definition 17 (safe-evidence accountability property). Let P be a voting protocol
instantiation. Let δ ∈ [0, 1] be the tolerance. Let π~i,~c and π~i,~c′ be defined as in

Definition 11. We say that the accountability property Φ = (α, φ1, . . . , φ`) of P
w.r.t. a Judge J ∈ Σ is (k, δ)-safe-evidence if∣∣∣Pr[π

(η)
~i,~c

A7→ 1 | ∃j : π 7→ (J : φj)]− Pr[π
(η)
~i,~c′

A7→ 1 | ∃j : π 7→ (J : φj)]
∣∣∣

is δ-bounded as a function of the security parameter η for all indices of honest
voters ~i, choices ~c, ~c′ and for all adversary processes πA that have access to the
channels In(J).

Definition 17 says that the evidence for a verdict, based on all inputs that J
has received through the channels In(J), does not depend (much) on the choices
of honest voters. The condition ∃i : π 7→ (J : φi) ensures that we only consider
protocol runs where the Judge has actually made a verdict, which excludes pos-
sible attacks that come due to failure of accountability, e.g. leakage via the final
result. The definition allows an arbitrary property α.



In order to break privacy, the attacker should first of all be able to violate the
condition α, so that the judging procedure would be triggered. Then, in order
that the Judge would learn anything interesting, the evidence should depend
on the vote of an honest voter under observation, at least telling whether the
voter has voted or abstained from voting. The following definition characterizes
protocols for which accountability has a direct impact on privacy.

Definition 18 (unsafe accountability property). Let πP be an instance of a voting
protocol P , Σ the agents of P , Φ = (γk, φ1, . . . , φ`) an accountability property,
and J ∈ Σ the Judge. The property Φ is called unsafe in πP w.r.t J if there
exists an adversary πA such that:

1. Pr[(πP ‖πA)(η) � ¬γk] = 1.
2. There is a choice c ∈ C such that, in every run r of π satisfying ∃i : (J : φi),

there is a subset~ir of k+1 honest voters (which can be different in each run)
such that (πP ‖πA)(η) outputs a boolean value voted(i, c) for all i ∈~ir to In(J).

Intuitively, the second point of Definition 18 says that, whenever the Judge
makes a verdict, he learns something about a subset of voters somehow involved
in a dispute. The parameter k could be e.g. the minimal number of complaints
required to start the dispute resolution procedure. A particular example of an
unsafe accountability property would be individual accountability that relies on
undeniable channels, assuming that the Judge makes the verdict based on access
to these channels. In that case, c would be an abstention vote. Let us show how
Definition 18. is related to Definition 17.

Proposition 4. Let πP be an instance of a voting protocol P with nh honest
voters. Let Σ be the agents of P , Φ = (γk′ , φ1, . . . , φ`) an accountability property,
and J ∈ Σ the Judge. Let Φ be unsafe in πP w.r.t J . Then, Φ is not (k, δ)-safe-

evidence w.r.t. J and πA for any δ < 1−
∏k′

j=0

(
1− k

nh−j

)
and any η.

Proof (Sketch). Let πA be an adversary that satisfies Definition 18. Consider
the runs of (πP ‖πA)(η) that satisfy ∃i : (J : φi). In each such run r, there is
a subset ~ir of k′ voters such that messages voted(i, c) are sent to a channel of
In(J) for all i ∈~ir. The idea is that the same attacker πA chooses ~c = (c, . . . , c)

and ~c′ = (c′, . . . , c′) for c 6= c′ to break the safe-evidence property. However, the
problems is that ~ir can be different in each run, but we need a single ~i for all
runs. The simplest solution would be to take k′ = nh − k, when any subset of
size k′+1 always covers at least one victim. However, we can do better since the
adversary may choose the ~i itself. In the worst case (from attacker perspective),
no subset of voters is preferable, and all voters are equally likely to be exposed
to In(J). The probability that all k′ + 1 leaked votes are “not interesting” is(
nh−k
k′+1

)
/
(
nh
k′+1

)
, which equals

∏k′

j=0
nh−k−j
nh−j =

∏k′

j=0

(
1− k

nh−j

)
. �

The following theorem estimates the relation between privacy and account-
ability for an unsafe accountability property.



Theorem 5. Let πP be an instance of a voting protocol P with nh honest voters.
Let Σ be the agents of P . Let Φ = (γk, φ1, . . . , φ`) and J ∈ Σ be such that Φ is
unsafe in πP w.r.t. J . Then the following statements cannot be true at once:

– πP is (k, δ)-private (Definition 11);

– πP is (k′, 1−δ/
(

1−
∏k′

j=0

(
1− k

nh−j

))
)-accountable w.r.t. Φ (Definition 10).

Proof (Sketch). Assume that πP is (k, δacc)-accountable. The condition ∃i : π 7→
(J : φi) ∨ π � γk′ is satisfied with probability at least 1 − δacc. Since Φ is
by assumption unsafe in πP w.r.t. J , there exists an adversary πA such that
Pr[(πA‖πP )(η) � ¬γk′ ] = 1, so ∃i : π 7→ (J : φi) is satisfied with probability at
least 1−δacc. Assume that Φ is (k, δev)-safe-evidence w.r.t. J and πA. The success
of πA in distinguishing whether the voters~i have voted or not equals δev ·(1−δacc).
Assuming that the protocol is (k, δpr)-private, we have δev · (1− δacc) < δpr, so
δev < δpr/(1−δacc). Now, since Φ is unsafe w.r.t. J , by Proposition 4, it can only

be (k, δev)-safe-evidence w.r.t. J for δev ≥ 1−
∏k′

j=0

(
1− k

nh−j

)
, which gives us

δacc > 1− δpr/
(

1−
∏k′

j=0

(
1− k

nh−j

))
, and any smaller δacc is not suitable. �

In practice, Theorem 5 could be applied by an attacker who takes control over
a voting machine that issues receipts for later verification, such as Wombat [1],
ThreeBallot, and VAV [21]. The idea is that the corrupted machine will nicely
output to all voters appropriate receipts. However, it excludes at least k ballots
when displaying information on the bulletin board. With probability at most δacc,
the attack will not be detected, and the Judge does not do anything. Otherwise,
there are several outcomes possible.

– The cheating is detected directly by auditors.
– Sufficiently many voters complain after looking at the bulletin board.

In the first case, the Judge does not learn anything interesting from the
evidence. In the second case, a subset of voters whose ballots have been dropped
come to complain, and the attacker who has corrupted the voting machine can
now match the complainer’s identity with an affected ballot. If the ballots are
not encrypted, the attacker will not only detect that the voter has voted, but
also match the corrupted ballot to the complainer’s identity and learn the vote.

5 Conclusions and Future Work

In this paper, we have proposed a selection of quantitative definitions of privacy,
verifiability, coercion-resistance, and accountability, which are adapted versions
of the definitions of the KTV framework. We have shown how these metrics are
related to each other, exploring some generic relations that do not depend on
the actual distribution of voters’ votes.

In practice, the quantitative degree of privacy and coercion-resistance of vot-
ing protocols strongly depends on the way in which the voters make their choices.



As the next step, it will be natural to analyse particular vote distributions to
get more interesting and tight bounds.

Assuming that the votes are independent, the privacy definition that we have
considered in this paper can be viewed as a variant of distributional differential
privacy (DDP), albeit DDP estimates the ratio of probabilities instead of the dif-
ference. Related work [18] has estimated DDP bounds for various voting rules,
and we could study how their definitions of privacy can be combined with veri-
fiability and accountability of the KTV framework.
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A Full Proofs

A.1 Proof of Proposition 1

Let ~i` = {i1, . . . , i`} ⊆ {1, . . . , n}, and ~c`, ~c′` ∈ C`. We want to estimate the
quantity ∣∣∣Pr[π

(η)
~i`,~c`

A7→ 1]− Pr[π
(η)
~i`,~c′`

A7→ 1]
∣∣∣ ,



where π~i,~c is defined as in Definition 11. We have

Pr[π
(η)
~i`,~c`

A7→ 1] =
∑

~ck,`∈Ck−`
Pr[π

(η)
~i`‖~ik,`,~c`‖~ck,`

A7→ 1] · Pr[~ck,`] ,

where Pr[~ck,`] is the probability that certain k− ` voters~ik,` (other than~i`) will
vote for ~ck,`. We have∣∣∣Pr[π

(η)
~i`,~c`

A7→ 1]− Pr[π
(η)
~i`,~c′`

A7→ 1]
∣∣∣

=
∑

~ck,`∈Ck−`

∣∣∣Pr[π
(η)
~i`‖~ik,`,~c`‖~ck,`

A7→ 1]− Pr[π
(η)
~i`‖~ik,`,~c′`‖~ck,`

A7→ 1]
∣∣∣ · Pr[~ck,`] .

For a fixed `, let ~ik := ~i`‖~ik,`, ~ck := ~c`‖~ck,`, and ~c′k := ~c′`‖~c′k,`. Since πP is by
assumption (k, δ)-private,∣∣∣Pr[π

(η)
~ik,~ck

A7→ 1]− Pr[π
(η)
~ik,~c′k

A7→ 1]
∣∣∣ ≤ δ(η) ,

where δ(η) is δ-bounded as a function of η. Hence,∣∣∣Pr[π
(η)
~i`,~c`

A7→ 1]− Pr[π
(η)
~i`,~c′`

A7→ 1]
∣∣∣ ≤ ∑

~ck,`∈Ck−`
δ(η) · Pr[~ck,`]

= δ(η) ·
∑

~ck,`∈Ck−`
Pr[~ck,`] = δ(η)

is also δ-bounded as a function of η. �

A.2 Proof of Theorem 1

Let πP be (k, δ)-coercion-resistant. That is, for any set ~i = {i1, . . . , ik} of k
coerced voters, any attacker process πA′ that is connected to ~i using interface
of dum, there exists a counter-strategy πṽ such that, for some η0 > 0, and all
η > η0, c > 0:

Pr[(πA′‖dum‖πP\~i)
(η) A′7→ 1] − Pr[(πA′‖πṽ‖πP\~i)

(η) A′7→ 1] < δ +
1

ηc
. (1)

Let ~c and ~c′ be vote assignments of the voters~i. Let πA be an arbitrary attacker
process. We want to estimate the quantity∣∣∣Pr[π

(η)
~i,~c

A7→ 1]− Pr[π
(η)
~i,~c′

A7→ 1]
∣∣∣ = δ(η) .

Let us now describe a coercer that breaks coercion-resistance. Consider a par-
ticular setting where the true goals of the voters ~i is to make the choices ~c. Let



π
~c′
A′ be a coercer that selects for the voters the choices ~c′, and otherwise acts as

an honest voter would. By construction of π
~c′
A′ ,

Pr[(πA‖π
~c′
A′‖dum‖πP\~i)

(η) A7→ 1] = Pr[π
(η)
~i,~c′

A7→ 1] .

Since ~i do not interact with πA, and π
~c′
A′ is connected to ~i using the interface of

dum, the adversary πA′ := πA‖π
~c′
A′ satisfies Definition 12.

Let πv = πvi1 ‖ . . . ‖πvik . By definition of π~i,~c,

Pr[(πA‖πv(~c)‖πP\~i)
(η) A7→ 1] = Pr[π

(η)
~i,~c

A7→ 1] .

Since πṽ does not outperform πv, there exists η1 such that, for all η > η1 and
all c > 0, we have

Pr[(πA‖πv(~c)‖πP\~i)
(η) A7→ 1] − Pr[(πA‖π

~c′
A′‖πṽ‖πP\~i)

(η) A7→ 1] <
1

ηc
.

Applying (1), we get that, for all η > max(η0, η1) and all c > 0,

δ(η) < δ +
1

ηc
+

1

ηc
,

which is δ-bounded as a function of η. Hence, πP is (k, δ)-private. �

A.3 Proof of Theorem 2

Let πP be (k, δ)-accountable. That is, there exists η0 such that, for all η > η0,
all c > 0, and all adversaries πA, for π := (πA‖πP ), we have

Pr[(π(η) � ¬γk) ∧ ¬∃i : (π(η) 7→ (J : φi))] < δ +
1

ηc
; (2)

Pr[π(η) 7→ (J : φi)] = 0 if π 6� φi . (3)

Consider the probability

Pr[(π(η) � ¬γk) ∧ (π(η) 7→ (J ′ : accept))] = δ(η) .

We want to find an upper bound on δ(η). By assumption, J ′ accepts iff J outputs
a verdict φi. Hence, by (2),

δ(η) = Pr[(π(η) � ¬γk) ∧ ¬∃i : (π(η) 7→ (J : φi))] < δ +
1

ηc
.

Consider the probability

Pr[π(η) 7→ (J ′ : reject)]

on the condition that π(η) 6� dis(a) for all a ∈ Σ. Since φi ⊆ Fdis for all i, by
(3), under this condition, Pr[π(η) 7→ (J : φi)] = 0 for any verdict φi. Hence,
Pr[π(η) 7→ (J : reject)] = Pr[π(η) 7→ (J : φi)] = 0. �



A.4 Proof of Theorem 3

When considering a process π describing a particular instance of a voting pro-
tocol, we assume that there is a special channel that publishes the final result

ρ(c1, . . . , cn). Let π
R7→ y denote that the election result of π published through

this channel is y.
Theorem 3 follows directly from Propositions 2 and 3. Let us give their full

proofs. First of all, we state and prove two helpful lemmata.

Lemma 1. Let πP be an instantiation of a voting protocol P with n honest voters
VH . Let Vver, Vpr ⊆ VH be such that Vver ∩ Vpr = ∅, |Vver| = n − n′, |Vpr| = k
for some n′ < n and k < n′. Let πP ′ be an instantiation of P with honest voters
VH \ Vver. Suppose that:

– πP is (k, δ)-private w.r.t. voters Vpr;
– πP ′ is not (k, δ′)-private w.r.t. voters Vpr against a passive observer who only

observes the final result, for any privacy parameter η;

Then, πP is (n− n′ − 1, δ/δ′)-verifiable against an attacker πAver such that:

1. πAver has access to Out(J);
2. πAver is only capable of dropping votes of Vver from the tally and
3. the property γk is detectable in the process πAver‖πP (Definition 14)

regardless of the inputs of VH .

Proof. Suppose that πP ′ is not (k, δ′)-private against a passive observer w.r.t. a

set of honest voters Vpr. That is, there are choices ~c and ~c′ for Vpr such that∣∣∣Pr[(πO‖πP ′(~c))(η)
O7→ 1]− Pr[(πO‖πP ′(~c′))

(η) O7→ 1]
∣∣∣ > δ′ , (4)

for all η > 0, where πP ′(~c) := πVpr(~c)‖πP ′\Vpr and πP ′(~c′) := πVpr(~c′)‖πP ′\Vpr , and

πO is a passive observer process who only observes the final result.
Let πAver be any attacker process that is only capable of vote dropping. Let

δver be a function of η such that

Pr[((πAver‖πP )(η) � ¬γk) ∧ ((πAver‖πP )(η) 7→ (J : accept))] = δver(η) .

Our goal is to find an upper bound on δver(η). Let an event B(~c) be defined as

B(~c) := ((πAver‖πP (~c))
(η) � ¬γk) ∧ ((πAver‖πP (~c))

(η) 7→ (J : accept)) .

Since by assumption the attacker’s success does not depend on the particular
inputs of honest users, for all ~c, we have

Pr[B(~c)] = Pr[B(~c′)] = δver(η) .

Let ~ch be the choices of the honest voters V ′ = VH \ (Vver ∪Vpr). By assump-
tion, πAver is only capable of vote dropping, and there is no other way to violate



γk other than by the acts of πAver . Hence, every run of ¬γk ends up in ρ(~ch ]~c),
and the result gets released if J accepts. Hence,

Pr[(πAver‖πP ( ~ch,~c))
(η) R7→ ρ(~ch ] ~c) | B(~c)] = 1 . (5)

On the other hand, by correctness of a voting protocol,

Pr[(πP ′( ~ch,~c))
(η) R7→ ρ(~ch ] ~c)] = 1 . (6)

Since (5) and (6) hold for any possible ~ch, we get

Pr[(πAver‖πP (~c))
(η) R7→ r |B(~c)] = Pr[(πP ′(~c))

(η) R7→ r]

for any result r, and since the decision of πO only depends on the final result,

Pr[(πO‖πAver‖πP (~c))
(η) O7→ 1 |B(~c)] = Pr[(πO‖πP ′(~c))(η)

O7→ 1] .

Using similar reasoning for choices ~c′ of voters Vpr, we get

Pr[(πO‖πAver‖πP (~c′))
(η) O7→ 1 |B(~c′)] = Pr[(πO‖πP ′(~c′))

(η) O7→ 1] .

Let us now consider the case ¬B(~c). Since the property γk is detectable in
πAver‖πP , there exists a passive observer πO′ such that∣∣∣Pr[(πO′‖πAver‖πP (~c))

(η) | γk]− Pr[(πO′‖πAver‖πP (~c))
(η) | ¬γk]

∣∣∣ = 1 . (7)

A similar statement holds for ~c′. We can now define an attacker πA who runs
πO‖πO′‖πAver and acts as follows:

– Outputs a constant bit (either 1 or 0) if J rejects.
– Outputs a constant bit (either 1 or 0) if J accepts and γk is detected by πO′ .
– Outputs the output of πO if J accepts and ¬γk is detected by πO′ .

From (7), we get that πA always outputs a constant bit whenever ¬B(~c) or

¬B(~c′) is true. Hence,∣∣∣Pr[(πA‖πP (~c))
(η) A7→ 1 | ¬B(~c)]− Pr[(πA‖πP (~c′))

(η) A7→ 1 | ¬B(~c′)
∣∣∣ = 0 .

Since the observers πO and πO′ do not introduce additional corruptions, πA is a
valid attacker on privacy of Vpr ⊆ VH . Since πP is (k, δ)-private, there exists η0
such that, for all η > η0 and all c′ > 0:∣∣∣Pr[(πA‖πP (~c))

(η) O7→ 1]− Pr[(πA‖πP (~c′))
(η) O7→ 1]

∣∣∣ ≤ δ +
1

ηc′
,

where πP (~c) := πVpr(~c)‖πP\Vpr and πP (~c′) := πVpr(~c′)‖πP\Vpr . We can rewrite

this inequality using conditioning over B(~c) and B(~c′) and the reversed triangle
inequality as



|
∣∣∣Pr[(πA‖πP (~c))

(η) A7→ 1 | B(~c)]− Pr[(πA‖πP (~c′))
(η) A7→ 1 | B(~c′)]

∣∣∣ · Pr[B(~c′)]

−
∣∣∣Pr[(πA‖πP (~c))

(η) A7→ 1 | ¬B(~c)]− Pr[(πA‖πP (~c′))
(η) A7→ 1 | ¬B(~c′)

∣∣∣ ·Pr[¬B(~c′)]|

≤ δ +
1

ηc′
.

We can rewrite it as∣∣∣Pr[(πA‖πP ′(~c))(η)
A7→ 1]− Pr[(πA‖πP ′(~c′))

(η) A7→ 1]
∣∣∣ · δver(η) < δ +

1

ηc′
.

Applying (4), we get

δ′ · δver(η) < δ +
1

ηc
,

i.e. δver(η) <
δ+ 1

ηc

δ′ = δ
δ′ + 1

δ′·ηc . We want to show that this quantity is bounded

by δ
δ′ + 1

ηc for all c. Since the inequality holds for all c′, let us take c′ := 2 · c.

We have 2
δ′·η2c ≤

1
ηc for η > c

√
1
δ′ . Hence, the desired inequality holds for all

η > max( c

√
1
δ′ , η0), so the protocol instance πP is (n− n′ − 1, δ/δ′)-verifiable. �

Lemma 2. Let πP be an instantiation of a voting protocol P with n honest voters
VH . Let Vpr ⊆ VH and Vver be such that, if ~c are choices made by Vpr, then τ(~c)
for a function τ : C |Vpr| 7→ C |Vver| are choices made by Vver. Let |Vver| = n′−n,
|Vpr| = k for some n < n′ and k < n. Let πP ′ be an instantiation of P with
honest voters VH ∪ Vver. Suppose that:

– πP is (k, δ)-private w.r.t. voters Vpr;
– πP ′ is not (n′ − n + k, δ′)-private w.r.t. voters Vpr ∪ Vver against a passive

observer, for any privacy parameter η;

Then, πP is (n′ − n− 1, δ/δ′)-verifiable against an attacker πAver such that:

1. πAver has access to Out(J);
2. πAver is only capable of adding to the tally votes that are result of applying

τ to the voters of Vpr;
3. the property γk is detectable in the process πAver‖πP (Definition 14)

regardless of the inputs of VH .

Proof. Suppose that πP ′ is not (k, δ′)-private against a passive observer w.r.t. a

set of honest voters Vpr ∪ Vver. That is, there are choices ~c and ~c′ of Vpr such
that ∣∣∣Pr[(πO‖πP ′(~c,τ(~c)))(η)

O7→ 1]− Pr[(πO‖πP ′(~c′,τ(~c′)))
(η) O7→ 1]

∣∣∣ ≥ δ′ , (8)



for all η > 0, where

πP ′(~c,τ(~c)) := πVpr(~c)‖πVver(τ(~c))‖πP ′\(Vpr∪Vver) ;

πP ′(~c′,τ(~c′)) := πVpr(~c′)‖πVver(τ(~c′))‖πP ′\(Vpr∪Vver) ;

and πO is a passive observer process that only sees the final result.

Let πAver be any attacker that is only capable of adding votes τ(~c). Let δver
be a function of η such that

Pr[((πAver‖πP )(η) � ¬γk) ∧ ((πAver‖πP )(η) 7→ (J : accept))] = δver(η) .

Our goal is to find an upper bound on δver(η). Let an event B(~c) be defined as

B(~c) := ((πAver‖πP (~c))
(η) � ¬γk) ∧ ((πAver‖πP (~c))

(η) 7→ (J : accept)) .

Since by assumption the attacker’s success does not depend on the particular
inputs of honest users, for all ~c, we have

Pr[B(~c)] = Pr[B(~c′)] = δver(η) .

Let ~ch be the choices of the honest voters V ′ = VH \ (Vver ∪ Vpr). By as-
sumption, πAver is only capable of adding votes τ(~c), and there is no other way
to violate γk other than by the acts of πAver . Hence, every run of ¬γk ends up
in ρ(~ch ] ~c ] τ(~c)), and the result gets released if J accepts. Hence,

Pr[(πAver‖πP ( ~ch,~c))
(η) R7→ ρ(~ch ] ~c ] τ(~c)) | B(~c)] = 1 . (9)

On the other hand, by correctness of a voting protocol,

Pr[(πP ′( ~ch,~c,τ(~c)))
(η) R7→ ρ(~ch ] ~c ] τ(~c))] = 1 . (10)

Since (9) and (10) hold for any possible ~ch, we get

Pr[(πAver‖πP (~c,τ(~c)))
(η) R7→ r |B(~c)] = Pr[(πP ′(~c))

(η) R7→ r]

for any result r, and since the decision of πO only depends on the final result,

Pr[(πO‖πAver‖πP (~c,τ(~c)))
(η) O7→ 1 |B(~c)] = Pr[(πO‖πP ′(~c))(η)

O7→ 1] .

Using similar reasoning for choices ~c′ of voters Vpr, we get

Pr[(πO‖πAver‖πP (~c′,τ(~c′)))
(η) O7→ 1 |B(~c′)] = Pr[(πO‖πP ′(~c′))

(η) O7→ 1] .

The rest of the proof is analogous to the proof of Lemma 1. �



Proof of Proposition 2. Let πP be an instance of a protocol that uses a majority-
determined voting rule. That is, for k > n/2, the attacker may come up with
votes c1, . . . , ck and c′1, . . . , c

′
k that determine some election results r and r′ such

that r 6= r′.

Let n′ < n be odd. In this case, any instantiation πP ′ of P with n′ honest
voters can only be ((n′ − 1)/2 + 1, 1)-private.

Fix any subset Vpr of size (n′−1)/2+1. Fix any subset Vver ⊆ VH \Vpr of size
n−n′ and instantiate πP ′ on VH \Vver. Consider an attacker A who is capable of
dropping votes of Vver from the tally. By Lemma 1, if πP is ((n′−1)/2 + 1, n, δ)-
private w.r.t. Vpr, since πP ′ can only be ((n′ − 1)/2 + 1, 1)-private regardless of
the choice of Vver, we have that πP is (n − n′ − 1, δ)-verifiable against A. This
holds for any choice of Vpr and Vver.

Putting k = (n′ − 1)/2 + 1, we get that, for all k < (n + 1)/2, if πP is
(k, δ)-private, then πP is (n− 2k, δ)-verifiable against vote dropping. �

Proof of Proposition 3. Let πP be an instance of a protocol that uses a majority-
determined voting rule. That is, for k > n/2, the attacker may choose votes
c = c1 = · · · = ck and c′ = c′1 = · · · = c′k that determine some election results r
and r′ such that r 6= r′.

Let n′ > n be odd. Since the election result (r or r′) tells whether a majority
voted for c or for c′, any instantiation πP ′ of P with n′ honest voters can only be
((n′ − 1)/2 + 1, 1)-private. In order to match the second condition of Lemma 2,
we need k such that n′ − n+ k = (n′ − 1)/2 + 1, i.e. k = n− (n′ + 1)/2 + 1.

Fix any subset Vpr of size (n′−1)/2+1. Let Vver make the choices τ(~c) where
~c are choices of Vpr, and τ introduces n′−n copies of any vote of Vpr. Instantiate
πP ′ on VH ∪Vver. Consider an attacker A who is capable of adding votes of Vver
to the tally. By Lemma 2, if πP is (n− (n′+ 1)/2 + 1, δ)-private w.r.t. Vpr, since
πP ′ can only be ((n′ − 1)/2 + 1, 1)-private regardless of the choice of Vver, we
have that πP is (n′ − n− 1, δ)-verifiable against A. This holds for any choice of
Vpr and Vver.

Putting k = n− (n′ + 1)/2 + 1, we get that, for all k < n− (n+ 1)/2 + 1 =
(n− 1)/2 + 1, if πP is (k, δ)-private, then πP is (n− 2k, δ)-verifiable against vote
duplication. �

A.5 Proof of Theorem 4

Let πP be (k, δ)-coercion-resistant. Let VH and VD be the sets of honest and
dishonest voters of πP respectively. Let V~i = vi1, . . . , vik ⊆ VH be the set of
coerced voters, and πA a coercer algorithm which chooses the strategy bad for
the coerced voters. Note that πA does not send corrupt messages to V~i, but is just
connected to them via interface of dum. Let πP (1) be the protocol runs where
V~i decided to obey the attacker, and let πP (0) be the protocol runs where they
decided to follow their own strategy. We assume that the goal of V~i is to make
choices ~c, and that they want that J would accept the protocol run. Since P is



by assumption ballot-corruptible,

Pr[(πA‖πP (1))
(η) � ¬γk] = 1

i.e
Pr[(πA‖πP (1))

(η) � γk] = 1− Pr[(πA‖πP (1))
(η) � ¬γk] = 0 . (11)

Suppose that πA orders all other agents under his control (other than V~i) to
behave honestly. That is,

∀a ∈ Σ \ V~i,∀b ∈ {0, 1} : Pr[πA‖πP (b) 6� dis(a)] = 1 .

Let πP ′ be the protocol instance run with honest voters VH \V~i and dishonest
voters VD ∪ V~i. The difference between πP and πP ′ is that πP (b) receives b from
the environment (voters’ own inputs), while πP ′ receives instructions from the
adversary. Formally, we have πA‖πP (1) = πA′‖πP ′ , where πA′ corrupts the voters
V~i, runs the strategy bad on their behalf, and in parallel runs πA, where, instead
of linking πA directly to V~i, πA′ forwards the messages between the dum interface
of V~i and πA. Let us estimate the verifiability of πP ′ . Suppose that

Pr[((πA‖πP (1))
(η) � ¬γk) ∧ ((πA‖πP (1))

(η) 7→ (J : accept))] < δ′(η) (12)

for some function δ′. Applying (11) and (12),

Pr[((πA‖πP (1))
(η) 7→ (J : accept))] =

Pr[((πA‖πP (1))
(η) 7→ (J : accept)) ∧ (πA‖πP (1))

(η) � ¬γk]

+ Pr[((πA‖πP (1))
(η) 7→ (J : accept)) ∧ (πA‖πP (1))

(η) � γk] < δ′(η) .

Since πP is (k, δ)-coercion-resistant, there exists η0 > 0 such that, for all
η > η0, and all c > 0:∣∣∣Pr[(πA‖πP (0))

(η) C7→ 1]− Pr[(πA‖πP (1))
(η) C7→ 1]

∣∣∣ < δ +
1

ηc
(13)

We have assumed that the goal of voters V~i is that J would accept the run.
Hence,

Pr[((πA‖πP (0))
(η) 7→ (J : reject)] = 0 .

By assumption, πA has access to Out(J). Let πA output a bit 1 iff J outputs
accept. For all η > η0 and all c > 0, we get

δ +
1

ηc
≥
∣∣∣Pr[(πA‖πP (0))

(η) C7→ 1]− Pr[(πA‖πP (1))
(η) C7→ 1]

∣∣∣
=
∣∣∣Pr[(πA‖πP (0))

(η) 7→ (J : accept)]− Pr[(πA‖πP (1))
(η) C7→ accept]

∣∣∣
=
∣∣∣1− Pr[(πA‖πP (1))

(η) 7→ (J : accept)]
∣∣∣

=
∣∣∣1− Pr[(πA′‖πP ′)(η) 7→ (J : accept)]

∣∣∣
> 1− δ′(η) ,



which gives us

δ′(η) > 1− δ − 1

ηc
.

Suppose by contrary that πP ′ is (k, 1−δ−ε) verifiable for some ε > 0. There exists
η1 such that, for all c and all η > max(η0, η1) it should be that 1− δ − ε+ 1

ηc >

1− δ− 1
ηc . This inequality fails for ε ≥ 2

ηc , i.e. η ≥ c

√
2
ε , and the only case when

it is true for any η is ε = 0. Hence, πP ′ can at most be 1− δ-verifiable. Since V~i
is a freely chosen set of k voters, the property holds for any instance πP ′ with
nh − k honest voters. �

A.6 Proof of Theorem 5

For~i = {i1, . . . , ik} and ~c = (c1, . . . , ck), let voted(~i,~c) denote the set of protocol
runs in which the choice of vij is cj for all j ∈ {1, . . . , k}.

Proof of Proposition 4. Let πA be an adversary that satisfies Definition 18.
Consider the runs of (πP ‖πA)(η) that satisfy ∃i : (J : φi). In each such run
r, there is a subset ~ir of k′ voters such that messages voted(i, c) are sent to a
channel of In(J) for all i ∈~ir.

To break the safe-evidence property, we construct an attacker πA′ := πJ‖πA,
where πJ is a component that has access to the channels In(J).

Let ~c = (c, . . . , c) where c is the same choice that has been used in messages

voted(i, c), and let ~c′ = (c′, . . . , c′) for c 6= c′. in order to break safe-evidence

property, we need to distinguish between ~c and ~c′ for a certain subset of voters~i.
However, the component πJ may receive messages voted(i, c) for different~ir, and
it is possible that ~i ∩~ir = ∅ for some runs r. Let ~i be chosen in such a way that
the probability of getting ~i ∩~ir = ∅ is minimized. In the worst case, no subset
~i is preferable, and all voters are equally likely to be exposed. The probability
that all k′ + 1 leaked votes are “not interesting” is(

nh − k
k′ + 1

)
/

(
nh

k′ + 1

)
=

(nh − k)!(nh − k′ − 1)!

nh!(nh − k − k′ − 1)!

=
(nh − k) · · · (nh − k − k′)

nh · · · (nh − k′)

=

k′∏
j=0

nh − k − j
nh − j

=

k′∏
j=0

(
1− k

nh − j

)
.

Let πA′ return 1 iff πJ receives voted(i, c) for i ∈~i. Let πA′ return 0 in the other
cases, i.e. when πJ receives voted(i, c′) for i ∈~i, or does not receive any messages



for i ∈~i at all. We get

|Pr[(πA′‖πP )(η)
A′7→ 1 | voted(~i,~c) ∧ ∃j : π 7→ (J : φj)]

− Pr[(πA′‖πP )(η)
A′7→ 1 | voted(~i, ~c′) ∧ ∃j : π 7→ (J : φj)]|

≥ 1−
k′∏
j=0

(
1− k

nh − j

)
,

so πP can only be (k, δev)-safe-evidence for δev > 1−
∏k′

j=0

(
1− k

nh−j

)
. �

Proof of the theorem. Let πA be an attacker that satisfies Definition 18. Let
~i, ~c, ~c′ be such that the safe-evidence property w.r.t. πA is violated. Denote
π := (πA‖πP )(η) and π(~c) := (πA‖πP (~c))

(η). Since πP is (k, δpr)-private, there
exists η0 such that, for all η > η0 and all c′ > 0, we have

δpr +
1

ηc′
>
∣∣∣Pr[(πA‖πP (~c))

(η) A7→ 1]− Pr[(πA‖πP (~c′))
(η) A7→ 1]

∣∣∣
=
∣∣∣Pr[π(~c)

A7→ 1]− Pr[π(~c′)
A7→ 1]

∣∣∣
=
∣∣∣Pr[π

A7→ 1 | voted(~i,~c)]− Pr[π
A7→ 1 | voted(~i, ~c′)]

∣∣∣ .
Using the Bayesian formula, we get

Pr[π
A7→ 1 | voted(~i,~c)]

=
Pr[π

A7→ 1 | voted(~i,~c) ∧ ∃i : π 7→ (J : φi)] · Pr[∃i : π 7→ (J : φi)]

Pr[∃i : π 7→ (J : φi) | π
A7→ 1 ∧ voted(~i,~c)]

≥ Pr[π
A7→ 1 | voted(~i,~c) ∧ ∃i : π 7→ (J : φi)] · Pr[∃i : π 7→ (J : φi)]

Since πP is (k, δacc) accountable w.r.t. J and the accountability constraint Φ,
there exists η1 such that, for all η > η1 and all c′ > 0, we have

Pr[(π � ¬γk) ∧ ¬∃i : π 7→ (J : φi)] ≤ δacc +
1

ηc′
,

i.e.

Pr[(π � γk) ∨ ∃i : π 7→ (J : φi)] > 1− δacc −
1

ηc′
.

By assumption, there exists η2 such that, for η > η2, we have Pr[π(η) � γk] ≤ 1
ηc′

.

For η > max(η1, η2), we get

Pr[∃i : π 7→ (J : φi)] = Pr[π � γk] + Pr[∃i : π 7→ (J : φi)]− Pr[π � γk]

> Pr[(π � γk) ∨ ∃i : π 7→ (J : φi)]−
1

ηc′

> 1− δacc −
2

ηc′
.



For η > max(η0, η1, η2), we get

δpr +
1

ηc′
> |Pr[π

A7→ 1 | voted(~i,~c) ∧ ∃i : π 7→ (J : φi)]

−Pr[π
A7→ 1 | voted(~i, ~c′) ∧ ∃i : π 7→ (J : φi)]| · Pr[∃i : π 7→ (J : φi)]

> |Pr[π
A7→ 1 | voted(~i,~c) ∧ ∃i : π 7→ (J : φi)]

−Pr[π
A7→ 1 | voted(~i, ~c′) ∧ ∃i : π 7→ (J : φi)]| · (1− δacc −

2

ηc′
)

which gives us

|Pr[π
A7→ 1 | voted(~i,~c) ∧ ∃i : π 7→ (J : φi)]

− Pr[π
A7→ 1 | voted(~i, ~c′) ∧ ∃i : π 7→ (J : φi)]|

<
δpr + 1

ηc′

1− δacc − 2
ηc′

. (14)

On the other hand, by Proposition 4, this probability is at least as large as

δev = 1−
∏k′

j=0

(
1− k

nh−j

)
. This gives us

δev <
δpr + 1

ηc′

1− δacc − 2
ηc′

,

i.e.

δacc > 1−
δpr + 1

ηc′

δev
− 2

ηc′
.

Since the inequality must hold for an arbitrary large η, we can only have δacc >
1− δpr/δev.

�


