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Abstract. In this work we consider the following question: What is the cost of security for multi-party
protocols? Specifically, given an insecure protocol where parties exchange (in the worst case) Γ bits in
N rounds, is it possible to design a secure protocol with communication complexity close to Γ and N
rounds? We systematically study this problem in a variety of settings and we propose solutions based
on the intractability of different cryptographic problems.
For the case of two parties we design an interaction-preserving compiler where the number of bits
exchanged in the secure protocol approaches Γ and the number of rounds is exactly N , assuming the
hardness of standard problems over lattices. For the more general multi-party case, we obtain the same
result assuming either (i) an additional round of interaction or (ii) the existence of extractable witness
encryption and succinct non-interactive arguments of knowledge. As a contribution of independent inter-
est, we construct the first multi-key fully homomorphic encryption scheme with message-to-ciphertext
ratio (i.e., rate) of 1− o(1), assuming the hardness of the learning with errors (LWE) problem.
We view our work as a support for the claim that, as far as interaction and communication are concerned,
one does not need to pay a significant price for security in multi-party protocols.

1 Introduction

Secure multi-party computation (MPC) allows several mutually distrustful parties to compute a joint func-
tion on their inputs revealing nothing beyond the output of the computation. This ability to compute on
private datasets enables applications of tremendous benefits to the society. General positive results for secure
computation were obtained over three decades by Yao [46] in the two-party setting and then by Goldreich
et al. [28] in the multi-party setting.

Since the initial feasibility results, a large body of literature has focused on improving the efficiency.
In particular, much effort has been poured on optimizing the communication of secure MPC protocol,
both in terms of the number of bits exchanged as well as the number of rounds. Breakthrough results
on fully-homomorphic encryption allowed us to obtain secure computation protocols whose communication
complexity could be below (or even independent of) the circuit size of the functionality [23]. For the important
case of two parties, many recent works have studied “Alice optimized” and “Bob optimized” protocols, where
the communication is independent of either Alice’s input length and Bob’s input length, respectively, while
simultaneously optimizing the number of rounds (see, e.g., [43, 16]).

Given the current state of affairs, a natural question to ask is whether we can design secure computation
protocols where the communication complexity could be lower than the size of both inputs (or all inputs in
the multi-party setting). With the growing importance of being able to operate on big data, this question has
become particularly compelling. Unfortunately, the answer to this question is, in general, negative: Known
communication complexity lower bounds indicate that, for certain functions, communication proportional

? Research supported by the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award,
a JP Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed funding
award.



to at least one of the inputs may be necessary to compute it (even without any security requirements). On
the other hand, there are many interesting examples of function classes which can be computed with com-
munication complexity much lower than the size of either input. The rich line of research on communication
complexity (c.f. [44]) has unveiled a large (and relevant) class of functions where non trivial communication
savings can be made by cleverly designing the protocol. This raises the following question:

Given an N -round (insecure) protocol for some functionality F , can we design a secure protocol for F with
(roughly) the same communication complexity, both in terms of bits exchanged and number of rounds?

Such a result would show that one does not need to pay a significant price for security (at least as far
as interaction is concerned). Indeed there are a number of natural problems where the communication
complexity of the insecure protocol could be significantly lower than the size of either input:

(1) Playing Private Combinatorial Games: Suppose two players wish to play chess over the internet and
would like to determine who is the winner while hiding their individual strategies entirely. This in particular
means that all their intermediate moves during the game must also be hidden from each other. This can be
achieved using secure MPC where the input of each player is their strategy while the output is the identity
of the winner. A generic MPC protocol for this task would require communication linear in the size of the
strategy of at least one of the players. However if we observe that an insecure protocol for this task only
requires the players to communicate their next move (thus resulting in communication independent of the
strategy size), there is hope to compile this protocol in a secure one while preserving the communication
complexity.

(2) Comparing Artificial Intelligences: Suppose two companies have developed independently algo-
rithms to play some online game (e.g., Starcraft) and would like to determine which approach is superior.
Since training such algorithms is typically expensive, they want to keep their strategy (and consequently
their moves) secret. Using a general purpose MPC for this task would require one to communicate (at least
one of) the entire algorithms, which is typically prohibitively large. On the other hand, online games are
routinely played on personal computers with minimal communication overhead by leveraging interaction.

(3) Yao’s Millionare Problem: Consider the classic Yao’s millionaire problem where the task is to compute
the “greater than” function on two inputs x and y (of n bit each). A randomized interactive protocol for
this problem requires only O(log n) bits and O(log n) rounds of interaction. A conceptually simple protocol
requiringO(log(n) log log(n)) bits andO(log n) rounds can be found in [44]. The rough outline of the approach
is to perform binary search for the position i such that x and y differ in the i-th bit but are identical in the
first i− 1.

Indeed this list is not exhaustive. Several other interesting examples include private property testing,
Kachamar-Wigderson games, and so on.

1.1 Our Results

We systematically study the question of compiling insecure protocols to secure ones with minimal commu-
nication overhead in several settings and under a variety of cryptographic assumptions. We consider the
strongest level of security where all but one parties are potentially corrupted. We assume that all commu-
nications among M parties happen through a broadcast channel. Specifically, given as input an N -round
(where N ≥ 2) insecure multi-party protocol (Next,Output) for a functionality F we obtain the following
implication.

Theorem 1 (Informal). If the circular LWE problem is hard, then there exists

– an N rounds (semi-honest) 2PC protocol

– an N + 1 rounds (semi-honest) MPC protocol
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for F with communication complexity

N∑
i=1

|mi|(1 + o(1)) +NM2poly(λ) + LFECC(|last|, |depth|, |out|, λ)

in the common reference string model. Here:

– |mi| is the maximum size of the i’th message in the insecure protocol over all inputs (|last| is |mN−1|+
|mN | for the 2PC protocol and |mN | for the MPC protocol)

– |depth| is the depth of the post-processing function Output (for the 2PC case, this also includes the depth
of the computation of the last round message).

– |out| is the size of the output.
– LFECC(sin, d, sout, λ) is the communication complexity of a Laconic Function Evaluation scheme5 for a

circuit with input size sin, depth d, and output size sout, with security parameter λ.

The communication complexity is roughly the worst case communication overhead of the insecure protocol
plus an overhead which scales with the security parameter λ. Our results are particularly interesting in
the case where the worst case communication complexity is large and the last message and output are
small compared to the entire protocol. In this case, the overhead is overwhelmed by the insecure protocol’s
communication and the overall communication approaches the worst case communication complexity of the
insecure protocol.

For the two-party case, this represents a near complete resolution of the problem, i.e., we show an N to
N rounds compiler with communication complexity close to that of the insecure protocol.6 Thus, the natural
next question is whether the extra round of interaction is inherent in the multi-party settings. We show that
this is in fact not the case and, under strong cryptographic assumptions (at the cost of a slightly higher
communication), we obtain a round-preserving compiler.

Theorem 2 (Informal). If the circular LWE problem is hard and assuming the existence of extractable
witness encryption and succinct non-interactive arguments of knowledge, then there exists an N rounds
(semi-honest) MPC protocol for F with communication complexity

N∑
i=1

|mi|(1 + o(1)) +NM2poly(λ) + LFECS(|mN |, |depth|, |out|, λ)

+ WEncCC(LFECRS(|mN |, |depth|, |out|, λ) + poly(λ) + |mN |, |mN−1|+Mpoly(λ) , |mN |+Mpoly(λ) , λ)

where

– WEncCC(m,x,w, λ) is the communication complexity of witness encryption of a message of size m under
a statement of size x with witness size w using security parameter λ.

– LFECS(sin, d, sout, λ) is the circuit size of the ciphertext computation for a Laconic Function Evaluation
scheme for a circuit with input size sin, depth d, and output size sout, with security parameter λ.

– LFECRS(|last|, |depth|, |out|, λ) the size of the common reference string for a Laconic Function Evaluation
scheme for a circuit with input size sin, depth d, and output size sout, with security parameter λ

We remark that extractable witness encryption [29] and succinct non-interactive arguments of knowl-
edge [36] have been shown to be a very powerful machinery but we have evidence [20, 26] that they are

5 See technical overview. Any improvements to the communication complexity of Laconic Function Evalua-
tion schemes will directly improve our results. The scheme given by [43] has communication complexity
Õ(sin + sout)poly(d, λ).

6 The dependency on the size of the output seems somewhat inherent to our approach, since it has been shown [33]
that overcoming this barrier require some form of program obfuscation. Achieving this under LWE is a fascinating
open question.
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hard to instantiate from “standard” cryptographic assumptions. Nevertheless, candidate constructions ex-
ist [38, 21] and we can expect that our understanding will improve in the near future. A more pessimistic
interpretation of our result is that it highlights a barrier against ruling out the existence of N to N rounds
interaction-preserving compilers for MPC.

Finally, we discuss how to remove the need for a trusted setup (assuming that the rounds of the insecure
protocol are at least N ≥ 3) and how to lift all of our protocols to the malicious settings, without increasing
the number of rounds.

Theorem 3 (Informal). If the circular LWE problem is hard and assuming the existence of an MK-FHE
scheme without setup, simulation-extractable succinct non-interactive arguments of knowledge, 2 round semi-
malicious MPC, and 4 round (inefficient) delayed-input malicious MPC, then there exists a max(4, N + 1)
round malicious MPC protocol for computing F with communication complexity

N∑
i=1

|mi|(1 + o(1)) + (NM2 + LFECC(|last|, |depth|, |out|, λ) + LFECRS(|last|, |depth|, |out|, λ) + |m2|)poly(λ)

Furthermore if extractable witness encryption exists, then there exists an max(4, N) round malicious MPC
protocol for F with communication complexity

N∑
i=1

|mi|(1 + o(1)) + (NM2 + LFECS(|mN |, |depth|, |out|, λ) + LFECRS(|last|, |depth|, |out|, λ)

+WEncCC (LFECRS (|mN |, |depth|, |out|, λ) + poly(λ) + |mN |, |mN−1|+Mpoly(λ) , |mN |+Mpoly(λ) , λ)+|m2|)poly(λ)

Rate-1 MK-FHE. One of our main technical tools that allows us to achieve these results is the first
construction of a multi-key fully-homomorphic encryption (MK-FHE) [37] scheme with message-to-ciphertext
ratio (i.e., the rate) that approaches 1 as the size of the message and the security parameter grow. The
construction is proven secure against the standard LWE problem, plus an additional circularity assumption
to apply the bootstrapping theorem [23].

Theorem 4 (Informal). If the LWE problem is hard, then there exists a leveled MK-FHE scheme with
ciphertext rate approaching 1, for a growing message size and security parameter. By making an additional
circularity assumption, there exists a ciphertext rate-1 MK-FHE scheme.

1.2 Related Works

To the best of our knowledge, the question of designing general compilers to go from insecure protocols to
secure protocols while preserving the communication complexity was first studied by Naor and Nissim [41].
Naor and Nissim showed, given a protocol with communication complexity Γ , how to obtain a secure protocol
with communication proportional to poly(Γ, λ). The number of rounds in the resulting protocol is O(Γ ) (even
if the original protocol, say, required only a constant number of rounds). Ignoring the factor related to the
security parameter, the communication complexity of the resulting protocol is at least Γ 2. Furthermore, the
computational blowup of the secure protocol could be even exponential in Γ . Their approach is restricted to
the two party settings.

A number of works have focused on optimizing the communication complexity [35, 15, 14] and the round
complexity [18, 40, 22, 6] of MPC for generic functions. For all of these solutions, the communication of
the secure protocol grows proportionally to the inputs of all parties (and sometimes even with the circuit
representation of the functionality). A recent work [33] investigates the dependency of the communication
complexity and the output size and gives positive results for the semi-honest settings and negative results
for the (semi-)malicious settings. We also mention a related work of Boyle et al. [9] that compiles an insecure
protocol to a secure one while preserving the communication as a function of M , where M is the number of
parties. The overall communication (as a function of the input size) can increase significantly. Furthermore,
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their approach adds an additional 2M rounds to the protocol in order to construct incremental FHE keys and
decrypt the result. A closely related work [1] gives a method for compressing secure multiparty computation
protocols into two round protocols (in the case of semi-honest adversaries) or three round protocols (in the
case of malicious adversaries). The key difference between their approach and ours is that their approach
compiles protocols which are already secure, whereas our approach compiles insecure protocols. As a result,
their compiler inherits the overheads of existing secure computation protocols, which as mentioned previously,
grows proportionally to the inputs of all parties. In contrast, our approach of compiling insecure protocols
allows directly lifting work from the communication complexity literature into the secure computation setting.
Additionally, their compiler incurs a poly(λ) blowup in the communication complexity of the compiled secure
protocol and requires an honest majority.

In a different line of work, Fernando et al. [17] study the communication complexity of secure computation
for massively parallel circuits. In contrast to our work, they do not focus on optimizing the communication
rate (their compiler uses existing low-rate MK-FHE schemes) nor the round complexity (their compiler adds
a constant number of rounds).

2 Technical Overview

In the following we give an informal overview of the techniques that we develop in order to achieve our results.
Before delving into the details of our constructions we recall the useful notion of multi-key fully-homomorphic
encryption (MK-FHE) developed in the context of round-optimized MPC protocols [37, 4, 40]. An MK-FHE
scheme allow M distinct parties to locally sample a key pair (ski, pki) and encrypt a message mi under their
public key pki. Then there exists a public evaluation algorithm that allows one to compute any function f
over ciphertexts (c1, . . . , cM ) encrypted under independently sampled keys. The resulting ciphertext c̃ encodes
the function output f(m1, . . . ,mM ) and requires the knowledge of all secret keys (sk1, . . . , skM ) in order to
be decrypted (this is inherent since it would otherwise violate semantic security). We say that an MK-FHE
scheme has threshold decryption if the decryption of an evaluated ciphertext c̃ is split in the following two
subroutines:

(1) A local phase where each party processes c̃ with its own secret key ski and produces a decryption share
si which is then broadcast to all other participants.

(2) A public phase where the decryption shares (s1, . . . , sM ) are publicly combined to reconstruct the message
f(m1, . . . ,mM ).

Clearly the shares (s1, . . . , sM ) should not reveal anything beyond allowing one to reconstruct the designated
message.

A Dummy MPC Protocol. Equipped with an MK-FHE scheme, there is a natural way to compile and
N -round insecure MPC protocol into a secure one. This dummy protocol is outlined in the following.

– Pre-Processing: Prior to the beginning of the execution of the protocol, each party Pi, on input xi,
samples an MK-FHE key pair (ski, pki) and computes an encryption of its input ci = Enc(pki, xi).

– Round 1 . . . N: Let Nexti be the next-message function of the i-th party Pi for the n-th round (for
n ∈ {1, . . . , N}) of the insecure protocol. Pi evaluates Nexti homomorphically over the ciphertexts
exchanged so far and the input ciphertext ci. Note that the resulting ciphertext potentially contains
information which was originally encrypted under all public keys (pk1, . . . , pkM ). The resulting (multi-
key) ciphertext is then broadcast to all parties.

– Round N+1: Let Outputi be the post-processing function of the i-th party Pi that takes as input
the protocol transcript and the input xi and returns the output of the protocol. Pi evaluates Outputi
homomorphically over the ciphertexts exchanged so far and the input ciphertext ci. At this point Pi
holds an encrypted version c̃i of its output, which has to be decrypted with the help of all participants.
c̃i is broadcast to all parties.

– Round N+2: Each party Pi receives a set of multi-key ciphertexts (c̃1, . . . , c̃M ) and computes the partial
decryption shares using its own secret key ski. Then Pi sends the share of the j-th ciphertext sj,i to Pj .
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– Post-Processing: Each party Pi receives a set of shares (si,1, . . . , si,M ) which are locally reconstructed
to recover the output of the protocol.

It is not hard to see that the resulting protocol is correct7 and secure (in a semi-honest sense) as long as
the MK-FHE scheme is semantically secure and admits an efficient threshold decryption procedure. Let Γ
be the worst-case communication complexity of the insecure protocol, then the communication complexity
of the resulting MPC is Γ · poly(λ). We stress that the fact that the communication of the secure protocol
grows with the worst-case complexity of the insecure one is always the case, at least for strict notions of
security: The early termination of the protocol could leak some additional information about the parties’
inputs, which is imperative to avoid.

Challenges. There are multiple reasons why this approach is unsatisfactory and falls short in answering our
original question for an interaction-preserving compiler, which we elaborate below.

(1) The complexity of the secure MPC protocol is far from optimal as the compilation introduces a poly-
nomial overhead in the security parameter λ. Note that this is not inherent for secure protocols: As
an example, for the encryption functionality we can achieve almost optimal message-to-ciphertext size
ratio (i.e., the rate of the encryption) by hybrid encryption. That is, an encryption for a message m
is Enc(seed),PRG(seed) ⊕ m, where PRG is a cryptographic pseudorandom generator. Here the size of
the ciphertext approaches that of the message, for a growing |m|, since the size of the first component
is fixed. Unfortunately this simple trick does not apply to the case of homomorphic encryption, where
there does not seem to be any obvious way to convert evaluated ciphertexts back to this hybrid form.
Thus, improving the rate of the above protocol requires one to answer the following question.

Can we construct a rate-1 multi-key fully-homomorphic encryption scheme?

(2) The most evident issue with the protocol described above is the fact that it requires 2 additional rounds
of interaction. Intuitively, this is because at the end of the N -th round the parties only learn an encrypted
version of the protocol’s output. It is tempting to conclude that 2 more rounds are necessary to perform
the joint decryption of the output ciphertexts, since generic MPC protocols require at least 2 rounds of
interaction. However, recent developments in round-optimal MPC suggest that we can hope to do better.
Overcoming this obstacle boils down to the following challenge.

Can we construct a round-preserving MPC protocol without any extra round of communication?

In this work we give positive answers to the questions above. Setting aside for the moment the issue of
constructing a rate-1 MK-FHE scheme (which we are going to address at the end of this overview), the next
paragraphs are dedicated to solving the challenge of the round complexity for interaction-preserving MPC
compilers.

2.1 An N to N + 1 Rounds Compiler from Standard Assumptions

We first discuss how to reduce the round complexity of the protocol from N + 2 to N + 1, only assuming
the hardness of the circular LWE problem. For the special case of two parties, the same protocol does not
require any extra round of communication, i.e., we obtain an N to N rounds compiler.

N+1 Rounds via Laconic Function Evaluation. Before showing how to construct an N to N +1 round
compiler, we first recall the notion of laconic function evaluation (LFE), a cryptographic primitive recently
introduced by Quach et al. [43]. An LFE scheme allows a receiver to compress a large circuit C into a short
hash h. Then the sender, on input x and the digest h, can compute an encryption LFEEnc(h, x) such that
the receiver can recover C(x) and nothing more. In the instantiation proposed in [43], the size of the hash is
a fixed polynomial poly(λ) and the size of the ciphertext depends only on |x|, on the size of the output, and
on the depth of C.
7 As standard in MPC, correctness requires that the output of the secure evaluation of F on input (x1, . . . , xM )

equals F (x1, . . . , xM ). I.e., the secure protocol leaks exactly as much information as the insecure one.
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To see why this machinery is useful to save rounds of communication, consider the special case of two
parties, where only a single one receives the output: In the N -th round the receiver computes the LFE
hash h of the circuit that hardwires all of the ciphertexts in its view (including the encryption of its own
input) and takes as input the last ciphertext sent by the sender and its secret key. The circuit computes the
post-processing function Output homomorphically over the ciphertexts and outputs the partial decryption of
the resulting ciphertext. Then in the subsequent round the sender computes and sends LFEEnc(h, (sk, c(N)),
where sk is its MK-FHE secret key and c(N) is the ciphertext that the sender would have broadcast in the
last round. With this information available, the receiver recovers the partial decryption of the encrypted
output and completes the decryption locally.

Loosely speaking, this approach allows us to save one round of communication by outsourcing its com-
putation to the LFE scheme. This intuition trivially extends to the multi-party case, where each party Pi
acts as a sender and computes LFEEnc(h, (ski, (c

(N)
1 , . . . , c

(N)
M )), where (c

(N)
1 , . . . , c

(N)
M ) are the ciphertexts

broadcast in the last round. This allows the receiver to recover all of the decryption shares and thus the
output of the computation. It is important to observe that this mechanism crucially exploits the fact that
the MK-FHE threshold decryption consists of a local phase (which is computed under the hood of the LFE)
and of a public reconstruction phase (which is executed in plain by the receiver). The price that we pay is
that of an additive term proportional on the depth of the post-processing function Output of the insecure
protocol. This is due to the specific instantiation proposed by Quach et al. [43] and it seems plausible that
future LFE schemes (possibly from different assumptions) might surpass this barrier.

The Case of Two Parties. It turns out that, for the special case of two parties, the above approach can
be slightly modified to yield a round-preserving (i.e., N to N) compiler. Without entering in the details of
the transformation, the basic idea is to anticipate the computation of the LFE hash h to the round N − 1
and complete the remainder of the computation under the hood of the LFE. The reason why this works for
the two-party case (and it does not seem to extend to the more general multi-party case) is that the hashed
circuit has hardcoded the complete view of the receiver and the sender can compute the LFE encryption
containing its missing ciphertexts (c(N−1), c(N)) already by the N -th round.

In contrast, in the multi-party case each sender would need to compute LFEEnc(h, (ski, (c
(N−1)
1 , . . . , c

(N−1)
M ,

c
(N)
1 , . . . , c

(N)
M )), which contains all ciphertexts broadcast in the last round. Therefore, the LFE ciphertext can

only be computed after the N -th round is complete. At this point we seem to have encountered a roadblock:
We cannot hope to transmit enough information to recompute the last round for all parties, as it would
require sending an encryption of their entire input. Thus it is tempting to draw the conclusion that, for
the multi-party case, one additional round of interaction is indeed necessary. In the following we show that
this intuition is in fact wrong and that an N to N compiler exists under additional (strong) cryptographic
assumptions.

2.2 An N to N Rounds Compiler

We now discuss a compiler which transforms an insecure N -round into a semi-honestly secure N -round
protocol while preserving the communication complexity up to a poly(λ) factor. The starting point for this
compiler is our previous N to N +1 rounds compiler discussed in the last section. Recall that in round N +1
the only action performed by each party is encrypting the MK-FHE cihertexts received in the last round in
an LFE ciphertext addressed to each other party. In particular, the computation in round N + 1 is succinct
and in independent of the (possibly large) inputs xi.

Flawed Attempts and Why They Fail. A first attempt could be to implement a similar strategy as in
the two-party case and have the parties send the LFE hashes in round N − 1 and LFE ciphertexts in round
N . However, in the multiparty case this LFE ciphertext cannot depend on the ciphertexts sent by other
parties which themselves might depend on the respective inputs in complex ways.

Our approach to shave off round N+1 is to delegate the computation of the LFE ciphertexts to the party
receiving it. Say for concreteness we have parties P1, P2, P3 and party P1 wants to delegate computation of
its LFE ciphertext to party P2. Consider the following naive approach to achieve this: In round N party P1

sends an obfuscated circuit C̃ which computes the LFE ciphertext along with the other messages it sends
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in round N . Since this computation does not depend on the input of P1 this circuit is small. Now, once P2

has received all MK-FHE ciphertexts in round N , it can evaluate C̃ on these ciphertexts obtaining an LFE
encryption. However, this approach introduces obvious problems: Since the LFE ciphertext produced by C̃
also encrypts the secret key sk1, the circuit C̃ must know sk1. But this means that a collusion consisting of
P2 and P3 can now run C̃ on many different ciphertexts. Even if P2 was committed to a specific ciphertext
as in the two party case, a semi-honest adversary with the view of P2 and P3 could still replay round N of
P3 in his head and modify the ciphertext sent by P3. Such an adversary could clearly learn more than the
output of the insecure protocol.

Preventing Replay Attacks via SNARKs. To overcome this issue, we need to make sure that there
exists only a single valid input tuple on which P2 can evaluate C̃. To enforce this, we modify the protocol such
that in round N − 1 every party commits to their current state. Since the inputs are large, this needs to be
done using a succinct commitment scheme (e.g. a Merkle tree). Party P1 then hardwires these commitments
into the circuit C̃ and each input must be provided together with a proof that it has been correctly computed
relative to the committed state and the ciphertexts sent by the other parties in round N − 1. Since the
witness for such a proof contains the input of the respective party, we have to use succinct arguments [38, 7,
8] to implement these proofs. Moreover, since the statements to be proven are only known in round N , we
have to use succinct non-interactive arguments (SNARKs).

One issue with this approach is that an argument (as opposed to a proof) can only fix the correct inputs
computationally and therefore we cannot rely on indistinguishability obfuscation [5, 19] to compute the
obfuscated circuit C̃. However, a closer look at our setting reveals that P2 only needs to evaluate the circuit
C̃ once. Consequently, we can implement a token-based obfuscation [30] approach, which can be instantiated
from witness-encryption and garbled circuits.

Our Solution. The final M -party protocol proceeds as follows: In round N − 1 each party Pi computes a

commitment ζi of an MK-FHE encryption c
(0)
i of their (possibly large) input xi as well as the MKE-FHE

ciphertexts (c
(1)
1 , . . . , c

(N−2)
M ). This commitment ζi is broadcast along with the round N − 1 message c

(N−1)
i

of the underlying protocol. In round N , each party Pi computes a SNARK πi which establishes that the

N -th round message c
(N)
i of the underlying protocol was computed consistently with the committed value.

For each possible receiver Pj , the party Pi also computes a garbling of a circuit C which takes as input the

N -th round messages (c
(N)
1 , . . . , c

(N)
M ) as well as the LFE hashes (h1, . . . , hM ) and computes and outputs the

round N + 1 message to Pj , i.e., an LFE encryption LFEEnc(hj , (ski, (c
(N)
1 , . . . , c

(N)
M )).

To transmit the labels for this garbled circuit, we rely on witness encryption. For the sake of example,

we consider a single k-bits input c
(N)
1 (the general case is handled analogously). For all κ ∈ [k], our goal

is to provide the label corresponding to the κ-th bit of c
(N)
1 to Pj , but keep the label corresponding to the

complementary bit hidden. Define a language L such that a statement (ζj , c
(N−1)
j , . . . , c

(N−1)
M , κ, b) is in L,

if there exist a c̃
(N)
j and a SNARK proof πj such that

(1) The κ-th bit of c̃
(N)
j is b and

(2) πj is a verifying SNARK proof which asserts that c̃
(N)
j is the correct next message of Pj given the state

committed to in ζj and (c
(N−1)
j , . . . , c

(N−1)
M ).

Assume that we are given a witness encryption for L. For each wire-index κ, Pi encrypts the 0-label under

the statement (ζj , c
(N−1)
j , . . . , c

(N−1)
M , κ, 0) and the 1-label under the statement (ζj , c

(N−1)
j , . . . , c

(N−1)
M , κ, 1).

Finally, to complete round N , Pi sends c
(N)
i , the SNARK proof πi, the garbled circuit C̃, and the witness-

encrypted labels to Pj .

To evaluate the garbled circuit C̃, Pj first obtains the label-encodings of the inputs (c
(N)
1 , . . . , c

(N)
1 )

by decrypting the witness encryptions using the witnesses w = (c
(N)
1 , π1, . . . , c

(N)
M , πM ). At this point Pj

can evaluate the garbled circuit and obtain an LFE encryption LFEEnc(hj , (ski, (c
(N)
1 , . . . , c

(N)
M )), where

(c
(N)
1 , . . . , c

(N)
M ). Pj can then proceed as in the N + 1-round protocol.
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On Extractability Assumptions. To prove semi-honest security, we need to argue that no collusion of
parties is able to obtain garbled circuit-labels that do not corresponding to the legitimate inputs. Once this
is established, security of the protocol follows routinely from the simulation-security of the garbling scheme.
The standard notion of witness encryption [21] only provides security for messages encrypted under false

statements. However, a closer look at the language L reveals that for given ζj , c
(N−1)
j , . . . , c

(N−1)
M and κ both

the statements

x0 =
(
ζj , c

(N−1)
j , . . . , c

(N−1)
M , κ, 0

)
and x1 =

(
ζj , c

(N−1)
j , . . . , c

(N−1)
M , κ, 1

)
might be true. The reason for this is that the SNARK, which is used in the definition of L, is computationally
sound. Consequently, we need to rely on the stronger notion of extractable witness encryption [29]. This notion
requires that any (adversarial) machine which can decrypt a witness-encryption ciphertext v (with non-
negligible probability) must know a corresponding witness for the statement x under which v was encrypted.
This is formalized via a non-black-box knowledge extractor. Thus, in the security proof we can argue that

such a machine could produce SNARK proofs for the wellformedness of ciphertexts c̃
(N)
j 6= c

(N)
j , which, by

the proof-of-knowledge property of the SNARK, would mean that it can consistently open the commitment
ζj in different ways, which contradicts its binding property.

The combination of SNARKs and extractable witness encryption in our construction is inspired by the
construction of attribute-based encryption for Turing-machines/RAM programs in [29].

2.3 Plain Model

The protocols presented so far require the sampling of a common reference string by a trusted party, which
is then made available to all participants. This additional assumption is clearly undesirable and thus a
natural question is whether compilers with similar efficiency exist also in the plain model. In the following
we sketch how to lift the previously described protocols in the plain model without adding any additional
round of interaction, at the cost of slightly increasing the communication complexity of the resulting MPC.
In a nutshell, our idea is to begin the computation of the protocol under the hood of a MK-FHE without
setup (but not necessarily with rate-1), such as the one described in [37, 3], and piggyback the round needed
to generate the public parameters in the first round of interaction. Once this operation is completed, we
can move the encrypted protocol execution under the rate-1 MK-FHE scheme via standard key-switching
techniques.

More specifically, assume for the moment that one round of interaction is sufficient to generate the public
parameters of the protocol. Then our augmented protocol proceeds as follows: The parties encrypt their input
under the MK-FHE without setup and compute the first message of the protocol homomorphically. Then
they broadcast the ciphertexts, together with the corresponding public keys and the information necessary to
compute the public parameters of the system. In the second round, the parties proceed as before except that
they additionally sample a key pair for the rate-1 MK-FHE (recall that at this point the public parameters
are established) together with an encryption of the secret key of the MK-FHE without setup. Once these
ciphertexts are sent around, the parties can evaluate the decryption circuit of the MK-FHE without setup
homomorphically, thus switching to encryptions under the hood of the rate-1 MK-FHE. The remainder of
the protocol proceeds as before.

The security of this protocol can be shown with the same strategy as before, except that we have to add an
additional intermediate hybrid where we substitute the encryption of the secret key of the MK-FHE without
setup with an encryption of a fixed string. Clearly the number of rounds needed for this protocol is identical,
given that N ≥ 3. However, the communication complexity now grows by an additional additive factor
poly(λ, |msg|) where msg is the communication complexity of the second round of the insecure protocol, due
to the fact that we do not know of any rate-1 MK-FHE without setup (from standard assumptions). The
reason why we do not have an additional factor proportional to the size of the first round is that we can
assume without loss of generality that non-evaluated MK-FHE ciphertexts have rate-1: Simply modify the
encryption algorithm to compute the hybrid encryption

(Enc(seed),PRG(seed)⊕m)

9



where PRG is a pseudorandom generator and seed←$ {0, 1}λ. Thus what is left to be shown is that the public
parameters of the scheme can be computed in one round. Recall that the public parameters of the schemes
consist of (i) the public parameters of the MK-FHE scheme pp, (ii) the key of the collision resistant hash
K, (iii) the common reference string of the LFE crs, and the (iv) common reference string of the SNARK
crsSNARK. For the semi-honest case, we can simply let an arbitrary party sample the public parameters and
broadcast them in the first round.

2.4 Malicious Security

A natural question that arises from the above protocols is whether we can obtain similar results in the
malicious settings. First observe that all of our protocols (or minor modification thereof) satisfy the notion
of semi-malicious security: In the semi-malicious security experiment, the distinguisher is still given honestly
computed view but it is allowed to choose the random coins for the corrupted parties. Since the MK-FHE
scheme(s) that we deploy satisfy perfect correctness, the evaluated ciphertexts are always well-formed as
long as the keys and the fresh encryptions are in the support of the algorithms KeyGen and Enc, respectively.
Furthermore, we show in Appendix 7.4 that our rate-1 MK-FHE scheme is semantically secure for all (possibly
adversarial) choices of the public parameters corresponding to the corrupted parties. Finally recall that the
LFE scheme described in [43] has been shown to satisfy semi-malicious security. The caveat here is that the
analysis assumes that the crs is sampled by a trusted party, whereas in our protocol ΠN+1 the crs is chosen
by some arbitrary (and potentially corrupted) party in the first round. This issue can be easily resolved by
using a generic 2-round semi-malicious MPC protocol (e.g., [22, 6]) to generate the common reference string
crs.

It is well known that any semi-malicious protocol can be compiled into a simulation-secure one by using
universally composable non-interactive zero-knowledge proofs [4]. To ensure succinctness, we need to rely
on simulation-extractable zero knowledge SNARKs instead (e.g. [32]). However, in the malicious setting,
generating the common reference string crs for both the SNARKs and the LFE seems to require first running
a 4 round8 maliciously-secure MPC . Since both ΠN+1 and ΠN require crs in the N ’th round, this would
only result in compilers for N ≥ 5.

Early CRS Usage To avoid the unsatisfactory warm-up period, observe that the crs can be generated and
used as early as the third round, as long as it is not used publicly. Specifically, we can run the 2 round
crs generation protocol underneath a MK-FHE scheme without setup, as well as anything which requires it
(e.g. the LFE and SNARKs). Upon receiving a proof that the crs was generated semi-maliciously, the entire
interaction involving the crs can be safely decrypted to finish the protocol. The extra round for decrypting
after the proof is complete can be avoided by using a generic inefficient 4 round MPC implementing the
multiparty Conditional Disclosure of Secrets (MCDS) functionality suggested by Choudhuri et. al. [12]. Upon
input of a witness that the crs was generated semi-maliciously, it reveals the “outer” plain model MK-FHE
secret keys. This provides the guarantee that if any party cheated during the crs generation, no party can
see the portions of the protocol involving the crs. If the outer low-rate MK-FHE secret keys are revealed, all
parties can safely decrypt the portions of the transcript involving the crs without further interaction.

Our Solution The protocol specifications are identical to the plain model semi-honest protocol (which takes
N ′ rounds) except for the following modifications:

(1) In round N ′ − 3, the parties also sample fresh (low-rate) MK-FHE keys and broadcast the public keys.
They use these “outer” keys to run an encrypted generic 2-round semi-malicious MPC protocol (using
fresh randomness) in rounds N ′ − 3 and N ′ − 2 to generate the crs for the LFE and SNARK.

(2) In the last round of ΠN (last two rounds of ΠN+1), instead of sending the LFE hash (and ciphertext) in
the clear, it is computed and broadcast underneath the outer keys. This gives it access to the encrypted
crs.

(3) Rounds N ′ − 1 and N ′ are additionally augmented with encrypted zero knowledge SNARKs proving
that the transcript so far has been honestly computed with respect to the same input and randomness.

8 Or 3 rounds with non-black-box simulation.
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These SNARKs are computed and broadcast underneath the outer keys, which gives them access to the
encrypted crs. If at any point a party Pi receives a faulty SNARK, which is checkable underneath the
outer MK-FHE, it implicitly aborts by sending encryptions of a fixed string instead of further messages
(e.g. the LFE ciphertext) under the MK-FHE.

(4) During the last four rounds, the parties run a generic 4 round malicious-secure MPC protocol imple-
menting the MCDS functionality. Upon input of the outer secret keys and the randomness used in the
crs generation, the MCDS reveals the outer MK-FHE secret keys.

The modifications introduced above do not change the communication complexity from that of the semi-
honest plain model protocol, since the crs is bounded by a fixed poly(λ), the generic MPCs only compute
circuits involving the crs and plain model MK-FHE keys, the SNARKs are succinct, and the LFE already had
size poly(|last|, |depth|, |out|, λ). The round complexity becomes max(4, N ′), where N ′ is the round complexity
of the underlying plain model semi-honest secure protocol. The compiler can be applied to any insecure
protocol with N ≥ 3.

At a high level, the simulator extracts the adversary’s outer keys and randomness used in generating the
crs using the MCDS simulator. During this time, it replaces the encrypted second message of the crs generation
protocol with an encryption of 0. It rewinds to round N ′ − 2 and re-simulates MCDS while forcing the crs
using the extracted randomness (which was fixed in round N ′−3) and the 2 round semi-malicious simulator.
It decrypts the SNARKs in round N ′−1 using the extracted outer keys then invokes the knowledge extractor
to retrieve the adversary’s ΠN ′ input. Armed with ΠN ′ input, it finishes the simulation of the plain model
secure protocol underneath the outer MK-FHE keys. To avoid issues from playing protocols in parallel, we
rely on the semantic security of the plain model MK-FHE to hide components until we are ready to simulate
them, the 2 round nature of the crs generation MPC, the ability to locally compute intermediate messages
of ΠN ′ given an encryption of the input, and the non-interactive nature of the components used in ΠN ′ to
force the output.

2.5 Rate-1 Multi-Key Fully-Homomorphic Encryption

The missing piece to complete the picture is the description of a rate-1 MK-FHE. In the following we present
a MK-FHE scheme with message-to-ciphertext ratio of 1− o(1) which is proven secure against the standard
learning with errors (LWE) problem.

Compressible MK-FHE. Our starting point is the recent works of Brakerski et al. [10] and of Gentry and
Halevi [24] where they propose a general construction paradigm for rate-1 FHE. We recall the main ideas in
the following. One of their main leverages is that many (low rate) FHE schemes from the literature have a
very structured decryption algorithm. More concretely, the decryption circuit for a ciphertext c and a secret
key s can be rewritten as a linear operation followed by a rounding. That is, for an LWE modulus q there
exists a linear function (mod q) Lω,c such that

Lω,c(s) = ω ·m+ e

where q is the LWE modulus, ω is an arbitrary constant and e is a noise term such that |e| < B for some fixed
bound B. By choosing ω to be large enough, the message can be decoded with probability 1. This property
is referred to as linear decrypt-and-multiply. The idea to increase the rate of the FHE scheme is to key-
switch low rate FHE ciphertext into high rate ciphertexts. High rate encryption schemes exhibit only linear
homomorphic properties, which are however sufficient due to the linearity of Lω,c. Compression is achieved
by carefully packing multiple bits into high rate ciphertexts and by setting the constant ω appropriately.

Our observation is that a similar transformation works also for the case of MK-FHE with linear decrypt-
and-multiply. Specifically, given a multi-key ciphertext c and the concatenation of all of the corresponding
secret keys (s1, . . . , sM ), we require the existence of a linear function Lω,c such that

Lω,c(s1, . . . , sM ) = ω ·m+ e
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where ω and e are defined as before. Fortunately, one can show that existing MK-FHE schemes [13, 40] have
precisely this structure. Clearly if we want the final scheme to support multi-key operations, then we also
require the high rate scheme to be multi-key homomorphic. Thus, the only missing ingredient is a multi-key
linearly-homomorphic encryption (MK-LHE) with high rate. The main technical contribution of this work
is the construction of a such a scheme, assuming the hardness of the LWE problem.

Rate-1 MK-LHE from LWE. Our main observation is that Regev encryption [45] can be extended to
(i) pack arbitrarily many messages into a single ciphertexts and (ii) support multi-key evaluations of linear
functions. In the following we recall the packed version of the scheme and we show a multi-key evaluation
algorithm for linear functions over Zηq , where q is the LWE modulus and η is proportional to the rate of the
scheme. The key generation algorithm samples a matrix A←$Zn×mq uniformly at random. Then it chooses
a secret key S←$Zη×nq uniformly at random and samples E←$χη×m, where χ is a discrete Gaussian. The
public key of the scheme consists of the matrices

A and B = S ·A + E.

To encrypt a column vector of messages (m1, . . . ,mη), one samples a random vector r←$ {0, 1}m and sets
the ciphertext to

c1 = A · r and c2 = B · r + ω · (m1, . . . ,mη)

where ω is a constant (which is typically set to q/2). Given the secret key S, one can recover the encrypted
plaintext by computing c2 − S · c1 (mod q) and rounding to the nearest multiple of ω. The scheme can be
shown to be semantically secure with a canonical reduction to the LWE problem and an invocation of the
leftover hash lemma [34].

It is well known that the scheme is (bounded) additively homomorphic for ciphertexts encrypted under
the same key. However, by slightly modifying the evaluation and the decryption procedure one can show
that the same holds for ciphertexts encrypted under independently sampled keys. We exemplify this for the
case of homomorphic addition of two ciphertexts: On input (c1, c2) and (c̃1, c̃2), the multi-key evaluation
algorithm computes (c1, c̃1, c2 + c̃2). Given both secret keys S and S̃ one can recover the sum of the vectors
by computing

c2 + c̃2 − S · c1 − S̃ · c̃1
= B · r + ω · (m1, . . . ,mη) + B̃ · r̃ + ω · (m̃1, . . . , m̃η)− S ·A · r− S̃ · Ã · r̃
= E · r + Ẽ · r̃ + ω · (m+ m̃1, . . . ,m+ m̃η)

= z + ω · (m+ m̃1, . . . ,m+ m̃η)

which can be efficiently decoded as long as ‖z‖∞ is small enough. One limitation of the scheme is that
messages cannot be multiplied by large constants since it would also be absorbed by the noise term and
would violate correctness. This shortcoming can be easily bypassed by encrypting multiple copies of the each
message multiplied by increasing powers of 2. By summing the terms corresponding to the bit representation
of the constant, we obtain the same result while keeping the noise growth contained.

It is not immediately clear that the resulting multi-key ciphertexts have a high rate, since the evaluated
ciphertexts now contain as many Znq elements as the number of public keys. Fortunately, we can increase the
parameter η (i.e., the dimensions of the encrypted messages) to be large enough to amortize for the additional
overhead. Achieving actual rate-1 requires a little more work, but it can be done almost generically using
the ciphertext compression algorithm developed by Brakerski et al. [10].

Threshold Decryption. The missing ingredient to use such a scheme in our MPC protocol is to argue that
it satisfies threshold decryption. While the resulting MK-FHE falls short in achieving this, such issue can
be easily resolved by another application of key-switching, i.e., homomorphically evaluate the compressed
decryption algorithm under an MK-FHE with threshold decryption (but low rate). More details can be found
in Appendix 7.4.

Removing the Common Reference String. While we deliberately glossed over the instantiations of
our building blocks in our overview, one important aspect of our scheme is that it requires a common
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reference string. This is because the schemes from [13, 40] require a trusted setup, which is inherited by
our construction.9 We will sketch a way to bypass the need for a trusted setup in our MPC protocols,
without adding any extra round of communication but at the cost of a slight increase in the communication
complexity of the protocol. To this end, we recall that (low-rate) MK-FHE schemes in the plain model
exist [37] from NTRU-type assumptions. Given that N is large enough, we can afford to compute a few
rounds of the protocol in under the hood of a plain model MK-FHE and then key-switch into a rate-1 MK-
FHE with threshold decryption. These initial rounds can now be used by the participants to jointly compute
the common reference string for our MK-FHE, without any extra interaction.

More precisely, we begin the execution of the dummy protocol as described above using a plain-model
MK-FHE scheme (with low rate). In parallel with the first rounds of the protocol, the parties also engage
in a generic MPC to compute the reference string crs of an MK-FHE with threshold decryption. For an
appropriate instantiation of MK-FHE with threshold decryption (e.g., the one that we present in Section 7)
the size of the crs is bounded by a fixed polynomial in the security parameter and therefore this trick adds
only an additive overhead poly(λ) to the protocol communication. In N is large enough, then no additional
rounds are needed. In fact, we will show in Appendix 7.4 the common reference string of our MK-FHE scheme
can be computed in a single broadcast round. Once the crs is established, the parties sample a MK-FHE key
pair (ski, pki) and publish Enc(pki, ski), where ski is the secret key of the plain model MK-FHE scheme. At
this point all parties can non-interactively convert all of the previously exchanged ciphertexts in multi-key
ciphertext under (pk1, . . . , pkM ). The rest of the execution is unchanged.

3 Preliminaries

We denote by λ ∈ N the security parameter. We we say that a function negl(·) is negligible if it vanishes
faster than any polynomial. Given a set S, we denote by s←$S the uniform sampling from S. We say that
an algorithm is PPT if it can be implemented by a probabilistic Turing machine running in time poly(λ).
We abbreviate the set {1, . . . , n} as [n]. Matrices are denoted by M and vectors are denoted by v. We denote
the infinity norm of a vector by ‖v‖∞.

3.1 Learning with Errors

The (decisional) learning with errors (LWE) problem was introduced by Regev [45]. The LWE problem is
parametrized by a modulus q, positive integers n,m and an error distribution χ. An adversary is either given
(A, s> ·A + e) or (A,u) and has to decide which is the case. Here, A is chosen uniformly from Zn×mq , s is
chosen uniformly from Znq , u is chosen uniformly from Zmq and e is chosen from χm. The matrix version of
this problem asks to distinguish (A,S ·A+E) from (A,U), where the dimensions are accordingly. It follows
from a simple hybrid argument that the matrix version is as hard as the standard version.

As shown in [45, 42], for any sufficiently large modulus q the LWE problem where χ is a discrete Gaussian
distribution with parameter σ = αq ≥ 2

√
n (i.e. the distribution over Z where the probability of x is

proportional to e−π(|x|/σ)
2

), is at least as hard as approximating the shortest independent vector problem
(SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices. We refer to α = σ/q as
the modulus-to-noise ratio, and by the above this quantity controls the hardness of the LWE instantiation.
Hereby, LWE with polynomial α is (presumably) harder than LWE with super-polynomial or sub-exponential
α. We can truncate the discrete gaussian distribution χ to σ ·ω(

√
log(λ)) while only introducing a negligible

error. Consequently, we omit the actual distribution χ but only use the fact that it can be bounded by a
(small) value B.

3.2 Multi-Party Computation Protocols

In the following we recall the definition of multi-party computation (MPC) protocols. Our definitions are
taken almost in verbatim from [27].

9 We are not aware of any other approach to build rate-1 MK-FHE in the plain model.

13



Definition 1 (Functionality). Let M be a positive integer. An M -party functionality f with input is a
deterministic function from {0, 1}k·M to {0, 1}`·M , for all (k, `) ∈ N.

We denote by fi(x) the i-th block of the output of f on input some x ∈ {0, 1}k·M . We assume that all
communications among parties happen through a broadcast channel.

Definition 2 (MPC Protocol). Let M be a positive integer, let N = N(λ) be a polynomial in the security
parameter, and let f be an M -party functionality. An N -round protocol Π for f is a tuple of deterministic
polynomial-time algorithms (Next,Output) defined as follows.

Nexti
(
1λ, xi, ri,T(n)

)
: On input the security parameter 1λ, an input xi ∈ {0, 1}k, a random tape ri ∈

{0, 1}R, and the transcript of all messages T(n) up to the n-th round, return the n + 1 round message

y
(n+1)
i for the party Pi.

Outputi
(
1λ, xi, ri,T(N)

)
: On input the security parameter 1λ, an input xi ∈ {0, 1}k, a random tape ri ∈

{0, 1}R, and the transcript of all messages T(N), return the output zi for the party Pi.

The MPC protocol must satisfy correctness in the following sense.

Definition 3 (Correctness). For all integers λ ∈ N, all inputs (x1, . . . , xM ) ∈ {0, 1}k·M , and all random
tapes (r1, . . . , rM ) ∈ {0, 1}R·M it holds that{

Outputi

(
1λ, xi, ri,T(N)

)}
i∈[M ]

= f(x1, . . . , xM )

where T(N) =
{
Nexti

(
1λ, xi, ri,T(n)

)}
i∈[M ],n∈[N ]

.

Let I ⊆ [M ] be a subset of parties. We denote the view of parties {Pi}i∈I by

ViewI
(
1λ, (x1, . . . , xM ), (r1, . . . , rM )

)
=
(
{xi, ri}i∈I ,T

(N)
)
.

Similarly, we define their output by

OutputI
(
1λ, (x1, . . . , xM ), (r1, . . . , rM )

)
=
{
Outputi

(
1λ, xi, ri,T(N)

)}
i∈I

.

We are now in the position to define the notion of semi-honest security for MPC protocols. Semi-honest
MPC is known to be realizable in 2-rounds [22, 6] from the minimal assumption of the existence of a 2-round
oblivious transfer.

Definition 4 (Semi-Honest Security). Let M be a positive integer, let f be an M -party functionality,
and let Π be an MPC protocol for f . Then Π is secure against semi-honest adversaries if there exists a PPT
algorithm Sim such that for the following two distributions are computationally indistinguishable:{
ViewI

(
1λ, (x1, . . . , xM ), (r1, . . . , rM )

)
,OutputI

(
1λ, (x1, . . . , xM ), (r1, . . . , rM )

)}
λ∈N,I⊆[M ],(x1,...,xM )∈{0,1}k·M

c
≈
{
Sim(1λ, I, {xi, fi(x1, . . . , xM )}i∈I), {fi(x1, . . . , xM )}i∈I

}
λ∈N,I⊆[M ],(x1,...,xM )∈{0,1}k·M

where the probabilities are taken the random choice of (r1, . . . , rM )←$ {0, 1}R·M and the random coins of the
simulator Sim.

We say that a protocol is semi-maliciously secure if the distinguisher is allowed to (adaptively) choose the
random coins of the corrupted parties but otherwise does not deviate from the specifications of the protocol.
We refer the reader to [4] for a formal definition. For the settings of fully corrupted parties we consider the
standard notion of simulation security for MPC [27].
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3.3 Multi-Key Fully-Homomorphic Encryption

A multi-key homomorphic encryption supports the evaluation of functions over ciphertexts computed under
different (possibly independently sampled) keys. The result of the computation can then be decrypted using
all of the corresponding secret keys. We include a setup procedure in the syntax although it may not be
necessary for certain instantiations.

Definition 5 (Multi-Key Homomorphic Encryption). A multi-key homomorphic encryption scheme
consists of the following efficient algorithms.

Setup(1λ) : On input the security parameter 1λ, the setup algorithm returns the public parameters pp.
KeyGen(pp) : On input the public parameters pp, the key generation algorithm returns a key pair (sk, pk).
Enc(pk,m) : On input a public key pk and a message m, the encryption algorithm returns a ciphertext c.
Eval((pk1, . . . , pkM ), f, (c1, . . . , cM )) : On input a vector of public keys (pk1, . . . , pkM ), an M -argument func-

tion f , and a vector of ciphertexts (c1, . . . , cM ), the evaluation algorithm returns an evaluated ciphertext
c.

Dec((sk1, . . . , skM ), c) : On input a vector of secret keys (sk1, . . . , skM ) and a ciphertext c, the decryption
algorithm returns a message m.

We say that the scheme is fully homomorphic (MK-FHE) if it is homomorphic for P/poly. The definition
of correctness is given in the following. Note that we require the scheme to satisfy the strong notion of
multi-hop correctness as defined in [25].

Definition 6 (Multi-Hop Correctness). A multi-key homomorphic encryption scheme (Setup,KeyGen,Enc,
Eval,Dec) is multi-hop correct if for all λ ∈ N, all polynomials M = M(λ), all M -argument functions f in
the supported family, all inputs (m1, . . . ,mM ), all pp in the support of Setup(1λ), all (ski, pki) in the support
of KeyGen(pp), and all ciphertexts (c1, . . . , cM ) in the support of the encryptions of (m1, . . . ,mM ), it holds
that

Dec((sk1, . . . , skM ),Eval((pk1, . . . , pkM ), f, (c1, . . . , cM ))) = f(m1, . . . ,mM )

where c is in the support of the encryptions of m if

c = Enc(pk,m) or c = Eval((pk1, . . . , pkM ), f̃ , (c̃1, . . . , c̃M ))

where (c̃1, . . . , c̃M ) are in the support of the encryptions of (m̃1, . . . , m̃M ) and f̃(m̃1, . . . , m̃M ) = m.

We say that a scheme is compact if the size of the evaluated ciphertext does not depend on the circuit
size of the evaluated function f . The notion of security is standard for public-key encryption [31].

Definition 7 (Semantic Security). A multi-key homomorphic encryption scheme (Setup,KeyGen,Enc,
Eval,Dec) is semantically secure if for all λ ∈ N and for all pairs of messages (m0,m1) the following distri-
butions are computationally indistinguishable:

(pp, pk,Enc(pk,m0))
c
≈ (pp, pk,Enc(pk,m1))

where pp←$Setup(1λ) and (sk, pk)←$KeyGen(pp).

Finally we define the rate of an encryption scheme as the asymptotic message-to-ciphertext size ratio.

Definition 8 (Rate). We say that a homomorphic encryption scheme (Setup,KeyGen,Enc,Eval,Dec) has
rate ρ = ρ(λ), if for all λ ∈ N, all polynomials M = M(λ), all pp in the support of Setup(1λ), all pk
in the support of KeyGen(1λ), all supported functions f with sufficiently large output size, all messages
(m1, . . . ,mM ) in the message space, and all (c1, . . . , cM ) in the support of the encryptions of (m1, . . . ,mM ),
it holds that

|f(m1, . . . ,mM )|
|Eval(pk, f, (c1, . . . , cM ))|

≥ ρ.

We also say that a scheme has rate 1, if it holds that

lim inf
λ→∞

ρ(λ) = 1.
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Threshold Decryption We define a special syntax for the decryption of MK-FHE schemes that was first
introduced in [40]. At a high level, this protocol consists of (1) a local phase where each party computes a
partial decryption of a ciphertext given their secret key and (2) a public phase where all the partial decryption
shares are recombined to reconstruct the plaintext.

Definition 9 (Threshold Decryption). We say that a homomorphic encryption scheme (Setup,KeyGen,
Enc,Eval,Dec) supports threshold decryption if there exist two algorithms PDec and Rec with the following
syntax.

PDec(sk, c, i) : The partial decryption algorithm takes as input a secret key sk, a ciphertext c, and an index
i, and returns a decryption share s.

Rec(s1, . . . , sM ) : The reconstruction algorithm takes as input a set of decryption shares (s1, . . . , sM ) and
returns a message m.

The definition of correctness follows (with minor adjustments) from Definition 6. Next we define the
notion of simulatability for decryption shares. Note that the definition of simulatability is given for the case
of all but one corrupted parties, as in [40].

Definition 10 (Simulatability). A multi-key homomorphic encryption scheme (Setup,KeyGen,Enc,Eval,
PDec,Rec) satisfies simulatability if there exists a PPT simulator Sim such that for all λ ∈ N, all polynomials
M = M(λ), all indices i ∈ [M ], all pp in the support of Setup(1λ), all (ski, pki) in the support of KeyGen(pp),
all messages m in the message domain, and all ciphertexts c in the support of the encryption of m, it holds
that the following distributions are statistically close

PDec(ski, c, i)
s
≈ Sim

(
m, c, i, {skj}j∈[M ]\{i}

)
where the probability is taken over the random coins of the PDec algorithm and of the simulator Sim.

Ciphertext Compression for Multi-Key FHE It is useful to augment the syntax of a MK-FHE with
a compression algorithm, which operates on standard ciphertexts and transforms them into compressed
ciphertexts. To amend this, we also introduce an additional decryption algorithm that allows one to recover
the plaintext from compressed ciphertexts, given the secret keys. We recall the definition from [10].

Definition 11 (Compressible MK-FHE). Let (Setup,KeyGen,Enc,Dec,Eval) be an MK-FHE scheme
and let η = η(λ) be a polynomial. We say that the MK-FHE scheme supports η-ciphertext compression if
there exist two algorithms Compress and CompDec with the following syntax.

Compress((pk1, . . . , pkM ), (c1, . . . , cη)) : Takes as input a set of public keys (pk1, . . . , pkM ) and η ciphertexts
(c1, . . . , cη) and outputs a compressed ciphertext c∗.

CompDec((sk1, . . . , skM ), c∗) : Takes as input a set of secret keys (sk1, . . . , skM ) and a compressed ciphertext
c∗ and outputs η messages (m1, . . . ,mη).

In terms of correctness we require that for all (ski, pki) in the support of KeyGen(1λ) and for all ciphertexts
(c1, . . . , cη) in the support of the encryptions of (m1, . . . ,mη) it holds that

CompDec((sk1, . . . , skM ),Compress((pk1, . . . , pkM ), (c1, . . . , cη))) = (m1, . . . ,mη).

The definition of rate for compressed ciphertexts is analogous to that for standard MK-FHE scheme.

3.4 Laconic Function Evaluation

We recall the definition of laconic function evaluation (LFE), a primitive recently introduced by Quach,
Wichs, and Wee [43]. The scheme is defined with respect to a class of circuits parametrized by the input and
the circuit size, which we denote by Φ.
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Definition 12 (Laconic Function Evaluation). A laconic function evaluation scheme (LFEGen, LFEHash,
LFEEnc, LFEDec) is defined as the following tuple of algorithms.

LFEGen(1λ) On input the security parameter 1λ, the generation algorithm returns a common reference string
crs.

LFEHash(crs, C) : On input the common reference string crs and a circuit C, the compression algorithm
returns a digest h and a decoding information d.

LFEEnc(crs, h, x) : On input the common reference string crs, a digest h, and a message x, the encryption
algorithm returns a ciphertext c.

LFEDec(crs, c, d) : On input the common reference string crs, a ciphertext c, and a decoding information d,
the decoding algorithm returns a message y.

The definition of correctness is given in the following.

Definition 13 (Correctness). A laconic function evaluation (LFEGen, LFEHash, LFEEnc, LFEDec) is cor-
rect if for all λ ∈ N, for all circuits C ∈ Φ, and all messages x it holds that

C(x) = LFEDec(crs, c, r)

where crs← LFEGen(1λ), (h, d)← LFEHash(crs, C), and c← LFEEnc(crs, h, x)

It is required that the encryption of a message x with respect to a compressed circuit C reveals nothing
beyond C(x).

Definition 14 (Simulation Security). A laconic function evaluation (LFEGen, LFEHash, LFEEnc, LFEDec)
is simulation secure if for all λ ∈ N there exists a PPT simulator LFESim such that for all admissible PPT
attackers A = (A1,A2) there exists a negligible function negl(λ) such that∣∣∣∣∣∣∣∣Pr

1 = A2(c, state)

∣∣∣∣∣∣∣∣
crs← LFEGen(1λ)
(x, C, s, state)← A1(crs)
(h, d)← LFEHash(crs, C; s)
c← LFEEnc(crs, h, x)

− Pr

1 = A2(c, state)

∣∣∣∣∣∣∣∣
crs← LFEGen(1λ)
(x, C, s, state)← A1(crs)
(h, d)← LFEHash(crs, C; s)
c← LFESim(crs, h, C, C(x))


∣∣∣∣∣∣∣∣

= negl(λ)

where the attacker is admissible if C ∈ Φ and the probability is taken over the random coins of LFEGen, A1,
LFEHash, LFEEnc and LFESim.

Function hiding states that the hash hides the circuit to all computationally bounded attackers.

Definition 15 (Function-Hiding). A laconic function evaluation (LFEGen, LFEHash, LFEEnc, LFEDec) is
function-hiding if for all λ ∈ N there exists a PPT simulator LFESimFH such that for all admissible PPT
attackers A = (A1,A2) there exists a negligible function negl(λ) such that∣∣∣∣∣∣Pr

1← A2(h, state)

∣∣∣∣∣∣
crs← LFEGen(1λ)
(C, state)← A1(crs)
(h, d)← LFEHash(crs, C)

− Pr

1← A2(h, state)

∣∣∣∣∣∣
crs← LFEGen(1λ)
(C, state)← A1(crs)
h← LFESimFH(crs, Φ)

∣∣∣∣∣∣
= negl(λ)

where the attacker is admissible if C ∈ Φ the probability is taken over the random coins of LFEGen, A1, and
LFESimFH.

3.5 Extractable Witness Encryption

We will now define extractable witness encryption [29, 20].

Definition 16 (Extractable Witness Encryption). A witness encryption scheme for an NP-language
L (with a corresponding witness relation R) consists of a pair of PPT-algorithms (WEEnc,WEDec) with the
following syntax.
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WEEnc(1λ,x,m) : Takes as input a security parameter 1λ, a statement x and a message m and outputs a
ciphertext v. We will typically omit the input 1λ.

WEDec(v,x,w) : Takes as input a ciphertext v, a statement x and a witness w and outputs a message m

We require the following properties:

– Correctness: It holds for any message m and all (x,w) ∈ R that

WEDec(WEEnc(x,m),x,w) = m.

– Extractable Security: For any PPT-sampler (x,aux,m0,m1)← Samp(1λ) and any PPT-distinguisher
and any non-negligible ε there exists a PPT-extractor Ext and a non-negligible ε′ such that if

|Pr[D(WEEnc(x,m0),x,aux) = 1]− Pr[D(WEEnc(x,m1),x,aux) = 1]| > ε,

then

Pr[Ext(x,aux = w s.t. (x,w) ∈ R)] > ε′,

where (x,aux,m0,m1)← Samp(1λ).

We use a definition of witness encryption where multi-bit messages are encrypted, whereas [29, 20] use a
definition in which the plaintext is just a single bit. A multi-bit scheme scheme can be constructed from a
single-bit scheme via bitwise encryption, and security follows routinely via a hybrid argument.

3.6 Succinct Non-Interactive Arguments of Knowledge

We define succinct non-interactive arguments of knowledge (SNARKs) [36, 38].

Definition 17 (Succinct Non-Interactive Arguments of Knowledge). A succinct non-interactive
argument of knowledge (SNARKGen,SNARKProve,SNARKVerify) for an NP-language L with relation R is
defined as the following tuple of algorithms.

SNARKGen(1λ) : On input the security parameter 1λ the setup algorithm returns a common reference string
crs.

SNARKProve(crs, x, w) : On input the common reference string crs, a statement x and a witness w, the
proving algorithm returns a proof π.

SNARKVerify(crs, x, π) : On input the common reference string crs, a statement x, and a proof π, the verifier
algorithm returns a bit {0, 1}.

When necessary, we may specify the random coins used in SNARKProve to be r by the notation SNARKProve(crs, x, w, r).
We say that an argument of knowledge is succinct if the proof size |π| is independent of the size of the

witness |w| or the statement |x|. Correctness is defined in a standard way.

Definition 18 (Correctness). A succinct non-interactive argument of knowledge (SNARKGen,SNARKProve,
SNARKVerify) is correct if for all λ ∈ N and for all pairs (x,w) ∈ R it holds that

1 = SNARKVerify(crs, x, π)

where crs← SNARKGen(1λ) and π ← SNARKProve(crs, x, w).

We say that a SNARK is an argument of knowledge if computing valid proofs require the knowledge
of the witness. In the following we define the adaptive notion where the adversary is allowed to choose the
statement adaptively after seeing the common reference string.
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Definition 19 (Argument of Knowledge). A succinct non-interactive argument of knowledge (SNARKGen,
SNARKProve,SNARKVerify) is an argument of knowledge if there exists a PPT machine Ext and a polynomial
poly such that for all λ ∈ N and all PPT adversaries A it holds that

Pr

1 = R(x,w) ∧ 1 = SNARKVerify(crs, x, π)

∣∣∣∣∣∣
crs← SNARKGen(1λ)
(π, x)← A(crs)
w ← Ext(crs, π, x)

 = 1/poly(λ)

and the probability is taken over the random coins of SNARKGen and A.

We define the classical notion of simulation-based zero-knowledge.

Definition 20 (Zero-Knowledge). A succinct non-interactive argument of knowledge (SNARKGen,SNARKProve,
SNARKVerify) is zero-knowledge if there exists a PPT simulator (SNARKGenSim,SNARKSim) such that for
all λ ∈ N, all (x,w) ∈ R, and all PPT adversaries A it holds that∣∣∣∣Pr

[
1← A(crs, π)

∣∣∣∣ crs← SNARKGen(1λ)
π ← SNARKProve(crs, x, w)

]
− Pr

[
1← A(crs, π)

∣∣∣∣ (crs, td)← SNARKGenSim(1λ)
π ← SNARKSim(crs, td, x)

]∣∣∣∣
= negl(λ)

where the probabilities are taken over the random coins of SNARKGen, SNARKProve, SNARKGenSim, SNARKSim,
and A.

Simulation extractability requires that the argument of knowledge property holds even when the adversary
may receive simulated proofs beforehand for arbitrary statements. We follow the definition for simulation-
extractable NIZK given by [32].

Definition 21 (Simulation-Extractability). A succinct non-interactive argument of knowledge (SNARKGen,
SNARKProve,SNARKVerify) for an NP relation R is simulation extractable if there exists a PPT simulator
(SNARKGenSim,SNARKSim) and a PPT machine Ext such that for all λ ∈ N and all PPT adversaries A
the probability of the adversary winning the following game is negl(λ):

MAING(λ) SimProvecrs,td,xi
(crs, td)← SNARKGenSim(λ) πi ← SNARKSim(crs, td, xi)

Q = ∅ Q = Q ∪ {(xi, πi)}
(x, π)← ASimProvecrs,td,xi (crs) Return πi

w ← Ext(crs, π, x)
Return (x, π) /∈ Q ∧ (x,w) /∈ R ∧ SNARKVerify(crs, x, π) = 1

3.7 Collision Resistant Hash

We recall the standard definition of collision resistant hash functions.

Definition 22 (Hash Function). A hash function is a tuple of PPT algorithms (HashGen,Hash) defined
as follows:

HashGen(1λ) : The key generation algorithm takes as input the security parameter 1λ returns a key K.
Hash(K,m) : The hashing algorithm takes as input a key K and a message m and returns a digest h.

Collision resistance implies that it is hard to find two messages hashing to the same digest.

Definition 23 (Collision Resistance). A hash function (HashGen,Hash) is collision resistant if for all
λ ∈ N and for all PPT attacker A there exists a negligible function negl(λ) such that

Pr

[
Hash(K,m) = Hash(K, m̃) ∧m 6= m̃

∣∣∣∣K← HashGen(1λ)
(m, m̃)← A(K)

]
= negl(λ) .
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3.8 Garbled Circuits

We recall the definition of Yao’s garbled circuits [46]. A garbling scheme allows one to obfuscate a circuit and
provide enough information to learn a single output and nothing more. Garbled circuits can be constructed
assuming the existence of one-way functions.

Definition 24 (Garbled Circuits). A garbling scheme is a tuple of PPT algorithms (Garble,GCEval)
defined as follows:

Garble(1λ, C) : The garbling algorithm takes as input the security parameter 1λ and the description of a

circuit C and returns a garbled circuit C̃ and a set of labels {lbs(0)i , lbs
(1)
i }ni=1 for each input wire of the

circuit.
GCEval(C̃, {lbs(xi)i }ni=1) : The evaluation algorithm takes as input a garbled circuit C̃ and one label per input

wire lbs
(xi)
i and returns an output y.

The definition of correctness is given in the following.

Definition 25 (Correctness). A garbling scheme (Garble,GCEval) is correct if for all λ ∈ N, for all poly-
nomial size circuits C with input length n, and for all inputs x ∈ {0, 1}n it holds that

C(x) = GCEval(C̃, {lbs(xi)i }ni=1)

where (C̃, {lbs(0)i , lbs
(1)
i }ni=1)← Garble(1λ, C).

Security requires that the evaluation of a circuit reveals nothing beyond its output.

Definition 26 (Security). A garbling scheme (Garble,GCEval) is secure if for all λ ∈ N there exists a PPT
algorithm GCSim such that for all PPT attacker A = (A1,A2) there exists a negligible function negl(λ) such
that ∣∣∣∣∣∣∣∣

Pr

[
1← A2(C̃, {lbs(xi)i }ni=1, state)

∣∣∣∣ (C, x, state)← A1(1λ)

(C̃, {lbs(0)i , lbs
(1)
i }ni=1)← Garble(1λ, C)

]
−

Pr

[
1← A2(C̃, {lbsi}ni=1, state)

∣∣∣∣ (C, x, state)← A1(1λ)

(C̃, {lbsi}ni=1)← GCSim(1λ, |C|, C(x))

]
∣∣∣∣∣∣∣∣ = negl(λ)

where the probability is taken over the random coins of A1, Garble, and GCSim.

4 Interaction-Preserving Compilers for Multi-Party Computation

We present our results in an incremental way, starting from a compiler which introduces one extra round
of interaction (with respect to the optimal insecure protocol). Then we show how to upgrade to a round-
preserving compiler by introducing progressively more powerful cryptographic machinery.

4.1 From N to N + 1 Rounds from Standard Assumptions

We now provide a transformation which compiles an insecure N -round protocol into a semi-honestly secure
N + 1 round protocol. The protocol assumes the existence of

(1) a multi-hop MK-FHE scheme (Setup,KeyGen,Enc,Eval,Dec) with threshold decryption, and
(2) a laconic function evaluation scheme (LFEGen, LFEHash, LFEEnc, LFEDec).

The description of ΠN+1 for a functionality f is specified below. Without loss of generality, we assume that
f is a deterministic function.10

10 Randomized functions can always be simulated by artificially adding some random bits to the inputs of the parties
and using them as the random coins of the function.
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Let f : {0, 1}k·M → {0, 1}`·M be and M -party functionality and let (Next,Output) be an N -round
(insecure) protocol for f .

Input: Each party Pi is given as input a string xi ∈ {0, 1}k.
Setup: Execute pp ← Setup(1λ) and crs ← LFEGen(1λ) and set the public parameters to (pp, crs),

which are made available to all parties.
Round 1: Each party Pi samples a random tape ri←$ {0, 1}R, for some polynomial R = R(λ), then it

samples a random key pair (ski, pki)← KeyGen(pp) and computes

c
(0)
i ← Enc (pki, xi)

where the random coins are uniformly sampled. Then Pi computes the ciphertext

c
(1)
i ← Eval

(
pki,Nexti

(
1λ, ·, ri, ∅

)
, c

(0)
1

)
and broadcasts

(
pki, c

(1)
i

)
.

Round n ∈ {2, . . . ,N− 1}: Let (c
(1)
1 , . . . , c

(n−1)
M ) be the set of ciphertext exchanged up to the previous

round. Each party Pi computes and broadcasts

c
(n)
i ← Eval

(
(pk1, . . . , pkM ),Nexti

(
1λ, ·, ri, ·

)
,
(
c
(0)
i , c

(1)
1 , . . . , c

(n−1)
M

))
.

Round N: Let (c
(1)
1 , . . . , c

(N−1)
M ) be the set of ciphertext exchanged up to the previous round. Each

party Pi computes

c
(N)
i ← Eval

(
(pk1, . . . , pkM ),Nexti

(
1λ, ·, ri, ·

)
,
(
c
(0)
i , c

(1)
1 , . . . , c

(N−1)
M

))
.

Let Ωi

[
1λ, ri, c

(0)
i , c

(1)
1 , . . . , c

(N−1)
M

]
be the circuit that, on input (sk, j, r, c

(N)
1 , . . . , c

(N)
M ), computes

c∗ ← Eval
(

(pk1, . . . , pkM ) ,Outputi
(
1λ, ·, ri, ·

)
,
(
c
(0)
i , c

(1)
1 , . . . , c

(N)
M

))
and returns PDec (sk, c∗, j; r). I.e., Ωi is obtained by hardwiring 1λ, ri, and (c

(0)
i , c

(1)
1 , . . . , c

(N−1)
M )

and leaving sk, j, and (c
(N)
1 , . . . , c

(N)
M ) as variable inputs. The circuit then homomorphically evaluates

the output function over the variables and returns the partial decryption of the resulting ciphertext.
Finally Pi computes

(hi, di)← LFEHash
(
crs, Ωi

[
1λ, ri, c

(0)
i , c

(1)
1 , . . . , c

(N−1)
M

])
and broadcasts (c

(N)
i , hi).

Round N + 1: Let (c
(N)
1 , h1), . . . , (c

(N)
M , hM ) be the messages received in the last round. For all j ∈ [M ],

the i-th party Pi computes

c̃i,j ← LFEEnc
(
crs, hj ,

(
ski, i, r̃i,j , c

(N)
1 , . . . , c

(N)
M

))
.

(where the random coins for LFEEnc and r̃i,j are uniformly sampled) and sends c̃i,j to Pj .
Output: The let (c̃1,i, . . . , c̃M,i) be the ciphertexts received by the i-th party Pi in the last round. For

all j ∈ [M ], Pi computes
sj,i ← LFEDec(crs, c̃j,i, di)

and outputs
zi ← Rec(s1,i, . . . , sM,i).

21



Communication. We now discuss the communication complexity of ΠN+1, assuming that N ≥ 2. When
instantiating the MK-FHE with distributed setup with the rate-1 scheme (as described in Section 7) and
setting the size of the MK-FHE message space to be Mpoly(λ) regardless of the insecure protocol message
size11, we obtain a communication complexity that approaches that of the insecure protocol for the rounds
1 to N . More precisely, the communication complexity is identical to that of the insecure protocol except
that all messages are encrypted, requiring a minimum communication of Mpoly(λ) per round for a single
ciphertext message, and that each party needs to broadcast their corresponding public key of size Mpoly(λ).
As the security parameter λ grows to infinity, the size of the ciphertexts approaches the sum of the worst
case communication complexities per round of the insecure protocol

∑N
i=1 |mi|.

Additionally, an LFE hash and ciphertext are sent. The LFE circuit class contains circuits of depth
|depth| which take inputs of size |last| and have output size |out|, where last is the communication complexity
of the N -th round of the insecure protocol, depth is the maximum depth of (the circuit representation of)
the output function Output, and |out| is the size of the output.

The total communication complexity of ΠN+1 is therefore bounded by

N∑
i=1

|mi|(1 + o(1)) +NM2poly(λ) + LFECC(|mN |, |depth|, |out|, λ)

Instantiating the LFE scheme with the construction of Quach et al. [43], the LFE ciphertext has size
Õ(|last|+ |out|)poly(|depth|, λ).

Correctness. Assuming the perfect correctness of the MK-FHE and LFE schemes, the output of the protocol
equals f(x1, . . . , xM ) with probability 1.

Security. We analyze the (semi-honest) security of our scheme assuming that the adversary corrupts exactly
M − 1 parties, as opposed to at most M − 1 parties. The following Lemma shows that this is without loss
of generality.

Lemma 1 ([40]). Let Π be a semi-honest MPC protocol secure against the corruption of exactly M − 1
parties, then there exists a semi-honest MPC protocol Π ′ secure against the corruption of any subset of
parties.

We briefly recall the transformation in the following and we refer the reader to [40] for more details. The
modified protocol Π ′ is identical to Π, except that instead of computing the function f it computes the
extended function f ′ defined as follows: Return f(x′1. . . x

′
M ) where x′i = xi (the input of the i-th party) if

mode = 1 else x′i = xi ⊕ PRF(K, i) if mode = 2, where K is a key sampled by one of the parties.
As for the communication complexity of the resulting protocol, we only need to argue how the communi-

cation complexity of the insecure protocol (to compute f ′ instead of f) changes. The PRF and the addition
modulo 2 can be computed locally by each party, so they do not affect the communication complexity of the
protocol. The only extra cost is that of an additional round for the designated party to communicate the
PRF key K (where K ∈ {0, 1}λ).

We then proceed by establishing the (semi-honest) security of our scheme.

Theorem 5 (Security). Let (Setup,KeyGen,Enc,Eval,Dec) be a semantically-secure MK-FHE scheme with
threshold decryption and let (LFEGen, LFEHash, LFEEnc, LFEDec) be a simulatable and function-hiding LFE
scheme. Then ΠN+1 is a semi-honest secure MPC protocol.

Proof. Let Pi be the honest party. We modify the protocol through a series of hybrids, which are defined
below.

Hybrid 0: This is the real experiment.

11 Messages not fitting into a single ciphertext can be encrypted as multiple ciphertexts due to the fully homomorphic
nature of the MK-FHE.
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Hybrid 1 . . . M− 1: The Hybrid j (for all j ∈ [M − 1]) is identical to the previous one except that the
ciphertext c̃i,j is computed as

c̃i,j ← LFESim(crs, hj , Ωj , si,j)

where si,j is computed as

si,j ← Ωj

[
1λ, rj , c

(0)
j , c

(1)
1 , . . . , c

(N−1)
M

] (
ski, i, r̃i,j , c

(N)
1 , . . . , c

(N)
M

)
.

Note that the modified ciphertext is functionally equivalent to the original and therefore Hybrid j is
computationally indistinguishable from the previous one from an invocation of the simulatability of the
LFE.

Hybrid M . . . 2M− 2: The Hybrid M − 1 + j (for all j ∈ [M − 1]) is identical to the previous one except
that the share si,j is computed as follows

si,j ← Sim
(
zj , c

∗, i, {skj}j∈[M ]\{i}
)

where zj is the output of Pj and c∗ is defined as in Ωj , i.e.,

c∗ ← Eval
(

(pk1, . . . , pkM ) ,Outputi
(
1λ, ·, ri, ·

)
,
(
c
(0)
i , c

(1)
1 , . . . , c

(N)
M

))
.

By the simulatability of the MK-FHE with threshold decryption, the distribution induced by this hybrid
is statistically close to that of the previouse one.

Hybrid 2M− 1: In this hybrid we modify the hash hi computed by the honest party to

hi ← LFESimFH (crs, Φ)

By the function-hiding of the LFE, this hybrid is computationally indistinguishable from the previous
one.

Hybrid 2M: In this hybrid the ciphertext c
(0)
i sent in the first round by the honest party is substituted by

encryptions of a fixed string (e.g., a concatenation of 0s) of the appropriate length. This modification is
indistinguishable by the semantic security of the MK-FHE scheme.

Simulator: The simulator computes the views of the corrupted parties as dictated by the protocol spec-
ifications and the views of the honest party as in the previous hybrid. Note that the view induced by
the simulator is identical to the previous hybrid and therefore is computationally indistinguishable from
that of the original protocol.

Note that the same argument can be shown to prove the security of the construction even if we include all
of the ciphertexts encrypting the parties’ inputs in the view of the adversary. This observation is going to
be useful to greatly simplify the analysis of our subsequent protocol.

The Two-Party Case. In the following we show that, for the special case of M = 2, a slight modification
of ΠN+1 yields a round-preserving (i.e., N to N) compiler with the similar communication complexity and
from the same assumptions. We consider the case where a single party (say P1) receives an output but the
same procedure can be repeated in parallel to extend the protocol to the more general case where both
parties receive an output. The first modification that we introduce is that the LFE hash is computed by P1

in the N − 1 and the compressed circuit Ω̃ is defined as follows.

Ω̃
[
1λ, r1, sk1, c

(0)
i , c

(1)
1 , . . . , c

(N−1)
1 , c

(1)
2 , . . . , c

(N−2)
2

] (
sk2, 2, r, c

(N−1)
2 , c

(N)
2

)
=

– Compute c
(N)
1 ← Eval

(
(pk1, pk2),Next1

(
1λ, ·, r1, ·

)
,
(
c
(0)
i , c

(1)
1 , . . . , c

(N−1)
2

))
– Compute c∗ ← Eval

(
(pk1, pk2) ,Output1

(
1λ, ·, r1, ·

)
,
(
c
(0)
i , c

(1)
1 , . . . , c

(N)
2

))
– Return PDec(sk1, c

∗, 1; 0)‖PDec (sk2, c
∗, 2; r).
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On a high level, the circuit Ω̃ hardwires all ciphertexts seen by P1 up to the (N − 1)-th round (included)
and sent by P2 up to the (N − 2)-th round (included). On input the secret key sk2, a randomness r, and

the last two messages of P2 (c
(N−1)
2 , c

(N)
2 ), the circuit recomputes the last message c

(N)
1 and uses all of the

ciphertexts to complete the homomorphic computation of the output c∗. Finally the circuit outputs the
partial decryptions of c∗ using sk1 and sk2 and some randomness r (for sk1 we can fix the randomness to a
known string, e.g., a concatenation of 0s). The message sent by P2 in the N -th round consists of the LFE
ciphertext c̃ computed as

c̃← LFEEnc
(
crs, h,

(
sk2, 2, r̃2, c

(N−1)
2 , c

(N)
2

))
where h is the hash of the circuit Ω as defined above and r̃2 is taken from the random tape r2 of P2.
After the N -th round, Pi can recover the output by evaluating LFEDec(crs, Ω, c̃) and running the threshold
reconstruction algorithm. This allows P1 to complete the protocol execution locally, without any further
interaction with P2. Note that all information needed to compute c̃ is available to P2 by the end of the
(N − 1)-th round. This gives us an N -to-N communication-efficient compiler for the case of 2 parties. The
communication complexity of the protocol is increased by a term poly(|depth|, |enc|, |out|, λ), where |depth|
is the depth of the circuit representation of Ω̃ and |enc| is the size of the encodings. When instantiating with
the LFE protocol of [43], the term |depth| is proportional to the depth of computation of the last message
and the post-processing of the insecure protocol, and the term |enc| is proportional to the size of the last
two messages of the insecure protocol.

While this gives us a round-preserving solution of the two-party case, the same ideas do not seem to
extend to the more general case of M parties. In the what follows we show how to overcome this barrier by
leveraging stronger cryptographic machinery.

4.2 From N to N Rounds

We will now show how to modify the protocol of the last section to obtain a secure N -round protocol.
This transformation will require heavier tools, namely SNARKs and extractable witness encryption. Let
(HashGen,Hash) be a collision-resistant hash function and let (SNARKGen,SNARKProve,SNARKVerify) be a
succinct non-interactive argument of knowledge system for the following language L: A tuple

(K, ζi, (c
(N)
i , hi), (c

(N−1)
1 , . . . , c

(N−1)
M ))

is in the language L, if there exist a state

statei = (ri, pk1, . . . , pkM , c
(0)
i , c

(1)
1 , . . . , c

(N−2)
M )

such that

ζi = Hash(K, statei)

c
(N)
i = Eval

(
(pk1, . . . , pkM ),Nexti

(
1λ, ·, ri, ·

)
,
(
c
(0)
i , c

(1)
1 , . . . , c

(N−1)
M

))
(hi, di) = LFEHash

(
crs, Ωi

[
1λ, c

(0)
i , c

(1)
1 , . . . , c

(N−1)
M

])
.

Assume that the bit-length of t = ((c
(N)
j , hj))j∈[M ] is k bits and that for a κ ∈ [k] the function bitκ(t)

computes the κ-th bit of t. Let (WEEnc,WEDec) be an extractable witness encryption scheme for the

following language L′. A statement x = (crsSNARK,K, ζ1, . . . , ζM , c
(N−1)
1 , . . . , c

(N−1)
M , κ, b) is in the language

L′, if there exist t̃ = ((c̃
(N)
j , h̃j))j∈[M ] and π̃1, . . . , π̃M such that bitκ(t̃) = b and for all i ∈ [M ] it holds that

SNARKVerify(crsSNARK, (K, ζj , (c̃
(N)
j , h̃j), (c

(N−1)
1 , . . . , c

(N−1)
M )), π̃j) = 1.
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Let

x← (crsSNARK,K, ζ1, . . . , ζM , c
(N−1)
1 , . . . , c

(N−1)
M )

w← (t, π1, . . . , πM ).

For better readability, we will define the follow batch version of (WEEnc,WEDec).

BatchWEEnc(x, lbs): Takes as input a statement x and labels lbs ∈ ({0, 1}λ)k×2 and computes and outputs
(WEEnc((x, κ, b), lbsκ,b))κ∈[k],b∈{0,1}.

BatchWEDec(v,x,w): Takes as input a ciphertext v = (vκ,b)κ∈[k],b∈{0,1}, a statement x and a witness w and
outputs (WEDec(vκ,bitκ(t), (x, κ, bitκ(t)),w))κ∈[k].

Let (Garble,GCEval) be a projective garbling scheme. We can now describe a modification which collapses
rounds N and N + 1 of protocol ΠN+1 into a single round. Up until round N − 2 the protocol is identical
to the previous protocol, with the modification that SNARKGen and HashGen are computed in the setup
and the public parameters are augmented with a common reference string crsSNARK and a hashing key K.
Consequently, for ΠN we describe only the modified rounds N − 1, N and the output function.

Round N− 1: Party Pi proceeds as follows.

– Compute c
(N−1)
i as in protocol ΠN+1

– Set statei = (ri, pk1, . . . , pkM , c
(0)
i , c

(1)
1 , . . . , c

(N−2)
M )

– Compute ζi ← Hash(K, statei).

– Broadcast (c
(N−1)
i , ζi)

Round N: Upon receiving the ((c
(N−1)
j , ζj))j∈[M ] party Pi proceeds as follows.

– Compute (c
(N)
i , hi) as in protocol ΠN+1

– Compute

πi ← SNARKProve(crsSNARK, (K, ζi, c
(N)
i , (c

(N−1)
1 , . . . , c

(N−1)
M )), statei)

– Define a circuit C[ski, i, j, r̃, ρ
′](t), which takes as hardwired inputs ski, i, j and ran-

dom coins ρ′, an explicit input t = ((c
(N)
j , hj))j∈[M ], and computes and outputs

LFEEnc
(
crs, hj ,

(
ski, i, r̃i,j , c

(N)
1 , . . . , c

(N)
M

)
; ρ′
)

.

– Set x← (crsSNARK,K, ζ1, . . . , ζM , c
(N−1)
1 , . . . , c

(N−1)
M )

– For every j ∈ [M ] choose random coins ρ′j ←$ {0, 1}λ and compute (Ĉi,j , lbsi,j) ←
Garble(1λ,C[ski, i, j, r̃i,j , ρ

′
j ]). Compute vi,j ← BatchWEEnc(x, lbsi,j).

– Send (c
(N)
i , hi, πi, Ĉi,j , vi,j) to Pj

Output: Upon receiving the ((c
(N)
j , hj , πj , Ĉj,i, vj,i))j∈[M ] party Pi proceeds as follows.

– For all j ∈ [M ]:

• Set x← (crsSNARK,K, ζ1, . . . , ζM , c
(N−1)
1 , . . . , c

(N−1)
M )

• Set t = ((c
(N)
j , hj))j∈[M ]

• Set w← (t, π1, . . . , πM )
• Compute lbsj ← BatchWEDec(vj,i,x,w).

• Compute c̃i,j ← GCEval(Ĉj,i, lbsj)
• Compute si,j ← LFEDec(crs, Ωi, c̃i,j).

– Compute and output zi ← Rec(s1,i, . . . , sM,i).

Communication. To analyze the communication complexity, note that compared to protocol ΠN+1, the
only additional values which need to be sent are the hash ζi in round N − 1 as well as the garbled circuit
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(Ĉi,j , vi,j) and the witness encryption vi,j in round N . The hash is of size poly (λ). The garbled circuit
encodes the LFE encryption procedure, which has size LFECS(|mN |, |depth|, |out|, λ). Note that this garbled
circuit replaces the sending of the actual LFE encryption from protocol ΠN+1. The witness encryption size
scales with the statement and witness. The statement consists of the encrypted mN−1, M hashes, crsSNARK,
the hash key K, and a single bit. A witness consists of the encrypted mN , M LFE hashes, and M SNARKs.
Recall that the LFE hashes and SNARKs have size poly(λ). Additionally, the witness encrypted message
are the labels to the garbled circuit, which computes the LFE encryption. The input to the LFE encryption
includes the LFE crs, the LFE hash, an MK-FHE secret key, some randomness, and message mN .

Overall, this gives a communication complexity of

N∑
i=1

|mi|(1 + o(1)) +NM2poly(λ) + LFECS(|mN |, |depth|, |out|, λ)

+ WEncCC(LFECRS(|mN |, |depth|, |out|, λ) + poly(λ) + |mN |, |mN−1|+Mpoly(λ) , |mN |+Mpoly(λ) , λ)

Instantiating the LFE scheme with the construction of Quach et al. [43], the LFE encryption algorithm
takes time Õ(|last|+ |out|)poly(|depth|, λ), so the circuit size can be bounded by the square.

Correctness. We will first show correctness of the protocol. To establish correctness, first note that it holds

for all i ∈ [M ] that (K, ζi, c
(N)
i , (c

(N−1)
1 , . . . , c

(N−1)
M )) ∈ L and that statei is a valid witness for this statement.

Consequently, by the completeness of (SNARKGen,SNARKProve,SNARKVerify) it holds for all i ∈ [M ] that

SNARKVerify(crsSNARK, (K, ζi, (c
(N)
i , hi), (c

(N−1)
1 , . . . , c

(N−1)
M )), πi) = 1.

Consequently, it also holds for all κ ∈ [k] that x′ = (crsSNARK,K, ζ1, . . . , ζM , c
(N−1)
1 , . . . , c

(N−1)
M , κ, bitκ(t)) ∈

L′ and w = (t, π1, . . . , πM ) is a witness. Setting x = (crsSNARK,K, ζ1, . . . , ζM , c
(N−1)
1 , . . . , c

(N−1)
M ), as vi,j =

BatchWEEnc(x, lbsi,j), it holds by the correctness of (BatchWEEnc,BatchWEDec) that

lbsj = BatchWEDec(vj,i,x,w) = ((lbsi,j)κ,bitκ(t))κ.

Thus, since (Ĉi,j , lbsi,j) ← Garble(1λ,C[ski, i, j, r̃i,j , ρ
′
j ]) it holds by the correctness of the garbling scheme

(Garble,GCEval) we get that

c̃i,j = GCEval(Ĉj,i, lbsj) = LFEEnc
(
crs, hj ,

(
ski, i, r̃i,j , c

(N)
1 , . . . , c

(N)
M

)
; ρ′
)
.

We conclude that c̃i,j has the same value as in protocol ΠN+1, and we can conclude from the correctness of
protocol ΠN+1 that ΠN is also correct.

Security. We show semi-honest security of our protocol in the following.

Theorem 6. Assume that ΠN+1 is a semi-honest MPC protocol, that (SNARKGen,SNARKProve,SNARKVerify)
is a non-adaptively sound succinct non-interactive argument system of knowledge, (HashGen,Hash) is a
collision-resistant hash function, and (BatchWEEnc,BatchWEDec) is an extractable witness encryption scheme.
Then ΠN is a semi-honest MPC protocol.

Proof. Assume without loss of generality that PM is the honest party. We modify the protocol through a
series of hybrids, which are defined below. Fix inputs x1, . . . , xM .

Hybrid 0 : This is the real experiment.
Hybrids 1 . . .M− 1 : Hybrid j for j ∈ [M − 1] is identical to the previous hybrid, except that party

PM computes vM,j by vM,j ← BatchWEEnc((crsSNARK,K, ζ1, . . . , ζM ), lbs∗M,j), where lbs∗M,j is such that
lbs∗M,j,κ,b = lbs∗M,j,κ,bitκ(t) for all κ ∈ [k] and all b ∈ {0, 1}.

Hybrids M . . .2M− 2 : Hybrid M − 1 + j for j ∈ [M − 1] is identical to the previous hybrid, except that

party PM computes (ĈM,j , lbs
∗
M,j) by

(ĈM,j , lbs
∗
M,j)← GCSim(LFEEnc

(
crs, hj ,

(
skM ,M, r̃M,j , c

(N)
1 , . . . , c

(N)
M

)
; ρ′M,j

)
).
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First note that in hybrid 2M − 2 the garbled circuits ĈM,j for j ∈ [M − 2] are simulated. Consequently, we
can simulate the output of hybrid 2M − 2 given a transcript of protocol ΠN+1 which contains the views of

all parties except PM but which does include c
(0)
M and rM (which as remarked above can be considered public

values). Thus, given a transcript computed by the simulator for ΠN+1 we can simulate transcripts for ΠN .
To see this, note that the only additional values included in transcripts of ΠN are the (ζj)j , (πj)j∈[M ] and the

(ĈM,j , vM,j). For every party except PM these values can immediately be computed from their corresponding

views. For party PM , we can compute ζM and πM using c
(0)
M , rM , the public keys (pk1, . . . , pkM ) and the

ciphertexts (c
(1)
1 , . . . , c

(N)
M ) which are all included in a view of protocol ΠN+1. Finally, we can simulate the

ĈM,j and vM,j by computing (ĈM,j , lbs
∗
i,j) ← GCSim(c̃M,j) as the LFE-ciphertexts c̃M,j are included in the

view of protocolΠN+1. By the security ofΠN+1 we can conclude that the advantage of any PPT-distinguisher
D distinguishing between hybrid 2M − 1 and simulated transcripts is negligible.

Indistinguishability between hybrids M . . . 2M − 2 follows routinely from the simulation-security of the
garbling scheme (Garble,GCEval,GCSim). The main technical challenge is establishing indistinguishability
between hybrids 1 . . .M−1. We will use the security of (BatchWEEnc,BatchWEDec), the proof-of-knowledge
property of (SNARKGen,SNARKProve,SNARKVerify) and the collision resistance of (HashGen,Hash) to es-
tablish this.

Thus, assume towards contradiction there was a PPT distinguisher D which distinguishes with non-
negligible advantage ε between two hybrids j and j + 1 for some j ∈ [M − 1]. We will first go through a
sequence of sub-hybrids hybrid’ 1 . . . k over all κ ∈ [k] where we change the way in which vM,j is computed.
vM,j is computed by

vM,j ← BatchWEEnc(x, lbsM,j),

where x = (crsSNARK,K, ζ1, . . . , ζM ). Unrolling the definition of BatchWEEnc, we get that (vM,j)κ,b is com-
puted by

(vM,j)κ,b ←WEEnc((x, κ, b), lbsκ,b).

Now, in hybrid’ ι for ι ∈ [k], for κ ≤ ι we compute (vM,j)κ,1−bitκ(t) by

(vM,j)κ,1−bitκ(t) ←WEEnc((x, κ, b), lbsκ,bitκ(t)),

whereas for κ > ι we compute

(vM,j)κ,1−bitκ(t) ←WEEnc((x, κ, b), lbsκ,1−bitκ(t)).

Note that in hybrid’ k we compute vM,j as in hybrid j. Defining hybrid’ 0 to be hybrid j − 1, we gt by a
routine hybrid argument that there exist ι ∈ [k] such that D distinguishes between hybrid’ ι− 1 and hybrid’
ι with advantage at least ε′ = ε/k.

We will now construct a sampler Samp and a distinguisher D′ where Samp produces a statement x′, and
auxiliary output aux and two messages m0 and m1 such that

|Pr[D′(WEEnc(x′,m0),aux) = 1]− Pr[D′(WEEnc(x′,m1),aux) = 1]| = ε′.

The sampler Samp simulates hybrid’ ι but removes (vM,j)ι,1−bitι(t) from the resulting view. Call this view
aux. Samp further sets x′ = (x, ι, 1 − bitι(t)), m0 = lbsκ,1−bitκ(t) and m1 = lbsκ,bitκ(t). The distinguisher
D′ takes a ciphertext v and a view aux, and sets (vM,j)ι,1−bitι(t) = v in this view obtaining a complete
view aux′. It now runs D on aux′ and outputs whatever D outputs. Clearly, if v = WEEnc(x′,m0) =
WEEnc(x′, lbsκ,1−bitκ(t)) then D′ provides D is a well-formed view of hybrid’ ι − 1. On the other hand, if
v = WEEnc(x′,m1) = WEEnc(x′, lbsκ,bitκ(t)) then D′ runs D on a well-formed view of hybrid’ ι. Consequently
it holds that

|Pr[D′(WEEnc(x′,m0),aux) = 1]− Pr[D′(WEEnc(x′,m1),aux) = 1]| = ε′,

where (x′,aux,m0,m1)← Samp(1λ).
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Now, by the security of (WEEnc,WEDec) there exists a PPT machine Ext and a non-negligible ε′′ such
that Ext(x′,aux) outputs a witness w′ for x′ with probability ε′′. The statement x′ is of the form x′ =
(x, ι, 1−bitι(t)) = (crsSNARK,K, ζ1, . . . , ζM , ι, 1−bitι(t)), and the witness w′ is of the form w′ = (t̃, π̃1, . . . , π̃M )

where t̃ = ((c̃
(N)
j , h̃j))j∈[M ] such that it holds that

bitι(t̃) = 1− bitι(t) (1)

Forall j ∈ [M ] : SNARKVerify(crsSNARK, (K, ζj , (c̃
(N)
j , h̃j), (c

(N−1)
1 , . . . , c

(N−1)
M )), πj) = 1. (2)

Due to equation 1 it holds that t and t̃ differ in their ι-th bit position. Assume that bit position ι corresponds

to an index j∗ ∈ [M ] such that (c̃
(N)
j∗ , h̃j∗) 6= (c

(N)
j∗ , hj∗) (Recall that t = ((c

(N)
j , hj))j∈[M ] is specified in the

view aux). Consequently by 2 it also holds that

SNARKVerify(crsSNARK, (K, ζj∗ , (c̃
(N)
j∗ , h̃j∗), (c

(N−1)
1 , . . . , c

(N−1)
M )), πj∗) = 1.

Using Ext we can immediately construct a malicious prover P∗ which takes as input the view aux and a

common-reference string crsSNARK and outputs the statement x′′ = (K, ζj∗ , (c̃
(N)
j∗ , h̃j∗), (c

(N−1)
1 , . . . , c

(N−1)
M ))

and a proof πj∗ such that πj∗ verifies for x′′ with probability ε′ and K, ζj∗ have the same values as specified
in aux.

Now, by the proof-of-knowledge property of (SNARKGen,SNARKProve,SNARKVerify) there exists a PPT-
machine Ext′ which on input aux and crsSNARK outputs a witness

˜statej∗ = (r̃j∗ , p̃k1, . . . , p̃kM , c̃
(0)
j∗ , c̃

(1)
1 , . . . , c̃

(N−2)
M )

such that

ζj∗ = Hash(K, ˜statej∗) (3)

c̃
(N)
j∗ = Eval

(
(p̃k1, . . . , p̃kM ),Nexti

(
1λ, ·, r̃j∗ , ·

)
,
(
c̃
(0)
j∗ , c̃

(1)
1 , . . . , c̃

(N−2)
M , c

(N−1)
1 , . . . , c

(N−1)
M

))
(4)(

h̃j∗ , d̃j∗
)

= LFEHash
(
crs, Ωi

[
1λ, c̃

(0)
j∗ , c̃

(1)
1 , . . . , c̃

(N−2)
M , c

(N−1)
1 , . . . , c

(N−1)
M

])
. (5)

Now recall that (c̃
(N)
j∗ , h̃j∗) 6= (c

(N)
j∗ , hj∗), but since by (4) and (5) both c̃

(N)
j∗ and h̃j∗ are deterministically

computed from ˜statej∗ and (c
(N−1)
1 , . . . , c

(N−1)
M ), this means that ˜statej∗ 6= statej∗ . But since ζj∗ is computed

by ζj∗ ← Hash(K, statej∗) and by (3) we have that ζj∗ = Hash(K, ˜statej∗), this means that (statej∗ , ˜statej∗)
forms a hash collision for key K. Consequently, we can use Ext′′ to construct an adversary A which given a
key K finds a hash collision for (HashGen,Hash) with probability ε′′, contradicting the collision resistance of
(HashGen,Hash). We can conclude that hybrid j − 1 and j are indistinguishable, concluding the proof.

5 Semi-Honest Security in the Plain Model

After round 3, the protocol in the plain model is identical to the previous protocol (either ΠN or ΠN+1) in
the common reference string model, so we describe only the modified rounds 1, 2, and 3.

Round 1: Each party Pi samples a random tape ri←$ {0, 1}R, for some polynomial R = R(λ), and
computes the first message

m
(1)
i ← Nexti

(
1λ, xi, ri, ∅

)
Then Pi samples a random key pair (ski, pki) ← KeyGen(1λ) for an MK-FHE scheme in the plain
model as well as a PRG key si←$ {0, 1}λ and computes the hybrid encryption
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ĉ
(1)
i ←

(
Enc(pki, si),PRG(si)⊕m(1)

i

)
where the coins for Enc(pki, si) are uniformly sampled. It samples its block of the public parameters
ppi ← Setup(1λ) for our rate-1 MK-FHE scheme, as described in appendix 7.4, and broadcasts

(ĉ
(1)
i , ppi). If i = 1, it additionally samples and broadcasts crs← LFEGen(1λ) and, if compiling ΠN ,

crsSNARK ← SNARKGen(1λ).

Round 2: Each party Pi parses ĉ
(1)
i = (ĉ

(1)
i,1 , ĉ

(1)
i,2 ) and computes

c
(1)
j ← Eval

(
pkj ,PRGAndXOR

(
1λ, ·, ĉ(1)i,2

)
, ĉ

(1)
i,1

)
for each j = 1, . . . ,M . It computes its encrypted input

c
(0)
i ← Enc(pki, xi)

then uses this to compute

c
(2)
i = Eval

(
(pk1, . . . , pkM ),Next

(
1λ, ·, ri, ·

)
,
(
c
(0)
i , c

(1)
1 , . . . , c

(1)
M

))
Pi then samples (pk, sk)← KeyGen(1λ, crs) for the rate-1 MK-FHE scheme, and computes

cski ← Enc
(
pki, ski

)
They broadcast (c

(2)
i , pk, cski ).

Round 3: Each party Pi computes

c
(1)
j ← Eval

(
pkj ,Dec(·, ·),

(
c
(1)
j , cskj

))
c
(2)
j ← Eval

(
(pk1, . . . , pkM ) ,Dec(·, ·),

(
c
(2)
j ,
(
csk1 , . . . , c

sk
M

)))
for each j = 1, . . . ,M . They compute

c
(0)
i ← Enc(pki, xi)

then proceed as in the previous protocol.

Communication. The only changes are to send an additional public key, to compute the first message
under a hybrid encryption, to compute the second message under an MK-FHE without setup, and to send
two additional encrypted keys. The new keys are all of size poly(λ), and the hybrid encryption has size
poly(λ) + |m1|, so the only major difference is in the second message which is encrypted by a potentially
inefficient MK-FHE. This at most increases the second message size by a multiplicative poly(λ).

Assuming |m2| > 0, the overall communication complexity is |ΠN ′ | + |m2|poly(λ), where |ΠN ′ | is the
communication complexity of the compiled ΠN ′ .

Correctness. Correctness follows easily from the correctness of the MK-FHE without setup and the cor-
rectness of the compiled ΠN ′ when crs is sampled correctly.

Security. We prove the semi-honest security of our protocol in the plain model below.

Theorem 7. Assume that ΠN ′ is a semi-honest MPC protocol, that (KeyGen,Eval,Enc,Dec) is a seman-
tically secure MK-FHE scheme with threshold descryption in the plain model, and the existence of PRGs.
Then Πpl,N ′ is a semi-honest MPC protocol in the plain model.
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Proof. Let Pi be the honest party. We modify the protocol through a series of hybrids, which are defined
below.

H0: This is the real experiment.
H1: In this hybrid, the CRS model simulator is invoked starting from round 3. In the case of ΠN+1, this

change is exactly the same as using hybrid 2M −1 in the proof of Theorem 5, and so is indistinguishable
from the real transcript. For ΠN , recall that its simulator uses the simulator from ΠN+1, and otherwise
only modifies round N . Since hybrid 2M − 1 in the proof of Theorem 5 is indistinguishable from the full
simulator for ΠN+1, the view produced by this change is indistinguishable.

H2: Hybrid 2 is identical to hybrid 1, except in round 2 Pi computes c(sk)i as an encryption of 0s instead
of as an encryption of its plain model MK-FHE secret key ski. Indistinguishability follows from the
semantic security of the rate-1 MK-FHE scheme.

H3: Hybrid 3 is identical to hybrid 2, except in round 1 Pi computes the hybrid ciphertext ĉ
(1)
i as

ĉ
(1)
i =

(
Enc(pki, 0

λ),PRG(si)⊕m(1)
i

)
Indistinguishability follows from the semantic security of the plain model MK-FHE.

H4: Hybrid 4 is identical to hybrid 3, except in round 1 Pi computes its insecure message m
(1)
i as a function

of a fixed string (e.g. 0s) instead of as a function of its input xi. Note that this causes the messages of
ΠN ′ after round 2 to be as in hybrid 2M from the proof of Theorem 5. Indistinguishability follows from
the security of the PRG.

H5: Hybrid 5 is identical to hybrid 4, except in round 2 Pi computes c
(0)
i as an encryption of a fixed string

instead of its input x. Indistinguishability follows from the semantic security of the plain model MK-FHE.

6 Malicious Security in the Plain Model

Our malicious-secure protocol compiles insecure protocols of length N to malicious-secure protocols of length
N ′, where N ′ = N or N ′ = N + 1, depending on whether ΠN or ΠN+1 is used internally. It additionally
requires simulation-extractable SNARKs, a plain model MK-FHE scheme, a generic 2 round semi-malicious
MPC protocol, and a generic 4 round malicious secure MPC protocol12.

Before describing the construction, we first specify the exact behavior for each of these tools. At a high
level, 2 round semi-malicious MPC protocol generates a crs for use in Πpl,N ′ and the zkSNARKS. The
zkSNARKs will ensure adversarial semi-maliciousness in Πpl,N ′ . The plain model MK-FHE scheme will hide
any components using the generated crs until it is confirmed to be generated semi-maliciously (which the 2
round protocol has security against). The 4 round malicious secure MPC protocol will implement the MCDS
functionality to confirm the crs was generated semi-maliciously, then if so, reveal any components which
make use of it.

6.1 SNARK Languages

We will use zkSNARKs in both rounds N ′ − 1 and N ′. The zkSNARK in round N ′ − 1 will prove that
Pi’s messages in the Πpl,N ′ transcript so far have been generated honestly with respect to some input and
randomness. The zkSNARK in round N ′ will then prove that Pi’s next message in the transcript has been
generated honestly with respect to the same input and randomness used for the previous zkSNARK.

The NP languages LSNARK,N ′−1 is defined as follows: a statement(
T(N ′−2)
ΠN′

,m
(N ′−1)
i

)
12 The generic 4 round malicious secure MPC protocol may have inefficient communication, and so does not subsume

our result.
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consisting of a player name i, the ΠN ′ transcript T(N ′−2)
ΠN′

until round n− 1, and Pi’s next message m
(N ′−1)
i

is in LSNARK,N ′ if there exists a witness
(x, r)

such that
m

(k)
i = ΠN ′,i

(
1λ, xi, ri,T(k−1)

ΠN′

)
for k = 1, . . . , N ′ − 1, where m

(k)
i is Pi’s k’th message in T(N ′−2)

ΠN′
for k < n and T(k−1)

ΠN′
denotes the portion

of the T(N ′−2)
ΠN′

through round k − 1.
The NP languages LSNARK,N ′ is defined as follows: a statement(

i,T(N ′−1)
ΠN′

,m
(N ′)
i , πi

)
consisting of a player name i, the ΠN ′ transcript T(N ′−1)

ΠN′
through round N ′− 1, Pi’s next message m

(N ′−1)
i ,

and i’s zkSNARK proof from round N ′ − 1 is in LSNARK,N ′ if there exists a witness

(x, r, rπ)

such that

m
(N ′)
i = ΠN ′,i

(
1λ, x, r,T(N ′−1)

ΠN′

)
πi = SNARKProve

(
crs,

(
i,T(N ′−1)

ΠN′
,m

(N ′)
i , πi

)
, (x,w); rπ

)
6.2 CRS Generation Functionality

Let CRSGen be a 2 round semi-malicious MPC protocol securely implementing the crs generation func-
tionality. This functionality samples a crs← (LFEGen(1λ),SNARKGen(1λ),HashGen(1λ)) and sends it to all
parties. To minimize notational clutter, we provide the same concatenated crs to all protocols and let them
parse their portion of the crs internally.

6.3 MCDS Functionality

The MCDS functionality for the 4 round generic delayed-input MPC with malicious security takes in a public
statement x and a witness w = (w1, . . . , wM ). It outputs (sk1, . . . , skM ) to all parties if (x,w) ∈ RLMCDS

and
⊥ otherwise. We denote the 4 round MPC which securely implements this functionality as MCDS. MCDS is
required to have the following properties: delayed-input, security against malicious adversaries, its simulator
must extract the adversarial inputs, and its simulator must query the ideal functionality with the extracted
inputs before the 4th round. The protocol from [12] satisfies these requirements.

The NP language LMCDS for the MCDS is defined in terms of M NP languages LMCDS,i: a tuple

x =
(
c
(crs,1)
j , c

(crs,2)
j

)
j=1,...,M

is in the language if x ∈ LMCDS,i for i = 1, . . . ,M . A statement x of this form is in LMCDS,i if there exists a
witness (

r
(crs)
i , sk

(crs)
i

)
such that

m
(crs,1)
i ← Dec

(
sk

(crs)
i , c

(crs,1)
i

)
m

(crs,1)
i = CRSGeni

(
1λ,⊥, r(crs)i , ∅

)
c
(crs,2)
i = Eval

(
(pk1, . . . , pkM ) ,CRSGeni

(
1λ,⊥, r(crs)i , ·

)
,
(
c
(crs,1)
1 , . . . , c

(crs,1)
M

))

31



Here Dec is the decryption algorithm in a plain model MK-FHE.
Informally, when using LMCDS in the MCDS, each party will provide part of the witness. The witness

is accepting if every party submits the randomness used in CRSGen and the private keys used to encrypt
CRSGen.

6.4 Additional Πpl,N ′ Properties

We divide the protocol Πpl,N ′ into several protocols, then observe that under this division it satisfies the
notion of semi-honest robustness [2]. Informally, even if the adversary behaves maliciously in the first N ′− 1
rounds, it receives no information about the honest party’s inputs as long as it behaves semi-honestly in
the last round. In our particular case, we will only require semi-honest behavior from the adversary in part
of the last round. Robustness allows us to delay proving honesty of an execution until the last two rounds,
giving time to generate the crs for the zero knowledge SNARKs.

Definition 27 (Robust MPC). Let F be an M -party functionality. Let A = (A1,A2) represent a PPT

algorithm controlling all parties except Pi. For a t–round protocol computing F , we let RealExecA
1

(t−1)(x, z)

denote the view of A1 during the first t − 1 rounds in the real execution of the protocol on input x =
(x1, . . . , xM ) and auxiliary input z. We require that at the end of the first t− 1 rounds in the real protocol,
A1 outputs state and (inp, rand) on a special tape where either (inp, rand) = (⊥,⊥) (if A1 behave maliciously)
or (inp, rand) = ({x̂j}j 6=i, {r̂j}j 6=i) which is consistent with honest behavior for RealExec(t−1) (first t − 1
rounds).

A protocol Π = (Π1, Π2) is said to be a “robust” secure multiparty computation protocol for F if for
every PPT adversary A = (A1,A2) controlling all parties except Pi where A1 interacts in Π1 and A2

interacts semi-honestly in Π2, there exists a PPT simulator Sim = (Sim1,Sim2) such that for every initial
input vector x and every auxiliary input z

– If (inp, rand) 6= (⊥,⊥), then:(
RealExecA

1

(x, z),RealExecA
1

(x, state)
)

c
≈
(
RealExecA

1

(x, z),Sim2({x̂j}j 6=i, {r̂j}j 6=i, y, state)
)

c
≈
(
Sim1(z),Sim2({x̂j}j 6=i, {r̂j}j 6=i, y, state)

)
Here y = F (x̂1, . . . , x̂M ), where x̂i = xi, and RealExecA

2

(x, state) is the view of adversary A2.
– Else,

RealExecA
1

(x, z)
c
≈ Sim1(z)

We say Π is rewinding-robust if this holds even when the adversary may rewind the honest party
(resp. simulator) in rounds 2 through t− 1 and select new messages a polynomial number of times.

The definition here differs from the original in a few ways. First, we restrict ourselves to the case where the
adversary controls all but one party. This will be sufficient for proving security of our malicious construction
against an adversary which controls all but one party, which Lemma 1 shows is without loss of generality.
Second, we allow Π1 to extend into the last round, rather than restricting it to round t− 1 and earlier as in
the original definition.

Protocol Division We divide Πpl,N ′ into
((
Πpl

pl,N ′ , Π
crs,N ′−1
pl,N ′

)
, Πcrs,N ′

pl,N ′

)
both by last round and by usage

of the crs. The further division of Π1 by crs usage will be useful in our protocol description later.

Πcrs,N ′−1
pl,N ′ consists of all messages in round N ′− 1 requiring a crs. If N ′ = N + 1 this consists of the LFE

hash hi. For N ′ = N this consists of ζi.

Πcrs,N ′

pl,N ′ consists of all messages in round N ′ requiring a crs. If N ′ = N + 1 this consists of the LFE
ciphertexts (c̃i,j)j 6=i. For N ′ = N this consists of the LFE hash hi, the SNARK πi, the garbled circuit
(Ci,j)j 6=i, and the witness encrypted labels (vi,j)j 6=i.

Πpl
pl,N ′ consists of all other messages, i.e. the ciphertext ĉ1i in round 1, the ciphertexts and public key

(c̄
(2)
i , pki, c

sk
i ) in round 2, and the ciphertext c

(n)
i for all subsequent rounds n.
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Robustness Overview. To see why this division satisfies semi-honest rewinding-robustness, consider the
case where Πpl,N ′−1 is executed in the common reference string model, so that crs is provided by a trusted
setup instead of by P1. This will still be useful for us because the crs is only required in the last two rounds13,
giving us time to generate it in the final malicious-secure protocol. First observe that hybrid 2M − 2 in the
proof of Theorem 5 gives a simulator for Πcrs,N+1

pl,N+1 satisfying the first equation. Plugging this into hybrid

2M − 1 from the proof of Theorem 6 gives a simulator for Πcrs,N
pl,N . The changes made to move to Πpl,N ′ in

the common reference string model do not change these simulators. There are no rewinding issues because
round N ′ is not permitted to be rewound for rewinding-robustness.

Next, observe that the full simulator for Πpl,N ′ does not require the adversary’s input or randomness
until the last round, and so if the adversary behaves semi-maliciously, the second equation holds. This fact
requires the use of the semi-malicious security of the distributed setup procedure for the rate-1 MK-FHE in
Appendix 7.4. To show this is the case even when the middle rounds may be rewound, first recall that this
holds even if the MK-FHE ciphertexts including the parties’ inputs are included in the view of the adversary.
Given Pi’s input ciphertexts, the MK-FHE ciphertexts for rounds after 2 can be computed locally. Since
round 1 is never rewound, Pi’s round 2 message can be replayed during any rewinds. The only remaining
components which can be rewound are the collision resistant hash ζi (for Πpl,N ) and the LFE hash (for
Πpl,N+1). Similarly to the MK-FHE ciphertexts after round 2, ζi can be computed locally given the rate-1
MK-FHE ciphertext of Pi’s input. Finally, the LFE hash’s function hiding experiment is non-interactive,
and so each rewinding can be treated as a separate attempt at the experiment. Using these observations,
we can show security of this view against a rewinding semi-malicious adversary in two hybrids. In the first
hybrid, Πpl,N ′ is simulated except for Pi’s LFE hash. Security against rewinding holds from the first set of
observations about replaying the round 2 message and locally computing the others. In the second hybrid,
the LFE hash is simulated. Security against rewinding holds from the observation about the LFE hash’s
non-interactivity.

For the third equation, observe that the series of hybrids in the proof of Theorem 7 holds even if Πcrs,N ′

pl,N ′ is
not included in the adversary’s view, and against malicious adversaries in the crs model. LFE function hiding
(used implicitly in hybrid 1) holds even against malicious adversaries due to its non-interactive nature. We
can rely on the semantic security of our rate-1 MK-FHE against a malicious adversary for the distributed
setup procedure by relying on the semi-malicious security of the distributed setup procedure and the fact that
our rate-1 MK-FHE has efficiently checkable public parameters, allowing parties to detect malicious behavior
and abort if necessary. PRG security and the plain model MK-FHE semantic security are non-interactive
and so unaffected by malicious adversaries. Security against rewinding follows from similar reasoning as for
the second equation.

6.5 Construction

In summary we use the following components:

– A simulation-extractable zero knowledge SNARK (SNARKGenN ′−1,SNARKProveN ′−1,SNARKVerifyN ′−1)
for the language LSNARK,N ′−1.

– A simulation-extractable zero knowledge SNARK (SNARKGenN ′ ,SNARKProveN ′ ,SNARKVerifyN ′) for the
language LSNARK,N ′ .

– A plain model MK-FHE scheme (KeyGen,Enc,Eval,Dec).
– A 2 round semi-malicious MPC CRSGen implementing the crs generation functionality.
– A 4 round delayed-input malicious MPC MCDS implementing the MCDS functionality.

– Our N ′ round interaction preserving protocol Πpl,N ′ =
(
Πcrs,N ′−1

pl,N ′ , Πcrs,N ′

pl,N ′ , Π
pl
pl,N ′

)
.

The only rounds modified are N ′ − 3, N ′ − 2, N ′ − 1, and N ′, where N ′ is the number of rounds in
the semi-honest secure protocol being compiled (i.e. N + 1 for ΠN+1 and N for ΠN ). The other rounds are
unmodified and their descriptions are omitted here.

The total round complexity is max(4, N ′), and insecure protocols with N ≥ 3 rounds can be compiled.

13 It is replaced in the rate-1 MK-FHE by a distributed setup procedure during the first round.
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Let T(N ′−4)
Πpl,N′

be the transcript of Πpl,N ′ so far.

Round N ′ − 3: Party Pi proceeds as follows:

– Compute the message from the underlying protocol m
(pl,N ′−3)
i ← Πpl

pl,N ′(1
λ, xi, ri,T(N ′−4)

Πpl,N′
)

– Sample a fresh plain model MK-FHE key (sk
(crs)

i , pk
(crs)

i )← KeyGen(1λ)

– Compute the first message of the crs generation m
(crs,1)
i ← CRSGeni(1

λ,⊥, r(crs)i , ∅) and encrypt

it as c
(crs,1)
i ← Enc

(
pk

(crs)

i ,m
(crs,1)
i

)
.

– Using fresh randomness r
(MCDS)
i , compute the first message of the MCDS

m
(mcds,1)
i ← MCDSi(1

λ,⊥, r(MCDS)
i , ∅)

– Broadcast
(
m

(pl,N ′−3)
i , pk

(crs)

i , c
(crs,1)
i ,m

(mcds,1)
i

)
Round N ′ − 2: Upon receiving the messages from round N ′ − 3, party i does the following:

– Compute the message from the underlying protocolm
(pl,N ′−2)
i ← Πpl

pl,N ′(1
λ, xi, ri,T(N ′−3)

Πpl,N′
) where

T(N ′−3)
Πpl,N′

= T(N ′−4)
Πpl,N′

||(m(pl,N ′−3)
1 , . . . ,m

(pl,N ′−3)
M ).

– Compute the encrypted second message of the crs generation

c
(crs,2)
i ← Eval

((
pk

(crs)

1 , . . . , pk
(crs)

M

)
,CRSGeni

(
1λ,⊥, r(crs)i , ·

)
,
(
c
(crs,1)
1 , . . . , c

(crs,1)
M

))
– Let T(1)

MCDS be the MCDS transcript so far. Compute the second message of the MCDS

m
(mcds,2)
i ← MCDSi

(
1λ,⊥, r(MCDS)

i ,T(1)
MCDS

)
– Broadcast

(
m

(pl,N ′−2)
i , c

(crs,2)
i ,m

(mcds,2)
i

)
Round N ′ − 1: Upon receiving the messages from round N ′ − 2, party i does the following:

– Compute the message from the underlying protocolm
(pl,N ′−1)
i ← Πpl

pl,N ′(1
λ, xi, ri,T(N ′−2)

Πpl,N′
) where

T(N ′−2)
Πpl,N′

= T(N ′−3)
Πpl,N′

||(m(pl,N ′−2)
1 , . . . ,m

(pl,N ′−2)
M ).

– Compute the encrypted crs

c
(crs)
i ← Eval

((
pk

(crs)

1 , . . . , pk
(crs)

M

)
,CRSGenOutput

(
1λ,⊥, r(crs)i , ·

)
,
(
c
(crs,1)
1 , . . . , c

(crs,2)
M

))
– Compute the encrypted message from the underlying protocol requiring the encrypted crs

c
Πcrs,N′−1

pl,N′

i ← Eval
((

pk
(crs)

1 , . . . , pk
(crs)

M

)
, Πcrs,N ′−1

pl,N ′ (1λ, xi, ri, ·), c(T,N
′−2)

i

)
where c

(T,N ′−2)
i = c

(crs)
i ||Enc(pki,(crs) ,T

(N ′−2)
Πpl,N′

).

– Compute its encrypted Πpl,N ′ input and randomness c
(x,r)
i ← Enc(pki, (xi, ri))

– Encrypt its next Πpl
pl,N ′ message as c

Πpl

pl,N′

i ← Enc
(
pki,m

(pl,N ′−1)
i

)
– Compute the encrypted SNARK proof

c
(π,N ′−1)
i ← Eval

((
pk

(crs)

1 , . . . , pk
(crs)

M

)
,SNARKProve(·, ·, ·; rSNARKi ),(

c
(crs)
i ,

(
c
(T,N ′−2)
i ,

(
c
Πpl

pl,N′

i , c
Πcrs,N′−1

pl,N′

i

))
, c

(x,r)
i

))
using fresh randomness rSNARKi
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– Let T(2)
MCDS be the MCDS transcript so far. Compute the third message of the MCDS

m
(mcds,3)
i ← MCDSi

(
1λ,
(
r
(crs)
i , sk

(crs)

i

)
, r

(MCDS)
i ,T(2)

MCDS

)
– Broadcast (m

(pl,N ′−1)
i , c

Πcrs,N′−1

pl,N′

i , c
(π,N ′−1)
i ,m

(mcds,3)
i ).

Round N ′: Upon receiving the messages from round N ′ − 1, party i does the following:

– Compute the message from the underlying protocol

m
(pl,N ′)
i ← Πpl

pl,N ′(1
λ, xi, ri,T(N ′−1)

Πpl,N′
)

where T(N ′−1)
Πpl,N′

= T(N ′−2)
Πpl,N′

||(m(pl,N ′−1)
1 , . . . ,m

(pl,N ′−1)
M ).

– Let CΠi [1λ] be the following circuit. It takes as input a common reference string crs, M − 1

proofs (πj)j 6=i, a transcript T(N ′−1) consisting of N ′−1 rounds, and some input and randomness

(xi, ri). If SNARKVerifyN ′−1(crs, πj , (T(N ′−2),m
(N ′−1)
j )) = 1 for all j 6= i, where m

(N ′−1)
j is Pj ’s

message in the transcript T(N ′−1) and T(N ′−2) is the first N ′ − 2 rounds of T(N ′−1), output

Πcrs,N ′

pl,N ′ (1λ, xi, ri,T(N ′−1)). Otherwise output ⊥.

– Compute the encrypted message from the underlying protocol requiring the encrypted crs

c
Πcrs,N′

pl,N′

i ← Eval
((

pk
(crs)

1 , . . . , pk
(crs)

M

)
, CΠi [1λ](·, ·, ·, ·),

(
c
(crs)
i , (c

(π,N ′−1)
j )j 6=i, c

(T,N ′−1)
i , c

(x,r)
i

))
where c

(T,N ′−1)
i = c

(crs)
i ||

(
c
Πcrs,N′−1

pl,N′

1 , . . . , c
Πcrs,N′−1

pl,N′

M

)
||Enc(pki,(crs) ,T

(N ′−1)
Πpl,N′

).

– Encrypt its next Πpl
pl,N ′ message as c

Πpl

pl,N′

i ← Enc
(
pki,m

(pl,N ′)
i

)
– Let statementN

′

i =

(
c
(T,N ′−2)
i ,

(
c
Πpl

pl,N′

i , c
Πcrs,N′−1

pl,N′

i , c
(π,N ′−1)
i

))
.

Compute the encrypted SNARK proof

c
(π,N ′)
i ← Eval

((
pk

(crs)

1 , . . . , pk
(crs)

M

)
,SNARKProve(·, ·, ·),

(
c
(crs)
i , statementN

′

i ,
(
c
(x,r)
i , rSNARKi

)))
– Let T(3)

MCDS be the MCDS transcript so far. Compute the fourth message of the MCDS

m
(mcds,4)
i ← MCDSi

(
1λ,
(
r
(crs)
i , sk

(crs)

i

)
, r

(MCDS)
i ,T(3)

MCDS

)
– Broadcast (m

(pl,N ′)
i , c

Πcrs,N′

pl,N′

i , c
(π,N ′)
i ,m

(mcds,4)
i ).

Output: Upon receiving the messages from round N ′, party i does the following:

– Let TMCDS be the full MCDS transcript. Decode the MCDS output

outMCDS ← MCDSOutput
(

1λ,
(
r
(crs)
i , sk

(crs)

i

)
, r

(MCDS)
i ,TMCDS

)
– If outMCDS = ⊥, output ⊥. Otherwise, parse outMCDS = sk1, . . . , skM .

– Decrypt crs← Dec
((

sk
(crs)

1 , . . . , sk
(crs)

M

)
, c

(crs)
i

)
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– Decrypt the portions of the Πpl,N ′ transcript requiring the crs

T
Πcrs,N′−1

pl,N′
← Dec

((
sk

(crs)

1 , . . . , sk
(crs)

M

)
,

(
c
Πcrs,N′−1

pl,N′

1 , . . . , c
Πcrs,N′−1

pl,N′

M

))
T
Πcrs,N′−1

pl,N′
← Dec

((
sk

(crs)

1 , . . . , sk
(crs)

M

)
,

(
c
Πcrs,N′−1

pl,N′

1 , . . . , c
Πcrs,N′

pl,N′

M

))

Denote the full Πpl,N ′ transcript as TΠpl,N′ =

(
TΠpl,N′ ,TΠcrs,N′−1

pl,N′
,T

Πcrs,N′−1

pl,N′

)
.

– For each j 6= i, decrypt the SNARKs

πN
′−1

i ← Dec
((

sk
(crs)

1 , . . . , sk
(crs)

M

)
, c

(π,N ′−1)
j

)
πN
′

i ← Dec
((

sk
(crs)

1 , . . . , sk
(crs)

M

)
, c

(π,N ′)
j

)
– If SNARKVerifyN ′

(
crs,

(
T(N ′−1)
Πpl,N′

,m
(N ′)
j , πN

′−1
i

)
, πN

′

i

)
= 0 for some j, output ⊥.

– Otherwise, output the Πpl,N ′ output

Output
Πpl,N′

i

(
1λ, xi, ri,

(
TΠpl

pl,N′
,T

Πcrs,N′−1

pl,N′
,T

Πcrs,N′
pl,N′

))

Communication. In addition to the Πpl,N ′ transcript, the parties also send an additional MK-FHE key
pair, two additional (encrypted) simulation extractable SNARKs, the encrypted (inefficient) 2 round semi-
malicious MPC CRSGen, and the (inefficient) 4 round delayed-input malicious MPC MCDS. Furthermore, the
messages in Πpl,N ′ requiring crs are encrypted under a (potentially inefficient) MK-FHE without setup. For
Πpl,N+1 these are only the LFE hash and ciphertext, and for Πpl,N these are the collision-resistant hash, the
LFE hash, an additional SNARK, garbled circuits computing LFE ciphertexts, and the witness encrypted
labels for the garbled circuits.

First, we discuss the new messages. The MK-FHE key pair has size poly(λ). The simulation extractable
SNARKs are succinct and so have size poly (λ). CRSGen has size |crs|poly (λ), since it samples a crs ←
(LFEGen(1λ),SNARKGen(1λ),HashGen(1λ)). The SNARK and collision resistant hash functions require only
poly(λ)-sized common reference strings. The LFE common reference string has size LFECRS(|last|, |depth|, |out|, λ).
Finally, MCDS takes in the encrypted CRSGen transcript, the randomness used in the CRSGen protocol, and
M plain model MK-FHE secret keys, then uses these to verify that the encrypted CRSGen transcript was
generated according to that randomness and encrypted with those keys. Since CRSGen takes communication
LFECRS(|last|, |depth|, |out|, λ)poly(λ), this means MCDS takes communication LFECRS(|last|, |depth|, |out|, λ)poly(λ).

Next we discuss the messages from Πpl,N+1 which are encrypted using the potentially inefficient MK-FHE
without setup. As mentioned in our previous analysis of ΠN+1 and ΠN , these messages together have size
Õ(|mN | + |out|)poly(|depth|, λ) for ΠN+1 and Õ(|mN | + |out|)poly(|depth|, λ) + poly(|mN−1|, |mN |,M, λ)
forΠN . Encrypting these under the potentially inefficient MK-FHE increases the communication by at most
a multiplicative poly(λ).

Overall the communication complexity of Πmal,N+1 is

N∑
i=1

|mi|(1 + o(1)) + (NM2 + LFECC(|mN |, |depth|, |out|, λ) + LFECRS(|last|, |depth|, |out|, λ) + |m2|)poly(λ)
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The communication complexity of Πmal,N+1 is

N∑
i=1

|mi|(1 + o(1)) + (NM2 + LFECS(|mN |, |depth|, |out|, λ) + LFECRS(|last|, |depth|, |out|, λ)

+WEncCC (LFECRS (|mN |, |depth|, |out|, λ) + poly(λ) + |mN |, |mN−1|+Mpoly(λ) , |mN |+Mpoly(λ) , λ)+|m2|)poly(λ)

Instantiating the LFE with the scheme of Quach et. al. [43], we have LFECRS(|last|, |depth|, |out|, λ) =
|mN−1|poly(|depth|, λ).

Correctness. To establish correctness, first note that for the MCDS, all parties provide a valid state-
ment and witness. Therefore by the correctness of the MCDS, at the end of the protocol all parties are
in possession of ski for i = 1, . . . ,M and by the correctness of the plain model MK-FHE can successfully

decrypt the following: crs,T
Πcrs,N′−1

pl,N′
,T

Πcrs,N′−1

pl,N′
, πN

′−1
i , πN

′

i . By correctness of CRSGen, crs is sampled from

(LFEGen(1λ),SNARKGen(1λ),HashGen(1λ)), and so all parties provide a valid witness and statement for the

SNARKS. Since this is the case, SNARKVerify(crs, statement, πN
′−1

i ) = 1 by SNARK correctness. There-

fore T
Πcrs,N′−1

pl,N′
contains the transcript of Πcrs,N ′−1

pl,N ′ , rather than ⊥ (which would be the case if the round

N ′ − 1 SNARKS had been rejecting). Finally, SNARKVerify(crs, statement, πN
′

i ) = 1 by SNARK correctness.

Therefore all parties output Output
Πpl,N′

i

(
1λ, xi, ri,

(
TΠpl

pl,N′
,T

Πcrs,N′−1

pl,N′
,T

Πcrs,N′
pl,N′

))
, which is correct by the

correctness of Πpl,N ′ .

Security. We prove the malicious security of our protocol below.

Theorem 8. Assume that Πpl,N ′ =
((
Πcrs,N ′−1

pl,N ′ , Πcrs,N ′−1
pl,N ′

)
, Πpl

pl,N ′

)
is a semi-honest rewinding-robust

MPC protocol, (SNARKGenN ′−1,SNARKProveN ′−1,SNARKVerifyN ′−1) and (SNARKGenN ′ ,SNARKProveN ′ ,SNARKVerifyN ′)
are simulation-extractable zero knowledge succinct non-interactive argument systems of knowledge, CRSGen
is a 2 round semi-malicious MPC protocol, and MCDS is a 4 round delayed-input malicious MPC protocol.
Then Πmal,N ′ is a malicious MPC protocol.

Proof. Let Pi be the honest party. We modify the protocol through a series of hybrids, which are defined
below.

H0: This is the real experiment.

H1: In this hybrid, the hybrid simulator invokes SimMCDS, acting as the ideal functionality. Note that
whenever the ideal functionality is required to output (sk1, . . . , skM ), it receives as input valid sk1, . . . , skM
due to the definition of the functionality and LMCDS.

Indistinguishability between hybrids 0 and 1 follows from the simulation security of MCDS. Since the
honest output can still be decoded from the transcript in both hybrids, we have indistingishability of the
joint distribution of honest output and adversarial view.

H2: In this hybrid, the hybrid simulator creates a series of lookahead threads to extract the adversary’s

CRSGen randomness r
(crs)
j before the final simulation of MCDS. Specifically, it runs SimMCDS until it

receives an ideal functionality query from SimMCDS containing the extracted adversarial input in round
N ′−1, rewinds SimMCDS to round N ′−2, and plays SimMCDS again. If the extracted input (x,w) /∈ RLMCDS

during the first simulation, it finishes the initial simulation with the message from round N ′ and does not
rewind. Otherwise, to maintain the same probability of an implicit abort, in the subsequent invocation
of SimMCDS, SimMCDS is repeated until the extracted input from the most recent round (x,w) ∈ RLMCDS

.

Note that the only information kept between the two invocations is the extracted r
(crs)
j , which is the

same in both rewinds, since it is fixed in round N ′ − 3.

Indistinguishability between hybrids 1 and 2 follows from the observation that the expected number of
rewinds is polynomial.
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H3: In this hybrid, the hybrid simulator replaces all ciphertexts encrypted using pki after round N ′ − 3

with an encryption of 0 during the first invocation of SimMCDS. Specifically, these are c
(crs,2)
i , c

Πcrs,N′−1

pl,N′

i ,

c
(π,N ′−1)
i , c

Πcrs,N′

pl,N′

i , and c
(π,N ′)
i .

Indistinguishability between hybrids 2 and 3 reduces to the semantic security of the plain model MK-
FHE scheme. Conditioned on the second invocation occurring, the distributions are clearly identical.
Therefore if an adversary could distinguish between the two hybrids with noticeable advantage, then
with noticeable advantage it could distinguish between the two conditioned on the second invocation
not occurring, which happens if and only if MCDS would output ⊥ in the first invocation. Given the
ciphertexts either as an encryption of 0 or according to the protocol specification, the reduction plays
hybrid 2 using the received ciphertexts until it extracts (x,w). If (x,w) /∈ RLMCDS

, it finishes H2 and
outputs the decision of the H2-H3 distinguisher. Otherwise it guesses randomly.

H4: In this hybrid, the hybrid simulator invokes SimCRSGen. SimCRSGen gives the first message of CRSGen,

then is provided with the extracted adversarial randomness r
(crs)
j to simulate the second message during

the second invocation of SimMCDS. Note that the simulated first message of CRSGen (round N ′− 3) both
does not need the adversary’s randomness beforehand and is never rewound. Additionally, the simulated
second message of CRSGen (round N ′ − 2) can be replayed during any rewinds in the second invocation
of SimMCDS, since it only depends on the first message of CRSGen, which is never rewound. This change
could cause the MCDS functionality to output ⊥ regardless of what the adversary does; to prevent this,
the simulator replies to the ideal functionality query for MCDS as if the input were in LMCDSi anyway.
Indistinguishability from the previous hybrid follows from the semi-malicious simulation security of
CRSGen and the observation that the simulated CRSGen transcript is not rewound.

H5: In this hybrid, the hybrid simulator simulates the SNARK in round N ′ − 1 using SNARKGenSimN ′−1
and SNARKSimN ′−1. Note that this changes the crs which SimCRSGen must force. SNARKGenSimN ′−1
is invoked from the beginning, and SNARKSimN ′−1 is only invoked during the second invocation of
SimMCDS, since SimCRSGen does not force the crs before then.
Indistinguishability from the previous hybrid follows from the zero knowledge property of the SNARK.
Simulation-extractability implies that the adversary’s round N ′ − 1 SNARKs remain sound.

H6: In this hybrid, the hybrid simulator simulates the SNARK in round N ′.
Indistinguishability between hybrids from the previous hybrid follows from the zero knowledge property
of the SNARK. Simulation-extractability implies that the adversary’s round N ′ SNARKs remain sound.

H7: In this hybrid, the hybrid simulator extracts the adversary’s input in round N ′ − 1 by decrypting
the SNARKs in round N ′ − 1 and invoking its extractor, relying on the simulation-extractability of the
SNARK. This hybrid is identically distributed to the previous hybrid, but also includes the adversary’s
extracted input in its view. This will be important in arguing joint indistinguishability of the honest
output and adversarial view in the next hybrid, since the next hybrid will not be able to decode the
honest party’s output from the transcript. Specifically, in second invocation of SimMCDS if the extracted
MCDS input (x,w) is valid with respect to the adversarial input, the hybrid simulator uses the adversarial
secret keys skj to decrypt the adversary’s SNARK in round N ′− 1. It then invokes the SNARK extractor
to recover the adversary’s input to ΠN ′ .
Indistinguishability from the previous hybrid (including only the view of the adversary, not the extracted
inputs) is trivial, since the transcript is not modified. This is the last hybrid in which the honest output
can still be decoded from the transcript.

H8: In this hybrid, the hybrid simulator simulates Πcrs,N ′

pl,N ′ . Specifically, after extracting the adversary’s input
and the MCDS input (x,w) in round N ′ − 1, if (x,w) is valid with respect to the adversarial input, it

simulates Πcrs,N ′

pl,N ′ under the plain model MK-FHE.
Indistinguishability from the previous hybrid reduces to the robustness of ΠN ′ . Observe that conditioned
on (x,w) being invalid with respect to the adversarial input (which is detectable by the reduction), the

hybrids are identical, since Πcrs,N ′

pl,N ′ is never revealed and does not need to be simulated.
To show that the joint distribution of the adversarial view and honest output are indistinguishable,
observe that the adversarial inputs are indistinguishable across hybrids 7 and 8, so the joint distribution
including the honest output is similarly indistinguishable.
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H9: In this hybrid, the simulator simulates
(
Πcrs,N ′−1

pl,N ′ , Πcrs,N ′−1
pl,N ′

)
.

Indistinguishability from the previous hybrid follows in two steps, both following from the rewinding-
robustness of Πpl,N ′ . First, we show that the adversary’s advantage is negligible conditioned on the
second SimMCDS occurring and all decrypted round N ′ − 1 SNARKs being accepted. Then, we show that
the adversary’s advantage is negligible conditioned on the complement of these events, i.e. the second
SimMCDS does not occur or one of the decrypted round N ′ − 1 SNARKs is rejected.
Assume the first is not the case. Then we can reduce to the second rewinding-robustness property of
Πpl,N ′ by running H8 using a Πpl,N ′ interactively provided by a challenger. If the simulator finishes the

simulation after one invocation of SimMCDS, or if πN
′

j is accepting for all j 6= i, the reduction guesses
randomly. Otherwise it outputs what the hybrid distinguisher outputs. Since the first claim is not the
case, the hybrid distinguisher has noticeable advantage in the case where the reduction outputs what
the hybrid distinguisher outputs. When this occurs, the adversary has behaved semi-maliciously in the
first round of CRSGen (otherwise the second invocation of SimMCDS would not have occurred), so the
SimCRSGen succeeds in forcing the crs. This means the SNARK simulation extractability property holds
and so the adversary’s semi-honest round N ′ input was extracted successfully in round N ′−1. Therefore
the transcript corresponds precisely to either H8 or H9, depending on the challenger’s behavior.
If the second claim is not the case, we can similarly reduce to the third rewinding-robustness property of

Πpl,N ′ . The reduction is the same as the previous one, except half of the challenger (controlling Πcrs,N ′

pl,N ′ )
is run underneath the plain model MK-FHE and the cases where the reduction guesses randomly and
where it outputs what the hybrid distinguisher outputs are flipped. Note that whether the reduction

guesses randomly or not is decided before it has to provide the messages from Πcrs,N ′

pl,N ′ , which it cannot

get from the challenger. If it outputs what the hybrid distinguisher outputs, then CiΠ [1λ] outputs14 ⊥
instead of the message for Πcrs,N ′

pl,N ′ (in the case of a SNARK not verifying). In the case that the simulator

would terminate after a single invocation of SimMCDS, it locally computes a faulty Πcrs,N ′

pl,N ′ message which

is never revealed. In either case, Πcrs,N ′

pl,N ′ is not required for the reduction to proceed, so the transcript
given to the hybrid distinguisher exactly corresponds to either H8 or H9, depending on the challenger’s
behavior.
To show that the joint distribution of the adversarial view and honest output are indistinguishable,
observe that the adversarial inputs are indistinguishable across hybrids 8 and 9, so the joint distribution
including the honest output is similarly indistinguishable.

7 Rate-1 Multi-Key Fully-Homomorphic Encryption

In the following we present our construction for a rate-1 MK-FHE scheme from the LWE problem.

7.1 Rate-1 Multi-Key Linearly Homomorphic Encryption

In the following we present a multi-key linearly homomorphic encryption (MK-HE) scheme for linear function
with rate 1− 1/λ.

Relaxed Correctness. Before going into the formal details of the scheme, we introduce a more fined grained
notion of correctness which separates the decryption procedure with the message decoding. This allows us for
a more modular treatment of the scheme in our generic construction. Throughout the following description
we assume that the public parameters of the scheme define a message space Zηq , i.e., the scheme allows us to
encrypt η-dimensional vectors and it is linearly homomorphic over Zηq .

Definition 28 (Relaxed Correctness). A multi-key homomorphic encryption scheme (Setup,KeyGen,Enc,
Eval,Dec) is multi-hop correct if there exists a polynomial B = B(·) such that for all λ ∈ N, all polynomials

14 This circuit is changed to output either ⊥ or the challenger’s corresponding message. Changing it does not change
the transcript since the circuit is only used locally.
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M = M(λ), all M -argument functions f in the supported family, all inputs (m1, . . . ,mM ), all pp in the sup-
port of Setup(1λ), all (ski, pki) in the support of KeyGen(pp), and all ciphertexts (c1, . . . , cM ) in the support
of the encryptions of (m1, . . . ,mM ), it holds that

Dec((sk1, . . . , skM ),Eval((pk1, . . . , pkM ), f, (c1, . . . , cM ))) = f(m1, . . . ,mM ) + z

where z ∈ Zη is a noise term with ‖z‖∞ ≤ η ·B(λ). We say that c is in the support of the encryptions of m
if

c = Enc(pk,m) or c = Eval((pk1, . . . , pkM ), f̃ , (c̃1, . . . , c̃M ))

where (c̃1, . . . , c̃M ) are in the support of the encryptions of (m̃1, . . . , m̃M ) and f̃(m̃1, . . . , m̃M ) = m.

Description. In the following we propose an MK-HE for linear functions, which is secure against the LWE
assumption. The scheme is linearly homomorphic over the vector space Zηq . We first show a low rate version
and then we discuss a generic methodology to improve the rate of such a scheme. Note that the scheme
we describe has no trusted setup but it fixes a modulus q which must be shared by all users. There is no
restriction on the structure of q, except on its size.

Let q = 2q′ be a k-bit modulus, let (n,m, η) be positive integers and let χ be a B-bounded error
distribution defined on Z. Let Gi ∈ Zη×kq be a matrix which is zero everywhere, but its i-th row is

g> = (1, 2, . . . , 2i, . . . , 2k). For a y ∈ Zq let g−1(y) ∈ {0, 1}k be the binary expansion of y, i.e., it holds
that g> · g−1(y) = y.

Key Generation: On input the security parameter 1λ, the key generation algorithm samples
A←$Zn×mq uniformly at random. Then it chooses S←$Zη×nq uniformly at random and samples
E←$χη×m. Set B = S ·A + E. The public key is set to pk = (A,B) and the secret key to sk = S.

Encryption: On input a public key pk = (A,B) and a set of messages (m1, . . . ,mη), the encryption
algorithm samples a random matrix R←$ {0, 1}m×k and sets C1 = A·R and C2 = B·R+·

∑η
i=1mi ·

Gi. The algorithm outputs c = (C1,C2).
Evaluation: On input a linear function (f1, . . . , fM ) and a set of ciphertexts (c1, . . . , cM ), the evaluation

algorithm parses ci = (C1,i,C2,i). Then for all i ∈ [M ] it computes c1,i = C1,i · g−1(fi) and

c2 =
∑M
i=1 C2,i · g−1(fi). Finally it outputs c = (c1,1, . . . , c1,M , c2).

Decryption: On input a set of secret keys (S1, . . . ,SM ) and an evaluated ciphertext c =

(c1,1, . . . , c1,M , c2), the decryption algorithm computes and outputs c2 −
∑M
i=1 Si · c1,i.

We now consider the (relaxed) evaluation correctness of the scheme.

Theorem 9 (Relaxed Correctness). The scheme as described above satisfies relaxed correctness with
(M · k ·m ·B)-noise.

Proof. Let f = (f1, . . . , fM ) ∈ ZMq be a linear function and let (m1, . . . ,mM ) ∈ Zη·Mq . For all i ∈ [M ] let
ci = (C1,i,C2,i) = Enc(pki,mi), i.e., it holds that C1,i = Ai ·Ri and C2,i = Bi ·Ri +

∑η
j=1mi,j ·Gj . A
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routine calculation shows that the output of Dec ((S1, . . . ,Sm), c) equals

c2 −
M∑
i=1

Si · c1,i

=

M∑
i=1

C2,i · g−1(fi)−
M∑
i=1

Si ·C1,i · g−1(fi)

=

M∑
i=1

Bi ·Ri +

η∑
j=1

mi,j ·Gj

 · g−1(fi)−
M∑
i=1

Si ·Ai ·Ri · g−1(fi)

=

M∑
i=1

fi ·mi + z

where z =
∑M
i=1 Ei ·Ri · g−1(fi). We can bound ‖z‖∞ by

‖z‖∞ ≤M · k ·m ·B.

Therefore, the scheme satisfies relaxed correctness with (M · k ·m ·B)-noise.

We now argue that the scheme is as hard as the LWE problem.

Theorem 10 (Semantic Security). Let m > (n + η) · log(q) + ω(log(λ)), then the scheme as described
above is semantically secure under the LWE assumption.

Proof. Observe that the matrix B in the public key is pseudorandom, by an invocation of the LWE assump-
tion. Then by the leftover-hash lemma [34], the ciphertexts (C1,C2) are statistically close to uniform.

Instantiating with Rate 1. The scheme as described above does not achieve rate-1, however it satisfies
the structural requirement to apply a generic transformation recently introduced by Brakerski et al. [10].
Specifically, let S be a secret key and let (c1, c2) be an evaluated MK-HE ciphertext that satisfies relaxed
correctness. If the decryption algorithm is of the form

Dec(S, (c1, c2)) = c2 − S · c1 mod q

for some even modulus q, then there exists a pair of algorithms (Shrink,ShrinkDec) such that the following
conditions are satisfied:

(1) The (public) shrinking algorithm Shrink takes as input a ciphertext (c0, c1, . . . , cη) encrypting (m1, . . . ,mη) ∈
{0, 1}η and returns (c0, r, w1, . . . , wη) where r ∈ Zq and (w1, . . . , wη) ∈ {0, 1}η.

(2) The (private) shrinking decryption algorithm ShrinkDec take as input a shrunk ciphertext and the secret
key and returns the plaintext (m1, . . . ,mη).

In other words, the shrinking algorithm reduces the size of a ciphertext without affecting its correctness. For
a detailed description of the algorithm we refer the reader to [10]. When applied to the scheme as described
above, the shrunk ciphertexts are of length M(n+ 1) log(q) + η. Loosely bounding log(q) ≤ λ2, we obtain

ρ =
η

M(n+ 1) log(q) + η
≥ 1− M(n+ 1) log(q)

η

which translates to 1− 1/λ for η ≥M · (n+ 1) · λ3.

41



7.2 Compressible Multi-Key Fully-Homomorphic Encryption

We construct a MK-FHE augmented with a ciphertext compression algorithm (see Appendix 3.3 for a formal
definition). In the following we introduce a compressible MK-FHE assuming the existence of

(1) an MK-FHE scheme (Setup,KeyGen,Enc,Eval,Dec) with linear decrypt-and-multiply and plaintext space
{0, 1} (and any rate) and

(2) a rate-1 MK-HE scheme (Setup,KeyGen,Enc,Eval,Dec) for linear functions over Zηq (i.e., the scheme
encrypts η-dimensional vectors)

where the parameters (q, η) will be set later according to our requirements. In abuse of notation we assume
that the key-generation algorithm KeyGen(1λ; q) takes the modulus q as an explicit input. While the former
building block can be instantiated from standard MK-FHE constructions (see Appendix A), the latter can
be instantiated with the scheme proposed in Section 7.1.

Setup: On input the security parameter 1λ, the setup algorithm samples

pp← Setup(1λ) and pp← Setup(1λ)

and sets the public parameters of the scheme to (pp, pp).
Key Generation: On input the public parameters (pp, pp), the key generation algorithm samples

(sk, pk)← KeyGen(pp; q) and (sk, pk)← KeyGen(pp)

where q is the modulus of the plaintext space defined by pp. Let sk = (s1, . . . , sn) ∈ Znq , for all i ∈ [η]
and for all j ∈ [n] the algorithm computes

cki,j ← Enc(pk, sj · ei)

where ei is the i-th unit vector. Then it sets the public key to (pk, pk, ck1,1, . . . , ckη,n) and the secret
key to (sk, sk).

Encryption: On input the public key (pk, pk, ck1,1, . . . , ckη,n) and a message m ∈ {0, 1}, the encryption
algorithm computes and outputs c← Enc(pk,m).

Evaluation: On input a set of public keys (pk(1), . . . , pk(M)), a function f , and a set of ciphertexts
(c(1), . . . , c(M)), the multi-key evaluation algorithm computes and outputs

c← Eval
((

pk(1), . . . , pk(M)
)
, f,
(
c(1), . . . , c(M)

))
.

Decryption: On input a set of secret keys (sk(1), . . . , sk(M)) and a ciphertext c, the decryption algorithm
computes and outputs

m← Dec
((

sk(1), . . . , sk(M)
)
, c
)
.

Compression: On input a set of public keys (pk
(1)
, ck

(1)
1,1, . . . , ck

(1)
η,n, . . . , pk

(M)
, ck

(M)
1,1 , . . . , ck

(M)
η,n ) and a

set of ciphertexts (c1, . . . , cη). Define f as the linear function

f
(
x
(1)
1,1, . . . , x

(M)
η,n

)
=

η∑
i=1

Dec&Mult
((
x
(1)
i,1 , . . . , x

(M)
i,n

)
, ci, q/2

)
.

The compression function computes and outputs

c← Eval
((

pk1, . . . , pkM
)
, f,
(
ck

(1)
1,1, . . . , ck

(M)
η,n

))
.

Compressed Decryption: On input a set of secret keys (sk
(1)
, . . . , sk

(M)
) and a compressed ciphertext

c, the compressed decryption algorithm computes and outputs

m← Dec
((

sk
(1)
, . . . , sk

(M)
)
, c
)
.
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7.3 Analysis of Compressible MK-FHE

First we argue that the resulting scheme is semantically secure.

Theorem 11 (Semantic Security). Let (Setup,KeyGen,Enc,Eval,Dec) be a secure MK-FHE scheme and
let (Setup,KeyGen,Enc,Eval,Dec) be a secure MK-HE scheme. Then the scheme as described above is se-
mantically secure.

Proof. Security is shown by a sequence of hybrid experiments.

Hybrid 0: Is defined to be the original scheme.
Hybrid 1 . . . η · n: For all i ∈ [η] and for all j ∈ [n] the Hybrid i + η · j is defined to be identical to the

previous one except that cki,j is defined to be the encryption of the column vector 0η. Indistinguishability
follows from an invocation of the semantic security of the MK-HE scheme.

Observe that in the last hybrid no information about sk is contained in the public parameters (beyond
what revealed by pk). Furthermore the encryption algorithm returns a fresh MK-FHE ciphertext. Therefore
semantic security follows from a canonical reduction to the semantic security of the MK-FHE scheme.

Next we show that our scheme satisfies correctness.

Theorem 12 (Correctness). Let B be the decryption noise of the MK-FHE scheme an let B̃ be the de-
cryption noise of the MK-HE scheme. Let q/4 ≥ B + M · η · n · B̃, the the scheme as described above is
correct.

Proof. Fix a pair of public parameters (pp, pp) and a set of M public keys(
pk(1), pk

(1)
, ck

(1)
1,1, . . . , ck

(1)
η,n, . . . , pk

(M), pk
(M)

, ck
(M)
1,1 , . . . , ck

(M)
η,n

)
with corresponding secret keys (sk(1), sk

(1)
, . . . , sk(M), sk

(M)
). Furthermore, fix a set of η multi-key ciphertexts

(c1, . . . , cη) under the set of keys defined above, which are in the support of the encryptions of the messages
(m1, . . . ,mη). Let

c = Eval
((

pk1, . . . , pkM
)
, f,
(
ck

(1)
1,1, . . . , ck

(M)
η,n

))
where f is defined as above. Since ck

(k)
i,j = Enc(pk

(k)
, s

(k)
j · ei), by the multi-key correctness of MK-HE it

holds that
Dec

((
sk

(1)
, . . . , sk

(M)
)
, c
)

= f
(
s
(1)
1 · e1, . . . , s

(M)
n · eη

)
+ z

where ‖z‖∞ ≤M · η · n · B̃, by the relaxed correctness of the MK-HE scheme. Substituting f it holds that

f
(
s
(1)
1 · e1, . . . , s

(M)
n · eη

)
=

η∑
i=1

Dec&Mult
((
s
(1)
1 · ei, . . . , s(M)

n · ei
)
, ci, q/2

)
=

η∑
i=1

ei · Dec&Mult
((
s
(1)
1 , . . . , s(M)

n

)
, ci, q/2

)
=

η∑
i=1

ei (q/2 ·mi + yi)

= q/2 · (m1, . . .mη) + y

where ‖y‖∞ ≤ B by the decrypt-and-multiply correctness of the MK-FHE scheme. Consequently, we have
that

Dec
((

sk
(1)
, . . . , sk

(M)
)
, c
)

= q/2 · (m1, . . .mη) + y + z

where
‖y + z‖∞ ≤ ‖z‖∞ + ‖z‖∞ ≤M · η · n · B̃ +B ≤ q/4

which implies that the vector (m1, . . . ,mη) can be efficiently decoded with probability 1.
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Parameters. We discuss our choices of parameters when instantiating the MK-FHE scheme with the scheme
from Mukherjee and Wichs [40] and the MK-HE scheme with the construction described in Section 7.1. Let
B be the bound on the noise of the MK-FHE scheme and let B̃ = poly(λ) be the decryption noise of MK-HE
for some fixed bounded error distribution χ over Z. The analysis (Theorem 12) fixes the following constraint:

q/4 ≥ B +M · η · n · B̃

which is always satisfied for a slightly super-polynomial modulus q. The rate of compressed ciphertexts is
identical to the rate of the MK-HE scheme and therefore approaches 1 as η grows. I.e., for η dimensional
vectors we have ciphertexts of size η + poly(λ) and therefore the rate is (1 − 1/λ) for a sufficiently large
η = poly(λ).

7.4 Additional Properties

Here we discuss on how different instantiations (or minor modifications thereof) of the building blocks of our
compiler satisfy desirable properties for an MK-FHE scheme.

Multi-Hop Evaluation. Note that the definition of compressible MK-FHE does not require evaluation
correctness for compressed ciphertexts. This is not only a definitional issue and in fact our compressed
ciphertext have only partial homomorphic properties. This means that the scheme as described above is only
single-hop correct, i.e., the homomorphic evaluations must be completed before compressing the ciphertext.
Fortunately there is a generic way to transform such a scheme into a multi-hop (for any bounded number of
hops h) MK-FHE scheme: Each user can generate a chain of key pairs and publish an encryption of each
secret key under the previous public keys, i.e., define the public key of the scheme as(

pk(1), pk(2),Enc
(
pk(2), sk(1)

)
, . . . , pk(h),Enc

(
pk(h), sk(h−1)

))
.

Then one can bootstrap compressed ciphertext c(i) under (pk
(i)
1 , . . . , pk

(i)
M ) into (non-compressed) ciphertext

under (pk
(i+1)
1 , . . . , pk

(i+1)
M ) by evaluating the CompDec algorithm homomorphically treating c(i) as a con-

stant. Semantic security follow from a standard hybrid argument. The scheme can be upgraded to support
an unbounded number of hops by setting the users’ public keys to

(pk,Enc (pk, sk))

for a uniformly sampled pair (sk, pk) ← KeyGen(pp), at the cost of introducing an additional circularity
assumption.

Threshold Decryption. Another property that is not preserved by our compiler is threshold decryption.
That is, even if the original MK-FHE scheme supported threshold decryption, its rate-1 counterpart does not
achieve this property (for compressed ciphertexts). To amend this, one can include an additional bootstrap-
ping step that evaluates the compressed decryption algorithm homomorphically and produces a valid (low
rate) MK-FHE ciphertext, which is now amenable to threshold decryption. Thus our compiled MK-FHE
scheme can be modified to support threshold decryption, as long as the underlying MK-FHE satisfies this
property. This however comes at the cost of increasing the rate for the output ciphertext. Since our MPC
compilers are anyway subject to a communication overhead polynomial in the output size, this modification
does not introduce any further increase in the communication complexity.

For completeness, we show an alternative (more direct) approach to achieve threshold decryption: Instead
of sending the decrypted header (Si ·c1,i), send that plus a smudging noise. If the parameters are set correctly,
this smudging noise does not affect correctness, since the decryption has to be robust to noise anyway.

Distributed Setup. One of the major shortcomings of all known MK-FHE schemes with linear decrypt-and-
multiply is the presence of a trusted setup to sample the public parameters of the scheme. In the context of
MPC, this implies that the protocol inherits the trusted setup assumption even in the semi-honest settings.
To overcome this nuisance, Brakerski et al. [11] showed how to modify the scheme of [13, 40] to support
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a distributed setup: In a distributed setup, each participant locally samples its own block of the public
parameters ppi and broadcasts it to all other users. To accommodate this modification, we refine the syntax
of the setup algorithm as follows.

Setup(1λ) : On input the security parameter 1λ, the (randomized) setup algorithm returns the public pa-
rameters block ppi.

Then the public parameters of the scheme consist of the concatenation of all blocks pp = pp1‖ . . . ‖ppM .
Crucially, the modified scheme preserves linear decrypt-and-multiply and therefore can be used as a build-
ing block for our compiler. This means that the resulting rate-1 scheme also supports a distributed setup
procedure. In terms of security, the scheme is resilient against semi-malicious attackers, i.e., the semantic
security is preserved even if the attacker is allowed to choose the random coins for the setup generation of
all but one users. Note that we consider a rushing adversary that selects the coins after seeing the honestly
generated block of parameters.

Definition 29 (Semi-Malicious Security). A multi-key homomorphic encryption scheme (Setup,KeyGen,
Enc,Eval,Dec) is semi-malicious secure if for all λ ∈ N, for all polynomials M = M(λ), for all i ∈ [M ], and
for all pairs of messages (m0,m1) the following distributions are computationally indistinguishable:

(pp, pk,Enc(pk,m0))
c
≈ (pp, pk,Enc(pk,m1))

where (sk, pk)←$KeyGen(pp), pp = pp1‖ . . . ‖ppM , ppi ← Setup(1λ), and for all i ∈ [M ] \ {i} it holds that
ppj ←$ Setup(1λ; ri) where ri is adaptively chosen by the distinguisher on input ppi.

Our rate 1 MK-FHE scheme allows efficient checkability of the public parameters, since the public pa-
rameters are a random matrix. This allows us to rely on its security even when the parameters are generated
by a distributed setup with a fully malicious adversary.
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A Multi-Key Linear Decrypt-and-Multiply

We require the existence of an MK-FHE scheme with some structural properties of the decryption algorithm.
Specifically, we require that the multi-key decryption algorithm consists of an application of a linear function
(in the concatenation of the secret keys) followed by a rounding operation. Furthermore, we requires that
the linear function can be augmented with a constant ω, which can be arbitrarily chosen, and results in the
product of the plaintext with ω. We henceforth refer to such a procedure as linear decrypt-and-multiply.
This property was explicitly characterized in an oral presentation of Micciancio [39] and was formalized in a
recent work of Brakerski et al. [10]. We recall the definition in the following.

Definition 30 (Decrypt-and-Multiply). We call a multi-key homomorphic encryption scheme (Setup,
KeyGen,Enc,Eval,Dec) a decrypt-and-multiply scheme, if there exists bounds B = B(λ) and Q = Q(λ) and
an algorithm Dec&Mult such that the following holds. For all λ ∈ N, all polynomials M = M(λ), all q ≥ Q,
all pp in the support of Setup(1λ; q), all (ski, pki) in the support of KeyGen(1λ), all M -argument functions f
(in the class supported by the scheme), all inputs (m1, . . . ,mM ), all ci in the support of the encryptions of
(m1, . . . ,mM ), and all ω ∈ Zq it holds that

Dec&Mult((sk1, . . . , skM ),Eval((pk1, . . . , pkM ), f, (c1, . . . , cM )), ω) = ω · f(m1, . . . ,mM ) + e mod q

where Dec&Mult is a linear function in the vector (sk1, . . . , skM ) over Zq and |e| ≤ B with all but negligible
probability.

An aspect which is going to be important for our design is the choice of the modulus q. We recall that
for essentially all FHE schemes in the literature, the the modulus q does not depend on any secret but
depends only on the security parameter. Moreover, LWE-based FHE schemes can be instantiated with any
(sufficiently large) modulus q without affecting the worst-case hardness of the underlying LWE problem [42].
This will allow us to set the modulus q on demand in our construction. In abuse of notation, we provide the
modulus q as an explicit input to the FHE key generation algorithm.

An MK-FHE Scheme with Linear Decrypt-and-Multiply. It has been shown by Micciancio [39] that
any FHE scheme with linear decryption always admits an efficient linear decrypt-and-multiply algorithm. The
same argument can be extended to multi-key schemes. Brakerski et al. [10] showed that the MK-FHE scheme
of Mukherjee and Wichs [40] (which is a simplified version of the scheme from Clear and McGoldrick [13])
satisfies these structural requirements. The scheme shown in [13, 40] is as secure as the LWE problem (with
super-polynomial modulo-to-noise ratio) and we highlight the relevant properties in the following:

(1) The construction is in the common random string model and all parties have access to a uniform matrix

A←$Z(n−1)×m
q .

(2) For any fixed depth parameter d, the scheme supports multi-key evaluation of depth-d circuits using
public keys of size d · poly(λ), while secret keys are vectors s←$Znq , regardless of the depth parameter.
More concretely, there exists an efficient algorithm Eval that is given as input:
(a) Parameters (M,d) ∈ N, where M is the number of public keys that perform depth-d computation.
(b) A depth-d circuit that computes an M -argument Boolean function f : {0, 1}∗ → {0, 1}.
(c) A vector of public keys (pk1, . . . , pkM ) and a fresh (bit-by-bit) encryption of each argument mi under

pki, denoted by ci ← Enc(pki,mi).
Then Eval outputs a matrix C ∈ ZnM×mMq such that

s̃ ·C · g−1 (ω) = ω · f(x1, . . . , xM ) + e (mod q)

where s̃ is the row concatenation of (s1, . . . , sM ), ω is the vector (0, . . . , 0, ω) ∈ ZnMq , and g−1 is the
bit-decomposition operator. Furthermore, it holds that

|e| ≤ β · (m4 +m)(mM + 1)d = β · 2O(d·log(λ))

where β is a bound on the absolute value of the noise of fresh ciphertexts.
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(3) By further making a circular-security assumption, Eval supports the evaluation of circuits of any depth
without increasing the size of the public keys. In this case the bound on the noise is |e| ≤ β ·2O(dDec·log(λ)),
where dDec is the depth of the decryption circuit, which is poly-logarithmic in λ.

Observe that C · g−1 (ω) does not depend on the secret key and therefore defining

Dec&Mult(s̃,C, ω) = s̃ ·C · g−1 (ω)

gives a syntactically correct linear decrypt-and-multiply algorithm and B = |e| is the corresponding noise
bound. Finally we remark that the MK-FHE scheme does not impose any restriction on the choice of q
(except for its size) so we can freely adjust it depending on our requirements.
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