
EVA Improved: Compiler and Extension Library for CKKS

Sangeeta Chowdhary1, Wei Dai2, Kim Laine2, and Olli Saarikivi2

1 Rutgers University, New Brunswick, NJ, USA
2 Microsoft Research, Redmond, WA, USA

Abstract. Homomorphic encryption (HE), especially the CKKS scheme, can be extremely challenging
to use. The EVA language and compiler (Dathathri et al., PLDI 2020) was an attempt at addressing
this challenge. EVA allows a developer to express their encrypted computation in a simple form with
a Python-integrated language called PyEVA. It then compiles the program into an executable form
by inserting operations such as relinearization and rescaling, applying optimizations, and choosing
encryption parameters with the objective of minimizing execution time. Compiled programs can be
executed with a parallelizing back-end against a library of HE primitives.
Our work improves upon the EVA toolchain in several ways: changes to the Python front-end make
writing PyEVA programs more natural, while a rework of EVA’s C++ APIs makes writing new passes
easier. We also implement two new optimizations, common subexpression elimination and reduction
balancing, which we show allow users to write simpler and more modular PyEVA programs.
We argue that the abstraction EVA provides is insufficient to resolve some common usability challenges.
For example, managing vectors of arbitrary size is non-trivial. To resolve these problems, we demon-
strate how building a library of commonly used data structures and functions is simple in PyEVA.
EVA’s automation allows writing very concise code, which gets fused and optimized together with the
user program. We create the beginnings of an EVA Extension Library (EXL), that provides vector
and matrix classes and a collection of common statistical functions, to demonstrate the power of this
approach.

1 Introduction and Background

We will first discuss homomorphic encryption in general and details of the CKKS scheme both to
give background and to motivate the need for a compiler like EVA. Then we will introduce EVA
both from a user’s and developer’s point of view to motivate our contributions.

1.1 Homomorphic Encryption

Homomorphic encryption [33, 23] refers to encryption that allows computation to be done on
encrypted data, without requiring secret key material. Modern fully homomorphic encryption
schemes [7, 6, 22, 24, 20, 14, 12] support at least two different arithmetic or binary operations on
encrypted data. In this work we focus exclusively on the CKKS scheme introduced in [12], which
we will describe in the next section.

Since 2010 several homomorphic encryption libraries have been developed, implementing many
of the schemes mentioned above. These libraries provide only low-level homomorphic encryption
primitives, including key generation, encryption, decryption, a few scheme-dependent computa-
tional operations on encrypted data, and a variety of “maintenance” operations that are required
for the functionality of the scheme. One problem is that homomorphic encryption schemes are
generally very sensitive to the computation being organized in the exactly right way, and the main-
tenance operations must be used appropriately. Another problem is that the encryption schemes
have a number of parameters that must be carefully chosen; otherwise, the result of the encrypted
computation may be incorrect, or the performance may be several orders of magnitude worse than
it needs to be. These details can be difficult to handle even for experts and make homomorphic
encryption nearly inaccessible to most developers.



One approach to addressing these issues is to create a domain specific language (DSL) that
is tailored for homomorphic encryption and optimizing compiler that reorders the computation
according to some heuristic strategy, inserts necessary maintenance operations, selects optimal
encryption parameters, and compiles the DSL into native homomorphic encryption library API
calls. Several such compilers have been created recently, targeting different use-cases, schemes, and
library back-ends [17, 19, 5, 4, 18, 15]. In this work we improve upon the EVA compiler [18] that
defines a general purpose DSL for encrypted computations with the CKKS scheme, targeting the
Microsoft SEAL [34] library back-end.

1.2 CKKS Scheme

The CKKS scheme [12, 11] was invented in 2016 and quickly gained significant popularity as one of
the most useful homomorphic encryption schemes. It is now implemented in several libraries [36,
34, 31, 29]. We refer readers to [11] for full details on the scheme and will limit our discussion here
to the parts that are essential for understanding the functionality.

Encryption Parameters The CKKS scheme is parameterized by a power-of-two integer n and
an integer q =

∏
qi, where qi are distinct prime numbers congruent to 1 modulo 2n. In modern

implementations the qi are usually up to around 60 bits in size, but may be much smaller as well.
These parameters determine the security level of the scheme as described in [1]. In short, a larger
n increases the security level, whereas a larger q decreases the security level. However, a larger q
enables computations with higher multiplicative depth to be computed on encrypted data. The
number of primes in q does not matter for security, but it does matter for the multiplicative depth.
Let P = (n,

∏k
i=1 qi) denote a parameter set for CKKS. We expand P to derive a chain of parameter

sets P0 → P1 → · · · → Pk′−1, where Pj = (n,
∏k−j

i=1 qi) and k′ ≤ k. Note that P0 = P. We would
like to emphasize that q is an ordered product of (distinct) prime numbers qi: the order matters a
lot, as we will see soon.

We refer to the position of the parameter set used for a specific ciphertext or plaintext as its
level. A ciphertext or plaintext using the parameter set P0 (resp., Pk′−1) is said to be at the highest
level (resp., lowest level). We will see below that it is easy to move ciphertexts and plaintexts down
in parameter chain until they reach the lowest level. Moving up in the level is also possible, but
much more challenging and is less commonly implemented or used [10, 9, 28].

Encoding and Encryption Before encrypting, data must first be encoded into CKKS plain-
texts. The encoding process takes a parameter set P and a scale s ∈ R>0 and encodes an n/2-
dimensional vector of complex numbers into a (P, s)-plaintext ptP,s. The encoding process involves
permutation, conjugation, and linear transformation on the complex vector, resulting in an output
n-dimensional vector of real numbers, which are further multiplied with s and rounded to Z. Thus,
the scale quite literally denotes the precision of the fractional part. Encryption converts ptP,s into a
(P, s)-ciphertext ctP,s. There is no way to encode fewer than n/2 numbers into a (P,−)-plaintext;
consequently, a (P,−)-ciphertext cannot encrypt fewer than n/2 numbers.

Changing the Level Let CP,s and PP,s denote the (P, s)-ciphertext and plaintext spaces, re-
spectively. A parameter chain P0 → P1 → · · · → Pk′−1 induces two operations between these
spaces:

ModSwitch : CPj ,s → CPj+1,s , PPj ,s → PPj+1,s

Rescale : CPj ,s → CPj+1,s/qk−j
, PPj ,s → PPj+1,s/qk−j

2



In other words, modulus switching (ModSwitch) moves a ciphertext or plaintext one step down
in level, without changing the scale, whereas rescaling (Rescale) moves a ciphertext or plaintext
one step down in level and divides its scale by the prime number that was removed in the step
Pj → Pj+1 from the modulus q.

We note that encoding, encryption, and these operations do not commute in the mathematical
sense as one might expect, but instead encryption is randomized and the other operations introduce
various small amounts of error into the plaintexts and ciphertexts.

Encrypted Computing The CKKS scheme supports encrypted element-wise vector addition,
negation, multiplication, and complex conjugation, as well as cyclic vector rotation (in either di-
rection); for addition and multiplication it supports both ciphertext-ciphertext and ciphertext-
plaintext variants of the operations:

Add : CPj ,s × CPj ,s → CPj ,s , CPj ,s × PPj ,s → CPj ,s

Neg : CPj ,s → CPj ,s

Mul : CPj ,s1 × CPj ,s2 → CPj ,s1s2 , CPj ,s1 × PPj ,s2 → CPj ,s1s2

Conj : CPj ,s → CPj ,s

Rot : CPj ,s × Z→ CPj ,s

As expected, addition requires both inputs to have the same scale, whereas multiplication tolerates
different input scales and yields a result with scale that is the product of the input scales. For all
binary operations both inputs must be at the same level.

There is one aspect of ciphertexts and plaintexts that we have ignored thus far: size. Concretely,
each CKKS (P,−)-plaintext is a single polynomial of degree at most n−1 and coefficients modulo q,
where P = (n, q); we say that the size of a plaintext is 1. Each freshly encrypted ciphertext
consists instead of 2 such polynomials; thus, we say that the size of such a ciphertext is 2. In
practice, addition, negation, ciphertext-plaintext multiplication, complex conjugation, and rotations
all preserve the size. If addition inputs two ciphertext of different sizes, the output will have a size
that is the larger of the input sizes. However, ciphertext-ciphertext multiplication increases the
size as follows: if the inputs have sizes A and B, the output has size A + B − 1. By far the most
common case is multiplying two ciphertexts of size 2, resulting in an output ciphertext of size 3.
Unfortunately, larger ciphertexts are very slow to operate on. To resolve this issue, CKKS supports
a so-called relinarization operation, that reduces the size of a ciphertext. In practice this always
means reducing from size 3 back to size 2, without changing the underlying plaintext data:

Relin : CPj ,s → CPj ,s .

Stabilizing the Scale We define one more operation for CKKS: a manual scale change. This is a
no-op that merely changes the metadata of a ciphertext or plaintext:

ChangeScales′ : CPj ,s → CPj ,s′ .

Namely, given a (P, s)-plaintext, one can simply lie to the decoder operation that the plaintext has
scale s′ instead. When the decoder divides the result vector (of complex numbers) by the scale, it
incorrectly divides it by s′ instead of s, changing the result by a multiplicative factor s/s′ from what
it was supposed to be. For example, given a positive real number r ∈ R>0, one could implement a
division-by-r operation by simply changing the scale of a ciphertext or plaintext from initial scale

3



s to rs. In general this is not very practical or useful, but there is one very important application
that we now describe.

Recall that all prime factors qi of the modulus q are distinct. For example, consider a simple
computation like x2 + y on encrypted inputs x, y, both encoded (and encrypted) at the highest
level with the same scale s. Computing x2 changes the scale to s2 and maintains the same level;
one may want to relinearize at this point, which does not affect the scale or level. But how can
we add y to the result? One option would be to change the scale of y up: this is possible, for
example, by encoding a vector of all ones with a scale s, and performing a ciphertext-plaintext
multiplication with this plaintext. This approach has its uses, but the whole idea of the CKKS
scheme is to enable removing of unnecessary precision through rescaling, not adding more of it.
Consider instead rescaling the x2 result, yielding a (P1, s2/qk)-ciphertext, where qk is some prime.
Since y is a (P0, s)-ciphertext, we are far from being able to add these. We can modulus switch
y down one level, yielding a (P1, s)-ciphertext, but we still cannot add, as s 6= s2/qk. However, if
qk ≈ s, then we could simply change the scale of the x2 ciphertext to s, introducing a multiplicative
scaling error s/qk ≈ 1, but allowing us to immediately compute the sum. In practice it is convenient
to choose the prime numbers qi to be close to powers of two. For example, suppose every prime qi
is chosen to be close to 240; then we can encode all input data at scale exactly 240 and the above
technique results in the scale stabilizing at 240 in multiplications. The forced scale changes result in
a slight error in the result due to the primes qi only being close to 240, but this is often insignificant
and a small price to pay for the added convenience.

Scale stabilization makes it often convenient to rescale after every ciphertext-plaintext multipli-
cation, and relinearize and rescale after every ciphertext-ciphertext multiplication, although there
are many situations where this naive rule results in much worse performance than more clever
strategies. We would like to note that in some implementations the order of relinearization and
rescaling may matter, but in SEAL it does not.

We would also like to note that many implementations, including SEAL, requires the user to
designate one or more of the primes in q as special primes that do not take part in the parameter
chain construction, but are used for other purposes. While EVA needs to know how to deal with
them, special primes do not play any particular role in this work, and we will ignore them in the
rest of the text for the sake of simplicity.

Error and Overflow The CKKS scheme preserves approximate computation, producing results
with errors in the least significant bits. One minor source of error, machine error in IEEE double
precision floats, is introduced when the input complex vector is linearly transformed to a vector of
real numbers in encoding (Section 1.2) and when the reverse transformation is performed in decod-
ing. This is the maximum effective precision that can be achieved in most concrete implementations.
Another more important source of error is the so-called noise added to the least significant bits of
encrypted data by all CKKS operations. To be precise, the CKKS scheme preserves approximate
computation on a transformed vector of real or complex numbers, whose fractional precision is
initially controlled by the user in choosing the scale. The exact fractional precision preserved lives
between the noise and the scale, so if the scale is large enough, the relevant part of the data remains
protected from the noise. In practice, one may want to test whether specific choices for scale in the
inputs yields appropriate precision.

The underlying data in ciphertexts are real values multiplied by a scale s and rounded to
integers modulo q. If the integer part of the underlying data is too large it exceeds the capacity
of integers modulo q, causing an overflow situation. This typically wipes out the entire result.
Overflow is rarely a problem in the encoding process, but can become a problem at lower levels

4



(i.e., deeper into the encrypted computation). To avoid this problem, the programmer must ensure
that throughout the computation the data always fits into integers modulo the current q. On one
hand, encrypted computations often increase the underlying data. On the other hand, rescaling
reduces the size of q. Thus, the user must ensure through proper choices of the scale, q, and the
layout of the computation, that the data will not overflow, while maintaining a large enough scale
for a high-enough effective precision.

Designing CKKS Programs At this point the reader might already anticipate the challenge
of designing CKKS programs. For a complicated program with multiple inputs and outputs it is
incredibly difficult to find a good set of parameters that provides sufficient accuracy and efficiency,
and yields consistency with the limitations of the various operations described above. It is difficult
to appropriately balance the scales and levels for the internal “wires” in a computation. Moreover,
changing the input scale requires often a total change in the encryption parameters and possibly
changes to how the computation is structured, making it difficult for a programmer to test whether
specific settings would yield better accuracy or performance than other settings. These are the
problems the EVA language and compiler [18] were designed to solve.

1.3 EVA

To address the usability issues of CKKS, Dathathri et al. [18] presented a domain-specific language
and an optimizing compiler targeting the CKKS scheme. EVA has a Python front-end, PyEVA, that
allows computations to be expressed using basic arithmetic operations in Python, creates a com-
putation graph, inserts appropriate rescaling (and other) operations, and uses heuristic approaches
to find good encryption parameters.

We have made several changes to EVA to improve usability for both users and developers. We
present EVA here in its improved form and detail our changes in Section 2.

PyEVA The EVA toolchain creates several types of objects: a program (input or compiled),
encryption parameters, a signature, a public context, and a secret context. The input program is
created by the user using the PyEVA language. Such a program may look as follows:

from eva import EvaProgram , Input , Output

prog = EvaProgram(’example ’, vec_size =4)

with prog:

inx = Input(’x’)

iny = Input(’y’)

sqsum = inx**2 + iny**2

Output(’out’, sqsum + inx + iny)

prog.set_input_scales (30)

prog.set_output_ranges (20)

The above listing creates an EVA program computing the squared sum of two inputs plus the sum of
the two inputs. Each value is a vector (encrypted) of size 4, and the program is evaluated in a SIMD
fashion on the input vector values. Due to the limitations of how CKKS must be parameterized,
the vector size must be a power of two. We set the scale for the program to be 30, which means
EVA will attempt to stabilize the scales at 230 (Section 1.2) and indicate that the absolute value
of all outputs is at most 220, which EVA uses to avoid overflow.

The next step is to compile the input program into a fully functioning EVA program that
can be executed on encrypted data. For example, the above program is in no way ready to be
executed: there is no information about what encryption parameters to use, where to perform
modulus switching or rescaling, and where to relinearize. Compilation handles all this:

5



from eva.ckks import CKKSCompiler

compiler = CKKSCompiler ()

prog , params , signature = compiler.compile(prog)

EVA inserts the necessary maintenance operations into the computation and selects appropriate
encryption parameters. In addition to the compiled program, EVA returns an object containing the
encryption parameters, as well as a signature object describing how each input should be encoded.

Suppose you want to encrypt private input data and share it with an evaluator, e.g., an un-
trusted cloud computing environment, holding the program object. The evaluator would share the
parameter and signature objects with you, allowing you to set up a public/secret key pair, and
encrypt your input data:

from eva.seal import generate_keys

public_ctx , secret_ctx = generate_keys(params)

input = {’x’: [1,2,3,4], ’y’: [5,6,7,8]}

enc_input = public_ctx.encrypt(input , signature)

The public context holds only public key data and can in principle shared with other parties
for providing input data to the computation; the secret context holds the secret key and should
be kept private. The input data is provided as a dictionary keyed by the input wire names. For
each input wire, we provide a list of size 4 – the vector size specified when the program object was
created.

Next the encrypted inputs and the public context must be sent to the evaluator, who can then
execute the EVA program:

enc_output = public_ctx.execute(prog , enc_input)

The encrypted outputs can be sent back to the secret context owner, who can decrypt them
and obtain the results:

output = secret_ctx.decrypt(enc_output , signature)

The decrypted result is a dictionary, keyed by names of the outputs. In this case we had only a
single output wire named out. Printing outputs[’out’] returns a list of size 4.

Internal Representation (IR) EVA has a unified IR for input programs, all stages of compilation
and executable format. This IR has an in-memory representation implemented in C++ on which
the compiler’s passes operate on. Additionally, there is a serialized representation implemented with
Protocol Buffers for use as a wire and on-disk format.

EVA programs are directed acyclic graphs (DAGs) of terms, where a term has and maintains:

op The opcode that determines the computation performed by this term, one of those in Table 1.
operands List of all terms used as operands for this term.
uses List of all terms that include this term in their operands.

Each term is additionally categorized into one of three types: Cipher, Plain and Raw (new; see
Section 1.2). Types are deduced by EVA at compile time.

In addition to the terms, each EVA program has and maintains:

name User-given name for the program.
sources and sinks The terms that have no operands and uses, respectively. These are used as

entry points for forward and backward traversals.
inputs and outputs Maps from names to Input and Output terms, respectively.
vec size Global size for all EVA vectors. Independent of the SEAL vector size, i.e., the number

of slots.

6



Opcode Description

Input, Output Markers for input/output values.
Constant Produce a Raw value.
Negate Unary negation.
Add, Sub, Mul Binary arithmetic operations.
RotateLeftConst New: Rotate left by a fixed offset.
RotateRightConst New: Rotate right by a fixed offset.

Relinearize Relinearize result of multiplication.
ModSwitch Drop next modulus.
Rescale Use next modulus to divide value and scale.
Undef Illegal in valid programs. Internal use only.
Encode New: Encode Raw value into Plain.

Table 1. Operations supported by EVA, including new ones introduced in this work. Opcodes above the line are the
ones user programs may use.

Passes EVA operates on this IR with two kinds of program traversals: rewrite passes are allowed
to modify, create and remove terms and are always single-threaded, while analysis passes only
visit each term, but may use a highly scalable multi-core traversal implemented with the Galois
library [30]. Both kinds of passes may additionally use a forward or backward traversal, which
guarantee that each terms operands or uses, respectively, are visited before term itself.

Pass Description

CommonSubexpressionEliminator New: Combine duplicate terms.
TypeDeducer Populate map from terms to types.
ConstantFolder Replace terms with only Constant operands with a Constant term.
ReductionCombiner New: Flatten trees of Add or Mul terms into N-ary terms.
ReductionLogExpander New: Expand N-ary terms
MinimumRescaler

 Rescaling policies; see [18].AlwaysRescaler

EagerWaterlineRescaler

LazyWaterlineRescaler Similar to Eager version, but delay rescaling until Mul terms.
EncodeInserter New: Add Encode terms for Raw operands of Cipher terms.
EagerRelinearizer Add Relinearize after each Mul.
LazyRelinearizer Add Relinearize after each Mul as late as possible.
ModSwitcher Add ModSwitch terms to bring unequal operands to same level.
SEALLowering Do SEAL specific transformations.
LevelsChecker Assert all operand levels match.
ParameterChecker Check Rescale consistency.3

ScalesChecker Check Add and Sub terms operands have equal scale.
EncryptionParametersSelector Select CKKS parameters based on Rescale terms.
RotationKeysSelector Find all rotation offsets required.

Table 2. Passes implemented in EVA. Listed in order of use in EVA’s CKKS compiler, although all are not always
used.

Table 2 lists both existing passes in EVA and passes added in this work. Most passes use a
forward traversal, with ModSwitcher being the only example of a backward pass.

3 The Minimum and Always policies can’t handle some programs, in which case this pass will instruct the user to
switch policies.

7



Back-end EVA includes a back-end for executing compiled programs against SEAL’s CKKS im-
plementation. This is implemented using a forward analysis pass that constructs a map from terms
to values, with optional use of the multi-core support for parallelization. Mappings for Input terms
are initialized with inputs values provided by the user and after the pass has run output is produced
from the values stored for any Output terms.

Limitations PyEVA allows the user to specify whether Input terms are encrypted or not. For
example, a computation may involve data from multiple data owners, one of which hopes to input
encrypted data, and the other unencrypted data. However, EVA did not implement support for
computation between unencrypted values, as SEAL does not implement pure plaintext operations.
Section 2.4 describes our changes to enable these scenarios.

1.4 Our Contributions

Our contributions are two-fold. First, we improve the EVA toolchain in multiple ways:

– PyEVA now has: (1) transparent support for Python numbers and lists; (2) named inputs and
outputs instead of positional; (3) scaling specified outside program (Section 2.1).

– A rewrite of EVA’s internal APIs make it easier for developers to extend with new passes
(Section 2.2).

– A new Raw type and Encode operation allow unencrypted inputs to be used on multiple lev-
els without having to perform modulus switching on SEAL plaintexts or transmit multiple
encodings of the same input (Section 2.4).

– Two new optimizations, common subexpression elimination (CSE) and reduction balancing,
allow simpler and more modular PyEVA programs (Sections 2.5 and 2.6).

Second, we note that despite our improvements to PyEVA, many common computations can
still be relatively tedious to write due to its low level of abstraction. As one example, summing
the elements of a ciphertext (i.e., “horizontal sum”) is a very standard operation, but is non-
trivial to implement.4 As another example, basic vector and matrix arithmetic can be surprisingly
complicated to implement with EVA due to the limitations in the vector sizes that the SEAL
back-end supports.5

We propose an EVA Extension Library (EXL) containing such common functions implemented
in PyEVA. The benefits of implementing EXL in PyEVA, instead of directly against SEAL, are:
(1) it is much easier to do; (2) EVA can co-optimize EXL functions together with the rest of the
program. We create the beginnings of EXL, including the horizontal sum function, simple vector
and matrix classes, and a few statistical functions, to demonstrate the power of this approach
(Section 3).

1.5 Related Work

Multiple homomorphic encryption compiler projects have been done in the past, targeting different
schemes, different library back-ends, and different use-cases [37]. Some of the projects clearly define a
custom DSL and an obvious optimizing compiler component, whereas others could more correctly be
called libraries, wrapping the hard-to-use homomorphic encryption libraries with a more convenient

4 A version with alternating power-of-two rotations and addition requires O(logn) operations while the näıve sum
of all rotations needs O(n).

5 This is not exactly a limitation of SEAL, but rather a limitation of the algebraic structures CKKS is based on.

8



interface targeting specific applications. Most of the projects are incomparable with each other: they
target different scenarios or back-ends with vastly different properties.

One of the first attempts at a homomorphic encryption was created for the IARPA RAMPARTS
program [2]. This compiler allowed the programmer to write computations in the Julia language,
and translated them to appropriate PALISADE [31] API calls.

Alchemy [17] compiles for the Λ ◦ λ library [16], which implements a BGV scheme variant.
A valid program written in the Alchemy DSL is guaranteed to work correctly and minimize the
chance of runtime errors. This is an important property for compilers, because mistakes in homo-
morphic encryption programs written using native library APIs, or improper parameterizations,
will typically lead to runtime errors that can be difficult to debug for non-experts.

Some compilers even support multiple back-ends. Cingulata [8] (earlier known as Armadillo)
allows the user to write programs in C++ and translates them into Boolean or arithmetic circuits
that can be executed using the TFHE library (Boolean circuits) or a custom implementation of
BFV (arithmetic circuits). SHEEP [35] is possibly the most generic of all compiler projects: it
defines a DSL that can be compiled to multiple library back-ends and schemes. Marble [38] is to
some extent similar in nature to Cingulata. E3 [13] is also designed for multiple back-ends.

Porcupine [15] specifically targets the difficulty in manually vectorizing programs. As was ex-
plained earlier, homomorphic encryption often operates on large encrypted vectors in a SIMD
fashion. However, producing code that leverages this parallelism is not straightforward for devel-
opers; this is what Porcupine helps with. It compiles a custom DSL to the BFV scheme API in
SEAL.

CHET [19], nGraph-HE [5, 4], SEALion [21], and TenSEAL [3] target machine learning appli-
cations by compiling primarily to the CKKS scheme.

Most recently Google announced the homomorphic encryption transpiler [25] targeting the
TFHE scheme. The transpiler allows the user to write normal C++ functions and repurposes the
XLS toolchain to translate the functions to TFHE API (Boolean circuits), instead of Verilog code.

As has been explained above, EVA [18] defines a DSL and compiles to the CKKS scheme API
in SEAL. The present work improves upon EVA.

2 Improved EVA

This section describes and motivates the improvements we have made to EVA. We have also made
EVA available open-source under the MIT license to engage the homomorphic encryption users and
research communities.6

2.1 PyEVA Front-End Improvements

We have made several improvements to PyEVA that make writing programs more natural.
Figure 1 shows Sobel edge detection implemented with the improved PyEVA language. We invite
the reader to compare this with Figure 6 in [18], which presented the same program in the original
PyEVA language.

PyEVA now allows using Python numbers and lists of numbers transparently in expressions
involving encrypted values. When a Python value is encountered, EVA automatically creates a
Constant term. In contrast, the old PyEVA required the user to call a constant(scale,value) function
to mark constants and indicate their scale. A consequence of this is that the user no longer has to
set the scales of constants, and instead EVA’s new Raw type support described in Section 2.4 infers
the required scales.

6 https://GitHub.com/Microsoft/EVA

9



1def convolution(image , width , kernel ):

2conv = 0

3for i in range(len(kernel )):

4for j in range(len(kernel [0])):

5rot = image << i * width + j

6conv += rot * kernel[i][j]

7return conv

8
9def sqrt(x):

10return 2.214*x - 1.098*x**2 + 0.173*x**3

11
12sobel = EvaProgram("sobel", vec_size =64*64)

13with sobel:

14image = Input("image")

15hor = convolution(image , 64,

16[[-1,0,1], [-2,0,2], [-1,0,1]])

17ver = convolution(image , 64,

18[[-1,-2,-1], [0,0,0], [1 ,2 ,1]])

19Output("image", sqrt(hor **2 + ver **2))

Fig. 1. Sobel edge detection in PyEVA

The new PyEVA omits scales in the Input and Output functions. Instead, the user calls set_input_scales

and set_output_ranges to set these parameters. This allows the orthogonal concern of setting appro-
priate scales to be separated from specifying the computation.

EVA and PyEVA now use named arguments instead of positional arguments. This makes it
easier to rearrange the computation inside a PyEVA program without having to change application
code that handles inputs and outputs.

2.2 Making Passes Easy to Write

A primary goal of EVA, alongside making homomorphic encryption accessible to non-experts, is
to make it easy for homomorphic encryption experts to translate their knowledge into executable
form. By implementing passes that achieve the optimizations they desire, their knowledge can
benefit every new application and user. From this point of view, it is critical that the internal APIs
of EVA are expressive and ergonomic to use.

Dealing with loops in transformations and analyses is in our view one of the main challenges
in compilers for beginners. The original EVA [18] took the most important step in making passes
easy to write by designing the IR as a loop-free DAG. Instead of having to think about lattices,
fixpoints, and termination, developers of new passes can focus on the logic of their transformations
inside simpler forward and backward traversals. The tradeoff is that the program representation is
less compact, but in our experience this has not been a problem as due to the relative slow-down
of homomorphic encryption programs tend to be smaller than traditional ones.

We have continued the work started in the original EVA by further refining its APIs to make
writing passes easy. This section details the most important improvements.

Rewriting API We have analyzed the API usage patterns in existing passes and identified the
most common transformations made to the DAG. While passes in the original EVA operated directly
on C++ vectors for both operands and uses, we have encapsulated common modifications as the
following new member functions in EVA’s Term class:

10



void addOperand(const Ptr &term);

bool eraseOperand(const Ptr &term);

bool replaceOperand(Ptr oldTerm , Ptr newTerm );

void setOperands(std::vector <Ptr > o);

void replaceUsesWithIf(Ptr term ,

std::function <bool(const Ptr &)>);

void replaceAllUsesWith(Ptr term);

void replaceOtherUsesWith(Ptr term);

The replace*UsesWith* functions significantly simplified existing passes in EVA by replacing
complex loops over the uses of terms.

Original EVA required passes to manually keep the pointers from terms to their uses up to date,
which was a common source of bugs. Our changes remove direct write access to the operands list and
instead have the member functions of terms automatically manage the use list. This significantly
simplified code in passes.

The Ptr type above is an std::shared ptr, which makes memory management simple. The
original EVA had chosen to use shared ptr for use pointers and weak ptr for operands, which did
not matter when uses were manually updated. However, with automatic use management switching
the direction of ownership gave us dead code elimination for free: any term that does not appear
in a subexpression of an Output term is automatically freed.

Attribute Type Used in

RescaleDivisorAttribute uint32 t Rescale

RotationAttribute int32 t Rotate*Const

ConstantValueAttribute shared ptr¡Constant¿ Constant

TypeAttribute Type Input

RangeAttribute uint32 t Output

EncodeAtScaleAttribute uint32 t Input,Encode
EncodeAtLevelAttribute uint32 t Input,Encode

Table 3. Attributes currently in EVA.

Attributes To improve EVA’s API ergonomics we have introduced attributes, which are strongly
typed named constants attached to terms. Attributes solve several problems in EVA:

– Named and strongly typed attributes make passes more readable and safer by avoiding manual
type checks.

– EVA’s type system for terms can be kept simple and targeted to homomorphic encryption by
moving complex metadata into attributes.

– As EVA adds support for new schemes, back-ends and optimizations, adding information as
fields in terms would inflate the memory footprint for all terms and during all passes. Attributes
allow only storing what is required.

Figure 3 lists the attributes currently included and which terms they are used in. Attributes are
accessed with templated has<A>, get<A> and set<A> methods directly from the Term class, where
A is a tag type naming the attribute. Terms store their attributes in a linked list that embeds the
first element in the term instance, which for most cases avoids an indirection.

11



Term Maps While attributes are suitable for metadata that should be persisted, many passes
require tracking more ephemeral per-term information. For example, EVA’s rescaling policies track
the scale of all terms, but this is only required for at execution time for Input and Encode terms.
For such usage we provide two template classes: TermMap<T> and TermMapOptional<T>. These
encapsulate a contiguous array of type T that can be indexed directly with term instances. Internally
EVA maintains a unique index for each term in a program and automatically manages space in any
registered term maps when new terms are created.

Term maps provide a safe replacement for EVA’s previous ad-hoc usage of std::vector with a
globally incremented index per term. Hashmaps would have been another option, but EVA’s multi-
core support would have required a concurrent implementation. Term maps are trivially thread safe
when passes write only to the current term, thanks to pre-allocation of the buffer.

2.3 Pseudo-Code

For readability, the following sections present our new passes in pseudocode that closely matches the
structure of their C++ counterparts in EVA. Common mathematical notation is used for brevity.
The global mappings used in the pseudocode correspond to term maps. A map M is indexed with
a term t with M [t] and an uninitialized map is ∅. A list L can be indexed by a non-negative integer
i with L[i], lists are constructed with [a, b, c, . . . ] and concatenated with L ++ L′. Attributes are
accessed with t.get〈AttributeName〉, modified with t.set〈AttributeName〉(), and their names are
abbreviated for brevity.

2.4 Raw Type and Encoding Insertion

Many applications need to deal with both encrypted and unencrypted data. For example, machine
learning inferencing tasks may operate on encrypted inputs, but allow weights to be unencrypted.

EVA’s previous approach to unencrypted inputs was to perform CKKS encoding for all input
values, but skip the encryption step for unencrypted inputs. This, however, meant that arithmetic
between unencrypted values was not supported, as SEAL does not offer arithmetic for plaintext
values and, while implementable, it would not be desirable either due to the slowdown involved.
While it is always possible to move these kinds of computations to the surrounding application
code, allowing unencrypted arithmetic inside EVA programs is more flexible. Another issue with
performing encoding early is that this inflates the size of those inputs and may result in higher
communication costs.

We have extended EVA’s type system with a new Raw type alongside the existing Cipher

and Plain types. Values of type Raw represent vectors of vec_size double precision floating point
elements. All Constant terms and Inputs that the user has marked unencrypted (by passing
is_unencrypted=True to Input) are of type Raw. All of EVA’s arithmetic operations are supported be-
tween terms of type Raw, while operations specific to homomorphic encryption, such as ModSwitch,
naturally are not.

To move values of type Raw to Plain, we’ve added a new opcode, Encode, which has a single
operand for the Raw value to be encoded and two attributes, Scale and Level, to control how
the value gets encoded. Encode terms are added by a new Encoding Insertion pass detailed in
Algorithm 1. It depends on two prepopulated maps: S for the scales and T for types of all existing
terms, which are produced by EVA’s rescaling insertion and type deduction passes, respectively.
For each term of type Cipher, the pass checks if any of the operands are of type Raw and if so
inserts new Encode terms.

12



Require: S and T are maps from existing terms to their scales and types, respectively, and VisitEI is used in a
forward traversal.

Ensure: There are no terms with mixed Cipher and Raw operands.
1: procedure VisitEI(t)
2: if T [t] = Cipher then
3: for o ∈ t.operands s.t. T [o] = Raw do
4: e← Newterm(Encode, [o])
5: if t.op =Add∨ t.op =Sub then
6: e.set〈Scale〉(S[t])
7: else
8: e.set〈Scale〉(S[o])

9: T [e]← Plain

10: S[e]← e.get〈Scale〉
11: t.replaceOperand(o, e)

Algorithm 1: Encoding Insertion

One complication handled by the pass is that for Add and Sub all operands must have the same
scale and thus the pass sets the Scale attribute appropriately. For multiplications the scale set
for the operand is used, which is typically one set by the user in PyEVA with set_input_scales.
Encode terms also need the Level attribute set, but this is added during EVA’s modulus switching
insertion pass, which we modified to add support for Encode.

2.5 Common Subexpression Elimination

Common Subexpression Elimination (CSE) is a well known optimization that ensures a program
has a unique representative term for each syntactically equivalent subexpression. Providing a CSE
pass in EVA means that authors of EVA programs do not have to memoize common subexpressions.
As an example, consider the program in Figure 1. The program calls the convolution function twice
to run separate filters for detecting horizontal and vertical edges. However, as both are 3×3 kernels
they will perform the same rotations on line 5. While this could be remedied in the user code
by memoizing the results of line 5 or by fusing the loops of the two invocations (as was done in
Figure 6 of [18]), being able to rely on CSE greatly simplifies the user code. Similarly, on line 10
the polynomial approximation of square root does not have to factor out the shared powers of x.

We have implemented CSE in EVA as detailed in Algorithm 2. During a forward pass CSE
checks for each term if a syntactically equivalent term r was already visited earlier. If so, all uses
of the current term t are redirected to r, by replacing t with r in all operand lists that mention t.
If no such r exists, then t is kept and remembered as the representative of its syntactic equivalence
class.

SyntacticEquals checks that the terms have the same opcode and operands. Crucially, the
operands are compared using pointer equality, avoiding recursive calls into SyntacticEquals.
This works, because in a forward pass operands are visited before the term itself. After checking
the opcode and operands, operation specific attributes may be checked. For example, in the case
of rescaling it is checked that the divisors match. Inputs and outputs are never eliminated, as EVA
already ensures there’s a single representative for each named input/output. The implementation
of CSE uses a hash set for U , which requires hash codes in addition to the equality operation. These
syntactic hashes are calculated using the same fields that SyntacticEquals uses.

13



Require: U = ∅ and VisitCSE is used in a forward traversal.
Ensure: Program has no two syntactically equivalent terms.
1: procedure VisitCSE(t)
2: if ∃r ∈ U : SyntacticEquals(t, r) then
3: t.replaceAllUsesWith(r) . Remove term t.
4: else
5: U ← U ∪ {t}
6: procedure SyntacticEquals(t, r)
7: if t.op 6= r.op ∨ t.operands 6= r.operands then
8: return False
9: switch t.op do

10: case Undef

11: return False
12: case Negate, Add, Sub, Mul, Relinearize, ModSwitch
13: return True
14: case Input, Output
15: return t = r . Pointer equality.

16: case Constant

17: return t.get〈ConstValue〉 = r.get〈ConstValue〉
18: case RotateLeftConst, RotateRightConst
19: return t.get〈Rotation〉 = r.get〈Rotation〉
20: case Rescale

21: return t.get〈Divisor〉 = r.get〈Divisor〉
22: case Encode

23: return t.get〈Scale〉 = r.get〈Scale〉 ∧
t.get〈Level〉 = r.get〈Level〉

24: return False . Unreachable, but it’s safe to return false.

Algorithm 2: Common Subexpression Elimination

2.6 Reduction Balancing

Consider the following arithmetic expressions:

(a · b) · (c · d) (1)

((a · b) · c) · d (2)

While arithmetically equivalent, expression 1 is better because it has a lower multiplicative depth.
While it is always possible to avoid the equivalent of expression 2 in PyEVA programs manually,
doing so may make code less modular. Consider the following program:

def poly(x):

return 0.837 * x**2

prog = EvaProgram("inbalanced", vec_size =4096)

with prog:

a = Input("a")

b = Input("b")

Output("c", poly(a) * b)

The expression constructed for the output c is essentially ((x · x) · 0.837) · b, which has depth 4.
Balancing this expression in user code would require inlining the poly function by rewriting line 8
to Output("c", (0.837 * b) * a**2). In some cases the exponent operator has to be avoided too, as
for example a * b**3 produces an unbalanced expression.

To remedy these problems we have added a reduction balancing feature to EVA by implementing
two passes that run in succession. The first pass, detailed in Algorithm 3, flattens any trees of

14



Require: VisitRC is used in a forward traversal.
Ensure: Trees of reductions with Mul or Add are collapsed into single terms with multiple operands.
1: procedure VisitRC(t)
2: if t.op 6= Mul ∨ t.op 6= Add then
3: return
4: if |t.uses| = 1 then
5: use ← t.uses[0]
6: if use.op = t.op then
7: while use.eraseOperand(t) do
8: for o ∈ t.operands do
9: use.addOperand(o)

Algorithm 3: Reduction Combiner

reductions with either the Mul or Add operation into a single term with all the source terms to
the subtree as operands. Note that terms with multiple uses are always retained even if they are
otherwise part of a reduction subtree, since that intermediate result is needed elsewhere.

The second pass, detailed in Algorithm 4, expands the flattened reductions back into balanced
binary trees. One subtlety to be considered is that it is beneficial to both reduce Raw terms as well
as Cipher terms of a similar scale together first. For example, if in expression 1 terms a and c are
of type Raw, while b and d are Cipher, then the encoding insertion pass in Algorithm 1 will add two
Encode terms. However, if the Raw terms are a and b instead, only one Encode term is required.
The sorting on line 6 together with the scale estimation in the SetScale procedure implement a
heuristic that groups terms with the same type and scale together.

The balanced reduction trees produced by these passes minimize the amount of modulus con-
sumed by multiplications. The transformation is also useful in the case of Add operations as balanced
trees expose more parallelism: an unbalanced tree requires O(n) time to evaluate in the worst case,
while with sufficient processors a balanced tree only requires O(log n) time.

3 EVA Extension Library

3.1 Why an Extension Library?

Even though EVA greatly improves the user experience of CKKS, we note that it still leaves much
to be desired. We illustrate the problem with a few examples.

Consider computing the sum of all elements in an EVA vector, e.g., when evaluating a high-
dimensional dot product, where the EVA program’s vector size is set to a large value (several
thousands) and a single SIMD multiplication is performed between two input vectors. To complete
the dot product, the elements of the multiplied vector must be added up. This can be done using
rotations and additions, but a näıve version will use several thousand rotations, while a good one
gets by with a logarithmic number of rotations. Ideally, a good implementation for the “horizontal
sum” would be readily available to avoid this pitfall.

It is common for applications to include computations that are not directly supported in ho-
momorphic encryption, in which case polynomial approximation becomes useful. Given an input
function, a Taylor polynomial, a Chebyshev approximation, or some other polynomial approxima-
tion valid for a specific input domain may be used. It is very application dependent which kind of
approximation is appropriate, so a library of several methods would be useful.

As a third example, consider the case of arbitrary-sized vectors or matrices. Such objects are
not simple to implement using the power-of-two size vectors that EVA natively supports. While

15



Require: S = ∅, T is a map from existing terms to their types, and VisitRLE is used in a forward traversal.
Ensure: There are no terms with mixed Cipher and Raw operands.
1: procedure VisitRLE(t)
2: SetScale(t)
3: if t.op 6= Mul ∨ t.op 6= Add ∨ |t.operands| ≤ 2 then
4: return
5: O ← t.operands
6: O ← Sorted(O, λa, b : T [a] = Cipher⇒

T [b] = Cipher ∧ S[a] ≤ S[b])
7: while |O| > 2 do . Expand O into balanced tree.
8: O′ ← []
9: i← 0

10: while i+ 1 < |O| do
11: O′ ← O′ ++ [Newterm(t.op, [O[i], O[i+ 1]])]
12: i← i+ 2

13: if i < |O| then
14: O′ ← O′ ++ [O[i]]

15: O ← O′

16: assert |O| = 2
17: t.operands← O

18: procedure SetScale(t)
19: if |t.operands| = 0 then
20: S[t]← t.get〈Scale〉 . Sources have user given scales.
21: else if T [t] = Cipher ∧ t.op = Mul then
22: S[t]← Σo∈t.operands S[o]
23: else
24: assert ∀o, o′ ∈ t.operands : S[o] = S[o′]
25: S[t]← S[t.operands[0]]

Algorithm 4: Reduction Log Expander

these could be directly offered in EVA’s back-end, especially for matrices there are numerous ways
to encode the data and implementing them all would inflate the complexity of EVA’s core.

We propose building an EVA Extension Library (EXL) in Python using PyEVA to address
these use-cases. We argue that such a library would be impractical to build directly using SEAL
or other implementations of CKKS, as such low-level implementations would become very complex
due to the lack of optimizations and automation that a compiler like EVA provides. Building EXL
in PyEVA makes it accessible to a huge group of developers, makes it modular and convenient to
use, and makes it performant by allowing EVA to automatically optimize the library functions as
they are fused into EVA programs.

3.2 Horizontal Sum

As the first demonstration of how easy EXL is to build in PyEVA, we present an efficient horizontal
sum implementation:

def horizontal_sum(x):

i = 1

while i < len(x):

y = x << i # rotation by i steps

x = x + y

i *= 2

return x

16



By successively rotating the value by increasing powers-of-two and adding the rotated value
back, a horizontal sum can be computed in a logarithmic number of rotations and additions.
PyEVA operator overloading makes the code read like normal Python code.

3.3 Vector and Matrix

As a significant concrete demonstration, we implemented an EXL vector class for arbitrary-sized
vectors in PyEVA.

SEAL vector and EVA vector The new EXL vector is distinct both from the native SEAL
vectors (i.e., ciphertexts and plaintexts) that always have a fixed size set by the encryption param-
eters (Section 1.2), and from the EVA vectors that still have a power-of-two size determined by the
user when creating the EVA program (Section 1.3).

Internally, EVA vectors of size less than the SEAL vector size are implemented by replicating the
EVA vector values until the SEAL vector is filled. Large EVA vector sizes are always accommodated
by potentially inflating the encryption parameters to make the SEAL vector at least the same size.
In a “wide” enough EVA program, the EVA vector size matches the SEAL vector size to avoid
redundant computation and unnecessarily large encryption parameters.

EXL vector These issues make some very natural computations unnecessarily complex, as appli-
cations often need to operate on data of arbitrary size. Consider an EVA program with a very large
input vector, e.g., a million elements. Setting the EVA vector size to match would be very inefficient
due to the large encryption parameters required. Instead, the user would have to manually break
up their input data into multiple EVA vectors and express the computation in terms of these, but
now the user has to also break up their computations to work in terms of these subsections of the
data. Rotations, in particular, become very complex due to the number of corner-cases involved.

Our EXL vector class resolves all of these problems; it handles the idiosyncrasies of splitting up
user data of any size to fit into EVA vectors of any size. The generated code also naturally benefits
from EVA’s automatic parallelization. Consider the following example:

def vector_horizontal_sum(x):

x = sum(x.exprs)

return horizontal_sum(x)

def vector_dot_product(x, y):

return vector_horizontal_sum(x * y)

prog = EvaProgram(’DotProduct ’, vec_size =4)

with prog:

v = VecInput(’v’, 5)

w = VecInput(’w’, 5)

VecOutput(’y’, vector_dot_product(v, w))

The vector horizontal sum function provides an equivalent to horizontal sum for the EXL
vector. The vector dot product function then implements dot product for two arbitrary-sized
vectors in one line of code. The user program can now invoke these functions with EXL vector
inputs obtained with the VecInput function and produce an output with the VecOutput function.

Figure 2 shows how the EXL vector of size 5 is divided into two EVA vectors of size 4, which
are replicated into two SEAL vectors of size 4096. Note that in this case the user would benefit
from increasing the EVA vector size to 8 or more.

17



1Input Size = 5 2 3 4 5

1Vec Size = 4 2 3 4 5 0 0 0

Slot Size = 4096 1 2 3 4 5 0 0 01 2 3 4 5 0 0 0

0 4095…… 0 4095……

0 31 2 0 31 2

0 31 2 4

Fig. 2. This graph shows the instance for splitting the input into vectors of size of power of two using EXL Vector
class.

Matrix Similarly to the EXL vector, we implement a simple EXL matrix class. Matrix-vector and
matrix-matrix products are fundamental operations in many interesting applications, e.g., machine
learning. We implemented the matrix-vector product using the well-known trick of splitting the
matrix in diagonal order. Suppose A = (ai,j) is an m×m matrix and v = (vi) is vector of length m.
EXL splits A into m vectors in diagonal order:

d1 = {a1,1, a2,2, . . . , am,m}
di = {a1,i, a2,i+1, . . . , am−i+1,m, am−i+2,1, . . . , am,i−1}

The product Av is computed as:
∑m

i=1 di · Rot(v, i) , where function Rot (Section 1.2) cyclically
rotates the vector v by i steps.

3.4 Vector Size and Program Generators

EVA partly decouples the sizes of vectors used in input programs from the SEAL vector size, i.e.,
the number of slots, determined in EVA’s encryption parameter selection. If the EVA vector size
is smaller than the SEAL vector size, the executor emulates the smaller size by replicating vectors.
On the other hand, if it is larger, then the SEAL vector size is expanded to fit the EVA vector size.

While this scheme allows users to select any (power-of-two) vector size for their EVA programs
and get a runnable program, it has drawbacks. If the EVA vector size is smaller than the SEAL
vector size then each operation is performing redundant computation. On the other hand, if the
SEAL vector size was expanded to a larger size to fit the EVA vector size then each operation is
slower than necessary for security. EVA does instruct the user in these cases to consider possible
optimizations.

EXL vector above introduces yet another level of vector sizes and, for programs that use EXL
vectors exclusively, mostly hides the EVA vector size. However, users must still specify vec_size

for the EvaProgram constructor and different choices for this parameter will result in very different
performance. EXL does improve the situation over vanilla EVA by allowing different values for the
EVA vector size to be tried with no other changes to the program, but ideally this would be handled
transparently by EVA.

We propose remedying this by having users provide an program generator instead of a concrete
EVA program. The example program in Section 3.3 would for example be expressed as:

def prog ():

v = VecInput(’v’, 5)

18



Require: GenerateProgram works for al v s.t. v ≥ vmin and vlarge ≥ vmin .
Ensure: The selected P,Q, v are secure and P was generated with a v′ ≥ vmin .
1: procedure IterateUp(vmin)
2: v ← vmin

3: loop
4: P,Q, vsecure ← TryVecSize(v)
5: if v ≥ vsecure then
6: return P,Q, v
7: else
8: v ← 2 · v
9: procedure TryVecSize(v)

10: P ← GenerateProgram(v)
11: P ′, Q← Compile(P )
12: v′ ←MinSlotsForModulus(Q)
13: return P ′, Q, v′

Algorithm 5: Simple vector size selection procedures

w = VecInput(’w’, 5)

VecOutput(’y’, vec_dot_product(v, w))

PyEVA would use this to generate candidate programs with different vec_size arguments and select
a good one based on some criteria.

Algorithm 5 illustrates a simple way to select an EVA vector size given a user-provided Gener-
ateProgram procedure and a minimum vector size the program needs. IterateUp will find the
smallest valid vector size that is secure by iterating up from the minimum. This, however, has the
drawback that the program will be compiled potentially many times. We leave designing a good
general purpose selection procedure for future work.

3.5 Statistical Functions and More

We have added a set of common statistical functions to EXL, as well as a polynomial approximation
generator for evaluating non-polynomial functions. These were implemented using the EXL vector
class and the functions for horizontal sum and dot product described in Section 3.3. Thanks to
PyEVA’s expressiveness, implementing them is simple:

import numpy as np

def average(x):

return vector_horizontal_sum(x) / len(x)

def sum_of_squares(x):

return vector_horizontal_sum(x**2)

def sum_of_squared_errors(avg , x):

return sum_of_squares(x - avg)

def variance(x):

x = sum_of_squared_errors(average(x), x)

return x / (len(x) - 1)

def poly_approx(fun , low , up , degree ):

def poly(x):

...

return y

return poly

19



# Standard deviation

def sd(x):

sqrt = poly_approx(np.sqrt , 0, 100, degree =6)

return sqrt(variance(x))

def correlation(x, y):

avg_x = average(x)

avg_y = average(y)

sum_xy = vector_dot_product(x-avg_x , y-avg_y)

mul_sd_xy = sd(x) * sd(y) * len(x)

return (sum_xy , mul_sd_xy)

We have omitted the polynomial approximation implementation above, as choice of the method
is very application-dependent. We leave the task of designing a comprehensive library of polynomial
approximation methods for future work.

The code above serves as a good example of how EXL functions build on both the EXL vec-
tor class and each other. This demonstrates the benefit of building a comprehensive library in
PyEVA. And we hope to start a virtuous cycle of developers contributing to EXL and making
future contributions easier while doing so.

4 Conclusions and Future Work

In this paper we have demonstrated valuable improvements to the EVA toolchain, providing further
evidence that the approach EVA is taking towards a CKKS-specific compiler toolchain can provide
good performance and a far better user-experience than native CKKS API in any library. We have
demonstrated that building higher level libraries on top of EVA is meaningful and can hugely aid in
simple use-cases of CKKS, e.g., implementing simple statistical functions, or arbitrary-sized vector
computations. Concretely, we built the beginnings of an EVA Extension Library (EXL). As future
work, we believe EXL can be augmented with a much richer set of data types and functions, e.g.,
tensors and various implementations for neural network kernels.

There are multiple direction for extending EVA itself. As was discussed in Section 3.4, the EVA
vector size is a tricky concept that would ideally be abstracted away by EXL, which would require
yet another layer of abstraction in the program creation.

Another useful feature that EVA does not currently support is combining inputs from multiple
data sources. For example, a computation may calculate the correlation between data from two
data owners, both holding the same public EVA context (public key). However, EVA requires the
user to specify all input wires at once and does not allow one party to specify part of the inputs.

While EVA currently targets only CKKS, we believe there may be benefit in targeting BFV and
BGV as well. Both BGV and BFV would require a noise estimator to be built into EVA, as SEAL
currently does not include such an estimator. However, some other libraries, notably HElib [27],
already implement noise estimators, which EVA could leverage directly. Extending EVA to support
other library back-ends, targeting either CKKS or BFV/BGV, would be valuable.

On the usability side several open questions remain. Does EVA and EXL provide a sufficient level
of abstraction to make homomorphic encryption, and the CKKS scheme in particular, generally
available to developers without extensive training? Cryptographic libraries are notorious for poor
usability [26, 32], and homomorphic encryption libraries are undoubtedly extremely challenging
to use for non-experts. Performing usability studies would help compiler developer teams identify
directions to pursue in the future.

20



Porcupine [15] takes a interesting approach in attempt to help users vectorize their computa-
tions. Since vectorization is essential to making CKKS (also BFV/BGV) applications meaning-
fully performant, it would make sense to combine a tool such as Porcupine with EVA. Currently
EVA/EXL users would need to understand to utilize the EXL vector classes to the extreme to
achieve good performance, which is not going to be obvious for normal developers.

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi, S., Hoffstein, J., Laine, K.,
Lauter, K., Lokam, S., Micciancio, D., Moody, D., Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic
encryption security standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada (November 2018)

2. Archer, D.W., Calderón Trilla, J.M., Dagit, J., Malozemoff, A., Polyakov, Y., Rohloff, K., Ryan, G.: Ramparts: A
programmer-friendly system for building homomorphic encryption applications. In: Proceedings of the 7th ACM
Workshop on Encrypted Computing & Applied Homomorphic Cryptography. pp. 57–68 (2019)

3. Benaissa, A., Retiat, B., Cebere, B., Belfedhal, A.E.: Tenseal: A library for encrypted tensor operations using
homomorphic encryption. arXiv preprint arXiv:2104.03152 (2021)

4. Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: ngraph-he2: A high-throughput framework for neural
network inference on encrypted data. In: Proceedings of the 7th ACM Workshop on Encrypted Computing &
Applied Homomorphic Cryptography. pp. 45–56 (2019)

5. Boemer, F., Lao, Y., Cammarota, R., Wierzynski, C.: ngraph-he: A graph compiler for deep learning on ho-
momorphically encrypted data. In: Proceedings of the 16th ACM Int’l Conf. on Computing Frontiers. pp. 3–13
(2019)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping.
ACM Transactions on Computation Theory (TOCT) 6(3), 1–36 (2014)

7. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security for key dependent
messages. In: Annual cryptology Conf. pp. 505–524. Springer (2011)

8. Carpov, S., Dubrulle, P., Sirdey, R.: Armadillo: A compilation chain for privacy preserving applications. In:
Proceedings of the 3rd Int’l Workshop on Security in Cloud Computing. pp. 13–19 (2015)

9. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homomorphic encryption. In: Annual
Int’l Conf. on the Theory and Applications of Cryptographic Techniques. pp. 34–54. Springer (2019)

10. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In:
Annual Int’l Conf. on the Theory and Applications of Cryptographic Techniques. pp. 360–384. Springer (2018)

11. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of approximate homomorphic encryption.
In: Int’l Conf. on Selected Areas in Cryptography. pp. 347–368. Springer (2018)

12. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In:
Int’l Conf. on the Theory and Application of Cryptology and Information Security. pp. 409–437. Springer (2017)

13. Chielle, E., Mazonka, O., Tsoutsos, N.G., Maniatakos, M.: E3: A framework for compiling c++ programs with
encrypted operands. IACR Cryptol. ePrint Arch. 2018, 1013 (2018)

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: Fast fully homomorphic encryption over the torus.
Journal of Cryptology 33(1), 34–91 (2020)

15. Cowan, M., Dangwal, D., Alaghi, A., Trippel, C., Lee, V.T., Reagen, B.: Porcupine: A synthesizing compiler for
vectorized homomorphic encryption. arXiv preprint arXiv:2101.07841 (2021)

16. Crockett, E., Peikert, C.: λoλ: Functional lattice cryptography. In: Proceedings of the 2016 ACM SIGSAC Conf.
on Computer and Communications Security. pp. 993–1005 (2016)

17. Crockett, E., Peikert, C., Sharp, C.: Alchemy: A language and compiler for homomorphic encryption made easy.
In: Proceedings of the 2018 ACM SIGSAC Conf. on Computer and Communications Security. pp. 1020–1037
(2018)

18. Dathathri, R., Kostova, B., Saarikivi, O., Dai, W., Laine, K., Musuvathi, M.: EVA: An encrypted vector arithmetic
language and compiler for efficient homomorphic computation. In: Proceedings of the 41st ACM SIGPLAN Conf.
on Programming Language Design and Implementation. pp. 546–561 (2020)

19. Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi, M., Mytkowicz, T.: Chet:
An optimizing compiler for fully-homomorphic neural-network inferencing. In: Proceedings of the 40th ACM
SIGPLAN Conf. on Programming Language Design and Implementation. pp. 142–156 (2019)

20. Ducas, L., Micciancio, D.: Fhew: Bootstrapping homomorphic encryption in less than a second. In: Annual Int’l
Conf. on the Theory and Applications of Cryptographic Techniques. pp. 617–640. Springer (2015)

21. van Elsloo, T., Patrini, G., Ivey-Law, H.: Sealion: A framework for neural network inference on encrypted data.
arXiv preprint arXiv:1904.12840 (2019)

21



22. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptol. ePrint Arch. 2012,
144 (2012)

23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the forty-first annual ACM
Symp. on Theory of computing. pp. 169–178 (2009)

24. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In: Annual Cryptology Conf. pp. 75–92. Springer (2013)

25. Gorantala, S., Springer, R., Purser-Haskell, S., Lam, W., Wilson, R., Ali, A., Astor, E.P., Zukerman, I., Ruth, S.,
Dibak, C., et al.: A general purpose transpiler for fully homomorphic encryption. arXiv preprint arXiv:2106.07893
(2021)

26. Green, M., Smith, M.: Developers are not the enemy!: The need for usable security apis. IEEE Security & Privacy
14(5), 40–46 (2016)

27. Halevi, S., Shoup, V.: Algorithms in helib. In: Annual Cryptology Conf. pp. 554–571. Springer (2014)
28. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In: Cryptographers’ Track at

the RSA Conf. pp. 364–390. Springer (2020)
29. Lattigo v2.1.1. http://github.com/ldsec/lattigo (Dec 2020), ePFL-LDS
30. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics. In: Proceedings of the

Twenty-Fourth ACM Symp. on Operating Systems Principles. p. 456–471. SOSP ’13, Association for Computing
Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2517349.2522739, https://doi.org/10.1145/
2517349.2522739

31. PALISADE Lattice Cryptography Library (release 1.11.2). https://palisade-crypto.org (May 2021)
32. Patnaik, N., Hallett, J., Rashid, A.: Usability smells: An analysis of developers’ struggle with crypto libraries.

In: Fifteenth Symp. on Usable Privacy and Security ({SOUPS} 2019) (2019)
33. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomorphisms. Foundations of

secure computation 4(11), 169–180 (1978)
34. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL (Nov 2020), microsoft Research, Redmond,

WA.
35. Sheep is a homomorphic encryption evaluation platform. https://github.com/alan-turing-institute/SHEEP

(Nov 2019)
36. University, S.N.: Heaan. https://github.com/snucrypto/HEAAN (Dec 2020)
37. Viand, A.: Sok: Fully homomorphic encryption compilers. In: IEEE Symp. on Security and Privacy (2021)
38. Viand, A., Shafagh, H.: Marble: Making fully homomorphic encryption accessible to all. In: Proceedings of the

6th Workshop on Encrypted Computing & Applied Homomorphic Cryptography. pp. 49–60 (2018)

22


