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z-OTS: a one-time hash-based digital signature
scheme with fast verification

Amos Zheng, Marcos A. Simplicio Jr.

Abstract—Hash-based signature schemes are a class of post-
quantum algorithms usually built upon one-time signature (OTS)
solutions via hash-trees. The benefits of such schemes include
small key sizes, efficient processing and the fact that they are
simple to implement using a regular hash algorithm. In addition,
their security properties are quite well understood, since they
rely basically on the pre-image or collision resistance of the
underlying hash function. Among the existing OTS schemes,
W-OTS+ is among the most popular. One reason for such
popularity is that the OTS public key can be recovered from
the signature itself, which facilitates the construction of a multi-
time signature scheme using Merkle trees. On the other hand,
signature generation and verification in W-OTS+ take roughly
the same time, which is not ideal for applications where each
signature is expected to be verified several times, as in software
stores, PKI certificate validation, and secure boot. It is also
inconvenient when the devices that verify signatures have lower
computational power than the signers. In such scenarios, it is
desirable to design signature schemes enabling faster verification,
even if such speed-ups come at the expense of a slower signature
generation procedure. With this goal in mind, we hereby present
and evaluate a novel OTS scheme, called z-OTS. The main
interest of z-OTS is that it preserves all benefits of W-OTS+,
but provides faster signature verification at the cost of a (not
much) slower signature generation procedure. For example, for
signature sizes equivalent to W-OTS+ with Winternitz parameter
w = 4, our simulations show that verification can be 30.3%
faster with z-OTS, while key and signature generation become,
respectively, 53.7% and 137.5% slower. Larger w leads to even
more expressive gains in the verification procedure, besides
providing lower overheads when generating keys and signatures.

Index Terms—Post-quantum cryptography, digital signature,
hash-based signatures, W-OTS+.

I. INTRODUCTION

THE area of post-quantum cryptography refers to algo-
rithms that can be executed on classic computers and, at

the same time, resist known attacks made by quantum comput-
ers [1]. The motivation for developing such cryptosystems is to
face the threat posed by quantum computation, an area that is
evolving increasingly fast [2]. More precisely, if large-enough
quantum computers become available, the security of many
classical cryptosystems, in particular asymmetric primitives
such as RSA [3] and schemes based on elliptic curves [4],
can be threatened by attackers using Shor’s algorithm [5]. This
creates the need for efficient schemes that can become drop-in
replacements for conventional solutions currently employed in
a variety of security-aware applications.
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Among the existing approaches for building post-quantum
cryptosystems, a particularly promising area refers to hash-
based signatures [1]. Indeed, such schemes are been consid-
ered not only for desktop and server applications but also
for use in embedded systems [6]. In a nutshell, hash-based
signatures use a list of random bit strings as the private key,
and then hash those strings one or more times to generate
the corresponding public key; the signature is then produced
by revealing the pre-images associated with that public-key,
depending on the data to be signed. One benefit of this
approach is that the (quantum and classical) security of the
obtained signatures relies basically on well-known properties
of hash functions, such as pre-image and collision resistance.
In addition, hash-based signatures are also quite efficient.
Specifically, besides leading to small public key sizes, their
computational costs come basically from calls to an underlying
hash function, a primitive that is known to be processing- and
memory-efficient algorithms. These properties are primarily
leveraged in the design of one-time signature (OTS) schemes,
such as W-OTS and W-OTS+ [7], where each private key
can only be used in a single signature. By combining such
OTS with a suitable data structure, such as Merkle Trees [8],
one can then create many-times signature (MTS) schemes
for allowing private key reuse. Examples of MTS solutions
following this strategy include XMSS-MT [9] and SPHINCS+
[10], the latter being a candidate in round three of NIST’s
Post-Quantum Cryptography Competition [11].

Despite this interest, hash-based signatures still face some
challenges. Besides leading to reasonably large signature sizes
when compared to classical digital signature schemes, they
usually display similar times for message signature and ver-
ification. This latter property is not ideal for applications
where signatures are verified quite often when compared to
their generation frequency. This is the case of software stores
(e.g., Microsoft Store, Google Play Store, and Apple’s App
Store), where software packages are signed once and verified
every time a user installs them, for ensuring authenticity
and integrity. It also the case of certificates in any public-
key infrastructure, where, once a certificate is generated and
signed, it is verified many times within its validity period
(e.g., a few years). Another example refers to secure boot
mechanisms, where a firmware, BIOS, boot-loader, or kernel
are signed only once and verified for integrity every time a
machine boots, aiming to prevent software tampering. In such
applications, the verification overhead should be as little as
possible, whereas a comparatively larger cost in the signing
process could be more easily tolerated.

Even though there are some works in the literature aimed at
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reducing verification time, the speedups obtained are usually
lower than 10% [12] [13]. Aiming to facilitate the construction
of hash-based signature schemes with highly efficient verifica-
tion procedures, this paper proposes a novel hash-based one-
time signature scheme called z-OTS. Basically, this scheme
combines randomized hashing [14] with the generalized non-
adjacent form [15] to create a message encoding capable of
speeding-up signature verifications. Similarly to W-OTS+, z-
OTS enables trade-offs between signature size and processing
time, and also allows public keys to be derived from signa-
tures. However, by efficiently mapping groups of bits into hash
chains, z-OTS provides much faster verification times than
W-OTS+ for similar signature sizes with a reasonably small
increase in the corresponding key and signature generation
costs.

The rest of this paper is organized as follows. Section
II discusses related works. Section III gives the necessary
background on the z-NAF encoding, which is the basis for the
proposed z-OTS scheme. Section IV describes our proposal in
detail. Section V analyzes the security of z-OTS. Its perfor-
mance in terms of signature size, processing time, and storage
requirements are theoretically and experimentally evaluated,
respectively, in Sections VI and VII. Section VIII concludes
the discussion and presents our final considerations.

II. RELATED WORKS: HASH-BASED SIGNATURES

Originally, hash-based signature schemes were exclusively
”one-time”, i.e., for each public-private key pair, only one
message could be signed. Indeed, the first publicly known one-
time signature (OTS) scheme was the Lamport-Diffie (LD)
OTS [16], which is basically a bit-signing scheme: each bit
of the message is signed independently. However, being able
to sign a single message per key pair is not very practical
in most real-world scenarios. After all, the management of
disclosed public keys (e.g., by provisioning digital certificates)
would become quite cumbersome [1]. To address this specific
limitation, Ralph Merkle proposed using a hash tree (the
”Merkle Tree”) with multiple OTS schemes to build a many-
times signature (MTS) scheme, i.e., a scheme where many
messages can be signed with a single public/private key pair
[8]. Besides creating a more practical hash-based signature
structure, different OTS schemes can be associated with the
same hash tree, so users can switch among them as desired.

Besides being one-time, another limitation with LD-OTS is
that it requires as many private and public key elements as
the message length. Hence, it leads to large public and private
key sizes, as well as to large signatures. One approach for
this issue, originally proposed in the W-OTS scheme [8], is to
allow a trade-off between signature size and processing time.
Basically, this is accomplished by using hash chains instead of
single hashes over the private key bitstrings (see Figure 1). The
hash chain length is set to 2w, where the Winternitz parameter
w controls the desired trade-off: the signature size decreases
linearly with w, at the expense of exponential growth in the
signature generation and verification costs. For this reason, the
recommended values of w usually range from 1 to 4.

Additional tricks also exist in the literature to reduce the
size of hash-based signatures. In particular, W-OTS+ [7] and

Fig. 1. W-OTS-like schemes use hash chains that start at the private key
elements (bottom) and go all the way to the public key elements (top), where
the arrows represent hashing or chaining function operations. The hash chain
length, that is, the number of operations needed to reach the public key
elements yi from the private key element xi, is given by 2w , where w is
the Winternitz parameter. The signature is shown as the collection of the
highlighted elements somewhere in the middle of the hash chains. For the
W-OTS family of one-time signature schemes, the signature elements are
statistically located around the middle of the chains.

XMSS [17] are designed to require only pre-image resistant
hash functions, while the need for collision resistance is
eliminated in their internal modules. For example, W-OTS+
replaces regular hashing by a ”chaining function”: a keyed
hash function whose input is XORed with different random
bit-masks for each hash chain level [7]. When compared to
LD-OTS, W-OTS+ leads to significantly smaller signatures,
although the processing costs may be higher depending on w.

The improvements introduced in the aforementioned
schemes generally target signature size reduction, while dis-
playing similar signature generation and verification times.
Nevertheless, there are also some schemes in the literature
that, like our proposal, are aimed at improving the efficiency
of the verification procedures, introducing trade-offs in terms
of a higher generation cost, larger signature sizes, or bigger
keys. Some examples of such OTS schemes are BiBa [18]
and HORS [19], which are not variants of W-OTS. Actually,
the latter is a few-times signature scheme, meaning that its
security decline gradually if the same key is employed for
signing different messages, whereas this happens abruptly with
a regular OTS. Their main advantages include short signature
sizes and fast verification times, at the cost of larger public
keys and slower key generation. They have, however, one
important limitation: their public keys cannot be derived from
the corresponding signatures, which makes them harder to use
in a many-times signature scheme based on Merkle trees. This
issue has motivated recent schemes such as HORST [20] and
FORS [10], which build upon HORS but allow public keys
to be recovered from signatures. As a result, they can be
easily employed as building blocks in a secure MTS scheme.
The downside, however, is that the resulting signatures are
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significantly larger than those obtained with W-OTS+. For
example, for a 128-bit classical security level, W-OTS+ leads
to signatures having less than 1kB, against 2.5kB in FORS.

There are also schemes that provide relatively short sig-
natures and faster verification, while retaining the ability to
recover public keys from a given signature. One example is the
work done in [12], where the authors propose that messages
should be hashed together with a counter r ≥ 0 before being
signed, similarly to what is suggested in [18]. This could then
be done iteratively, until the hash value d obtained satisfies
some desired condition. In particular, suppose that d has a
maximum and a minimum number of non-overlapping runs of
consecutive 0s and 1s, each of which having a length of at most
`. In this case, d can be encoded into hash chains considering
the run-lengths, rather than the integer values of each group of
w bits. With this technique, signature verification can be made
faster at the cost of longer signature generation times, because
longer runs are more scarce than shorter runs. Unfortunately,
the actual improvement in terms of verification time over W-
OTS are quite small (less than 10%) [12]. Moreover, this
approach loses some of W-OTS’s flexibility, since it does not
support a simple parameter for enabling signature size and
processing time trade-offs.

Finally, a recent proposal by Roh et al. uses the conventional
non-adjacent form (2-NAF) with the W-OTS+ scheme [13].
The scheme takes advantage of the zero imbalance of that
form for accelerating signature generation at the cost of slower
signature verification, or vice-versa. Albeit interesting, the
gains remain quite small (around 8%). In addition, similarly to
the run-length encoding solution from [12], it does not support
trade-offs between signature size and processing time.

III. BACKGROUND: Z-NAF ENCODING

An important concept present in the proposed z-OTS is
the z-non-adjacent form, abbreviated as z-NAF.1 While most
integer representations use unsigned digit representations (e.g.,
0 and 1 in binary), z-NAF is a signed digit representation
system. The representation system can, thus, have both positive
and negative digits. The definition of z-NAF is provided in
what follows.

Given an integer a and parameter z ≥ 2, the z-NAF
representation of a, written a =

∑l
j=0 nj2

j , is a signed integer
representation that satisfies the following [15]:
• Either nj = 0 or nj is odd and |nj | < 2z−1;
• If nj 6= 0, then nj+1 = · · · = nj+z−1 = 0.
For example, consider the integer (50)10, whose binary form

is (110010)2. Its 2-NAF representation is (101̄0010)2−NAF ,
its 3-NAF representation is (30010)3−NAF , and its 4-NAF
representation is (10007̄0)4−NAF , where a digit with a bar d̄
represents the negative digit −d. This is valid because 50 =
1× 26− 1× 24 + 1× 21 = 3× 24 + 1× 21 = 1× 26− 7× 21.

The z-NAF representation has been independently intro-
duced by Cohen et al. [21] and Solinas [22]. Since then, it was
explored by many authors, mainly to speed up exponentiations

1In the literature, this encoding is often called w-NAF, which stands for w-
width non-adjacent form. In this paper, though, the ”w” in w-NAF is replaced
with ”z” to avoid confusion with the Winternitz parameter w.

and elliptic curve point multiplications (e.g., see [23]). In
the proposed z-OTS scheme, the following properties are of
particular interest:
• Property 1: Every integer has a unique representation in

z-NAF form (bijectivity) [15], [24], [25];
• Property 2: Given an l-bit integer in ordinary binary form,

the z-NAF form of that integer has no more than l + 1
digits in z-NAF form [25];

• Property 3: An average z-NAF representation has a non-
zero digit density of about 1/(z + 1) [25], [26].

Finally, it is worth mentioning that converting some input to
its z-NAF representation is a quite fast operation. For example,
[15] describes a linear-time algorithm to convert any integer
in ordinary binary representation into its z-NAF form.

IV. PROPOSED SCHEME: z-OTS
This section describes the proposed z-OTS scheme and its

three underlying algorithms: key generation, signature gener-
ation, and signature verification. For the convenience of the
reader, Table I lists the main symbols and notation hereby
adopted.

A. Parameters
Let n be the length of the data m to be signed, and

b the desired (classical) security level; since the input for
the signature process is commonly a hash generated with a
collision-resistant hash function g, it is usual to have n = 2b.
Also, let z denote the z-NAF parameter, and w the Winternitz
parameter. In the proposed scheme, w is only used when
signing the checksum of the message, since the checksum is
not converted into a z-NAF form.

We define L1 as the number of hash chains used to sign the
message’s z-NAF digits, and tmax as a parameter that limits
the length of the message hash chains, len, given by

len = (1 + tmax)2z−1

We use L2 to represent the number of hash chains used to
sign a checksum. It is computed as:

L2 =

⌈
dlog2 L1 + log2(1 + tmax)e+ z − 1

w

⌉
Like W-OTS+, z-OTS assumes a pre-image resistant un-

derlying hash function. To this end, we employ a chaining
function cjk(x, r), where: k ∈ Kb is a function key belonging
to key space Kb; and r = (r1, r2, · · · , rmax(len−1,2w−1)) is a
list of random bit-masks. Also, let

g : {0, 1}∗ → {0, 1}n

h : {0, 1}b+|p| → {0, 1}b

be cryptographic hash functions, where |p| is the length of a
nonce p used in the signature generation algorithm. In practice,
all functions c, h and g are commonly instantiated from the
same underlying hash function H (e.g., a member from the
SHA-2 [27] or SHA-3 [28] families), which is combined with
different affixes for domain separation. Also, let PRF be a
cryptographically secure pseudorandom function that, given a
b-bit seed SEEDin, outputs a random number RAND and an
updated seed SEEDout, both b-bits long.
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TABLE I
NOTATIONS USED IN THE DEFINITION OF THE z-OTS SCHEME.

Notation Definition
b Desired classical security level
z The z-NAF parameter
w The Winternitz parameter
L1 Number of message hash chains
L2 Number of checksum hash chains
tmax Number of zeros allowed at the left of each non-zero

z-NAF digit (excluding the mandatory zero digits)
len Length of the message hash chains
x Private key for signing messages

(xm)i The i-th message secret string derived from private key x
(xc)i The i-th checksum secret string derived from private key x
PRF Pseudo-random function for generating (xm)i and

(xc)i from x

cjk(x, r) Chaining function to calculate the hash chains
k Chaining function’s function key
r Random bit-masks used in the chaining function
y Main public key element

(ym)i The i-th message public key element
(yc)i The i-th checksum public key element
g Hash function for generating y from (ym)i and (yc)i
m Message to be signed
n Length of the message m being signed
p Nonce hashed with m to produce m′

m′ Randomized version of m satisfying specified criteria
h Hash function for generating m′ from m and p

m′
NAF Randomized message converted to z-NAF form
Di The i-th z-NAF digit from m′

NAF
m′

grouped m′
NAF with mandatory zeros removed and

digits grouped
D′

i The i-th grouped digit of m′
grouped

Ni Non-zero digit in D′
i

ti Zero-run length in D′
i

l Number of non-zero digits in m′
NAF (l ≤ L1).

m′′ m′
grouped with each D′

i digit converted to a number in N0

D′′
i Non-negative digits of m′′

σ Signature of m (comprises message and checksum parts)
(σm)i The i-th element from the message signature part of σ
(σc)i The i-th element from the checksum signature part of σ
(ym)′i The i-th message public key element recovered from (σm)i
(yc)′i The i-th checksum public key element recovered from (σc)i
y′ Main public key recovered from signature σ

B. Key Generation

First, choose k, the randomization elements r and a b-bit
private key x using a (pseudo)random number generator. Then,
use x and the PRF to generate L1 + L2 secret strings with
b bits, ((xm)L1−1, · · · , (xm)0) and ((xc)L2−1, · · · , (xc)0).
Here, the set of (xm)i denotes the secret strings used to sign
the message, whereas (xc)i denotes those used to sign the
checksum. Subsequently, compute:{

(ym)i = clen−1k ((xm)i, r)

(yc)i = c2
w−1
k ((xc)i, r)

Finally, make

y = g((ym)L1−1|| · · · ||(ym)0||(yc)L2−1|| · · · ||(yc)0)

The scheme’s private key is x while the public key is (k, r, y).

C. Signature Generation

The goal of the proposed signature procedure is to map an
n-bits message m to be signed into a verification-friendlier

Fig. 2. Conversion chain of z-OTS in the signing algorithm, showing how m
is converted to m′′.

form m′′. In a nutshell, this is done by taking advantage of
the high zero density of the z-NAF encoding, mapping the
fragments of the encoded message into ”higher” positions of
the hash chains (i.e., closer to the end of the chains, as shown
in Figure 1). As a result, compared to signature generation,
there are fewer hash operations to be performed during the
verification phase. The mapping is such that each signature
σ is unambiguously associated with a single original message
m, as required to avoid forgeries.

In what follows, we describe the 7 steps required by
the proposed scheme, which can be grouped into two main
procedures: the m to m′′ conversion process (Steps 1 to 5,
shown in Figure 2); and the mapping of digits from m′′ into
hash chains similar to W-OTS+ (Steps 6 and 7), producing the
signature itself. We then give a toy example for exemplifying
its application with actual numbers. We note that some of
those steps can be combined at the implementation level,
simplifying some operations that, for the sake of clarity, are
hereby described separately.

Step 1: Calculate the randomized hash m′ = h(m||p),
where p is a nonce. Ideally, if one desires to eliminate the
need for collision resistance of the hash function h through
the use of randomized hashing [29], one should generate p
(pseudo)randomly.

Step 2: Convert m′ to z-NAF form, m′NAF =
(Dn, Dn−1, · · · , D1, D0). If m′NAF has less than n+1 signed
digits, it is padded with zeros on the left to complete n + 1
signed digits. As mentioned in Section III, Property 1 of z-
NAF guarantees that the conversion is possible, while Property
2 ensures that we need no more than n + 1 signed digits to
represent it in z-NAF form. Besides, by definition, the signed
digits Di are either zero or odd and −2z−1 < Di < 2z−1.
Therefore, there are 2z−1 + 1 possible values for each Di.

Step 3: Ensure that m′NAF satisfy the following restrictions:
• Restriction 1: The least significant digit D0 must not be

zero;
• Restriction 2: The number of non-zero digits in m′NAF

must be equal to or less than L1;
• Restriction 3: The number of zeros on the left of each

non-zero digit must be equal to or less than z−1+ tmax.
These restrictions are essential so that the next steps of the

key generation algorithm work properly and lead to gains in
the verification procedure. Regarding the last restriction, we
note that the properties of z-NAF ensure that z − 1 zeros
necessarily appear on the left of each non-zero digit, except
for the leftmost non-zero digit from m′NAF ; hence, we require
that, besides those mandatory zeros, the number of additional
zeros does not exceed tmax.

If any of those three restrictions is not satisfied, pick another
nonce value and generate a new m′NAF by repeating Steps 1
and 2. From our analysis, providing a parametric equation for
the success probability of passing this step is a hard problem.
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Nevertheless, when mimicking w-OTS signature sizes (i.e.,
setting z = w−1 and L1 = n/(z+ 1)), we found empirically
that it takes on average from 10 to 30 calculations of h to
find a m′NAF satisfying these conditions for the parameters
suggested in Section VII. Note that, since this procedure relies
solely on public information (namely, message m and nonce
p), eventual time variations resulting from such repetitions
should not leak any secret information.

Step 4: Discard z − 1 zeros on the left of each non-
zero digit from m′NAF , or all of them if the number of
zeros is less than z − 1 (which can only happen for the
leftmost non-zero digit). Then, group the remaining dig-
its in the form m′grouped = (D′l−1, D

′
l−2, · · · , D′1, D′0) =

(0tl−1Nl−1, 0
tl−2Nl−2, · · · , 0t1N1, 0

t0N0), so that
• 0ti denotes a zero-run of length ti, where ti ≤ tmax as

per Restriction 3;
• Ni are the non-zero digits that were present in m′NAF ;

the total number of those digits, l, is such that l ≤ L1

due to Restriction 2;
• l ≤

⌈
n+1
z

⌉
, because, except for the leftmost non-zero

digit, there are at least z − 1 zeros on the left of each
other non-zero digit from m′NAF .

This form of m′grouped shows why Restriction 1 is impor-
tant: without requiring D0 6= 0, the rightmost sequence of
zeros would not have any non-zero digit for grouping. Besides,
note that the operation of eliminating the mandatory zeros
does not result in ambiguity, i.e., it is such that two different
m′NAF result in distinct m′grouped. The reason is that those
zeros are always present in m′NAF , so the removal operation
can always be reverted. For a more detailed explanation, we
refer the reader to the security analysis in Section V.

Step 5: With m′grouped at hand, generate m′′ =
(D′′L1−1, D

′′
L1−2, · · · , D

′′
1 , D

′′
0 ) containing only non-negative

digits. This can be done by applying the map D′i 7→ D′′i ,
defined as follows:

D′′i =


ti2

z−1 + (Ni − 1)/2 if Ni > 0 and i < l

ti2
z−1 + (2z +Ni − 1)/2 if Ni < 0 and i < l

0 if i ≥ l

The rationale behind this map is as follows. First, it is rel-
atively simple to implement using only additions and bitwise
shift operations. Second, it maps blocks D′i that have less
leading zeros, which are more common, into smaller values
of D′′i ; since a smaller D′′i is later translated into a signature
element at higher positions in the hash chain, the resulting
signature can be verified faster, at the cost of a more expensive
signature procedure. Third, the resulting D′′i remain within the
smallest possible interval in N0, enabling a compact binary
representation. And fourth, different D′i are mapped to distinct
D′′i , ensuring bijectivity. Note also that, if the total number of
blocks D′i is less than L1, the remaining D′′i digits are set to
zero (third equation of the map) as a form of padding, so the
signature size remains constant.

To give a concrete example of how this mapping works,
consider z = 3. The non-zero digits {−1, 1,−3, 3} would be
mapped as follows: 1 7→ 0; 3 7→ 1; 3̄ 7→ 2; and 1̄ 7→ 3. Each

extra leading zero adds 2z−1 = 4 to D′′i , so the mapping for a
D′i with one leading zero would be: 01 7→ 4; 03 7→ 5; 03̄ 7→ 6;
and 01̄ 7→ 7.

Step 6: Similar to W-OTS+, calculate the checksum as

CHECKSUM =

L1−1∑
i=0

len− 1−D′′i

and divide the checksum into L2 blocks of w bits each,
(BL2−1, · · · , B0).

Step 7: Finally, once again like in
W-OTS+, compute the signature σ =
(p, (σm)L1−1, · · · , (σm)0, (σc)L2−1, · · · , (σc)0) where{

(σm)i = c
len−1−D′′i
k ((xm)i, r)

(σc)i = c2
w−1−Bi

k ((xc)i, r)

D. Signature Verification

Given a message m, its signature σ =
(p, (σm)L1−1, · · · , (σm)0, (σc)L2−1, · · · , (σc)0) and the
public key (k, r, y), the verifier calculates m′′ and the
checksum CHECKSUM as in the signing algorithm. If, during
the calculations, m′NAF does not satisfy all three conditions
given in the signing algorithm, the verifier rejects the signature
as invalid. Otherwise, the verifier calculates y′ via iterative
hashing, “completing” the hash chains, as follows:

y′ = g((ym)′L1−1|| · · · ||(ym)′0||(yc)′L2−1|| · · · ||(yc)
′
0)

where {
(ym)′i = c

D′′i
k ((σm)i, r)

(yc)
′
i = cBi

k ((σc)i, r)

The verifier accepts the signature if and only if y′ = y.

E. A toy example

Suppose n = 16 bits, z = 3, L1 = 4, tmax = 3 and
w = 4 (the latter being used only for handling the signature’s
checksum). For those parameters, we have L2 = 2 and len =
16.

1) Key Generation: Starting with k, r and a b-
bit private key x, we derive the L1 + L2 = 4 +
2 secret b-bit strings, ((xm)3, (xm)2, (xm)1, (xm)0) and
((xc)1, (xc)0), and then compute (ym)i = c15k ((xm)i, r)
and (yc)m = c15k ((xc)i, r). Finally, we compute y =
g((ym)3, (ym)2, (ym)1, (ym)0, (yc)1, (yc)0).

2) Signature Generation: With a nonce p, calculate
m′ = h(m||p). Suppose h(m||p1) = 0000011011001010,
h(m||p2) = 1111000110000001 and h(m||p3) = 00100011
00001101. Their corresponding 3-NAF representations are
then (0, 0, 0, 0, 0, 1, 0, 0, 1̄, 0, 0, 0, 3̄, 0, 0, 3̄, 0), (1, 0, 0, 0, 1̄,
0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1) and (0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0,
0, 1, 0, 0, 0, 3̄) respectively. Because the first one fails Restric-
tion 1, the second one fails Restriction 3 and the last one passes
all restrictions, we take p3 and proceed with m′3−NAF =
(0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 3̄).

By eliminating the z − 1 = 2 zeros on the left of
each non-zero digit and grouping the remaining digits, we
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get m′grouped = (01, 003, 01, 03̄). After applying the map
D′i 7→ D′′i , we get m′′ = (4, 9, 4, 6), from which we get the
checksum blocks (B1, B0) = (4, 9). Finally, the signature is
σ = (p3, c

15−4
k ((xm)3, r), c15−9k ((xm)2, r), c15−4k ((xm)1, r),

c15−6k ((xm)0, r), c15−4k ((xc)1, r), c15−9k ((xc)0, r)). This last
procedure takes, thus, 6×15−36=54 calls to ck, whereas the
average signing cost without the proposed technique would be
6×15/2 = 45 calls to ck.

3) Signature verification: With message m and signature
σ, we recalculate m′ = h(m, p3) = 0010001100001101
and m′3−NAF = (0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 3̄).
Since m′3−NAF passes all restrictions, we do not reject the
signature. Repeating steps 4-6, we recover m′′ = (4, 9, 4, 6)
and (B1, B0) = (4, 9). Finally, we calculate y′ =
g(c4k((σm)3, r), c9k((σm)2, r), c4k((σm)1, r), c6k((σm)0, r),
c4k((σc)1, r), c9k((σc)0, r)) = g(c15k ((xm)3, r), c15k ((xm)2, r),
c15k ((xm)1, r), c15k ((xm)0, r), c15k ((xc)1, r), c15k ((xc)0, r)).
Because we got y′ = y, we accept the signature. The
verification cost of 4 + 9 + 4 + 6 + 4 + 9 = 36 calls to ck is,
thus, 20% lower than the average of 6×15/2 = 45 calls to
ck, even though it produces the same signature size and takes
roughly the same signature generation time as W-OTS+ for
w = 4. For larger n, where L2 would be far smaller than L1

and the n + 1 signed digits would be proportionately closer
to the n bits in m, the difference in verification time would
be even more significant for equivalent signature sizes and
key generation times.

F. Correctness of the algorithm
Since the proposed algorithm consists basically in an encod-

ing scheme for W-OTS+, its correctness derives directly from
the correctness of W-OTS+. In summary: the hash chains built
during the key generation process are the same ones built when
combining the signing and verification procedures; therefore,
the public key reconstructed from the signature matches the
genuine public key when the signature is authentic.

More formally, given the message m and a nonce p chosen
by the signer, both the signer and the verifier arrive at the
same m′′ = (D′′L1−1, D

′′
L1−2, · · · , D

′′
1 , D

′′
0 ). After all, both

of them perform exactly the same calculations from the
message and the nonce to get it). Analogously, from the same
m′′, signer and verifier arrive at the same checksum blocks
(BL2−1, · · · , B0).

Recall that the public key in the signature is given by

y = g((ym)L1−1|| · · · ||(ym)0||(yc)L2−1|| · · · ||(yc)0)

where {
(ym)i = clen−1k ((xm)i, r)

(yc)i = c2
w−1
k ((xc)i, r)

Also, recall that the signer performs the calculation{
(σm)i = c

len−1−D′′i
k ((xm)i, r)

(σc)i = c2
w−1−Bi

k ((xc)i, r)

and the verifier calculates y′ =
g((ym)′L1−1|| · · · ||(ym)′0||(yc)′L2−1|| · · · ||(yc)

′
0) where{

(ym)′i = c
D′′i
k ((σm)i, r)

(yc)
′
i = cBi

k ((σc)i, r)

Since both the signer and the verifier have the same values
of D′′i and Bi, one can substitute the signer’s equations into
the verifier’s and get

(ym)′i = c
D′′i
k ((σm)i, r)

= c
D′′i
k (c

len−1−D′′i
k ((xm)i), r)

= c
D′′i +len−1−D′′i
k ((xm)i, r)

= clen−1k ((xm)i, r)

= (ym)i

In the same way,

(yc)
′
i = cBi

k ((σc)i, r)

= cBi

k (f2
w−1−Bi((xc)i), r)

= cBi+2w−1−Bi

k ((xc)i), r)

= c2
w−1
k ((xc)i, r)

= (yc)i

Thus, (ym)′i = (ym)i and (yc)
′
i = (yc)i and, as a result,

y′ = y.

V. SECURITY ANALYSIS

The difference between z-OTS and W-OTS+ resides in how
the signer maps the same message to the number of calls to cik
in each hash chain. Namely, while W-OTS+ divides a message
m into w-bit blocks and maps them directly to the hash chains,
z-OTS employs the z-NAF form to first convert a message m
into m′′, then map m′′ to the hash chains. Therefore, since
both W-OTS+ and z-OTS use the same hash chain structure
with checksum for signatures, the proof of security of W-OTS+
from [7] also applies to z-OTS. More precisely, assuming that
attackers cannot forge W-OTS+ signatures for any arbitrary
binary message, such resistance against forgery also applies to
the particular case of the encoded message m′′. What remains
to be proven, thus, is that the mapping scheme of z-OTS from
m to m′′ is secure, i.e., that it is computationally infeasible to
find two distinct messages m and m2 that are mapped to the
same m′′.

For the following discussion, we refer the reader to Figure
2, which depicts the four steps involved in converting m into
m′′.

Step 1: In the first step, m′ = h(m||p), where message m
is combined with a nonce p via randomized hashing. As long
as a second pre-image resistant hash function is adopted and
an unpredictable p is picked by the signer, attackers should
be unable to find a pair (m2, p2) such that m2 6= m and
h(m||p) = h(m2||p2), except for a negligible probability.

Step 2: In the second step, m′ is converted to the z-NAF
form. From the z-NAF Property 1, the z-NAF representation
exists and is unique for all integers. This ensures that there is
no m′2 6= m′ such that m′NAF = (m′2)NAF in this step.

Steps 3 and 4: In the third step, the defined restrictions
ensure that we have an injective function in the fourth step, so
once again no collisions exist. Specifically, from the definition
of the z-NAF encoding, any two non-zero digits are necessarily
separated by at least z − 1 zeros. This fact, together with
Restriction 1, ensures that there are always z − 1 zero digits
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on the left of each non-zero digit in the resulting m′NAF to be
removed in Step 4; the only possible exception is the leftmost
non-zero digit, from which up to z − 1 zeros are removed.
Therefore the removal operation is a function over the domain
of all m′NAF that passes validation in Step 3.

Now, let ui denote the number of zeros on the left of each
non-zero digit Ni in m′NAF . Per Restriction 1, we have ui >=
z − 1 for every Ni, except for the leftmost of those non-
zero digits, Nl−1. Then, for each sequence 0uiNi in m′NAF ,
the operation where zeros are removed in step 4 would be
0uiNi ←− 0ui−(z−1)Ni = D′i. Different sequences would
then produce distinct D′i, meaning that the resulting m′grouped
would be different.

Nevertheless, one might believe that, since the leftmost non-
zero digit Nl−1 in m′NAF might have a variable number of
zeros removed from its left, one could take advantage of
this variability to find two different m′NAF having the same
m′grouped. This is not the case, however, because the number of
digits in m′NAF with padding is fixed at n+ 1. Consequently,
a different number of zeros on the left of Nl−1 implies that at
least one zero sequence somewhere else has a different length.
The resulting m′grouped would, thus, differ at those points.

These observations imply that the combination of Step 3
and 4 is injective: there is no m′NAF2

6= m′NAF satisfying
m′grouped2 = m′grouped as a result of this step.

Step 5: Finally, in the fifth step, each block 0tiNi of
m′grouped is mapped into a non-negative integer digit D′′i in
the interval [0, (1 + tmax)2z−1) according to the map

D′′i =


ti2

z−1 + (Ni − 1)/2 if Ni > 0 and i < l

ti2
z−1 + (2z +Ni − 1)/2 if Ni < 0 and i < l

0 if i ≥ l

In what follows, we prove that this map is injective for the
subset of all mgrouped generated by the proposed algorithm. In
other words, assume (m′1)grouped = ((D′1)l1−1, · · · , (D′1)0)
generated from m1, where (D′1)i = 0(t1)i(N1)i, and
(m′2)grouped = ((D′2)l2−1, · · · , (D′2)0) generated from m2,
where (D′2)i = 0(t2)i(N2)i; in this scenario, if (m′1)grouped 6=
(m′2)grouped then m′′1 6= m′′2 (or, equivalently, if (D′′1 )i =
(D′′2 )i, then (D′1)i = (D′2)i for all i). To prove that, we discuss
two cases separately: (1) l1 = l2; and (2) l1 6= l2.

1) l1 = l2 = l: in that case, when i ≥ l, the mapping
from Step 5 is such that (D′′1 )i = (D′′2 )i = 0. Hence,
we only need to evaluate the case where i < l, showing
that (D′′1 )i = (D′′2 )i whenever (D′1)i = (D′2)i.
From the z-NAF signed-digit definition,

|Ni| < 2z−1

Then, if Ni > 0 we have 0 < Ni < 2z−1 −→ −1 <
Ni − 1 < 2z−1 − 1 −→ −1/2 < (Ni − 1)/2 < 2z−2 −
1/2; since Ni is odd, (Ni−1)/2 will be an integer, so the
inequality can be re-written as 0 ≤ (Ni − 1)/2 < 2z−2.
Similarly, if Ni < 0 we have −2z−1 < Ni < 0 −→
2z−2z−1−1 < 2z+Ni−1 < 2z−1 −→ 2z−2−1/2 <
(2z +Ni − 1)/2 < 2z−1 − 1/2; once again, since Ni is
odd, (2z+Ni−1)/2 will be an integer and the inequality

can be rewritten as 2z−2 ≤ (2z + Ni − 1)/2 < 2z−1.
Hence, in summary we have:{

0 ≤ (Ni − 1)/2 < 2z−2 if Ni > 0

2z−2 ≤ (2z +Ni − 1)/2 < 2z−1 if Ni < 0

Now, suppose that (D′′1 )i = (D′′2 )i. If (N1)i, (N2)i > 0,
then

(t1)i2
z−1 +

(N1)i − 1

2
= (t2)i2

z−1 +
(N2)i − 1

2

((t1)i − (t2)i)2
z−1 =

(N2)i − (N1)i
2

((t1)i − (t2)i)2
z = (N2)i − (N1)i

Since 0 < (N1)i, (N2)i < 2z−1, we have that

|(N2)i − (N1)i| < 2z−1 =⇒ |(t1)i − (t2)i|2z < 2z−1

=⇒ (t1)i = (t2)i

=⇒ (N2)i − (N1)i = 0

=⇒ (N2)i = (N2)i

Since these equalities are valid for all i, this means that
D′1 = D′2.
Analogously, if (D′′1 )i = (D′′2 )i and (N1)i, (N2)i < 0,
then

(t1)i2
z−1 +

2z + (N1)i − 1

2
= (t2)i2

z−1 +
2z + (N2)i − 1

2

((t1)i − (t2)i)2
z−1 =

(N2)i − (N1)i
2

((t1)i − (t2)i)2
z = (N2)i − (N1)i

Since −2z−1 < (N1)i, (N2)i < 0, then

|(N2)i − (N1)i| < 2z−1 =⇒ |(t1)i − (t2)i|2z < 2z−1

=⇒ (t1)i = (t2)i

=⇒ (N2)i − (N1)i = 0

=⇒ (N2)i = (N2)i

Once again, this means that D′1 = D′2.
Now, if (N1)i > 0 and (N2)i < 0 for some i, then
we cannot have (D′′1 )i = (D′′2 )i. The reason is that, to
satisfy this latter equality, we would need to have:

(t1)i2
z−1 +

(N1)i − 1

2
= (t2)i2

z−1 +
2z + (N2)i − 1

2

((t1)i − (t2)i)2
z−1 =

2z + (N2)i − (N1)i
2

((t1)i − (t2)i)2
z = 2z + (N2)i − (N1)i

Since (N1)i > 0 and (N2)i < 0, 2z + (N2)i − (N1)i <
2z , so

((t1)i − (t2)i)2
z < 2z =⇒ (t1)i = (t2)i

0 = 2z + (N2)i − (N1)i =⇒ (N1)i − (N2)i = 2z

This case is impossible, though, because, |(N1)i −
(N2)i| < 2z , since, by definition, |Ni| < 2z−1.
Finally, the case where (N1)i < 0 and (N2)i > 0 can
be proven analogously to the case where (N1)i > 0 and
(N2)i < 0: once again, the fact that D′1 6= D′2 in this
scenario leads to (D′′1 )i 6= (D′′2 )i.
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Therefore, we have shown that, for i < l, if (D′′1 )i =
(D′′2 )i then (D′1)i = (D′2)i.

2) l1 6= l2: assume, without loss of generality, that l1 > l2.
Then, when i ≥ l1, we also have (D′′1 )i = (D′′2 )i = 0;
in addition, when i < l2, the same arguments given
for the case where l1 = l2 apply, so (D′′1 )i = (D′′2 )i
implies (D′1)i = (D′2)i. Finally, in the region where
l2 ≤ i < l1, we have (D′′2 )i = 0 and, from the
map, (D′′1 )i = (D′′2 )i = 0 only when (D′1)i = 1. At
first sight, thus, (m′1)grouped and (m′2)grouped would
be identical when l2 ≤ i < l1 if (D′1)i = 1 for all
i in this range, violating the injectivity property. This
is not the case, however, because (D′1)i = 1 for all
l2 ≤ i < l1 implies (D′1)j 6= (D′2)j for some j < l2.
To see that, assume (D′1)i = (D′2)i for all i < l2.
Note that the length of m′NAF (and, consequently, the
length of m) is encoded in m′grouped; specifically, the
zero-runs on the left of each Ni (after removing the
mandatory zeros) are encoded in the ti portion of D′i.
Now, suppose that (m′1)grouped was generated from a
valid (m′1)NAF with n + 1 signed digits, and that we
try build (m′2)grouped from it by discarding its digits in
the l2 ≤ i < l1 range; in that case, the hypothetical
(m′2)NAF would have less than n + 1 signed digits.
Conversely, suppose (m′2)grouped was generated from a
valid (m′2)NAF with n + 1 signed digits, and that we
try to construct (m′1)grouped by appending 0tiNi = 1 to
the left of (m′2)grouped; then the hypothetical (m′1)NAF
would have more than n + 1 signed digits. In either
case, given that a message m of length n is represented
in the z-NAF form by exactly n+ 1 signed digits, those
hypothetical m′grouped can never occur. This means
that, to make D′′1 = D′′2 in the l2 ≤ i < l1 range
while keeping D′1 6= D′2 in that range, we would also
need to change some digits in the i < l2 range to
compensate for the different message length. However,
this modification makes (m′1)grouped 6= (m′2)grouped.
Therefore, we can conclude that, if l1 6= l2, then
(m′1)grouped 6= (m′2)grouped.

From these observations, we can conclude that it is com-
putationally infeasible to find distinct messages m and m2

resulting in the same m′′: unless an attacker can find a
collision for the hash function h employed in Step 1, the
fact that all subsequent steps are injective prevent collisions
from occurring as a result of their application. Hence, given a
collision-resistant h, signatures generated with z-OTS display
the same security properties observed for W-OTS+.

VI. PERFORMANCE ANALYSIS

In this section, we evaluate the signature size and processing
time of the z-OTS, both in absolute terms and in comparison
with W-OTS+.

First, we note that W-OTS+ supports an exponential trade-
off between signature size and processing time, which is
regulated by the Winternitz parameter w. More precisely, the
signature size is given by |σ|W−OTS+ = n

w , whereas the
total number of chaining function operations performed during

key generation is given by #(c)W−OTS+ =
⌈
n
w

⌉
(2w − 1).

These equations are valid when ignoring the checksum, which
normally represents less than 5% of the total signature size and
processing overhead according to our benchmarks. However,
because w can only be positive integers, both the signature size
and processing time change in large steps when w changes,
leaving large gaps in between. Even though this ability to
fine-tune processing time and signature size can be seen as
an advantage of z-OTS when compared with W-OTS+ and
similar hash-based schemes, it hinders direct comparisons
between them. Therefore, aiming to avoid unfairness, we use
an interpolated model for W-OTS+, filling in the signature
size and processing time gaps as if they were possible in
practice with non-integer values for w. For that purpose, we
note that the equations for |σ|W−OTS+ and #(c)W−OTS+ can
be combined and #(c)W−OTS+ can be written as a function
of |σ|W−OTS+ as follows:

#(c)W−OTS = d|σ|W−OTS+e (2n/|σ|W−OTS+ − 1) (1)

Equation 1 can then be used to compare the trade-off be-
tween signature size and processing costs of W-OTS+, as well
as with other OTS schemes whose settings do not necessarily
match the integer points defined by the Winternitz parameter.
Figure 3 illustrates the interpolation, with the integer values
of w highlighted (up to w = 8).
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Fig. 3. Performance of W-OTS+: number of one-way function evaluations
as a function of signature size. The small squares are the curve points for
w = 1, 2, · · · , 8, while the line is the interpolation of those points over R
(see Equation 1).

Another important aspect of z-OTS’s performance analy-
sis is the choice of z, since it controls signature size and
performance trade-offs in z-OTS analogously to w in W-
OTS. Indeed, z affects key generation, signature generation,
and signature verification, besides determining the choice of
L1, tmax, and w. Specifically, a large value of z results
in a small signature size, but the key generation, signature
generation and signature verification algorithms should take
longer to execute. Conversely, choosing a small z speeds up
the signature algorithms, but the resulting signatures grow
larger.
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A. Signature Size

The signature size of z-OTS, in terms of the number of b-bit
values in the signature, is given by

|σ|z−OTS = L1 + L2 + |p|

where L1 is the number of hash chains used to sign m′′, L2

the number of hash chains used to sign the checksum, and
|p| the length of the nonce p. Since |p| and L2 are, like in
W-OTS+, much smaller than L1 (generally less than 5% of
the total signature size), we can assume the approximation

|σ|z−OTS ≈ L1

Note that, from Properties 2 and 3 of z-NAF, encoding a
n-bit integer results (n+1)/(z+1) non-zero z-NAF digits on
average. Therefore, when the goal is to reduce the signature
by reducing L1, one should do so without over-limiting
the number of non-zero digits allowed in the z-NAF form.
Otherwise, this could result in too many rejections of p from
the Restriction 2. Even considering this limitation, a suitable
choice of L1 together with tmax allows for many different
trade-offs between signature size and processing overhead, as
shown in the examples given in Section VII.

B. Processing Time

We analyze the processing time for the three algorithms
comprised in z-OTS: key generation, signature generation and
signature verification. Each of these processing times can be
expressed in terms of the number of evaluations of cik, g
and h, the number of PRF calls and the number of z-NAF
conversions.

Normally, the key generation and signature verification time
is dominated by the number of evaluations of cik, while the
signature generation is dominated by the number of evalua-
tions of cik, the number of evaluations of h (when calculating
m′ = h(m||p), and the number of z-NAF conversions. Note
that all three algorithms are sensitive to the value of z: a larger
z makes all three algorithms slower, whereas a small z has the
opposite effect. Each algorithm is analyzed separately in what
follows, whereas suggested parameters are given in Section
VII.

Key generation: For a given private key x, there are L1+L2

calls to the PRF function to generate all the (xm)i and (xc)i.
Then, the function cik is applied len−1 = (1+ tmax)2z−1−1
times for each (xm)i to generate the corresponding (ym)i,
and 2w − 1 times for each (xc)i to generate the corre-
sponding (yc)i; the total is, thus, L1((1 + tmax)2z−1 −
1) + L2(2w − 1) evaluations of cik. Finally, g is called once
on (ym)L1−1|| · · · ||(ym)0||(yc)L2−1|| · · · ||(yc)0 to generate y.
Hence, the key generation time increases exponentially with
z and linearly with L1 and tmax.

Signature generation: For randomly generated nonces pi,
the signer needs to calculate m′ = h(m||pi) and m′NAF .
Consequently, one needs to evaluate h and convert m’ to the
z-NAF form 1/Prob times on average, where Prob is the
probability of finding pi whose corresponding m′NAF satisfies
the three restrictions from Step 3 in the signature generation

algorithm. Then, after finding a suitable pi and calculating m′′,
the hash chains are calculated by evaluating cik accordingly.

Like in key generation, signature generation time increases
exponentially with z. The parameters L1 and tmax, however,
do not have a monotonic effect in signature generation. For
example, large values of L1 and tmax increase the probability
of finding a suitable pi and reduce the number of evaluations
of h, as well as the number of z-NAF conversions required. At
the same time, however, the number and length of hash chains
that need to be calculated are increased. Hence, the larger L1

and tmax, the higher the number of evaluations of cik.
Signature verification: For this algorithm, the verifier needs

to perform one evaluation of h and one z-NAF conversion to
calculate m′′ from the message and p provided in the signature.
Then, the verifier “completes” the hash chains by evaluating
cik repeatedly, and recovers the end-of-chain values y′i. Finally,
a single evaluation of g is performed to recover y′, which is
compared against the public key y to validate the signature.

Similarly to the key and signature generation algorithms,
signature verification time increases exponentially with z, but
the behavior with different values of L1 and tmax is once
again not monotonic. Without applying any restriction from
Step 3 of signature generation, the average m′NAF would have
non-zero digit density of 1/(z+ 1) and a zero digit density of
z/(z+1). So, after removing the mandatory z−1 zeros on the
left of each non-zero digit, the resulting zero density is roughly
z/(z + 1)− (z − 1)/(z + 1) = 1/(z + 1), which is the same
density as the number of non-zero digits. This means that the
number of zero and non-zero digits in m′grouped is the same
on average. However, the restrictions enforced by the choice
of L1 and tmax may affect this distribution on m′NAF .

Since L1 limits the number of non-zero digits in mNAF , a
value of L1 too small would select only those mNAF with
more zeros than non-zero digits. Due to the map defined
in the signature generation algorithm, though, each non-zero
digit increases the total number of evaluations of cik in the
verification algorithm by some value in [0, 2z−1), while each
zero digit increases it by exactly 2z−1. Therefore, making L1

too small reduces the number of hash chains that need to be
calculated, but also increases the individual digits in m′′. This
potentially increases the overall number of evaluations of cik,
making verification slower. Conversely, choosing L1 too large
removes this digit imbalance, but increases the number of hash
chains and slows down the verification process.

The parameter tmax has yet other effects: although choosing
a small tmax decreases the number of evaluations of cik
during signature verification, picking a large tmax does not
significantly increase it. This happens because, even when very
long runs of zeros are allowed in m′NAF (after discarding the
z − 1 zeros), the probability of occurrence of such large zero
runs decreases exponentially: for each additional zero digit, it
decreases by a rate of PZ ≈ 0.5, where PZ is the (empirically
calculated) probability of a z-NAF digit not being zero At the
same time, the total number of hashes only increases linearly,
at a step of 2z−1. This means that the number of calls to
cik during signature verification is bounded for any choice of
tmax. For that reason, aiming to optimize the signature size
and verification time, one could use smaller values of L1 and
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compensate the increased signature generation time with larger
values of tmax, which does not increase the verification time
by much.

Besides reducing the total chain length len, there is another
reason why a small tmax can make verification faster: while L1

limits the number of non-zero digits in m′NAF , tmax tends to
limit the number of zero digits. Hence, a small tmax decreases
the number of zero digits relative to the amount of non-zero
digits in m′NAF . Given the aforementioned effects of zero
and non-zero digits balance, this reduces the digits in m′′ and
requires fewer evaluations of cik during signature verification.

Finally, differently from W-OTS+, note that the digits in
m′′ are skewed towards zero, since longer zero runs on the
left of non-zero digits are less probable. The result is that the
number of evaluations of cik during signature verification is
significantly lower than half of the total evaluations of cik in
the key generation algorithm. This is a core reason why z-OTS
provides faster verification at the cost of a slower signature
generation when compared with W-OTS+.

C. Signature size vs. processing time trade-offs

In z-OTS, the trade-off between signature size and pro-
cessing time depends on the choice of z, L1, and tmax. The
underlying Winternitz parameter w can then be picked such
that the checksum hash chains have roughly the same length
as the message hash chains.

The parameter with the strongest influence over z-OTS per-
formance is the z. Recall that the signature size is determined
basically by L1, which should be proportional to z: according
to the analysis in Section VI-B, in general the value of L1

should be somewhere around the average number of non-zero
digits in m′NAF , given by (n + 1)/(z + 1). The total chain
length len, however, is given by len = (1 + tmax)2z−1 − 1
and, thus, grows exponentially with z. In this way, the total
number of evaluations of cik grows exponentially with z, but
the signature size only decreases linearly when z increases.
This behavior is similar to the effect of the w parameter in
W-OTS+, where the signature size is given by dn/we and the
total chain length is given by 2w−1. From these observations,
we also note that it is possible to obtain similar signature sizes
in z-OTS and W-OTS+ by picking z = w − 1.

After picking a suitable z, the parameters L1 and tmax
can be used to fine-tune the trade-off between signature size
and processing time. In general, one should pick small values
of L1 and tmax, reducing signature size and key generation
costs, while still making signature verification significantly
faster than signature generation. Nevertheless, as discussed in
Section VI-B, choosing a smaller value of L1 for a slightly
larger value of tmax may be useful when the goal is to
reduce the signature size without increasing verification costs
by much.

With the formulas for signature size and key generation time
for both z-OTS and W-OTS+, we can compare the trade-offs
offered in both algorithms. For this purpose, assume L1 =
d(n + 1)/(z + 1)e and the usual hash length of n = 256.
In this scenario, and as discussed in Section VI-C, we can
obtain signatures of similar sizes in z-OTS and in W-OTS+

by picking an arbitrary w in the latter and z = w − 1 in the
former.

Therefore, substituting w = z + 1 into the formulas for
W-OTS+, the total number of evaluations of cik during key
generation can be computed as:#(c)z-OTS =

⌈
n+1
z+1

⌉
((1 + tmax)2z−1 − 1)

#(c)W-OTS =
⌈

n
z+1

⌉
(2z+1 − 1)

As z tends to infinity, the ratio #(cik)z-OTS/#(cik)W-OTS+
would be evaluated as

lim
z→∞

#(cik)z-OTS

#(cik)W-OTS+
= lim
z→∞

⌈
n+1
z+1

⌉
((1 + tmax)2z−1 − 1)⌈
n
z+1

⌉
(2z+1 − 1)

=
1 + tmax

4

This shows that, by choosing tmax < 3 for a large z, z-OTS
should have better asymptotic behavior than W-OTS+ in terms
of cik evaluations required for key generation (or equivalently,
for signature generation combined with signature verification).
Indeed, for a large z, the fixed W-OTS+ can take four times
more calls to cik than z-OTS.

D. Storage Requirements

The storage requirements of the z-OTS are similar to that
of W-OTS+. Namely, what is stored are the public and private
keys for the signer, and the public key for the verifier. In the
z-OTS scheme, the private key is b-bit long, while the public
key has (max(len − 1, 2w − 1) + 1)b bits. Hence, the signer
needs to store (max(len − 1, 2w − 1) + 2)b bits while the
verifier needs to store (max(len− 1, 2w − 1) + 1)b bits.

VII. EXPERIMENTAL RESULTS

To test the z-OTS, a simulator was written in Python
language. The source code, together with reproducible ex-
ecutions of our experiments, can be found at [30]. The
security parameter b and the message length n were both
chosen as 256 bits. For simplicity, the simulations do not
employ any parallelism. Nevertheless, we note that an actual
implementation could perform in parallel (1) the computation
of individual hash chains and, (2) for z-OTS, the calls to h and
z-NAF conversions when searching for a suitable pi during the
signature generation process.

The simulations were run for many different values of z and
involved two sets of parameters: a basic set and a set intended
to further improve signature verification speed. The results, in
terms of the number of hash function evaluations taken by each
algorithm, were recorded and compared to those of W-OTS+,
in order to estimate the practical benefits and limitations of
z-OTS.

For the experiments, we used the W-OTS+ interpolated
model (see Figure 3) to compare the number of calls to cik
between W-OTS+ and z-OTS when the latter’s signature size
did not match the specific sizes supported by W-OTS+ for any
integer w.
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Since W-OTS+ with some arbitrary w leads to a signature
size similar to the one obtained with z-OTS when z ≈ w− 1,
we restricted our simulations to values of z such that 2 ≤ z ≤
8. This choice is compatible with the range of w commonly
suggested in the literature for W-OTS+ and similar schemes
[31], and includes the most commonly found w = 4 parameter
[32]. For the other two parameters, L1 and tmax, we start by
picking values for which the signature size of z-OTS matches
those of W-OTS+, and also the hash chain lengths would be as
close as possible without too much processing overhead. These
choices led to the basic parameter set shown in Table IIIa. In
addition, we built an optimized parameter set aimed at lower
verification costs, following the recommendations discussed
in Section VI-B and choosing smaller values of L1 while
increasing the values of tmax. This second set of verification-
optimized parameters is presented in Table IIIb.

TABLE II
z-OTS PARAMETERS (z, L1, tmax, w) LEADING TO SIGNATURE SIZES

SIMILAR TO W-OTS+ WITH WINTERNITZ PARAMETER w.

z L1 tmax w

2 86 5 3
3 64 5 4
4 52 4 5
5 43 4 6
6 37 4 7
7 32 4 8
8 29 3 9

(a) Basic

z L1 tmax w

2 74 8 3
3 56 8 4
4 45 8 5
5 38 7 6
6 32 10 7
7 28 11 8
8 25 9 9

(b) Verification-optimized

The results for key generation as well as the average results
for signing and verifying 1000 messages are summarized in
Tables III and IV for, respectively, the basic and verification-
optimized parameter sets from Table II. In addition, Figure 4
depicts both results for easy comparison among them.

TABLE III
PERFORMANCE OF z-OTS FOR BASIC PARAMETER SET (TABLE IIIA).

Calls Calls to cik
‡

z to h† KG Sign Ver
2 27 946 726± 8 220± 8
3 22 1472 1102± 17 370± 17
4 36 2028 1431± 31 597± 31
5 32 3397 2364± 55 1033± 55
6 21 5883 4104± 112 1779± 112
7 27 10208 6972± 195 3236± 195
8 45 14819 9566± 364 5253± 364

†Average calls to h performed until a suitable value of pi is found; standard
deviation was close to 100%. ‡ Number of calls to cik does not include

calculation of the hash chains for checksums.

As expected from our theoretical analysis, the number of
calls to cik and the total machine cycles of all three algo-
rithms grow exponentially with z, similarly to the behavior
observed in W-OTS+ for the w parameter. However, the cost
of signature verification is significantly lower than the cost of
signature generation, besides grows more slowly, showing the
asymmetric effect of z-OTS over those operations.

We note that the actual optimal parameters for the scheme
depend on the implementation and machine cycles taken by
the functions h, cik, g and the z-NAF conversion algorithm.

TABLE IV
PERFORMANCE OF z-OTS FOR VERIFICATION-OPTIMIZED PARAMETER

SET (TABLE IIIB).

Calls Calls to cik
‡

z to h† KG Sign Ver
2 978 1258 1000± 6 258± 6
3 1509 1960 1515± 12 445± 12
4 2656 3195 2413± 22 782± 22
5 3608 4826 3453± 43 1373± 43
6 8740 11232 8630± 83 2602± 83
7 13460 21476 16637± 157 4839± 157
8 28140 31975 23013± 283 8962± 283

†Average calls to h performed until a suitable value of pi is found; standard
deviation was close to 100%. ‡ Number of calls to cik does not include

calculation of the hash chains for checksums.

For example, if the cost of z-NAF conversion is competitive
with the function cik, one may choose more restrictive values
for L1 and tmax and, thus, get smaller signatures and faster
verification.

We also observe that, compared to the initial parameter
set, the optimized parameter set had smaller values of L1,
which caused the calls to h (and, thus, the number of z-
NAF conversions) to increase significantly during signature
generation. Besides, with the larger values of tmax, we also
obtain a significant increase in the number of calls to cik during
the key and signature generation procedures. However, the
growth in the signature verification time was only modest;
this fact, combined with the smaller signature sizes obtained,
shows the potential of z-OTS in scenarios where signature
verification efficiency are desired.

A. Comparison with W-OTS+

Finally, we compare z-OTS with W-OTS+ in terms of
average number of calls to cik, using both parameter sets from
Table II. The goal is to show the gains in signature verification
speed, as well as the corresponding trade-offs for the key and
signature generation procedures.

For this purpose, we consider the relative difference between
the costs of z-OTS and W-OTS+ for each evaluated procedure,
i.e., the following formula is used:

Diff #(cik) =
#(cik)z−OTS −#(cik)W−OTS+

#(cik)W−OTS+

1) z-OTS vs. W-OTS: basic parameter set: For the param-
eter set given in Table IIIa, no interpolation over W-OTS+
results were needed because the signature sizes chosen in the
z-OTS scheme match those in W-OTS+. Table V summarizes
the comparison results.

As observed in Table V, z-OTS requires 12.7% to 60.1%
more processing than W-OTS+ during the key generation
procedure, whereas the overhead for signature generation can
be up to 145.3% of W-OTS+. The signature verification time,
on the other hand, is reduced somewhere from 20.1% to 25.7%
depending on the average signature size.

2) z-OTS vs. W-OTS: verification-optimized parameters: In
the case of the verification-optimized parameter set given in
Table IIIb, we needed to interpolate the numbers for W-OTS+
because the corresponding signature sizes do not match those
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(a) KeyGen (b) Signature (c) Verification

Fig. 4. Graphical representations of Tables III and IV, for easier observation of asymptotic behavior and trade-offs for basic and verification-optimized
parameters. Signature size is roughly proportional to L1 when L1 � L2, which is the case for usual values of n.

TABLE V
COMPARATIVE PERFORMANCE OF z-OTS AND W-OTS+ FOR z-OTS’S

BASIC PARAMETER SET (TABLE IIIA).

Diff #(cik)
‡

z Sig. Size† KeyGen Sign Ver
2 86 60.1% 145.3% -25.7%
3 64 53.3% 129.6% -22.9%
4 52 32.9% 87.5% -21.8%
5 43 29.6% 80.3% -21.2%
6 37 32.5% 84.9% -19.9%
7 32 25.1% 70.9% -20.7%
8 29 12.7% 45.5% -20.1%

†Signature size is given as a multiple of 256-bits and does not include the
checksum part. ‡ Number of calls to cik does not include calculation of the

hash chains for checksums.

obtained with z-OTS. Using this approach, Table VI shows the
comparison between z-OTS and W-OTS+ processing time in
this scenario.

TABLE VI
PROCESSING TIME (IN TERMS OF THE NUMBER OF CALLS TO cik ) OF

z-OTS AND W-OTS+, USING z-OTS’S VERIFICATION-OPTIMIZED
PARAMETER SET (TABLE IIIB).

Diff #(cik)
‡

z Sig. Size† KeyGen Sign Ver
2 74 70.0% 170.3% -30.3%
3 56 53.7% 137.5% -30.3%
4 45 40.4% 112.0% -31.3%
5 38 20.2% 72.0% -31.6%
6 32 37.6% 111.5% -36.2%
7 28 35.9% 110.6% -38.7%
8 25 5.8% 52.4% -40.7%

†Signature size is given as a multiple of 256 bits and does not include the
checksum part. ‡ Number of calls to cik does not include calculation of the

hash chains for checksums.

When compared to W-OTS+, the overheads of z-OTS con-
figured with such a verification-optimized parameter set are
once again somewhat high for the key and signature generation
procedures. Namely, key generation in z-OTS is 5.8% to
70.0% more costly than in W-OTS+, whereas the overhead for

signature generation was observed to reach up to 170.3%. As
expected, though, the costs for the signature verification proce-
dure are considerably lower, with gains ranging from 30.3% to
40.6% when compared to W-OTS+. These experiments show
the potential of z-OTS in trading key and signature generation
time for a faster signature verification procedure, assuming a
careful choice of the L1 and tmax parameters.

We also point out that the verification-optimized parameters
were chosen so that the key generation, signing and verifica-
tion operations would take around a second or less to finish
without employing any kind of parallelism. With parallelism
and abundant computing resources for signature generation,
one could use smaller values of L1 (while increasing tmax as
needed) to achieve even smaller verification times than those
presented in this article. For example, our experiments show
that more than 50% verification gains can be achieved with
L1 = 24 for z = 8.

VIII. CONCLUSION

With the growing interest and investments in quantum
technology by governments and private corporations, large
scale quantum computers are growing closer to reality every
year. This context motivates the research for post-quantum
cryptographic algorithms that can replace traditional schemes
based on the (elliptic) discrete logarithm or number factor-
ization, which would be vulnerable to attacks in a quantum
scenario. Among the many existing proposals, hash-based
digital signature schemes are quite promising. In special, this
is due to their small public/private key pairs and to the fact
that their security relies on well-known properties of hash
functions.

In this work, we propose a novel OTS that uses the z-
NAF encoding for pre-processing the message to be signed.
The main benefit of the proposed z-OTS scheme is that, by
skewing the frequency of zero and non-zero digits in the to-
be-signed message, it can be used to speed up verification
by slowing down key and signature generation. Compared to
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W-OTS+, and for comparable signature sizes, the verification
time in z-OTS can be up to 40.6% lower according to our
experimental results. This is accomplished while retaining the
main advantages of W-OTS+, in particular its short public keys
and the ability to recover those keys from the corresponding
signatures. Consequently, the proposed z-OTS scheme can be
used as a drop-in replacement for W-OTS+ where signature
verifications are done much more frequently than signature
generations, such as in software distribution applications and
other common use cases.
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