
Parallel Quantum Addition for
Korean Block Cipher

Kyungbae Jang1, Gyeongju Song1, Hyunjun Kim1, Hyeokdong Kwon1,
Hyunji Kim1, and Hwajeong Seo1[0000−0003−0069−9061]

1IT Department, Hansung University, Seoul (02876), South Korea,
{starj1023, thdrudwn98, khj930704, korlethean,

khj1594012, hwajeong84}@gmail.com

Abstract. Adversaries using quantum computers can employ new at-
tacks on cryptography that are not possible with classical computers.
Grover’s search algorithm, a well-known quantum algorithm, can reduce
the search complexity of O(2n) to

√
2n for symmetric key cryptography

using an n-bit key. To apply the Grover search algorithm, the target
encryption process must be implemented as a quantum circuit. In this
paper, we present optimized quantum circuits for Korean block ciphers
based on ARX architectures. We adopt the optimal quantum adder and
design in parallel way with only a few trade-offs between quantum re-
sources. As a result, we provide a performance improvement of 78% in
LEA, 85% in HIGHT, and 70% in CHAM in terms of circuit depth,
respectively. Finally, we estimate the cost of the Grover key search for
Korean block ciphers and evaluate the post-quantum security based on
the criteria presented by NIST.

Keywords: Parallel Quantum Addition · Korean Block Cipher · ARX
Architecture · Grover Algorithm.

1 Introduction

International companies, such as IBM, Google, Microsoft, and Amazon are ad-
vancing the development of large-scale quantum computers. If a large-scale quan-
tum computer that can operate quantum algorithms is developed, the safety of
cryptography, which is widely used today, will be lowered or broken by these up-
coming attacks. Shor’s algorithm has been proven to break the safety of RSA and
Elliptic Curve Cryptography (ECC) [1]. The security of RSA and ECC depends
on advances in quantum computers and optimization of the Shor algorithm [2–
6]. The National Institute of Standards and Technology (NIST) is currently
conducting a Post-Quantum Cryptography (PQC) competition in preparation
for the security collapse of public key cryptography. Another quantum algo-
rithm, Grover’s search algorithm, is well known for reducing the security level of
symmetric key cryptography [7]. The Grover search algorithm accelerates brute
force attacks, reducing n-bit symmetric key ciphers with n-bit security to n

2 -
bit security. NIST presented the cost of Grover key search for symmetric key

2 Jang et al.

cryptography as a post-quantum security strength. In other words, as the cost
of Grover key search increases, the strength of post-quantum security increases.
With this motivation, estimating the cost of Grover key search for symmetric
key cryptography is an active research field in recent years [8–18].

In this paper, we focus on quantum cryptanalysis of Korean block ciphers.
For this, we firstly optimize quantum circuits for the Korean block ciphers LEA,
CHAM, and HIGHT, which are based on ARX architectures. In previous works,
Jang et al. estimated the cost required to implement Korean block ciphers as
quantum circuits [12]. We present improved performance with proposed imple-
mentation techniques and perform tight quantum cryptanalysis on Korean block
ciphers. We adopt an optimal quantum adder [19] to optimize the ARX architec-
ture. This quantum adder uses one ancilla qubit in proposed implementation but
this can reduce Toffoli gates and circuit depth. In addition, we present a tech-
nique to implement the parallel addition by allocating only a few more qubits.
As a result, we reduce the number of Toffoli gates and provide high performance
improvements in terms of circuit depth. In [12], only costs of quantum circuits
for Korean block ciphers are estimated. We tightly estimate the costs of Grover
key search based on the proposed quantum circuits. Finally, based on the cri-
teria presented by NIST [20], we evaluate the post-quantum security level of
Korean block ciphers. We use ProjectQ [21], a quantum programming tool pro-
vided by IBM for validation of our implementation results. Our source code will
be available as a public domain for the reproduction of proposed methods.

1.1 Research Contributions

– Optimized quantum circuits for Korean block ciphers of ARX ar-
chitecture using an optimal quantum adder We use an improved quan-
tum adder that can be used when the addition unit is more than 4-bit. Also,
we adopt an optimized implementation technique that considers the modular
addition without input carry and output carry.

– Exploring parallel addition points in ARX architecture LEA, HIGHT,
and CHAM block ciphers have ranges that allow the parallel addition. We
explore the round function and key schedule structure deeply to find the
room for the parallel addition. Then, the parallel addition is implemented
with some trade-offs depending on the allowed range.

– Tight quantum cryptanalysis of Korean block ciphers Costs of Grover
key search are estimated based on optimized quantum circuits. Then, we
evaluate the post-quantum security level for Korean block ciphers compared
to costs presented by NIST as security strength.

1.2 Organization of the paper

The organization of this paper is as follows. Section 2 briefly describes Grover’s
search algorithm and presents the background of quantum computing. In Section
3, design techniques for the proposed quantum circuits performing parallel addi-
tion are presented. In Section 4, quantum cryptanalysis of Korean block ciphers
is performed. Finally, Section 5 concludes the paper.

Parallel Quantum Addition for Korean Block Cipher 3

2 Related Work

2.1 Quantum brute force attack using Grover’s search algorithm

A brute force attack on symmetric key cryptography involves finding a key that
satisfies a specific plaintext-ciphertext pair. For symmetric key cryptography
using an n-bit key, O(2n) searches are required for a brute force attack. The
Grover search algorithm is a quantum algorithm that is optimal for brute force
attacks on symmetric key cryptography [7]. Compared to a classic computer
that requires O(2n) searches, the Grover search algorithm recovers the key with
a high probability in just

√
2n searches. The procedure for Grover key search is

as follows.

1. Prepare n-qubit key in superposition |ψ〉 by applying Hadamard gates. All
states of qubits have the same amplitude.

|ψ〉 = H⊗n |0〉⊗n =
(|0〉+ |1〉√

2

)
=

1

2n/2

2n−1∑
x=0

|x〉 (1)

2. The symmetric key cryptography is implemented as a quantum circuit and
placed in oracle. In oracle f(x), the plaintext is encrypted with the key
k in the superposition state. As a result, ciphertexts for all key values are
generated. The sign of the solution key is changed to a negative by comparing
it with the known ciphertext c. Only when f(x) = 1 changes the sign to
negative and applies to all states.

f(x) =

{
1 if Enc(k) = c

0 if Enc(k) 6= c
(2)

Uf (|ψ〉 |−〉) =
1

2n/2

2n−1∑
x=0

(−1)f(x) |x〉 |−〉 (3)

3. Lastly, the diffusion operator amplifies the amplitude of the negative sign
state.

The Grover algorithm iterates phases 2 and 3 to sufficiently increase the
amplitude of the solution and observes it at the end of stage. For an n-bit key, the
optimal number of iterations of the Grover search algorithm is bπ4

√
2nc, which is

about
√

2n. A brute force attack that requires 2n searches in a classic computer
is reduced to

√
2n searches in a quantum computer. The most important thing

in this attack is the efficient implementation of symmetric key cryptography as
a quantum circuit. Since the diffusion operator is a generic implementation, it
does not require any special techniques to implement.

4 Jang et al.

2.2 Quantum gates

Quantum gates used in quantum computers are reversible for all changes during
computations. In other words, in quantum computing, it is possible to return to
the initial state using only the output state. There are quantum gates with re-
versible properties that can replace classical gates used in cryptography. Figure
1 shows representative quantum gates frequently used in cryptography imple-
mentations.

x X ∼ x

(a) X (NOT) gate

x • x

y x⊕ y
(b) CNOT gate

x • x

y • y

z z ⊕ x · y
(c) Toffoli gate

x × y

y × x

(d) Swap gate

Fig. 1: Functionalities and descriptions of quantum gates.

The X (NOT) gate (a) inverts the state of the input qubit. The CNOT gate
(b) inverts the state of y only if x is 1. The Toffoli (CCNOT) gate (c) replaces
the AND operation, inverting the state of z only if x and y is 1. The Swap gate
(d) changes the state of two input qubits to each other.

2.3 Quantum adder

A quantum adder is implemented as a configuration of X, CNOT, and Toffoli
gates. In previous implementations of Korean block ciphers [12], a quantum
adder based on the ripple-carry approach is used [19]. The quantum adder in
previous works utilizes one ancilla qubit, (2n− 2) Toffoli gates, (4n− 2) CNOT
gates, and the circuit depth is (5n−3). In another implementation of the ARX ar-
chitecture, SPECK [10], Anand. R et al. adopted a different quantum adder [22].
The quantum adder in their works utilizes (2n−2) Toffoli gates, (5n−6) CNOT
gates, and the circuit depth is (5n−5), but does not use ancilla qubit. Compared
to the quantum adder used in [12], it saves one qubit, but does not improve much
in terms of quantum gates or circuit depth.

We use an improved quantum adder based on the ripple-carry approach [19].
This quantum adder uses one ancilla but this can reduce Toffoli gates and cir-
cuit depth. When n ≥ 4 in n-bit addition, an improved quantum adder can be

Parallel Quantum Addition for Korean Block Cipher 5

implemented. Since 8-bit addition of HIGHT block cipher is the smallest unit
in Koean block ciphers, it can be applied to all. Also, in the case of modular
addition, one ancilla qubit can be saved (generic addition uses two ancilla), and
the quantum gates and circuit depth can be reduced. Finally, the quantum adder
we adopted uses one anilla qubit, (2n− 3) Toffoli gates, (5n− 7) CNOT gates,
(2n−6) X gates, and the circuit depth is (2n+3). Details of the implementation
can be found in [19].

3 Proposed Method

In this section, we present optimized quantum circuit implementation techniques
for Korean block ciphers. We use an optimal quantum adder and design a par-
allel addition structure with only small trade-offs between quantum resources.
Proposed implementations provide a 78% improvement in LEA, 85% in HIGHT
and 70% in CHAM, compared to previous results in terms of depth, respectively.
Furthermore, proposed implementations reduce the use of the Toffoli gate, which
is the highest cost in NCT (NOT, CNOT, and Toffoli) gates.

3.1 LEA

LEA is working on the 128-bit plaintext organized in a 32 × 4 array and uses
128, 192, or 256-bit key. LEA requires constants for generating round keys as
follows, and the key schedule of LEA-128/128 is as follows.

δ0 = 0xc3efe9db, δ1 = 0x44626b02,
δ2 = 0x79e27c8a, δ3 = 0x78df30ec,
δ4 = 0x715ea49e, δ5 = 0xc785da0a,
δ6 = 0xe04ef22a, δ7 = 0xe5c40957

(4)

K[0] = (K[0]� (δi mod 4≪ i))≪ 1
K[1] = (K[1]� (δi mod 4≪ (i+ 1)))≪ 3
K[2] = (K[2]� (δi mod 4≪ (i+ 2)))≪ 6
K[3] = (K[3]� (δi mod 4≪ (i+ 3)))≪ 11
RKi = (K[0],K[1],K[2],K[1],K[3],K[1])

(5)

In the previous implementation [12], δ0∼3 are initially allocated for the key
schedule (LEA-128), and δi mod 4 is used to generate the i-th round key. δ0 is
used to generate the first round key. δ0 is added to the initial key K(K[0] ∼ [3])
and the result is used as a round key. First, the result of addition (i.e. δ0 +K[0])
is updated in K[0] qubits, while δ0 is kept in unchanged states. δ0 is sequentially
added to K[1],K[2], and K[3]. On the other hand, we take a different approach
by initially setting four δ0s.

First, we set four δ0 (not δ0, δ1, δ2, δ3). In the key schedule of LEA-128,
K[0],K[1], K[2], and K[3] are independent of each other. They can be oper-
ated in a parallel. For the parallel addition, four same values of δ0[0] ∼ [3] are

6 Jang et al.

required, and δ0[j] is added to K[j] (j = 0, 1, 2, 3). As in the previous imple-
mentation, if one δ0 is used in an addition, it cannot be added in a parallel. δ0
is returned when the addition is completed. However, in the process of addition
with K[0] ∼ [3], the value of δ0 is changed by each K[0] ∼ [3]. It is a design
feature that a ripple-carry quantum adder for the addition (x+ y), the result is
stored in y, x is changed to x′ during the process, and returned to x when the
addition is complete [19].

Second, we use four carry qubits (c0, c1, c2, c3). In the ripple-carry modular
adder, one carry qubit c0 is used, which is initialized to 0 after the addition.
Taking the advantage of saving qubits, the previous implementation reuses one
carry qubit c0 for all additions. However, reusing initialized c0 makes the paral-
lel addition impossible. For the parallel addition with K0,K1,K2, and K3, we
additionally allocate 3 qubits (c1, c2, and c3). As a result, we provide a high
performance improvement in terms of depth.

Lastly, we change four δ0s to four δ1s for the next key schedule. Since
0xc3efe9db (δ0) and 0x44626b02 (δ1) are known values in advance, only X
gates are used to change values of qubits. The first round key generation in the
proposed quantum circuit design for the key schedule of LEA-128 is described
in Algorithm 1. The detailed process for changing δ is described in Algorithm 2.

Algorithm 1 Quantum circuit for LEA-128 key schedule (first round key gen-
eration).

Input: Initial key K[0] ∼ [3], δ0[0] ∼ [3], c0∼3

Output: Round key RK0, δ1[0] ∼ [3]
1: δ0[0]← δ0[0]≪ 0
2: K[0]← ADD(δ0[0],K[0], c0)≪ 1
3: δ0[1]← δ0[1]≪ 1
4: K[1]← ADD(δ0[1],K[1], c1)≪ 3
5: δ0[2]← δ0[2]≪ 2
6: K[2]← ADD(δ0[2],K[2], c2)≪ 6
7: δ0[3]← δ0[3]≪ 3
8: K[3]← ADD(δ0[3],K[3], c3)≪ 11

// Reverse
9: δ0[0]← δ0[0]≫ 0

10: δ0[1]← δ0[1]≫ 1
11: δ0[2]← δ0[2]≫ 2
12: δ0[3]← δ0[3]≫ 3
13: δ1[0] ∼ [3]← Change δ(δ0[0] ∼ [3], 0xc3efe9db, 0x44626b02)
14: return RK0(K0,K1,K2,K1,K3,K1), δ1[0] ∼ [3]

LEA-192 uses δ0∼5 and LEA-256 uses δ0∼7, respectively. The key schedule
structure of LEA-192 and LEA-256 is the same as that of LEA-128, and LEA-256
can save qubits compared to the previous implementation [12]. The key schedule
of LEA-256 uses δ0∼7. However, five δ variables are used. We allocate only qubits

Parallel Quantum Addition for Korean Block Cipher 7

Algorithm 2 Change δ.

Input: δ[0] ∼ [3], current δ, next δ
Output: δ[0] ∼ [3]
1: current δ ← current δ ⊕ next δ
2: for i = 0 to 31 do
3: if (current δ � i) & 1 then
4: δ[0][i]←X(δ[0][i])
5: δ[1][i]←X(δ[1][i])
6: δ[2][i]←X(δ[2][i])
7: δ[3][i]←X(δ[3][i])
8: end if
9: end for

10: return δ[0], δ[1], δ[2], δ[3]

for δ[0] ∼ [5]. In [12], qubits for δ0∼7 are allocated. On the other hand, we save
64 qubits by allocating only qubits for δ[0] ∼ [5]. The first round key generation
of the proposed quantum circuit design for LEA-192 and LEA-256 is same and
is described in Algorithm 3.

Algorithm 3 Quantum circuit for key schedule of LEA-192 and LEA-256 (first
round key generation).

Input: Initial key K[0] ∼ [5], δ0[0] ∼ [5], c0∼5

Output: Round key RK0, δ1[0] ∼ [5]
1: δ0[0]← δ0[0]≪ 0
2: K[0]← ADD(δ0[0],K[0], c0)≪ 1
3: δ0[1]← δ0[1]≪ 1
4: K[1]← ADD(δ0[1],K[1], c1)≪ 3
5: δ0[2]← δ0[2]≪ 2
6: K[2]← ADD(δ0[2],K[2], c2)≪ 6
7: δ0[3]← δ0[3]≪ 3
8: K[3]← ADD(δ0[3],K[3], c3)≪ 11
9: δ0[4]← δ0[4]≪ 4

10: K[4]← ADD(δ0[4],K[4], c4)≪ 13
11: δ0[5]← δ0[5]≪ 5
12: K[5]← ADD(δ0[5],K[5], c5)≪ 17

// Reverse
13: δ0[0]← δ0[0]≫ 0
14: δ0[1]← δ0[1]≫ 1
15: δ0[2]← δ0[2]≫ 2
16: δ0[3]← δ0[3]≫ 3
17: δ0[4]← δ0[4]≫ 4
18: δ0[5]← δ0[5]≫ 5
19: δ1[0] ∼ [5]← Change δ(δ0[0] ∼ [5], 0xc3efe9db, 0x44626b02)
20: return RK0(K0,K1,K2,K3,K4,K5), δ1[0] ∼ [5]

8 Jang et al.

The round function of LEA is performed on 128-qubit plaintext (X[0], X[1],
X[2], X[3]) and there is no point of parallelism because the X variables are not
independent each other. Algorithm 4 describes the round function of LEA block
cipher. Additions that update X[3] and X[2] cannot be done in a parallel way
because we use X[2] to update X[3]. CNOT32 means CNOT gate operation in
32-qubit units.

Algorithm 4 Quantum circuit for round function of LEA.

Input: X[0] ∼ [3], RK[0] ∼ [5], c0
Output: X(X[0] ∼ [3])

//Update X[3]
1: X[3]← CNOT32(RK[5], X[3])
2: X[2]← CNOT32(RK[4], X[2])
3: X[3]← ADD(X[2], X[3], c0)≫ 3
4: X[2]← CNOT32(RK[4], X[2]) //Reverse

//Update X[2]
5: X[2]← CNOT32(RK[3], X[2])
6: X[1]← CNOT32(RK[2], X[1])
7: X[2]← ADD(X[1], X[2], c0)≫ 5
8: X[1]← CNOT32(RK[2], X[1]) //Reverse

//Update X[1]
9: X[2]← CNOT32(RK[1], X[1])

10: X[1]← CNOT32(RK[0], X[0])
11: X[2]← ADD(X[0], X[1], c0)≫ 9
12: X[1]← CNOT32(RK[0], X[0]) //Reverse
13: return X[1], X[2], X[3], X[0]

3.2 HIGHT

HIGHT is working with 64-bit plaintext organized in a 8 × 8 array and uses
128-bit key in 8×16 array. In HIGHT block cipher, the key schedule to generate
round keys using δ and the round function are as follows.

si+6 = si+2 ⊕ si−1
δi = (si+6, si+5, si+4, si+3, si+2, si+1, si)

(6)

for i = 0 to 7 :
for j = 0 to 7 :

RK[16 · i+ j] = K[j − i mod 8]� δ16·i+j
for j = 0 to 7 :

RK[16 · i+ j + 8] = K[(j − i mod 8) + 8]� δ16·i+j+8

(7)

Parallel Quantum Addition for Korean Block Cipher 9

Xi[j] = Xi−1[j − 1], j = 1, 3, 5, 7
Xi[0] = Xi−1[7]⊕ (F0(Xi−1[6])�RK[4i− 1])
Xi[2] = Xi−1[1]� (F1(Xi−1[0])⊕RK[4i− 4])
Xi[4] = Xi−1[3]⊕ (F0(Xi−1[2])�RK[4i− 3])
Xi[6] = Xi−1[5]� (F1(Xi−1[4])⊕RK[4i− 2])

(8)

In the previous implementation [12], an on-the-fly approach is used to reduce
qubits. Initial key qubits are updated and used as round keys. To reduce the
use of qubits, δ0, which is required for the round key generation, is set and
updated to the next δi(1 ≤ i ≤ 127). Since the four additions are independent
of each other in the round function, the parallel addition is possible. However, if
a round key is generated by updating the initially set δ0, the following additions
cannot be performed in a parallel way. Thus, we initially set δ0, δ1, δ2, δ3 for
the parallel addition. The next round uses δ0, δ1, δ2, δ3 → δ4, δ5, δ6, δ7 updated
by + 4. Updating δ can be implemented simply with a few CNOT gates and
logical swap gate. The proposed round function quantum circuit of HIGHT is
described in Algorithm 5, including key schedule. Since the functions F0 and
F1 are the same as the implementation of [12], F0 and F1 implementations are
omitted in this paper. Reverse operations performed at the end of Algorithm 5
return values of X[0], X[2], X[4], X[6] and also return values of K[0] ∼ [3] for the
later key schedule. In HIGHT, the parallel addition can be performed in both
round function and key schedule. This is the reason for the highest performance
improvement (i.e. 85 %) in HIGHT.

3.3 CHAM

In the circuit depth, LEA and HIGHT provide performance improvements of
78 % and 85 %, and CHAM provides 70 % improvement. In this section, we
describe parallel addition in CHAM. We discuss the performance differences
between CHAM, LEA, and HIGHT in Section 4.

CHAM is working with 64(16×4) or 128(32×4)-bit plaintext and uses 128 or
256-bit key. Figure 2 shows round functions of CHAM and proposed technique
at the same time. We focus on four round functions (i = 0, 1, 2, 3) and describe
the parallel point. We perform the parallel addition for three rounds (i = 0, 1, 2).
In the blue box (i.e. i = 3) in Figure 2, we need the addition result (X ′[0]) of
the round function when i = 0 previously. This is why the parallel addition is
only possible for three rounds. Now we prepare values for the parallel addition.

First, we allocate three additional qubits (c0, c1, and c2) for he parallel ad-
dition. In the red box, RK is XORed to X. Since X is required in the next
addition, we XOR X to RK using CNOT gates. The parallel addition is possi-
ble without changing the value of X. The rotation operation on X reverts back
after updating RK. Lastly, we need three round keys. In the previous imple-
mentation [12], t additional qubits are allocated for round key generation (t = 3
for 64-bit plaintext, t = 11 for 128-bit plaintext). We allocate (3 × t) qubits
to generate three round keys. In this way, the parallel addition is performed in

10 Jang et al.

Algorithm 5 Quantum circuit for round function of HIGHT (first round).

Input: X[0] ∼ [7],K[0] ∼ [3], δ0∼3, c0∼3

Output: X[0] ∼ [7], δ4∼7

1: Generate RK[0] and transform X[0]:
2: RK[0]← ADD(δ0,K[0], c0)
3: X[0]← F1(X[0])
4: X[0]← CNOT8(RK[0], X[0])
5: X[1]← ADD(X[0], X[1], c0)

6: Generate RK[1] and transform X[2]:
7: RK[1]← ADD(δ1,K[1], c1)
8: X[2]← F0(X[2])
9: X[2]← ADD(RK[1], X[2], c1)

10: X[3]← CNOT8(X[2], X[3])

11: Generate RK[2] and transform X[4]:
12: RK[2]← ADD(δ2,K[2], c2)
13: X[4]← F1(X[4])
14: X[4]← CNOT8(RK[2], X[4])
15: X[5]← ADD(X[4], X[5], c2)

16: Generate RK[3] and transform X[6]:
17: RK[3]← ADD(δ3,K[3], c3)
18: X[6]← F0(X[6])
19: X[6]← ADD(RK[3], X[6], c3)
20: X[7]← CNOT8(X[6], X[7])

21: Reverse(generate RK[0] and transform X[0])
22: Reverse(generate RK[1] and transform X[2])
23: Reverse(generate RK[2] and transform X[4])
24: Reverse(generate RK[3] and transform X[6])
25: δ4∼7 ← Update δ(δ0∼3)
26: return X[7], X[0], X[1], X[2], X[3], X[4], X[5], X[6], δ4∼7

three units. Algorithm 6 describes a quantum circuit for a round function when
i = odd, because only the number of rotations changes depending on whether i
is odd or even. For the round key generation, we perform it in three units. Since
the round key generation itself is the same as [12], it is omitted in this paper.

4 Evaluation

In this section, we discuss performance improvements of Korean block ciphers
on quantum circuits. Then, we estimate the costs for Grover’s key search based
on the proposed quantum circuits for Korean block ciphers. Finally, we evaluate
the post-quantum security strength. We apply post-quantum security strength
estimation for symmetric key cryptography presented by NIST [20].

Parallel Quantum Addition for Korean Block Cipher 11

𝑋![0]

𝑋![1]

𝑋![2]

𝑋![3]

𝑋![1]

𝑋![2]

𝑋![3]

𝑋! 0 ′

𝑋![2]

𝑋![3]

𝑋![0]′

𝑋![1]′

<<< 1

𝑖 = 0 𝑅𝐾[𝑖 mod 2𝑚]

<<< 8

<<< 8

𝑖 = 1 𝑅𝐾[𝑖 mod 2𝑚]

<<< 1

𝑋![2]

𝑋![3]

𝑋![0]′

𝑋![1]′

𝑋![3]

𝑋![0]′

𝑋![1]′

𝑋! 2 ′

𝑋)[0]

𝑋)[1]

𝑋)[2]

𝑋)[3]

<<< 1

𝑖 = 2 𝑅𝐾[𝑖 mod 2𝑚]

<<< 8

<<< 8

𝑖 = 3 𝑅𝐾[𝑖 mod 2𝑚]

<<< 1

Fig. 2: Four round functions of CHAM (i = 0, 1, 2, 3).

4.1 Comparison of quantum circuit implementations for Korean
block ciphers

Table 1 shows quantum resources required for the Korean block ciphers imple-
mented in [12]. Since the circuit depth was not specified, we estimated it our-
selves. Table 2 shows the quantum resources required for the implementations
presented in this paper. The design of quantum circuits in [12] is overly focused
on saving qubits and does not take into account the parallelism of additions. On
the other hand, by adopting the optimal quantum adder and performing parallel
addition, optimized implementation gives 78 % improvement in LEA, 85 % in
HIGHT and 70 % in CHAM compared to previous implementations in terms of
depth, respectively.

For LEA-128/128, four additions are performed in a parallel way in the key
schedule, and for LEA-128/192 and LEA-128/256, six additions are performed
in a parallel way. In CHAM, three additions are performed in a parallel way
in the round function. Therefore, the performance improvement is higher in the
case of LEA than that of CHAM. HIGHT provides the highest performance
improvement, as the four additions are performed in parallel in both the round
function and key schedule. Also, the number of Toffoli gates, which are high-cost
quantum gates, is reduced due to improvements in the quantum adder itself.

4.2 Cost estimation for Grover oracle

We estimate the cost of the oracle of Grover’s search algorithm. The proposed
quantum circuit is located in the oracle, and the plaintext is encrypted with
the key in the superposition state. The generated ciphertext is compared to
the known ciphertext and reverse operations are performed. In [11], Grassl et

12 Jang et al.

Algorithm 6 Quantum circuit for round function of CHAM-64/128 (i is odd).

Input: X[0] ∼ [3], RK, c
Output: X[0] ∼ [3]
//Add round constant(i)
1: for j = 0 to 7 do
2: if (i� j) & 1 then
3: X[0]←X(X[0][j])
4: end if
5: end for

//Preparation for parallel addition
6: X[1]← X[1]≪ 8
7: RK ← CNOT16(X[1], RK)
8: X[1]← X[1]≫ 8

//Parallel addition part
9: X[0]← ADD(RK,X[0], c)

//Reverse
10: X[1]← X[1]≪ 8
11: RK ← CNOT16(X[1], RK)
12: X[1]← X[1]≫ 8
13: return X[1], X[2], X[3], X[0]≪ 1

al. estimated the cost of the Grover key search for AES and suggested that r
plaintext-ciphertext pairs are required to recover a unique key (r = 3, 4, 5 for
AES-128, 192, 256). Later, Langenberg et al. suggested that r = dk/ne (i.e. key
size/block size) is sufficient to recover a unique key [13]. Based on the approach
in [13], we assume that r = dk/ne and estimate the cost of oracle. Encryptions(r)
can be performed in parallel.

Finally, for oracle, (2×r×Table 2) quantum gates and (r×Table 2+1) qubits
are used and the depth is (2 × Table 2 + 1). For the analysis at the Clifford +
T level, we decompose the Toffoli gate into seven T gates + eight Clifford gates
following the decomposition in [23]. X gates and CNOT gates are counted as
Clifford gates. For the n-bit ciphertext, an n·r multi-controlled NOT gate is used
to check whether it matches the known ciphertext. It is decomposed into (32 ·n ·
r − 84) T gates [24]. Multi-controlled NOT gates also use one additional qubit,
which is flipped if the ciphertext matches. Table 3 shows the quantum resources
required for Grover oracle. In oracle, when r ≥ 2, plaintexts(r) are encrypted
with the same key. So there is room for optimization of qubits and quantum gates.
However, for simplicity of estimation and following Grassl’s approach [11], this
optimization is not taken into account.

Parallel Quantum Addition for Korean Block Cipher 13

Table 1: Quantum resources required for previous implementations [12].

Cipher Qubits Toffoli gates CNOT gates X gates
Depth

(Extrapolation)

LEA

128/128 385 10,416 28,080 68 26,328

128/192 513 15,624 39,816 100 39,452

128/256 641 17,856 45,504 130 45,057

HIGHT 64/128 201 6,272 20,523 4 16,447

CHAM

64/128 196 2,400 12,285 240 7,807

128/128 268 4,960 26,885 240 19,880

128/256 396 5,952 32,277 304 23,856

Table 2: Quantum resources required for proposed implementations.

Cipher Qubits Toffoli gates CNOT gates X gates Depth

LEA (this work)

128/128 388 10,248 32,616 11,152 6,505

128/192 518 15,372 46,620 17,004 7,589

128/256 582 17,568 53,280 19,494 8,580

HIGHT (this work) 64/128 228 5,824 22,614 4,496 2,479

CHAM (this work)

64/128 204 2,320 13,200 2,320 2,615

128/128 292 4,880 28,760 4,880 5,307

128/256 420 5,856 34,944 5,872 6,594

Table 3: Quantum resources required for Grover oracle.

Cipher r Qubits T gates Clifford gates Total gates Depth

LEA

128/128 1 389 147,484 251,504 398,988 13,011

128/192 2 1,037 438,524 746,400 1,184,924 15,179

128/256 2 1,165 500,012 853,272 1,353,284 17,161

HIGHT 64/128 2 457 167,084 294,808 461,892 4,959

CHAM

64/128 2 409 68,972 136,320 205,292 5,231

128/128 1 293 72,332 145,360 217,692 10,615

128/256 2 841 172,076 350,656 522,732 13,189

4.3 Cost estimation for Grover key search

The Grover search algorithm is well known for reducing complexity O(2k) to√
2k. Later, M. Boyer et al. provided a tight analysis of Grover’s search algorithm

and suggested bπ4
√

2kc instead of
√

2k as the optimal number of iterations [25].

Thus, we estimate Table 3 ×bπ4
√

2kc excluding qubits as the cost of Grover key
search, and is shown in Table 4. The cost of Grover’s key search depends on
the complexity of oracle. The diffusion operator is also included in the Grover
iteration, but it is mostly excluded from the cost estimation [10, 11, 13].

14 Jang et al.

Table 4: Cost estimation for Grover key search.

Cipher Qubits Total gates Total depth Cost NIST security

LEA

128/128 389 1.195 · 282 1.247 · 277 1.491 · 2159 Not achieved

128/192 1,037 1.775 · 2115 1.455 · 2109 1.292 · 2225 Level 1

128/256 1,165 1.014 · 2148 1.645 · 2141 1.668 · 2289 Level 3

HIGHT 64/128 457 1.384 · 282 1.901 · 275 1.316 · 2158 Not achieved

CHAM

64/128 409 1.23 · 281 1.003 · 276 1.234 · 2157 Not achieved

128/128 293 1.304 · 281 1.018 · 277 1.328 · 2158 Not achieved

128/256 841 1.566 · 2146 1.264 · 2141 1.98 · 2287 Level 3

Level 1 : 2170, Level 3 : 2233, Level 5 : 2298

NIST presents the following post-quantum security strengths [20] based on
the cost of Grover key search for AES estimated by Grassl et al [11].

– Level 1: Any attack that breaks the relevant security definition must require
computational resources comparable to or greater than those required for key
search on a block cipher with a 128-bit key (e.g. AES-128)

– Level 3: Any attack that breaks the relevant security definition must require
computational resources comparable to or greater than those required for key
search on a block cipher with a 192-bit key (e.g. AES-192)

– Level 5: Any attack that breaks the relevant security definition must require
computational resources comparable to or greater than those required for key
search on a block cipher with a 256-bit key (e.g. AES-256)

NIST estimates the cost for AES-128, 196 and 256 as 2170, 2233 and 2298

which are (total gates × total depth) in Grassl et al’s implementations [11].
Now, we compare the cost of Grover key search for Korean block ciphers with
the post-quantum security strength presented by NIST. The cost of key search
for LEA-128/128, HIGHT, CHAM-64/128, CAHM-128/128 using a 128-bit key
is less than the cost of AES-128, which is Level 1 (2170). Therefore, no security
level is achieved. In the post-quantum era, increasing the key size for symmetric
key cryptography is a well-known countermeasure. LEA-128/192 using a 192-bit

key requires bπ4
√

2192c searches, which increases the cost of key search. How-
ever, compared to AES-192(2233), which has the same key size, LEA-128/192
is exposed to attack at a lower cost and achieves only Level 1. In the case of
LEA-128/256 and CHAM-128/256 using a 256-bit key, the security level also in-
creases according to the key size, but only achieves Level 3 because it is exposed
to attack at a lower cost than AES-256(2298).

Parallel Quantum Addition for Korean Block Cipher 15

5 Conclusion

In this paper, we presented optimized quantum circuit implementations for Ko-
rean block ciphers. We improved the performance of the quantum adder itself and
implemented the parallel addition by exploring the structure of Korean block ci-
phers which are ARX architectures. Finally, we estimated costs of Grover search
and evaluated the security level of Korean block ciphers based on the post-
quantum security strength presented by NIST. Future work is to apply Grover
search algorithm to cryptanalysis rather than exhaustive key search. One such
prominent candidate would be differential or linear cryptanalysis.

References

1. P. Shor, “Algorithms for quantum computation: discrete logarithms and factor-
ing,” in Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134, 1994.

2. T. Häner, M. Roetteler, and K. M. Svore, “Factoring using 2n + 2 qubits with
toffoli based modular multiplication,” 2017.

3. C. Gidney, “Factoring with n+ 2 clean qubits and n-1 dirty qubits,” 2018.

4. M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter, “Quantum resource esti-
mates for computing elliptic curve discrete logarithms,” 2017.

5. T. Häner, S. Jaques, M. Naehrig, M. Roetteler, and M. Soeken, “Improved quantum
circuits for elliptic curve discrete logarithms,” 2020.

6. G. Banegas, D. J. Bernstein, I. van Hoof, and T. Lange, “Concrete quantum crypt-
analysis of binary elliptic curves,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2021, p. 451–472, Dec. 2020.

7. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pp. 212–219, 1996.

8. R. Anand, A. Maitra, and S. Mukhopadhyay, “Grover on SIMON,” Quantum In-
formation Processing, vol. 19, p. 340, 09 2020.

9. K. Jang, S. Choi, H. Kwon, and H. Seo, “Grover on SPECK: Quantum resource
estimates.” Cryptology ePrint Archive, Report 2020/640, 2020. https://ia.cr/

2020/640.

10. R. Anand, A. Maitra, and S. Mukhopadhyay, “Evaluation of quantum cryptanal-
ysis on speck,” in Progress in Cryptology – INDOCRYPT 2020 (K. Bhargavan,
E. Oswald, and M. Prabhakaran, eds.), (Cham), pp. 395–413, Springer Interna-
tional Publishing, 2020.

11. M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, “Applying Grover’s
algorithm to AES: quantum resource estimates,” 2015.

12. K. Jang, S. Choi, H. Kwon, H. Kim, J. Park, and H. Seo, “Grover on Korean block
ciphers,” Applied Sciences, vol. 10, no. 18, 2020.

13. B. Langenberg, H. Pham, and R. Steinwandt, “Reducing the cost of implementing
the advanced encryption standard as a quantum circuit,” IEEE Transactions on
Quantum Engineering, vol. 1, pp. 1–12, 2020.

14. M. Almazrooie, A. Samsudin, R. Abdullah, and K. Mutter, “Quantum reversible
circuit of AES-128,” Quantum Information Processing, vol. 17, 03 2018.

16 Jang et al.

15. K. Jang, G. Song, H. Kim, H. Kwon, H. Kim, and H. Seo, “Efficient implementation
of PRESENT and GIFT on quantum computers,” Applied Sciences, vol. 11, no. 11,
2021.

16. A. Chauhan and S. Sanadhya, Quantum Resource Estimates of Grover’s Key
Search on ARIA, pp. 238–258. 12 2020.

17. S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implementing Grover oracles
for quantum key search on AES and LowMC,” 2019.

18. R. Anand, S. Maitra, A. Maitra, C. S. Mukherjee, and S. Mukhopadhyay, “Resource
estimation of Grovers-kind quantum cryptanalysis against FSR based symmetric
ciphers.” Cryptology ePrint Archive, Report 2020/1438, 2020. https://ia.cr/

2020/1438.
19. S. Cuccaro, T. Draper, S. Kutin, and D. Moulton, “A new quantum ripple-carry

addition circuit,” 11 2004.
20. NIST., “Submission requirements and evaluation criteria for the post-

quantum cryptography standardization process,” 2016. https://csrc.

nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf.
21. D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: an open source software frame-

work for quantum computing,” Quantum, vol. 2, p. 49, 2018.
22. Y. Takahashi, S. Tani, and N. Kunihiro, “Quantum addition circuits and un-

bounded fan-out,” 2009.
23. M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-middle algo-

rithm for fast synthesis of depth-optimal quantum circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, p. 818–830,
Jun 2013.

24. N. Wiebe and M. Roetteler, “Quantum arithmetic and numerical analysis using
repeat-until-success circuits,” 2014.

25. M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on quantum search-
ing,” Fortschritte der Physik, vol. 46, p. 493–505, Jun 1998.

