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Abstract—Authentication constitutes the foundation and ver-
tebrae of all security properties. It is the procedure in which
communicating parties prove their identities to each other, and
generally establish and derive secret keys to enforce other
services, such as confidentiality, data integrity, non-repudiation,
and availability. PUFs (Physical Unclonable Functions) has been
the subject of many subsequent publications on lightweight, low-
cost, and secure-by-design authentication protocols. This has
turned our attention to investigate the most recent PUF-based
authentication protocols for IoT. In [1], we reviewed the security
of some PUF-based authentication protocols that were proposed
between 2016 and October 2020, and drew important security
lessons to consider by future authentication protocol designers. In
this paper, we extend our previous work by reviewing the security
of fifteen PUF-based authentication protocols that were recently
published during the past two years (2020 and 2021). We first
provide the necessary background on PUFs and how they are
used for authentication. Then, we analyze the security of these
authentication protocols to identify and report common security
issues and design flaws. We draw lessons and recommendations
for future authentication protocol designers.

Index Terms—Physical Unclonable Functions (PUFs), PUF-
based authentication, PUF security, and PUF attacks.

I. INTRODUCTION

Authentication is the procedure in which communicating
parties prove their identities to each other, and generally
establish and derive secret keys to enforce other services,
such as confidentiality, data integrity, non-repudiation, and
availability. There has been a remarkable attraction and conver-
gence from the research community and the industry to adopt
PUFs (Physical Unclonable Functions) as a prominent physical
security technology. Important industrial cores, such as NXP,
Microsemi, Intel, and Xilinx, have already implemented the
technology to develop secure integrated circuits [25]–[28].
In the meantime, researchers have turned their attention to
PUF technology to develop lightweight and secure-by-design
authentication protocols for IoT applications.

PUFs are physical one-way functions constructed from the
unique nanoscopic-structure of physical objects (e.g., inte-
grated circuits, crystals, magnets, lens, solar cells, or papers)
and their reaction to random events. This intrinsic uniqueness
in the structure and reaction is due to the idiosyncrasies in the
manufacturing process of the objects. It allows not only the
unique identification of an object but also its authentication.
Additionally, it is assumed to be impossible to clone the

PUF of an object (and hence the object itself), which can
be perceived as a security-by-design that will prevent any
possible impersonation and cloning attacks. Therefore, PUFs
are considered as a novel, reliable, and prominent physical
security technology to develop secure integrated circuits and
lightweight authentication protocols for IoT applications.

The rapid convergence of adopting PUFs for authentication
by the research community has resulted in many subsequent
research work on lightweight, low-cost, and secure-by-design
authentication protocols. This has turned our attention to
devote this research work for investigating the security of the
most recent PUF-based authentication protocols.

In this paper, we analyze the security of recent PUF-based
authentication protocols that were published during the past
two years (2020 and 2021). We first provide the necessary
background on PUFs, their types, and related attacks, as
well as discuss how PUFs are used for authentication. Then,
we analyze the security of existing PUF-based authentication
protocols to identify possible attacks. Based on the identified
attacks, we discuss possible security lessons to be considered
by future authentication protocol designers. This would con-
stitute a complementary work for our previous contribution
in [1] where we analyzed the security of 15 PUF-based
authentication protocols that were published between 2016 and
2020, and drawn security lessons for future designs.

To summarize, the contributions of this paper are twofold:
(i) We analyze the security of some PUF-based authentication
protocols that were published between the year of 2020 and
2021, and identify possible attacks. (ii) We draw lessons from
the design flaws of the existing protocols and provide security
recommendations for future authentication protocol designers.

The remainder of the paper is organized as follows. In
Section II, we provide an overview of PUFs, their types, and
their related attacks, as well as discuss how PUFs are used for
authentication. This would provide the necessary background
needed for the remaining part of the paper. Section III reviews
the design and the security of PUF-based authentication pro-
tocols that were published during the past two years (2020
and 2021). We draw lessons and recommendations for future
PUF-based authentication protocol development. Some of the
drawn lessons are complementary to the ones provided in [1].
In Section IV, we summarize and discuss the lessons learned.
We conclude the paper in Section V.



II. PUFS (PHYSICAL UNCLONABLE FUNCTIONS)

A. PUFs Overview

PUFs (Physical Unclonable Functions), also known as
POWFs (Physical One-Way Functions) [2] or PRFs (Physi-
cal Random Functions) [3], are physical one-way functions
constructed from the unique nanoscopic-structure of physical
objects (e.g., integrated circuits, crystals, magnets, lens, solar
cells, or papers) and their reaction to random events. In fact,
when a PUF is excited with a random event, called stimulus,
the function returns a unique, unpredictable, and reproducible
output. This unique output represents the actual fingerprint of a
particular PUF and allows its distinction among others. In the
field of information technology security (ITS), the stimulus
is known as the challenge, whereas the output is known as
the response. The set of all possible challenges and their
corresponding responses is often referred to as the CRPs,
which stands for Challenge-Response Pairs.

In the electronics and nanotechnology disciplines, PUFs1

are constructed from the idiosyncrasies in the manufacturing
process of semiconductors [4]–[6] (e.g., inherent delay char-
acteristics of wires and transistors [7]) to assign uniquely dis-
tinct fingerprints to semiconductor pieces [8]. Thus, physical
cloning of a piece of semiconductor becomes very difficult.
This for example, allows distinguishing a genuine integrated
circuit from a counterfeit one (including exact copies pro-
duced during the same manufacturing process [8]). Nowadays,
PUFs are considered as a low-cost and a more sophisticated
integrated-circuits-tagging technology than hard-printed serial
numbers, bar codes, and holograms, which are readily repro-
ducible and consequently not secure.

When the cardinality of the set of challenge and response
pairs (CRPs) is large, the function Ψ(·) is called a strong PUF.
Otherwise, the PUF is called a weak PUF2 [9]. Additionally,
by increasing the size of the CRPs set, the size of the PUF
circuit increases as well. Hence, there exists a proportional
relationship between the size of the circuit implementing the
PUF and the cardinality of its CRPs set (strength of the
PUF). Principally, if the number of CRPs of a given PUF
increases exponentially with the size of the PUF circuit, the
function is considered strong, whereas if it scales in a linear or
polynomial manner, the function is then considered weak [10].
In general, the output of a PUF is subject to noise, which may
slightly change the output value for a given challenge. Thus,
to generate the correct output for a given input in the presence
of noise, a fuzzy extractor is commonly used [11], [12].

For the past twenty years, PUFs have attracted the attention
of a large number of researchers. They are recognized as
reliable and promising security tools for implementing future
security solutions. The attraction is due to the following assets:
(1) PUFs have a relatively lower hardware overhead compared
to other hardware solutions. (2) PUFs provide higher physical

1When a PUF is constructed from a semiconductor, which is generally
made of Silicon, the PUF is categorized as a Silicon-PUF (SPUF).

2Strong PUFs, such as arbiter-PUF, are generally used for device authenti-
cation, whereas weak PUFs are mainly used in key generation.

security as they can be used to extract secret keys (volatile-
secret keys) from a physical system instead of generating them
using software and storing the keys in non-volatile memories
(e.g., ROM, fuses, or EEPROM) that need to be secured
as well (which is difficult and expensive). This makes them
resilient to known physical invasive attacks. (3) They can be
used as a hardware random number generators to generate
purely random numbers. (4) PUFs do not require special
manufacturing processes and treatments (programming and
testing steps), which makes them low-cost security solutions.
(5) PUFs are practically unclonable. They can be used to
design and manufacture low-cost tamper-resistant circuits and
devices. (6) PUFs can be used for key agreement between two
resource-constrained devices that have never met with each
other (no prior key sharing). (7) PUFs are multidisciplinary
technologies, where researchers from different fields are con-
tributing to their development.

B. Types of PUFs

Since the emergence of PUFs, researchers have worked on
designing PUFs by exploiting the physical characteristics of
different materials, including Silicon, crystals, magnets, lens,
solar cells, and papers. This has resulted in a large variety
of PUFs, including but not limited to, delay-based PUFs
(e.g., Arbiter-PUFs [3], ring oscillator-PUFs [13], and glitch-
PUFs [14]), memory-based PUFs (e.g., SRAM-PUFs [15],
DRAM-PUFs [16], SR Latch PUF [17], and Rowhammer-
PUFs [18])3, acoustical-PUFs [19], coating-PUFs [20], optical-
PUFs (e.g., paper-PUFs [21], Compact Disc-PUF [22], and
liquid crystal-PUF [23])4, and magnetic-PUFs [24]. These
PUFs differ from each other in their environmental application,
source of randomness (e.g., semiconductors, lens, crystals,
magnets, or solar cells), excitation mechanisms (e.g., elec-
tronic signals, beam of light or laser, or electromagnetic
waves), or other parameters. Interested readers are referred
to the work of McGrath et al., [10], where a comprehensive
taxonomy of existing PUFs was extensively elaborated.

Despite the existence of various types of PUFs, the Silicon-
PUFs (a.k.a., delay-based PUFs) are the most commonly
researched and adopted in the electronics and nanotechnology
disciplines. This type of PUFs relies on the timing and delay
information retrieved from semiconductors (i.e., electronic
components made of Silicon material). Moreover, similar to
delay-based PUFs, memory-based PUFs are becoming more
and more popular in the research field as well as in the
industrial field. Nowadays, most of the latest secure ICs
adopt SRAM-based PUFs for secure storage. For example, the
NXP company (the semiconductors division of Philips) has
embedded an SRAM-based PUF on its SmartMX2 P60 mi-
crocontroller and LPC54S0xx family of microcontrollers [25].
Also, Microsemi company has adopted SRAM-PUFs on their
SmartFusion2 System-on-Chip FPGA devices [26]. Other

3Delay-based and memory-based PUFs are often classified as electronic
CMOS (Complementary Metal Oxide Semiconductor)-PUFs.

4In some literature, coating-based and optical-based PUFs are often classi-
fied as MEMS (Micro-Electro-Mechanical Systems)-based PUFs.



hardware from various companies have adopted SRAM-PUFs
to implement physical security, such as Coherent Logix Hy-
perX, Intel Altera Stratix 10 FPGA [27], Redpine Signals
WyzBee, and the Xilinx Zynq Ultrascale+ [28]. This attraction
to SRAM-PUFs is due to the fact that this type of PUF
is pervasively embedded within commodity electronics and
hence no additional manufacturing is required. Also, SRAM-
PUFs are considered more resilient to temperature variations
and more compact than many other memory-based PUFs.

It is important to note that despite the type of the PUF
that is being adopted, the reliability5 of PUFs, in general, is
affected by environmental fluctuations, which include tempera-
ture variations, voltage variation, and ambient noise [30]–[34].
In the case of delay-based PUFs (Silicon-PUFs), the delay of
wires and transistors strongly depend on these environmental
fluctuations. This, for instance, could result in generating
two different responses for a given challenge at two differ-
ent instances of times or under two different environmental
conditions. Therefore, to improve the reliability of PUFs (as
well as other properties, e.g., uniqueness), many researchers
have proposed different solutions to guarantee a certain level
of reliability. For example, fuzzy-extractors, error-correcting
codes, and assisting computed helper data are usually applied
to generate correct PUF responses.

C. PUFs for Authentication

One of the substantially explored security applications of
PUFs is the development of on-the-fly and low-cost authen-
tication protocols. These protocols would provide security
for resource-constrained devices without having the devices
to store any credentials on their limited non-volatile mem-
ories. This makes them resilient against physical invasive
attacks [35], [36].

To exploit the advantages of PUFs for integrated circuit au-
thentication in general, and device authentication in particular,
a typical challenge-response-based protocol is adopted [3]. The
protocol consists of two main phases, the registration phase
(a.k.a., enrolment phase) and the verification phase (a.k.a.,
authentication phase). During the registration phase, a device
is enrolled in a database (a trust center) by registering pairs of
challenges and responses (CRPs), generated from the PUF that
is embedded in the device’s circuit. Therefore, each registered
device did will have its proper set of challenge and response
pairs in the database Γid = {(c0, r0), . . . , (cn, rn)}.

The authentication of a registered device did consists of
randomly selecting a pair of registered challenge and response
(c′i, r

′
i)∈ Γid and interrogating the device did by sending the

challenge value c′i and obtaining the corresponding response
r′′i from the device. Once the response r′i is received, it is
compared with the registered response ri in the database. If
both responses are identical (or closely identical), i.e., r′i'r′′i ,
the device did is authenticated, otherwise, it is rejected. In
general, the device is referred to as the prover v, whereas

5The reliability of a PUF is a performance metric that measures its
reproducibility. A reliable PUF produces the same response for a given
challenge at different times and under different environmental conditions [29].

the authenticator party (which could be the trust center or
another device), is referred to as the verifier v. This process
is illustrated in the MSC6 of Fig. 1, where Ψp(·) denotes the
prover’s PUF. We note that for higher security, the challenge-
response pass during the authentication phase can be run
multiple times (i.e., rounds). Moreover, after an authentication
round, the used CRP (ci, ri) is sometimes deleted from the
verifier’s database to prevent replay attacks [37].
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p
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v

∀ci∈{c0, . . . , cn−1} Pick ci
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Figure 1: WPA3-SAE authentication mechanism, where Phase 1 is the SAE-
handshake phase, Phase 2 is the association phase, and Phase 3 is the WPA2-
4-way-handshake. The notation Mx→y indicates a message M sent from x to
y. Also, Ex indicates an element E that is generated by x. For y = Γ, the
destination is the broadcast.

1

Fig. 1: A typical PUF-based authentication protocol using
challenge-response mechanism, where Phase 1 is the regis-
tration phase and Phase 2 is the authentication phase.

Finally, besides low-cost authentication, PUFs are used
in many other applications such as, for the protection of
intellectual property (IP) of hardware components (e.g., smart
cards [38] and FPGA circuits [39]–[42]), software components
(e.g., software IP binding [43] and images [44]), and embed-
ded devices’ firmware integrity [45]. They are also employed
for generating cryptographic keys and random numbers [46]–
[50], and securing memories and processors.

D. Attacks on PUFs

In this subsection, we present some attacks on PUFs.

PUF Invalidation Attack. This attack assumes that the at-
tacker has physical access to a device’s PUF. The attacker
randomly tampers with the PUF circuit in such a way so
that the behavior (i.e., output) of the PUF circuit changes
and behaves as another PUF. For example, the attacker can
spray the PUF circuit with some chemical substances so that
the conductivity of the circuit gets affected. Also, the attacker
can place some electromagnetic devices near the PUF circuit

6MSC (Message Sequence Chart) is a graphical language for the description
of the interaction between different components of a system. This language
is standardized by the ITU (International Telecommunication Union) [59].



so that the PUF’s output gets altered. Therefore, any future
authentication attempt with the device’s PUF will fail as
the PUF has changed. To mitigate this attack, we need to
physically secure the PUF circuit so that it does not get easily
affected by any tampering action or environmental variation.

PUF Spoofing Attack. In this attack, a malicious insider has
access to all the CRPs of another device. This could happen
when the authenticator, generally, the trust center server (a.k.a.,
verifier), is compromised. In this case, the attacker can spoof
the legitimate device and perform successful authentication
with other devices that authenticate the spoofed device using
the same CRPs. This could also occur in the T2T architecture
where devices store CRPs of each other for authentication.

Eavesdropping Attack. An attacker intercepts authentication
transactions that contain the challenge values and their re-
sponse values that are computed by the PUF of a target device.
The attacker then spoofs the device (prover) and responds
correctly to the verifier. The success of this attack relies on
the following two assumptions: (1) The number of possible
challenge-response pairs is too small. (2) The same challenge
is used twice. Such assumptions generally exist on weak PUFs
and certain strong PUFs that are predictable.

Machine-Learning Attack. This attack is also known as
PUF reverse-engineering or PUF modeling attack. In such
an attack, an attacker collects a large number of CRPs used
during an authentication or by interrogating a device’s PUF
with many challenges to obtain their responses. The collected
CRPs are then used to apply machine learning algorithms in
order to produce a software model of the PUF that is capable
of correctly predicting the responses of new challenges. The
efficacy of this type of attack on a given PUF depends on the
number of CRPs to be collected from the PUF and the time
it requires to build the model given the collected CRPs.

Side-Channel Attack. The goal of these attacks is mostly
to gain additional information about the PUF and use that
information to improve machine-learning computation times
(i.e., training times) from exponential to polynomial. For
example, by applying power-based side-channel techniques,
an attacker would aim to determine the amount of current
drawn from the supply voltage during an output computation
(e.g., transition from zero to one of a latch) and hence the
power consumption of the function. Additionally, by applying
timing-based side-channel techniques, an attacker would aim
to learn additional information about the delay of individual
response bits. Nevertheless, this type of attack requires com-
plete physical access to the PUF, which is not always possible.

Replay Attack. This attack is possible if the PUF-based
authentication protocol allows the use of the same challenge
twice and the challenges, as well as their responses, are sent in
plaintext. An attacker can then intercept some challenge values
as well as their corresponding response values to replay them
later on. This would allow the attacker to impersonate the
device whose challenge and response values were intercepted.

CRP disclosure Attack. As many PUF-based authentication
protocols are designed by extending the typical authentication
protocol illustrated in Fig. 1, these protocols are subject to
CRP disclosure. In fact, as the CRPs are stored in plaintext
at the verifier, if the latter is compromised, the stored CRPs
of the registered devices will be revealed. This would allow
attackers to impersonate the PUFs of those devices.

III. SECURITY ANALYSIS OF PUF-BASED
AUTHENTICATION PROTOCOLS

In this section, we analyze the security of some recent PUF-
based authentication protocols. We identify security flaws and
report possible attack scenarios on the reviewed protocols.
This would allow future authentication protocol designers to
learn from the identified flaws; lessons to consider when
designing new PUF-based authentication protocols. Also, we
distinguish two categories of protocols based on the communi-
cation scheme for which each protocol was designed for. The
first category represents protocols that were developed for the
T2M communication scheme, where a resource-constrained
device (e.g., a sensor) and a resourceful device (e.g., desk-
top) securely authenticate each other, whereas the second
category groups protocols that were designed for the T2T
scheme, where two resource-constrained devices authenticate
each other. This classification is based on the corresponding
authors’ claim when implementing the protocols.

When analyzing a particular protocol, we use the notation
adopted by the original author of the protocol. This would help
the reader refer to the original work. Also, for some of the
reviewed protocols, we have used MSC (Message Sequence
Chart) as a standard graphical tool to illustrate the protocol
message flows and security protocol claims [59]. We note that
every object or symbol in an MSC has a proper semantic. For
example, a condition, denoted by a hexagon, is used to express
that the system has entered a certain state (e.g., claimed a
security property). Additionally, when using an MSC, we rely
on the operational semantics of security protocols to express
security properties as claims. Therefore, when a claim is
compromised, the related security property is compromised.
In the operational semantics of security protocols, a claim is
an event where an agent, e.g., an authenticating party, reaches
a particular state in the protocol and assumes that a certain
security property, e.g., key secrecy, is satisfied. If a particular
claim is compromised by an attack, then the concerned agent
would assume that the claim is true, where in reality it is
not the case. In such a scenario, the protocol is considered
compromised and vulnerable to that attack.

TABLE I summarizes the differences between the re-
viewed PUF-based authentication protocols for T2M and T2T
schemes, respectively. The protocols are compared using six
characteristics (Column 1, and 3 to 8): (1) Authentication
scheme indicates the considered architecture to be either a
Thing-to-Thing, in the sense resource-constrained to resource-
constrained device, or a Thing-to-Machine, in the sense
resource-constrained device to a resourceful device architec-
ture. (2) Used PUF shows the type of PUF being used for the



Protocol properties EvaluationScheme Protocol Used
PUF P1 P2 P3 P4 P5 P6 P7 P8

Implementation
platform

Possible attacks
on the protocol

Satamraju et al., [56]
(2020)

Arbiter PUF
RO-PUF 7 3 • 7 3 7 3 7

Nexys A7 board
Artix-7 FPGA &
Raspberry Pi 3B+

Spoofing attacks
DoS attack
CRP disclosure

T2M Zerrouki et al., [57]
(2021) Arbiter PUF 7 3 • 7 7 7 7 7 Simulation

Spoofing attack
CRP disclosure
MITM attack
DoS attack
Modeling attack

Narwal et al., [51]
(2020) Unspecified 7 7 • 7 7 3 3 7 —

Spoofing attack
Desing bug
Key cracking

Ghafi et al., [52]
(2020) Unspecified 3 7 3 7 7 3 3 7 Simulation Spoofing attack

DoS attack

Zheng et al., [58]
(2021) Unspecified 7 3 • 7 3 3 7 7 —

Spoofing attack
CRP disclosure
DoS attack

Yoon et al., [53]
(2020) Unspecified 7 3 • 7 3 3 7 7 — Spoofing attack

DoS attack

T2T Quershi et al., [54]
(2021) 3-1 DPUF 7 3 3 7 3 3 3 3

Xilinx Zynq-7000
zc706 board

Spoofing attack
Key cracking
CRP disclosure

Tan et al., [55]
(2021) RO-PUF 3 3 • 7 7 3 3 7

Xilinx Zynq-7000
zc706 board &

OMNET++

Spoofing attack
DoS attack
CRP disclosure
Modeling attack

TABLE I: This table summaries the differences between the reviewed PUF-based authentication protocols for T2M and T2T
authentication schemes. We have entitled some columns with a numbered letter Pi, where P1: Mutual authentication using
PUFs, P2: Lightweight (no asymmetric cryptography and no preshared keys), P3: Scalability, P4: Smart, P5: Key establishment
(for message authenticity, confidentiality, and integrity), P6: Security evaluation, P7: Performance evaluation, P8: PUF-circuit
size evaluation. The symbol 3, 7, and •, indicate Yes, No, and Possible, respectively.

implementation of the authentication protocol referred in Col-
umn 2. (3) Properties P1, P2, P3, P4, and P5 mean whether the
referred protocol uses PUFs on both authenticating parties, is
lightweight from a cryptographic perspective, scalable, smart,
i.e., resilient to race-condition attacks [60], [61], [63], and
allows the establishment of cryptographic keys, respectively.
(4) Implementation platform specifies the type of hardware
used to implement the PUF and the communicating parties.
(5) Evaluation specifies whether the protocols were evaluated
in terms of security P6, performance P7, and circuit size P8.
(6) Possible attacks indicates the different attacks that can be
generated on the referred protocol as we demonstrate below.

A. PUF Yoking-based Authentication Protocol

In [51], Narwal et al., proposed a PUF-based authentication
protocol for wearable devices. The protocol relies on Yoking-
proof and a cloud server to allow wearable devices get
mutually authenticated to a user’s smartphone. The authenti-
cation protocol was empirically evaluated and its security was
discussed. Nevertheless, we have analyzed the protocol and
found the following security issues:

Bug. The protocol has a serious design issue that causes a
self-denial of service. In fact, after the server receive its first
authentication message, it uses the secret SWDi

and its proper
PUF function to compute the secrets S]

WDi
and S]]

WDi
. Then,

it uses these secretes to compute the parameters AWDi , BWDi ,
CWDi , and DWDi , to be sent to the wearable device. At this

stage, the value of S]]
WDi

that the wearable device holds is
different from the once that was computed by the server using
its PUF. Therefore, any future authentication attempt would
automatically fail and the protocol will be stuck forever.

Spoofing Attack. Regardless the design issue pointed out
above, and from an insider viewpoint, the protocol is vul-
nerable to spoofing attack. In fact, the mutual authentication
of a wearable device and the server relies on proving the
knowledge of two keys: (i) the shared secret SWDi

and
(ii) the shared session key sKey. The first key allows a
particular wearable device to prove its identity as this key
is device-specific. It also allows the device to verify that it
is communicating with the server. The second key seems to
be a session key that is shared among the server and all
connected wearable devices. It allows a device to prove that
a message has not been tampered and its source is authentic.
In this case, since all the connected wearable devices know
the session key sKey, a malicious wearable device, WDj

would just need to discover the secret key SWDi
of the

wearable device WDi to be able to impersonate it. For that
end, the malicious device intercepts an authentication session
that involves the wearable device WDi (e.g., let us assume
WDk authenticating WDi). From the first message that the
server sends to device WDi, the attacker computes the new
value of S]]

WDi
= CWDi

⊕DWDj
⊕α that will be used in

the next authentication session. Also, the value of S]
WDi

is



updated to S]]
WDi

, which would make S]]
WDi

==S]
WDi

. Then,
during a second authentication session, the value of the secret
SWDi is set to S]]

WDi
, which is known by the attacker. Thus,

at the end of the second authentication session, the attacker
would know the values of SWDi

, S]
WDi

, and S]]
WDi

, that will be
used during the next authentication session. Now the attacker
needs to determine the pseudorandom identifier of the target
wearable device (i.e., PRIDi). The authors did not mention
whether this information is kept secret or available to the
public. If the information is not secret, then the attacker has
all the required parameters to impersonate another wearable
device. Otherwise, if the pseudorandom identifier is a secret
information, the attacker may try to brute-force it offline using
the captured value of H(PRIDi ⊕ α). This would be quickly
performed if the identifier is in 16 bits. Furthermore, the
server has access to all the information about all the connected
wearable devices. Therefore, if the server is compromised, or
acting as a malicious insider, it will be able to impersonate
every single connected wearable device.

Key Cracking. In this protocol, the authentication is actually
relying on the secrecy of the session key sKey. This key is
shared among all wearable devices and hence can be used to
compromise the service of non-repudiation (due to its sym-
metric nature). From an outsider perspective, an attacker can
intercept messages exchanged during authentication sessions
and compute the keys SWDi

, S]
WDi

, and S]]
WDi

that will be
used during the next authentication session as we have pointed
out above. What the attacker is missing is the secret key
sKey, which is not transmitted during authentication sessions.
The attacker will have to brute-force the key to crack it. The
current size of the key is 64 bits, and there is no key updating
procedure in the current design of the protocol. This would
increase the chance for an attacker to brute-force the key.

Lessons

1. We have seen, in this authentication protocol, how
a malicious insider took advantage of a legitimate
authentication session and used the learned informa-
tion to impersonate another device. This issue of not
considering insider threats has become common design
flaw that puts the security of authentication protocols
into question. A manual analysis of insider threats is
highly recommended since most automated protocol
verifiers cannot detect such attack scenarios.

2. The authentication should not be realized through
the use of one single long-term shared key. This
constitute a single point of failure for the system. In
this protocol, the authentication is strongly relying on
the secrecy of the session key sKey. This key is known
by all enrolled devices, which voids the service of non-
repudiation. If this key is revealed to an outsider, the
protocol is compromised as discussed above.

B. Distributed PUF-based Mutual Authentication Protocol

Ghafi et al., [52] proposed a distributed PUF-based mu-
tual authentication protocol with self-correction. The protocol
allows two IoT devices to perform mutual authentication
using PUFs, asymmetric cryptography, and smart contracts
in blockchain. The protocol was simulated and its response
time was evaluated. The protocol claims resilience to many
attacks, including spoofing, man-in-the-middle, replay, and
DoS attacks.

In this authentication protocol, each device deploys a smart
contract in the blockchain where one CRP for the device
is stored. When two devices need to get authenticated, each
device proves its identity by successfully performing an au-
thentication with the related smart contract (on-chain phase)
and by successfully encrypting a nonce using a key that is
sent to the other party only in the case where the previous
authentication with the smart contract succeeds (off-chain
phase). For instance, if a device di wants prove its identity to
another device dj , device di needs first to authenticate itself
to the related smart contract and then sends back an encrypted
nonce that device dj previously created. If the authentication
with the smart contract succeeded, the smart contract sends to
device dj the key to decrypt the nonce that di has sent. If the
result is the same as the initial nonce that dj had created, then
dj authenticates di. Then, in order for device dj to authenticate
device di, device dj would execute the same steps that device
di executed to establish a mutual authentication.

We have analyzed the protocol and found the feasibility of
the following attacks:

DoS Attack. The protocol uses a countermeasure that blocks
the devices from performing any future authentication if
the device fails three successive authentication attempts. An
attacker may exploit this countermeasure to cause a denial
of service on the devices by impersonating the latter and in-
tentionally causing multiple failed authentications. This would
block legitimate devices from using the system and performing
authentication. Moreover, removing this countermeasure and
allowing multiple authentication failures would create another
security flaw. The protocol would be vulnerable to denial of
service through desynchronization. The protocol is designed
in such a way so that at each successful authentication, the
device’s challenge and response pair at the smart contract
is updated so that a given CRP is used only once. An
attacker may try to brute-force the response of a challenge
by attempting multiple authentication trials until it hits the
correct response. This would update the smart contract with
a newer CRP and discard the current one. In this case, the
legitimate device would fail all future authentication attempts
as it will be using the old CRP. Additionally, if an attacker
manages to intercept the new CRP (assuming no encryption
is used during the on-chain phase), it will be able to cause a
desynchronization by performing a fake authentication, which
would update the CRP that is stored on the smart contract with
an arbitrary “fake” one.



Spoofing Attack. Storing one single CRP per device at the
server and updating the CRP after each successful authenti-
cation is a type of design in which parts of the enrolment
phase are inserted within the authentication phase. Therefore,
if an attacker manages to determine the current CRP, it can
impersonate the concerned device, run a successful authenti-
cation, and update the CRP with arbitrary values (to be used
in the next authentication session). In this case, the attacker
guarantees that it will probably succeed the next authentication
challenge as it knows the PUF response to be used. This would
work unless the legitimate device starts an authentication and
fails three times. After three failures, both the attacker and the
legitimate device are locked out by the system.

Lessons

3. In this protocol, the authentication is locked after
three failures. It is important to note that setting up
a countermeasure that can be used against the system
itself is a major vulnerability. Authentication protocol
designers should evaluate the inverse consequences of
a countermeasure.

4. Similar to this protocol, many other protocol up-
date the stored CRP upon a successful authentication.
However, this can be exploited by an attacker through
probing to update the CRP with an arbitrary value,
which would fail any future legitimate authentication.

C. PUF-based Device-to-Device Authentication Protocol

In [53], Yoon et al., proposed a PUF-based mutual authenti-
cation protocol for IoT. The protocol allows two IoT devices to
authenticate each other through a central server. The servers
stores one CRP per device. The CRP is updated to a new
CRP after each successful authentication. Also, the protocol
allows the establishment of a session key to provide secrecy
after the authentication (viz., Fig. 2). The authors claimed that
the protocol is resilient to information leakage, replay attacks,
man-in-the-middle, cloning attacks, side channel attacks, and
machine learning attacks. However, we have discovered that
the authentication protocol is vulnerable to spoofing attack as
well as to a denial of service attack.

Spoofing Attack. In this attack scenario, we assume that one of
the devices is compromised (malicious insider). The malicious
device, let us say device B, starts the attack by performing
a legitimate authentication with a target device, let us say
device A. During this authentication, the attacker (device
B) establishes the shared session key KS = H(NA ⊕ NS).
Then, it uses this key to decrypt the last message that device
A sends, which contains the value of RA2

. Also, because
device B knows the value of NS , it computes the value of
CA2

= H(CA1
⊕NS). At this point, the attacker has learned

the new CRP of device A, i.e., (CA2 , RA2). This new CRP

can be used to perform a successful authentication on behalf
of device A (successful spoofing).

Denial of Service. Once the attacker learns the new CRP of
a given target device and then performs a fake successful
authentication, the CRP of the target device gets updated at
the server. In this case, any future authentication attempt from
device A will certainly fail as the CRP that device A uses are
not the same as the one the server uses (desynchronization).

Other Attacks. Another issue that we have noticed with this
protocol is that if an attacker starts a fake authentication,
the latter will be dropped after the protocol runs 21 steps
out of 26. This design issue may be exploited to deplete
devices’ resources (e.g., battery) by running fake and spoofed
authentication attempts. Moreover, since the authentication of
the second device (e.g., Device B in Fig. 2) by the first device
(i.e., Device A) is relies on device B successfully relaying an
encrypted message from the server to device A, an attacker
can impersonate device B and compromise the authentication
claim at device A. This attacker is illustrated in the MSC
of Fig. 3. Last but not least, as the server knows the one
single CRP of each device, a malicious insider controlling the
server would be able to impersonate all the devices to perform
successful authentications. This poses a serious security issue
in the authentication protocol.

Lessons

5. In this protocol, a malicious insider can take ad-
vantage of a legitimate authentication session and use
the learned information to impersonate another device.
This security flaw exists due to the negligence of
insider threats during the security evaluation of the
authentication protocol.

6. Similar to many protocols, this protocol updates
the stored CRP upon a successful authentication. This
can be exploited by an attacker through probing to
update the CRP with an arbitrary value and cause
authentication failures when the legitimate device tries
authenticating itself (Similar to Lesson 4).

D. PUF-RAKE-based Authentication protocol
Quershi et al., [54] proposed PUF-RAKE, a PUF-based

lightweight authentication protocol with key establishment.
The protocol allows devices to be authenticated to a server and
exchange valid public keys between two devices to establish a
shared secret. It uses random number generators and masking
functions to obfuscate the exchanged parameters during the
authentication. The protocol was implemented on a Xilinx
Zynq-7000 zc706 evaluation board, and the security of the
protocol was discussed. The protocol is resilient to imper-
sonation attacks (from an outsider perspective), man-in-the-
middle, and information leakage. Nevertheless, the analysis
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Fig. 2: Device-to-Device PUF-based Authentication Protocol by Yoon et al., [53] .

of this authentication protocol shows that the security of the
system may be compromised using the following attacks:

Key Cracking. The security of the protocol relies on the secrecy
of a challenge, denoted as Cs. This challenge is assumed to

be stored in a secure NVM and is used to derive a secret key
Ks. This key is employed to decrypt devices’ entries stored in
the database. Since an assumption is not a fact, it may happen
that, within a given implementation, the secret challenge may
be revealed to the attacker. In that case, the security of the
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Fig. 3: Compromising the Authentication Claim of Yoon et al.,’s Authentication Protocol.

system may be compromised as the attacker can impersonate
every enrolled device, including the server. Furthermore, the
secret challenge Cs needs to be updated at some point as
per cryptographic key security requirements; otherwise, an
attacker can brute-force the key and manage to decrypt the
entries of the database using the IDs of the concerned devices
as a concrete indicator.

Spoofing Attack. In this protocol, the server is attributed a high-
level of trust. However, if the server acts as a malicious insider
(from an insider perspective), the latter can impersonate any
device in the system. In fact, as it holds the secret key for
decrypting devices’ entries from the database, it can access
all information that is required to impersonate a given device
and it can disclose the CRPs of the enrolled devices as well.

Lessons

7. The long-term security of an authentication protocol
should not be relying on the secrecy of one single
parameter. That would constitute a single-point of
failure. Indeed, if the secret is revealed to the attacker,
the security of the entire system may get compromised.
Security protocol designers should study the depen-
dency of the used secrete and the scenario where the
secrets are revealed (Similar to Lesson 2).

8. Neglecting insider threats would result in the proto-
col becoming vulnerable to insider attacks, as well as,
to CRP disclosure through physical invasion. Whatever
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Fig. 4: Authentication Protocol for Outer Nodes by Tan al. [55].

the level of trust that is assigned to the verifier, the
latter should not be able to reconstruct the CRPs of
any other device (Similar to Lesson 1 and 5).

E. BAN PUF-based Authentication protocol

In [55], Tan et al., proposed a PUF-based authentication
protocol for wireless body area networks (WBAN) for single-
hop hierarchical topologies. The protocol allows sensor nodes
to be authenticated to a central sink node and with the
help of a cloud-based trusted third party. Depending on the
distance that separates the sensor nodes from the sink node,
the protocol defines two authentication scenarios: the inlayer
nodes authentication, where sensor nodes directly communi-
cate with the sink node, and the outer nodes authentication,
where some sensor nodes perform authentication with the
sink node through intermediary neighbouring sensor nodes
for energy-saving purposes. The protocol was implemented
on a Xilinx Zynq-7000 zc706 board and its performance
was evaluated. Also, the security of the protocol was briefly
discussed. Notwithstanding, we have found the feasibility of
the following attacks on the authentication protocol:

Spoofing Attacks. The inlayer authentication (i.e., sensor nodes
authenticating to the sink node) consists of comparing the PUF
response of a sensor node with the PUF response that is stored
in the cloud and retrieved by the sink node. We observe that
there is actually no real authentication. The protocol can be
compromised by intercepting and tampering with messages
during an authentication run. For example, during the authenti-
cation of a sensor node to a sink node, messages are exchanged
in plaintext and the authentication information that is used to
prove ones identity can easily be disclosed and reused (it is
not protected). Technically, there is no authentication between
the sink node and the cloud TTP server. The TTP just checks

whether the ID of the sink is valid or not. In this case, and since
the ID of the sink is not a secret information (as it is being
broadcasted by the sink node), an attacker can impersonate
the sink node and send fake authentication requests to the
server. Furthermore, sensor nodes are subject to impersonation
(spoofing attacks). Indeed, sensor nodes are required to send
the xor of a challenge and its corresponding response to the
sink node for the authentication. This xor result is similar to
the value of CA that the cloud server sends to the sink node in
the beginning of the authentication. Hence, by intercepting the
parameter CA, an attacker can easily responds to the sink node
by impersonating the concerned sensor node, i.e., sensor node
A. Moreover, from an application perspective, sensors are just
components of the body network that collect measures within
the body environment and transfer the collected information
to the outside word, i.e., cloud, through the sink node. Since
the sink node has access to all CRPs of the enrolled sensor
nodes, then if it acts as a malicious insider, it will be able
to impersonate every single sensor node and upload fake and
erroneous information onto the could. Last but not least, with
respect to the outer sensor nodes authentication, which relies
on proving the knowledge of a shared-key between sensor
nodes, we observe that some of the messages (viz., Messages
5, 6, and 7 in Fig 4) are not authenticated, i.e., their source
cannot be verified. Hence, spoofing attacks are possible in
this authentication phase. For instance, Message 6 (feedback
message to sink) is not authenticated, which allows an attacker
to impersonate sensor node B and send a fake feedback
message to the sink.

DoS Attack. As a consequence of each successful inlayer
authentication, the server removes the used CRP from the
database (as per the protocol). Hence, sending multiple fake
authentication requests to the server would delete a large
number of CRPs of a given sensor node (or all enrolled
sensor nodes) and cause a denial of service to the system.



Another scenario to cause denial of service would be to send
fake reject-messages (Message 7 in the outer sensor node
authentication) to abort the authentication. This is possible as
Message 7 cannot be authenticated.

CRP Disclosure. As a consequence of a valid request from the
sink node to the cloud server, the server sends back a selection
signal S, the xor of a challenge C and its corresponding
response R, denoted as CA = C⊕R, and the response R. The
authors claimed that by sending the xor of the challenge and
response instead of sending the challenge in plaintext would
prevent an attacker from directly learning the real challenge.
However, because the corresponding response R is sent along
with the xor result, i.e., CA, an attacker will easily retrieve
back the challenge C by xoring CA with the response R.
Also, during the outer node authentication phase, a sensor,
let us say B, sends a parameter MidNum (Message 4)
to another sensor, let us say A, which uses it to obfuscate
the PUF response RA = Ψ(CA) using xor, i.e., sensor A
computes MidNum1 = ΨA(CA). Sensor A sends the value
of MidNum1 to sensor B. However, since the value of
MidNum was sent by sensor B encrypted, an attacker can
use Message 4 and 5 to infer the value of the PUF’s response.
Additionally, the cloud server is considered a Trusted Third
Party (TTP) and stores all CRPs in plaintext. If the server
is compromised or acts as a malicious insider, the server can
impersonate all enrolled sensor nodes, including the sink node.

Modeling Attack. The communication between the sensors and
the sink node are not encrypted. This results in the challenges
and their corresponding responses being transmitted in plain-
text. An attacker may intercept a large number of CRPs to
build a PFU model for the sensor node’s PUF.

Lessons

9. When provers’ CRPs are used only once (deleted
after each authentication) and replaced by a new one
following a successfully authentication, there is a risk
of desynchronization that an attacker may cause if
there is not limit in the number of failed authentication
attempt. An attack may brute-force the authentication
and succeed in replacing the next used CRP causing a
DoS. In the other hand, the protocol designer should
avoid setting up any harsh countermeasure that may
be used against the system to cause a DoS.

10. Security protocol designer should carefully handle
the use of the XOR operator. Although, this bitwise op-
erator provides properties that allow the implementa-
tion of secure and lightweight cryptographic operation,
it can however, destroy the security of the protocol if it
is used incorrectly. In this protocol, the XOR operator
was not used properly, which resulted in the possibility
to generate the CRP disclosure attack.

F. IoT PUF-based Authentication Protocol

In [56], Satamraju et al., proposed a PUF-based mutual au-
thentication protocol for IoT. The protocol allows IoT devices
to securely connect to a trusted server to access some services
over the cloud (e.g., upload device sensors’ collected data).
With respect to protocol implementation, Raspberry Pis model
B+ were used as IoT devices and a Nexus A7 board (with
Artix-7 FPGA) was used to implement a hybrid PUF circuit
which consists of a combination of an arbiter PUF with a
ring-oscillator PUF. The reliability and uniqueness of the PUF
was evaluated within an ambient temperature. However, the
security of the protocol was not discussed. We have found
serious security issues with this protocol:

Spoofing Attack. The authors claimed that the protocol pro-
vides mutual authentication. We have analyzed the protocol
and realized that the protocol does not provide any authenti-
cation at all. It merely aim to derive a shared key without any
prior authentication (as per Fig. 6 in [56]). Indeed, the protocol
starts by having the device sending its ID to the server, which
uses the ID to randomly retrieve one CRP from a database
and then sends back a challenge and the helper data for that
CRP to the device. The server generates an ephemeral key pair
and sends the public key to the device. The device computes
the PUF response, using the challenge and the helper data,
and then computes a shared secret by multiplying the PUF
response with the received public key. The result is fed to
a key derivation function to output a shared key. The server
perform the same operations to compute the same shared key.
At the end, neither the server nor the device proved to the
other one its identity. Therefore, in this protocol, IoT devices
are subject to impersonation.

DoS Attack. As there is no way for a device to prove its identity
to the server, and attacker can impersonate a device and send
fake nonsense data to the server, which would be decrypted
to a random content and stored over the cloud.

CRP Disclosure. Last but not least, the protocol relies on a
trusted authentication server that stores devices’ CRPs in a
secure database. Therefore, in the case where the servers acts
as a malicious insider, it can disclose the CRPs of the enrolled
devices. It can also impersonate the enrolled devices.

Lessons

11. Authentication cannot be established by having
a device prove that it knows its registered ID that
is being sent in plaintext and can be intercepted by
attackers.

12. Since the trusted server stores all devices’ CRPs,
the protocol becomes vulnerable to insider attacks, as
well as, to CRP disclosure through physical invasion.
Whatever the level of trust that is assigned to the
verifier, the latter should not be able to reconstruct
the CRPs of any other device.



G. Arbiter PUF-based Authentication Protocol

Zerrouki et al., [57] proposed a low-cost Arbiter PUF-
based authentication protocol. The protocol allows a resource-
constrained device to be authenticated to a server using its
embedded PUF. It uses a fuzzy extractor to correct PUF
responses from noises and provide higher PUF reliability. The
protocol was simulated to demonstrate its good performance.
However, the security of the protocol was not discussed. We
have analyzed the security of the protocol and found some
security design vulnerabilities. In the following paragraphs,
we discuss some of feasible attacks:

Modeling Attacks. The protocol is vulnerable to machine
learning attacks. Due to the fact that the protocol does not
provide mutual authentication (only the devices proves their
identity to the prover–“server”), an attacker would be able
to impersonate the prover. In this case, the attacker would
generate challenges and obtain plaintext responses (probing),
as per the protocol, to constructs the device’s CRPs. The
current version of the protocol has a maximum of 65,536
possible CRPs since the challenges are expressed in 16 bits.
After collecting a large number of CRPs, a PUF model of the
device’s PUF can be constructed.

Spoofing Attack. After collecting all 65,536 possible CRPs
from the previous attack, the attacker impersonates the con-
cerned device and realizes successful authentication attempts.

MITM Attack. As the protocol does not provide mutual au-
thentication, an attacker can mount a middleman attack. The
attacker impersonates the device and initiates an authentication
attempt. When it receives the challenge, it forwards it to
the device as the prover (server) to obtain the corresponding
PUF response. The attacker then provides the prover with the
received PUF response and passes the authentication.

DoS Attack. In this protocol, each CRP is used only once to
prevent replay attacks. However, the current implementation
of the protocol suffers from a design issue due to the fact
of the absence of a CRP updating procedure. Indeed, for
each enrolled device, the database stores a certain and finite
number of CRPs (i.e., H(Kj) information), let us say n ≥ 1
CRPs. Since after each successful authentication the used CRP
is deleted from the database, there will be a maximum of
n-possible authentications. After that, the device cannot be
authenticated as there will be no CRP in the database for
that device. This can be exploited by the attacker to cause
a denial of service attack. Factually, if the attacker manage to
build the corresponding PUF model, it can run multiple fake
and successful authentication attempts and cause the server to
delete the CRPs. After that, if the legitimate device requests
an authentication to the server, it will be denied.

Lessons

13. The challenges and their corresponding responses
should not be exchanged in plaintext. Otherwise, at-
tackers may collect a large number of CRPs and build

a precise model of the used PUF.

14. The size of the challenges and the responses should
be large enough to widen the possibility interval.
Otherwise, brute-force attacks would be possible. In
this protocol, there are only 65,536 possible CRPs.

15. When an authentication protocol does not provide
mutual authentication, protocol designers should ver-
ify whether middleman attacks are possible. The ex-
changed parameters should be used in a way where the
involvement of a third party during an authentication
can be detected by the legitimate parties.

16. Many PUF-based authentication protocols adopt
the design of onetime CRP, where a given CRP at
the verifier is deleted after successful authentication.
A CRP updating procedure should be implemented
to guarantee that there will always be some CRPs
available to use. Otherwise, the CRPs will run out and
the protocol stops (Similar to Lesson 4).

H. Secure PUF-based Authentication Protocol

Zheng et al., [58] proposed a secure mutual PUF-based
authentication and key exchange protocol for IoT. The protocol
allows resource-constrained devices to be authenticated using
PUF technology and without having to locally store a large
number of CRPs. It also allows the devices to derive a shared
session key to establish a secure communication. The security
of the protocol was evaluated using ProVerif and was proved to
enforce secrecy and mutual authentication, and be resilient to
replay and man-in-the-middle attacks. Unfortunately, we have
found that the protocol is vulnerable to the following attacks:

CRP Disclosure. The server stores the CRPs of the devices
in plaintext in a database. If the server is compromised, the
CRPs can be disclosed. Furthermore, in the current design
of the protocol, the shared session key that two authenticated
devices establish at the end of an authentication session is
known by the server (it is P2A and P2B). Hence, if the server is
compromised (or acts maliciously), it can decrypt and read the
encrypted and exchanged messages between two authenticated
devices. The server may also inject fake and erroneous data
to one of the devices and cause inconsistencies.

Message Corruption. The current design of the authentication
protocol allows two resource-constrained devices to be authen-
ticated to each other through a central server. Nevertheless,
the communication between the devices and the server is
not authenticated. The devices have no procedure to verify
that they are communicating with the authentic server and
not with a man-in-the-middle. Therefore, the devices cannot
very whether the messages that they receive from the server
are authentic and have not been tampered with during the
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Fig. 5: Secure PUF-based Authentication Protocol by Zheng et al., [58].

transmission. This may cause a denial of service to the devices
due to failure in the authentication.

Spoofing Attacks. As the server has access to the CRPs,
then if the server acts as a malicious insider, the server

would be able to impersonate every device that it enrolled in
the system. Moreover, the challenge-response entry that was
used during an authentication run is not removed from the
server. This allows the entry to be reused again. A malicious
device may successfully impersonate another device by taking



advantage of a previously conducted legitimate authentication
and reusing the collected information to generate a spoofing
attack when the same challenge is used again. For example,
assuming that device X establishes a legitimate authentication
with another device B (viz., MSC of Fig. 5, here X=A). At
the end of the authentication, device X would have collected
the parameters hB , P1B , P2B , and nX . The parameter hB
is intercepted when being sent to device B. The parameter
P1B is inferred from intercepting and xoring the parameter
φ1 with P1A. The parameter P2B is computed by xoring
the received φ2 with the locally computed parameter P2A.
Finally, the nonce nX is inferred by xoring the computed mX

with the previously computed parameter P1B . At this stage,
the malicious device X can start a new authentication with
another device, let us say C, on behalf of device B. This
attack scenario is illustrated in the MSC of Fig. 6.

Lessons

17. The CRPs should never be stored in plaintext in
any location, whatever is the trust of that location. This
flaw is usual as many security protocol designers do
not consider the case of insider attacks.

18. It it important to consider insider threats when
evaluating the security of an authentication protocol.
We have seen in this protocol how a malicious insider
took advantage of a legitimate authentication session
and used the learned information to impersonate an-
other device. Security protocol provers, e.g., AVISPA,
Tamarin, and ProVerif, may not detect such attack
scenario and hence the analysis has to be performed
manually (Similar to Lesson 1).

IV. DISCUSSION

In this section, we further discuss the lessons that we
have drawn from analyzing the security of recent PUF-based
authentication protocols in the previous section. We summarize
the major lessons learned from the most common security
design flaws as follows:

CRP Disclosure Flaw. We have observed that many PUF-
based authentication protocols suffer from CRPs disclosure
attacks and PUF impersonation (e.g., attacks on protocols
proposed in [56]–[58]). This issue is due to the incorrect
design of the part of the protocol that is responsible for keeping
the CRPs of registered devices secure when these CRPs are
transmitted or stored. This actually could be an interesting
research direction to design PUF-based authentication proto-
cols with a focus on securing the CRPs of registered devices
from attackers. This would make the protocols resilient to
CRP disclosure and PUF’s impersonation through malicious
insider attacks. Also, we urge that authentication protocol
designers should use security protocol verifiers, such as IS-
ABELLE/HOL, TAMARIN, and PROVERIF, to prove security

properties in their protocols. For example, one can verify the
secrecy of the CRPs to check whether it is possible for an
attacker to reveal the CRPs of other devices.

XOR Operator Misuse Flaw. We have found that various
protocols adopt the logical bitwise exclusive OR operator
(i.e., XOR, denoted by ⊕) as a secure operator to perform
lightweight computations. However, if this operator is used
in an incorrect way, e.g., with easily deducible parameters to
protect a credential, then this operator becomes the key for
revealing other related credentials in a transitive way [55].
In fact, due to the absorption property of XOR, publicly-
known parameters can easily be eliminated from a logical
expression that was computed using XOR, disclosing the
values of other parameters, which could be secret parameters.
Therefore, authentication protocol designers should be really
careful when using this powerful logical operator. Automatic
security protocol verifiers can be used to identify security flaws
resulting from the incorrect usage of the operator.

Single-Point of Security. We have found out that the security
of some PUF-based authentication protocols, e.g., [51] and
[54], rely on the security of a long term secret. This constitutes
a critical security flaw as the disclosure of the secret would
reduce the security of the entire systems into void.

Countermeasure Inverse Consequences Flaw. Some authen-
tication protocols (e.g., [52]) implement a security measure
(countermeasure) to mitigate or slowdown certain unusual and
“suspicious” activities when the latter (activities) are detected.
For example, when a large amount of authentication requests
(or messages, in general) coming from the same source is
detected, the system starts ignoring any new message coming
from that suspicious source. Notwithstanding, an attacker
could take advantage of this countermeasure to attack the
availability of the system by spoofing legitimate devices and
flooding the system with bogus messages. This would make
the system blacklist those legitimate devices and ignore any
message coming from them. Therefore, protocol designers
should evaluate the impact of any countermeasure to check
whether the countermeasure can be used against the system.

CRP-Updating Flaw. We have seen that certain PUF-based
authentication protocols, e.g., [52], [53], [55] and [57], update
the CRP at the verifier upon a successful authentication. This
would constitute a security flaw if there is a possibility to
guess the response and succeed in an authentication attempt.
For example, if the number of failed authentication attempt
is not limited and the size of the CRPs is not that large,
then it is possible to brute-force the response and succeed
in the authentication. This would allow an attacker to update
the CRP at the verifier with an arbitrary value for future
authentications. This however, will prevent the legitimate party
from authenticating to the verifier as the CRP that is uses is
not the same as the one stored at the verifier.

Ignoring Insider Threats. We have observed that a large
number of the reviewed protocols do not consider insider
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Device C Authenticated
B accepts C

P2C = H(P1C),
P̃2B = ψ2 ⊕ P2C ,

Generate nonce nB ,
mB = P2C ⊕ nB ,

QB = Enc(mB , P̃2B),
VB = H(mB).

QB

Compute:
m̃B = Dec(QB , P̃2B),
ṼB = H(m̃B).

ṼB
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Fig. 6: Impersonation Attack on Authentication Protocol by Zheng et al., [58].

threats (e.g., [51], [53], [54] and [58]). This makes these
authentication protocols vulnerable to CRP disclosure attacks
in the case where the “trusted” server is compromised (either
by a remote attacker or by an insider). In the field of Informa-
tion Technology Security, in general, and security protocols, in

particular, considering insider threats is important and critical.
In fact, a disgruntled employee (insider) commonly represents
a higher risk than a black-hat hacker (outsider). Although
outsider threats are more common than insider threats, insider
threats still constitute a serious threat that cannot be ignored.



Therefore, we recommend to PUF-based authentication de-
signers to consider both insider and outsider threats when
developing a secure authentication protocol.

Last but not least, we point out that all reviewed proto-
cols are vulnerable to connection deprivation through race-
condition attacks [60]–[63]. In fact, existing authentication
protocols, in general, and the reviewed authentication proto-
cols, in particular, follow a state machine that transits from one
state to another based on the first unauthenticated message that
is received. That is, if the protocol is in a state of expecting
the reception of a message, then it will transit to another
state upon the reception of that message so that it processes
the message and takes further decisions (e.g., reply or abort).
This sounds totally consistent with respect to standard protocol
behaviors. Notwithstanding, if we consider an attacker model
where it is possible for an attacker to interfere during the
execution of the protocol, then the message that is received
could be a modified copy (e.g., containing incorrect values) of
the expected message. Consequently, if the modified message
is received before the genuine one, then the receiving device
will be misled to fail the execution of the protocol (e.g., wrong
password derivation). This generally ends up on the occurrence
of a denial of service attack, where devices are deprived from
being able to successfully establish authentication and get
connected to a network as it was demonstrated in [61]–[63].

V. CONCLUSION

The service of authentication constitutes the spine of all
security properties. It is the phase where entities prove their
identities to each other and generally establish and derive
cryptographic keys to provide confidentiality, data integrity,
non-repudiation, and availability. Due to the heterogeneity and
the particular security requirements of IoT (Internet of Things),
developing secure, low-cost, and lightweight authentication
protocols has become a serious challenge.

There has been a significant attention from the research
community and the industry to develop lightweight and secure-
by-design authentication protocols for IoT applications by
adopting PUFs (Physical Unclonable Functions) technology.
Many subsequent works have been made to propose secure,
and lightweight PUF-based authentication protocols. This has
noticeably turned our attention to investigate the security of the
most recently published PUF-based authentication protocols.

In this paper, we have started by giving a brief overview of
PUFs, their types, and related attacks. Then, we have reviewed
the security of recent PUF-based authentication protocols.
For each protocol, we have demonstrated the feasibility of
some attacks. We have drawn lessons and proposed recom-
mendations to be considered while developing future PUF-
based authentication protocols so that the future protocols
can be free from the identified security design flaws. Finally,
we have summarized the major lessons by presenting six
common security design flaws: (1) CRP disclosure flaw, (2)
Xor operator misuse flaw, (3) single-point of security, (4) coun-
termeasure inverse consequences flaw, (5) CRP-updating flaw

(6) ignoring insiders threats. Furthermore, we have pointed out
the vulnerability of existing authentication protocols to race
condition-based attacks and future authentication protocols
should implement a countermeasure to make the protocols
smart and resilient against those attacks.

Finally, we have taken advantage of the lessons that we
learned in [1] to design and implement a PUF-based mutual
authentication protocol (T2T-MAP) for Thing-to-Thing archi-
tectures [64]. The authentication protocol is secure against
the reported attacks and is conform to IoT security and
performance requirements.

REFERENCES

[1] K. Lounis, and M. Zulkernine, “Lessons Learned: Analysis of PUF-
based Authentication Protocols for IoT”. Digital Threats: Research and
Practice, ACM, DOI:https://doi.org/10.1145/3487060, 2021.

[2] P. S. Ravikanth, “Physical One-way Functions,” Ph.D. thesis, Cam-
bridge, MA, USA, AAI0803255, 2001.

[3] B. Gassend, D. Clarke, M. van Dijk, S. Devadas, “Silicon Physical Ran-
dom Functions,” Proceedings of the 9th ACM conference on Computer
and communications security, ACM, pp. 148-160, 2002.

[4] D. S. Boning and J. E. Chung. “Statistical Metrology: Understanding
Spatial Variation in Semiconductor Manufacturing,” In Proceedings of
SPIE 1996, Symposium on Microelectronic Manufacturing, 1996.

[5] K. A. Bowman, S. G. Duvall, and J. D. Meindl. “Impact of Die-to-
Die and Within Die Parameter Fluctuations on the Maximum Clock
Frequency Distribution for Gigascale Integration,” Journal of Solid-State
Circuits, vol. 37, no. 2, pp. 183-190, 2002.

[6] S. R. Nassif. “Modeling and Forecasting of Manufacturing Variations,”
In Proceedings of ASP-DAC, 2001.

[7] K. C. Mugali and M. M. Patil, ”Device Authentication by Physical
Unclonable Functions,” in 2015 International Conference on Computing
Communication Control and Automation, pp. 327-329, Feb 2015.

[8] H. Sun, M. Alemohammad, B. T. Bosworth, B. C. Grubel, A. B. Cooper,
M. A. Foster, and A. C. Foster, “Photonic Physical Unclonable Functions
using Silicon Nitride Spiral Cavities,” in Conference on Lasers and
Electro-Optics, p. STh1N.4, Optical Society of America, 2017.

[9] U. Ruhrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, and J. Schmidhu-
ber, “Modeling Attacks on Physical Unclonable Functions,” in Proceed-
ings of the 17th ACM conference on Computer and Communications
Security, pp. 237-249, ACM, 2010.

[10] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, R. J. Young. “A PUF
taxonomy,”, in Applied Physics Reviews, Rev. 6, no. 011303, pp. 1-25,
AIP Publishing, 2019.

[11] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors:
How to Generate Strong Keys From Biometrics and Other Noisy Data,”
In Proceedings of the International Conference on the Theory and
Applications of Cryptographic Techniques, EUROCRYPT (Advances in
Cryptography), vol. 3027, LNCS, pp, 523-540, Springer, 2004.

[12] A. Juels and M. Wattenberg, “A Fuzzy Commitment Scheme,” in Pro-
ceedings of the 6th ACM conference on Computer and Communications
Security, pp. 28-36, ACM, 1999.

[13] G. E. Suh and S. Devadas. “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” Proceedings of the 44th
annual Design Automation Conference. ACM, 2007.

[14] J. H. Anderson, “A PUF Design for Secure FPGA-based Embedded Sys-
tems,” in Proceedings of 15th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 1-6, 2010.

[15] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA Intrinsic
PUFs and Their use for IP Protection,” in Proceedings of the 9th
International Workshop on Cryptographic Hardware and Embedded
Systems, pp. 63-80, 2007.

[16] F. Tehranipoor, N. Karimian, K. Xiao, and J. A. Chandy, “DRAM-based
Intrinsic Physical Unclonable Functions for System Level Security,” in
Proceedings of the 25th Edition on Great Lakes Symposium on VLSI,
pp. 15-20, 2015.

[17] L. Lin, D. Holcomb, D. K. Krishnappa, P. Shabadi, W. Burleson. “Low-
power Sub-Threshold Design of Secure Physical Unclonable Functions,”
In the 2010 ACM/IEEE International Symposium on Low-Power Elec-
tronics and Design, pp. 43-48, 2010.



[18] A. Schaller, W. Xiong, N. A. Anagnostopoulos, M. U. Saleem, S.
Gammeyer, S. Katzenbeisser, J. Szefer. “Intrinsic Rowhammer PUFs:
Leveraging the Rowhammer Effect for Improved Security,” in Proceed-
ings of IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pp. 1-7, 2017.

[19] S. Vrijaldenhoven, “Acoustical physical uncloneable functions,” M.S.
thesis, Eindhoven University of Technology, 2004.

[20] P. Tuyls, G. J. Schrijen, B. Skoric, J. v. Geloven, N. Verhaegh, and R.
Wolters, “Read-Proof Hardware from Protective Coatings,” in Proceed-
ings of Cryptographic Hardware and Embedded Systems, 2006.

[21] National-Research-Council. “Counterfeit Deterrent Features for the
Next-Generation Currency Design,”, The National Academies Press,
Publication NMAB-472, pp. 1-144, https://doi.org/10.17226/2267, 1993.

[22] G. Hammouri, A. Dana, and B. Sunar, “CDs have fingerprints too,”
in Proceedings of the 11th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), pp. 348-362, 2009.

[23] G. Lenzini, S. Ouchani, P. Roenne, P. Y. A. Ryan, Y. Geng, J. Lagerwall,
J. Noh. “Security in The Shell: An Optical Physical Unclonable Function
Made of Shells of Cholesteric Liquid Crystals,” in Proceedings of IEEE
Workshop on Information Forensics and Security (WIFS), pp. 1-6, 2017.

[24] R. S. Indeck and M. W. Muller, “Method and Apparatus for Fingerprint-
ing Magnetic Media,” United States Patent US5365586A, 1994.

[25] NXP. “Secure Storage with SRAM PUF on NXP LPC54S0xx”,
AN12292, https : / / www.nxp.com / docs / en / application - note /
AN12292.pdf, pp. 1-17, 2018.

[26] Microsemi. “Using SRAM-PUF System Service in SmartFusion2 -
Libero SoC v11.7”, Application Note AC434, pp. 1-19, 2016.

[27] IntelNewsroom. “Altera Partners with Intrinsic-ID to Develop World’s
Most Secure High-End FPGA,” https : / / newsroom.intel.com / news -
releases/altera-partners- intrinsic- id-develop-worlds- secure-high-end-
fpga/#gs.0qyiip, 2015.

[28] CisionPRnewswire. “Verayo PUF IP on Xilinx Zynq
UltraScale+ MPSoC Devices Addresses Security Demands”
https : / / www.prnewswire.com / news - releases / verayo - puf - ip - on -
xilinx - zynq- ultrascale - mpsoc - devices - addresses - security - demands -
300357805.html, 2016.

[29] A. Maiti and P. Schaumont, “Improving the Quality of a Physical
Unclonable Function using Configurable Ring Oscillators,” in the 2009
International Conference on Field Programmable Logic and Applica-
tions, pp. 703-707, IEEE, 2009.

[30] S. Pandey, S. Deyati, A. Singh, and A. Chatterjee, “Noise-Resilient
SRAM Physically Unclonable Function Design for Security,” in IEEE
25th Asian Test Symposium (ATS). IEEE, pp. 55-60, 2016.

[31] D. Jeon, J. H. Baek, D. K. Kim, and B. D. Choi, “Towards Zero Bit
Error-Rate Physical Unclonable Function: Mismatch-based vs. Physical-
based Approaches in Standard CMOS Technology,” in 2015 Euromicro
Conference on Digital System Design. IEEE, pp. 407-414, 2015.

[32] K. H. Chuang, E. Bury, R. Degraeve, B. Kaczer, D. Linten, and I.
Verbauwhede, “A Physically Unclonable Function using Soft Oxide
Breakdown Featuring 0% Native BER and 51.8 fJ/bit in 40-nm CMOS,”
IEEE Journal of Solid-State Circuits, vol. 54, no. 10, pp. 2765-2776,
2019.

[33] X. Lu, L. Hong, and K. Sengupta, “CMOS Optical PUFs using Noi-
seimmune Process-Sensitive Photonic Crystals Incorporating Passive
Variations for Robustness,” IEEE Journal of Solid-State Circuits, vol.
53, no. 9, pp. 2709-2721, 2018.

[34] W. C. Wang, Y. Yona, S. N. Diggavi, and P. Gupta, “Design and Anal-
ysis of Stability-Guaranteed PUFs,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 4, pp. 978-992, 2017.

[35] R. Anderson and M. Kuhn, “Tamper Resistance: A Cautionary Note,”
in Proceedings of the 2nd Conference on Proceedings of the Second
USENIX Workshop on Electronic Commerce, vol. 2, pp. 1-1, USENIX
Association, 1996.

[36] R. J. Anderson and M. G. Kuhn, ”Low Cost Attacks on Tamper Resistant
Devices,” in Proceedings of the 5th International Workshop on Security
Protocols, pp. 125-136, Springer, 1998.

[37] A. C. D. Resende, K. Mochetti, and D. F. Aranha, “PUF-based Mutual
Multifactor Entity and Transaction Authentication for Secure Banking,”
Light. Cryptogr. Secur. Priv., pp. 77-96, 2015.

[38] T. Esbach, W. Fumy, O. Kulikovska, D. Merli, D. Schuster, F. Stumpf.
“A New Security Architecture for Smartcards Utilizing PUFs,” in
Proceedings of 2012 Securing Electronic Business Processes, pp. 180-
194, Springer, 2012.

[39] D. Li, W. Liu, X. Zou, and Z. Liu, “Hardware IP Protection Through
Gatelevel Obfuscation,” in Proceedings of the 14th International Confer-
ence on Computer-Aided Design and Computer Graphics (CAD/Graph-
ics), pp. 186-193, IEEE, 2015.

[40] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls,
“Extended Abstract: The Butterfly PUF Protecting IP on Every FPGA,”
in Proceeding of the IEEE International Workshop Hardware-Oriented
Security and Trust, pp. 67-70, 2008.

[41] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Physical
Unclonable Functions and Public-Key Crypto for FPGA IP Protection,”
in Proceedings of the International Conference on Field Programming
Logic Application, pp. 189-195, 2007.

[42] E. Simpson and P. Schaumont, “Offline Hardware/Software Authentica-
tion for Reconfigurable Platforms,” in Proceedings of the International
Workshop on Cryptographic Hardware and Embedded Systems, vol.
4249 of LNCS, pp. 311-323, 2006.

[43] M. A. Gora, A. Maiti, and P. Schaumont, “A Flexible Design Flow for
Software IP Binding in Commodity FPGA,” in Proceedings of the IEEE
International Symposium on Industrial Embedded Systems, pp. 211-218,
2009.

[44] Y. Zheng, Y. Cao, C-H. Chen. “A PUF-Based Data-Device Hash for
Tampered Image Detection and Source Camera Identification,” in IEEE
Transactions on information forensics and security, vol. 15, pp. 620-634,
2020.

[45] K. Müller, R. Ulrich, A. Stanitzki, and R. Kokozinski, “Enabling Secure
Boot Functionality by Using Physical Unclonable Functions,” in 14th
Conference on Ph.D. Research in Microelectronics and Electronics
(PRIME), pp. 81-84, 2018.

[46] J. Zhang and G. Qu. “Physical Unclonable Function-Based Key Sharing
via Machine Learning for IoT security”, in IEEE transactions on
Industrial Electronics, vol. 67, no. 8, pp. 7025-7033, 2020.

[47] M. Spain, B. Fuller, K. Ingols, and R. Cunningham. “Robust Keys from
Physical Unclonable Functions,” in 2014 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 88-92, 2014.
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