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Abstract: Pattern loaded ciphers are at risk of being compromised by exploiting deeper 
patterns discovered first by the attacker. This reality offers a built-in advantage to prime 
cryptanalysis institutions. On the flip side, risk of hidden math and faster computing undermines 
confidence in the prevailing cipher products. To avoid this risk one would resort to building 
security on the premise of lavish quantities of randomness. Gilbert S. Vernam did it in 1917. 
Using modern technology, the same idea of randomness-based security can be implemented 
without the inconvenience associated with the old Vernam cipher. These are Trans Vernam 
Ciphers that project security through a pattern-devoid cipher. Having no pattern to lean on, there 
is no pattern to crack. The attacker faces (i) a properly randomized shared cryptographic key 
combined with (ii) unilateral randomness, originated ad-hoc by the transmitter without pre-
coordination with the recipient. The unlimited unilateral randomness together with the shared 
key randomness is set to project as much security as desired up to and including Vernam levels. 
Assorted Trans Vernam ciphers (TVC) are categorized and reviewed, presenting a cogent 
message in favor of a cryptographic pathway where transmitted secrets are credibly secured 
against attackers with faster computers and better mathematicians. A vision emerges: a 
cryptographic level playing field, consistent with the emerging culture of Web 3.0.  
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1.0 Introduction 

The group think of modern cryptography is that cipher builders are better mathematicians 
than cipher crackers, hence if the former don't see a mathematical cryptanalytic pathway, neither 
would the latter. The fact that Alan Turing proved them wrong eighty years ago makes no 
difference, that is the power of group think [58]. Following the revelations of Edward Snowden 
though, more people suspect that the cryptographic powerhouses are using unpublished math to 
compromise security of their targets [59]. A new line of thoughts emerges: building ciphers that 
are not based on pattern-loaded algorithms, but rather on the opposite: pattern-devoid algorithms. 
[25, 31,32, 35, 40, 47, 49, 53, 56, 57].  

The search for pattern is never exhaustive; hidden layers loom, and are fertile grounds for 
attackers aiming at mathematics-reliant ciphers. Randomness -- on the other hand, is by 
definition the absence of pattern. Pattern may be viewed as the holes, folds, and protrusions on a 
mountain you climb, you hang on to them on your way up. Randomness is a perfectly smooth 
wall, there is nothing to hook up to.  

Cryptographers though, are mathematicians in heart, pattern is their thing. They loathe and 
dismiss the plain logic that argues: pattern-reliant ciphers are threatened by deeper pattern 
missed by the cipher builder and spotted by the cipher attacker.  

The more pattern you detect, the more pattern must be suspected -- fertile ground for 
attackers. It is hard for a defendant to credibly appraise the mathematical insight of his attacker. 
It is much more feasible to estimate adversarial computing power. This leads to a cipher 
construction strategy wherein mathematical prowess will be dethroned as the main cryptanalytic 
tool, and only computing power -- brute force -- will be left. Such ciphers don't necessarily have 
to be as perfectly secure as the illustrious Vernam cipher. Their risk of compromise though, must 
be credibly appraised in terms of the required computing workload. Such appraisal, together with 
a credible estimate of the attacker's computing power, will generate a good overall estimate of 
security over time.  

We therefore are off on our way to search for ciphers that will compel their attacker to 
resort to brute force cryptanalysis, finding mathematical superiority useless. We focus first on 
symmetric ciphers.  

Mathematical cryptanalysis works its way backwards. The ciphertext, C, is examined and 
studied, to reveal its generating plaintext, P, and its operational key, K: C = E(P,K). The strength 
of a cipher depends on the mathematical properties of the encryption algorithm E, and on the 
randomness load of the key, K. The stronger E is, the smaller (the weaker) K can be. (E.g.: ECC 
keys are smaller than RSA keys because ECC is regarded mathematically more robust than 
RSA).  
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We are on a hunt for a cipher that will not rely on the mathematical properties of E for its 
security (because those properties are vulnerable to hidden mathematical insight), but rather rely 
on the randomness facing the attacker.  

We don't have to look far, 104 years ago, Gilbert S. Vernam patented his now famous 
"Vernam Cipher" [34] where security is 100% based on the randomness of the key. The Vernam 
cipher is not based on any hackable mathematical properties. Its security relies on the purity of 
the randomness of the key. And as is well known, Vernam security is perfect, as has been proven 
some 25 years later by Claude Shannon [54].  

The price paid for this high security was a key as large as the plaintext. This represented too 
much inconvenience at the time, and hence cryptographers steered away, and took the 
technology of secrets in the opposite direction: using small keys combined with mathematical 
complexity. This is where we stand today. This trend has developed so much momentum that 
sidekicks suggesting an alternative, are all but ignored.  

Initial application of the emerging Artificial Intelligence Assisted Innovation (AIAI) system 
[5, 60] show how fertile it is to reinspect innovative forks of the road, and revisit the path not 
taken. Which is exactly what was done with respect to the old Vernam road junction.  

Let R be the randomness used by a cipher to achieve its aim. Let M be the mathematical 
complexity used by a cipher to achieve its aim (clearly a nebulous definition). Our premise is 
that M is inherently not a reliable secret-protective-source because the greater the mathematical 
complexity of M, the greater the chance for a lurking mathematical breach strategy, which will 
be spotted by the attacker, not by the builder of the cipher. R, on the other hand, is 100% reliable, 
to the extent that R is perfectly random. The greater R, the greater the security. If |R| ≥ |P|, P- the 
encrypted plaintext, then the cipher may admit perfect security.  

Gilbert S. Vernam set |R|=|K|, [34]. Vernam’s randomness was captured in the shared key 
between the transmitter and the recipient of a message. But this is not a necessary requirement. 
The transmitter may use a-priori unshared, unilateral randomness, U, to achieve:  

|R| ≤ |K| + |U|  

What is needed for this idea to fly are two things:  

1. The attacker should not be able to distinguish between K and U  

2. The Recipient should not be confused by the impact of U.  

If these two conditions (1,2) are fulfilled then the communicators will be able to achieve 
any desired security, with a limited size key, K, together with sufficiently large U.  
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If we set:  

|R| = |P| - |K| = |C| - |K|  

We achieve Vernam security in apparent violation of Claude Shannon's dictate [10]: |K|=|P|.  

Shannon's proof of mathematical secrecy was based on comparing an attacker holding the 
ciphertext, C, to an attacker that only knows the size of the ciphertext [54]. If the two attackers 
face the same challenge then there is no advantage to having knowledge of C over having only 
knowledge of the size of C -- which is what Shannon defined as perfect security.  

If the C-knowing attacker has to check out |K| options, and the C-not-knowing attacker has 
to check |P| options then if |K|=|P| there is really no advantage to knowing C. However if |K| < 
|P|, then the C-knowing attacker has an advantage over the C not-knowing attacker.  

Three observations: (i) If |K| < |P| but still very large, then security is not 'perfect' but may 
still remain formidable. One could seek to construct ciphers wherein the security deterioration as 
the used plaintext exceeds the protective randomness, is happening very slowly; (ii) what if |K| is 
not known to the attacker? Or say, if |K| is unbound? In that case the attacker cannot conclusively 
end the search of the key space.  

The third observation is the crux of this treatise. Vernam is a cipher where security receives 
no contribution from mathematical complexity, M=0; its security is generated only by the 
randomness of the key. We can therefore define a class of ciphers, to be called "Trans Vernam" 
which have this very property: their security is not generated from mathematical complexity but 
solely from the amount of randomness used. The more randomness -- the better security, for a 
key larger or equal to the encrypted plaintext, this security is perfect.  

An attacker of a Trans Vernam cipher is cornered to use Brute Force attack only, and hence 
the cryptanalytic burden ahead is represented by the quantity of randomness, R, facing the 
attacker. Vernam generated the required R through the shared key, K, but this is not a 
requirement. R can be generated from a shared key K and unshared randomness U. U will be 
randomness generated by the transmitter without pre coordinating with the recipient.  

The attacker of the Trans Vernam Cipher facing R, (of unknown size) will have no 
information as to how R divides to K and U. Perhaps U is zero, and R=K? Therefore the brute 
force attacker will have to check every R option, counting 2|R| possibilities (again, |R| is not 
known to the attacker). The security of the ciphertext is determined first by the transmitter and 
the recipient together, setting up the key, K, and then by the unilateral determination of the 
transmitter as to the value of U. The transmitter indeed is the best party to decide on how much 
security a ciphertext deserves, and hence how much U to use, since the transmitter knows how 
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sensitive the transmitted message is. The transmitter determines the value of R, and hence 
controls the security projected from the unleashed ciphertext.  

It is worth emphasizing that the secrecy regarding the size of the key is critical for the Trans 
Vernam Strategy to work. If the key size is known, and everything else is known to the attacker 
(Kerckhoffs' principle, [61]) except the contents of R, then the attacker could train their brute 
force on K and void the impact of U.  

The larger the size of the key, K, relative to U, the greater the chance that a smaller key will 
offer a plausible (and false) decryption of the ciphertext. And hence, an attacker, finding a 
reasonable key, is inherently plagued by the doubt of it being a false key, steering the attacker to 
a misleading decryption of the ciphertext.  

For this scheme to work, it is necessary for the recipient to be able to use their knowledge of 
K to decrypt C to P without being confused by the impact of U. There are several established 
ciphers that accomplish this. These are Trans Vernam Ciphers.  

Sources: [41, 46, 47, 57].  

 

2.0 Characterization of Trans-Vernam Ciphers 

Two shared characteristics: (i) the size of the key is part of its secret, (ii) the Trans Vernam 
key is reusable.  

A third differentiating characteristics: (iii) ciphertext absorbing, or not absorbing the 
unshared randomness.  

With the size of the key being part of its secret, the brute force attacker will never be able to 
conclusively terminate their search, even if a good key candidate was found. It may be a mistake, 
and the right key is a larger one. This uncertainty can be used by the communicators by sending 
meaningless random bits between them. Their attackers will exhaust themselves looking for ever 
higher keys to crack the communication.  

The Vernam key is not re-usable. New key bits must be furnished to encrypt new plaintext. 
This generates a daunting synchronization challenge which is a basic reason for the 
unattractiveness of Vernam. However Claude Shannon's proof does not require non-reusability, 
it only requires key size. Trans Vernam Ciphers operate with a large enough key, which is being 
used over and over again.  
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To wit: Using Vernam, if the overall plaintext P is divided to smaller sections P1, P2, .... Pt, 
then the respective Vernam key K, will have to be divided to same size keys: K1, K2, ..... ,..... Kt, 
and encryption proceeds as:  

Ci = EVernam(Pi, Ki) ..... for i=1,2,...t  

In a Trans Vernam cipher one proceeds as follows:  

Ci = ETrans-Vernam (Pi, K).... for i=1,2…t   

So no synchronization is needed, and more importantly a Trans Vernam cipher may 
conveniently be used by multiplicity of communicators without requiring all parties to follow on 
all communications among other parties, as the case is with Vernam.  

Some Trans Vernam Ciphers (TVC) generate the required randomness through a 
sufficiently large key, and some use unshared randomness, U, with small more manageable keys. 
The use of U may be reflected in a ciphertext larger than its generating plaintext |P| < |C|. The 
cipher is designed such that the recipient can readily ignore the inflated part of the ciphertext, 
and credibly extract P from C, using K.  

When a size-preserving cipher, E, relies on a key K which is smaller than the message P, 
then it means that out of 2|P| possible plaintexts of size |P| bits only 2|K| are viable. The rest are 
not. The reduction from 2|P| possibilities to 2|K| possibilities is effected by the pattern inherent in 
E. This pattern is in the cross hair of the non-brute force attacker. To the extent that |K| → |P| that 
is the extent that pattern shrinks, and security shifts to randomness. When |P| spills over |K| the 
security of the cipher deteriorates. However the rate of deterioration can be credibly appraised by 
the cipher users, who will decide at each instant if the risk-benefit balance will make it 
worthwhile to continue using the same key, or arrange for a replacement. It is a main objective 
for the Trans Vernam Cipher designer, to construct a cipher where said deterioration is as slow 
as possible,[19, 25].  

Ahead we discuss the two main categories of TVC: (i) ciphertext inflated TVC, and (ii) 
ciphertext-not-inflated TVC, followed by means to handle the extra burden of an inflated 
ciphertext. 

 

3.0 Uninflated Ciphertext TVC  

Identifying three ciphers of the ciphertext uninflated category. One is based on 
transposition, another on a multi-dimensional roadmap taking the role of the shared key. The 
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third is based on a scheme by which the communicators will iteratively replace an existing key 
with a new key without this replacement being compromised by the attacker. 

 

3.1 Complete Transposition Cipher 

The following is a short overview of the cipher, defined in "Equivoe-T: Transposition Equivocation 
Cryptography." [18], "The Ultimate Transposition Cipher (UTC)." [43], and in “Equivoe-T: 

Transposition Equivocation Cryptography” US Patent 10,608,814 [62].  

A plaintext P of size n=|P| bits will have T =n! / (n0! * n1!)  permutations, where n0 and n1 
are the number of 0 and 1 in P respectively: no + n1 = n. The highest value of T is Tmax = n! / 2 
(0.5n)!. By using a key such that:  

Kmax ≥ Tmax  

one achieves complete permutation equivocation.  

It is easy to beef this security up to full Vernam by constructing a string Q as:  

Q = P ⊕ “11….1”  

and concatenating: π = Q || P  

π has 2n bits, n of them are 0 and n are one. It has T = (2n)! / 2n! permutations, hence a key 
space where:  

Kmax > (2n!)/2n!  

will elevate the security of P to Vernam grade. But unlike Vernam the transposition key KT 
does not need synchronization and it can be used for plaintexts smaller than itself. What is more, 
if |P| grows larger than |K| then security level drops down from perfection, but this drop down 
happens very slowly so that high security is maintained.  

The complete transposition cipher uses a transposition algorithm with a distinct advantage. 
Most transposition algorithms are size defined. Namely a simple mapping list will dictate how n 
bits will be reshuffled around to different places, but these reshuffling instructions specify a 
particular value for n. The complete transposition cipher is defined over any value of n. It defines 
a sequence to shipping bits from P to another list, Pt of same size where the order by which the 
bits are picked for shipping is determined by the value of the key. The algorithm is symmetric 
and Pt will be readily returned into P.  
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Clearly, like with Vernam, the complete transposition cipher has M=0. Its security is not 
based on any mathematical complexity. It is based solely on the fact the transposition key Kt is 
randomly selected from a large enough key space.  

It has been proven that the space for a single integer key, K, operating through the complete 
transposition algorithm will cover all the permutations. As described above if P is separated to 
parts P1, P2, .... Pt then the same transposition key, K will transpose each Pi to PiT over its bit size 
|Pi| without need to synchronize.  

 

3.2 Space Flip Cipher 

This is a brief overview of the cipher described in detail in "SpaceFlip: Unbound Geometry 
Cryptography" [36, 63], "SpaceFlip: Unbound Geometry Security" US Patent 10,790,977 [37]  

This cipher fashions a key in the form of dimensionality-undetermined space, S, comprising 
a distance geometry [2]. Namely each of the points of the space has a random distance to any 
other point. This space, is clearly not a metric space, and does not obey proximity laws. The 
points comprising the space are letters of an alphabet. A line on this space is defined as a 
sequence of points where the next point in the sequence is constrained by the points that make up 
the line so far. The determination of the next point is dependent on all the distances from this 
point to all the points not already on the line. Every point has a next point until all the points are 
part of the line. Thereby each line can be regarded as a permutation of the points in S.  

To send a plaintext letter A, the transmitter may randomly choose a letter B, and mark a line 
from it. This line will encounter letter A after s steps. Therefore the combination {B,s} will be 
interpreted as the letter A, by the recipient who is working with the same space S. Next time 
when A is to be sent out as a plaintext letter the transmitter may choose another letter, say, D, 
and mark a line off it. This line will encounter the letter A after s' steps, so the combination {D, 
s'} will be interpreted as A by the recipient aware of S.  

By choosing the alphabet large enough, the security will be robust enough -- again only 
through randomness, no mathematical complexity. The 0.5t(t-1) distances marked on S 
comprising t points are randomly chosen, and so is each ciphertext letter. By choosing as 
alphabet all the possible p bits long strings (an alphabet comprising 2p = t letters) the 
communicators determine the size of S and the level of the projected security.  

To be accurate the ciphertext for this cipher is roughly twice as large as the plaintext, but 
this should be considered a moderate increase. This cipher, SpaceFlip, can also be implemented 
with size preservation, only with less security. The transmitter will randomly determine a step 
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count value, s, and then communicate every plaintext letter A with the letter A' such that A 
appears as the s point on the line in S that begins with A'. This can be run t times without 
repetition, making it for that measure equivalent to Vernam, without the inconvenience of 
Vernam.  

We will discuss in the next section how SpaceFlip can be implemented with a size increase 
option. 

3.3 Forever Key Cryptography 

This is a brief overview of the cipher described in detail in "FAMILY KEY CRYPTOGRAPHY: 
Interchangeable Symmetric Keys; a Different Cryptographic Paradigm" [20], “SpaceFlip Plus: 

Ordinal Cryptography” US Patent 11,159,317 [66]  

This cipher is constructed so as to allow for infinite number of keys to be interchangeable, 
namely have the same effect. Each of these so called 'family of keys' K1, K2, .... Ki, will encrypt a 
given plaintext to the same given ciphertext. On its face it seems counterproductive: an attacker 
will now have an infinite number of keys to hunt, any one of those keys will compromise the 
cipher. Why make it easier on the attacker?  

The answer is plain. An attacker that would successfully compromise a transmission and 
will extract the plaintext from the ciphertext is likely to have spotted some key Ka which is 
different from key Ku, which the users have used. The most that an attacker can accomplish is to 
figure out the entire family of interchangeable keys. There is no way for the attacker to nail down 
which of the infinite number of keys was actually used by the users. The ciphertext simply does 
not contain any information that points to the particular key that was used to generate it. That is 
the power of interchangeable keys; they conceal the identity of the key that was actually used.  

This advantage that the users hold over their attacker can be used to exchange a 
transformation formula, to compute a derived key K'u from the used Ku, and continue their secret 
communication with their new-shared key, K'u. The key derivation formula is constructed such 
that every input will generate a different output. And since the attacker does know the identity of 
Ku, they would not be aware of the identity of K'u either, although the transformation formula is 
exchanged in the open.  

The users can then continue their communication using the derived key K'u', while 
dismissing Ku. From the point of view of the attacker, this will be as if the users agreed on a new 
key in secret. The attacker will not be able to exploit any information garnered from 
cryptanalyzing Ku to learn anything about K'u.  



 
 

11 

After some use the communicators will repeat this operation and derive a third key, K"u, 
and so on. Even if the attacker cracks the communication that use some key K*u, the identity of 
K*u is not extracted, and hence when K*u is being transformed to K*'u, the identity of the new 
key is not known either, so the users operate as if they started to communicate with their original 
key, Ku. In other words, this is a mechanism to keep a finite key for indefinite use.  

In practice the number of keys to be considered by the attacker is not infinite because there 
is a practical limit to how large such a key can be. But this implies that the users can approach 
this infinite protection by choosing keys that are larger. Since the only way to crack this cipher is 
by using brute force, the users can credibly estimate how much plaintext they can safely use 
before their family of keys will be flashed out by the attacker. Based on this estimate the users 
will switch to the next key before that measure of plaintext is processed.  

Because in practice the keys in the family of keys are of a finite count, then the security of 
this 'forever key' cipher is not infinite either. Albeit, its level of deterioration can be credibly 
appraised. And when needed the transformation of the keys will build very large keys, so that 
security is upheld.  

 

4.0 Inflated Ciphertext TVC     

In this category ciphers pack the unilateral randomness injected by the transmitter into a 
containing ciphertext that hence is getting bigger. This is the price paid for security that is not 
vulnerable to hidden math. As long as the recipient can readily shake off the extra ciphertext 
material, the only inconvenience with these ciphers is the much larger file to be communicated as 
ciphertext (no need to store the inflated ciphertext). With today's technology this is not a big 
burden even for large documents. When it comes to images, audio and video files such a large 
size multiplier for the ciphertext does present a problem. We will see ahead how to navigate this 
hurdle.  

We review here the following ciphers: (i) SpaceFlip, (ii) BitMap, (iii) BitFlip, (iv) The 
Unary Cipher. 

4.1 Increased Ciphertext SpaceFlip 

This is a brief overview of the cipher described in detail in "SpaceFlip: Unbound Geometry 
Cryptography" [36, 63], "SpaceFlip: Unbound Geometry Security" US Patent 10,790,977 [37]  

SpaceFlip as described above (in the "3.0 Uninflated Ciphertext" section) can be deployed 
in a ciphertext-increased mode. The procedure is as follows. To transmit a letter A to the 
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recipient the transmitter will randomly choose any letter from the alphabet A', and then randomly 
choose an integer g from an arbitrary g-space from 1 to gmax. Next the transmitter will randomly 
choose (g-1) integers in the range 1 ≤ ri ≤ t, for i= 1,2,...(g-1) where t is the number of points in 
S.  

Next the transmitter will mark a line L1 from A' to the letter r1 steps ahead, say, letter A". 
From letter A" the transmitter will mark a line comprised of r2 steps, ending up with letter A''', 
from there to the next letter r3 steps away. Repeating the same sequence for all the (g-1) 
distances, the transmitter will end up at some letter B. The line from B will encounter letter A rg 
steps ahead. The transmitter will now send over to the recipient the letter A' and the g distance 
integers: r1, r2, ..... rg.  

Marking this information on the shared space S, the recipient will spot the letter A very 
readily.  

There is no limit to the value of g. Large g values lead to large ciphertexts. As the key is 
being used more and more, the transmitter uses more and more unshared randomness, picking 
larger and larger g values.  

Here too, no pattern, the distances between the t points on S are fully randomized. There is 
no math to crack, brute force is the only viable attack strategy, and hence the size of S is the sole 
source of security. The users can stop using a given space S (a key) when the amount of plaintext 
used through it is exceeding a security threshold. This SpaceFlip protocol will achieve Vernam 
security with the convenience of a Trans-Vernam cipher. 

4.2 BitMap  

This is a brief overview of the cipher described in detail in "At-Will Intractability Up to Plaintext 
Equivocation Achieved via a Cryptographic Key Made As Small, or As Large As Desired - Without 

Computational Penalty." [6], "BitMap Lattice: A Cyber Tool Comprised of Geometric Construction", 
US Patent 10,911,215, [8]; "Denial Cryptography Based on Graph Theory." Gideon Samid (2004) US 

Patent 6,823,068. [13]  

This cipher is a map where the points are associated with letters of a particular alphabet. 
Points are connected to their direct neighboring points but not to other points. The connections 
themselves may be viewed as "walking bridges" allowing a traveler to walk from one point to the 
other. Every bridge is marked by a letter of the same or of a different alphabet that marks the 
points on the map. The basic idea of the cipher is that the plaintext is viewed as a travel guide. 
Each successive letter in the plaintext indicates the next travel destination. A plaintext 
comprising p letters will then be associated with a travel path on this map, comprising p visited 
spots. And since the passage from spot to spot requires passing through a bridge, and each bridge 
is marked with a letter, then the same pathway that was identified by the plaintext, is similarly 
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identified by listing the successive bridges traversed by the traveler. It is a simple principle: a 
path on a map can be described by a list of successive destinations, or equivalently by a list of 
successive bridges one walks on. The plaintext is seen as a travel guide pointing to the visited 
destinations; the ciphertext, by contrast, is seen as the list of bridges one passes through when 
taking the same path. Each bridge is associated with a letter, so the pathway described as crossed 
bridges will manifest itself as a series of letters -- the ciphertext.  

The cipher is designed so that any possible plaintext can be mapped into a pathway, and 
every possible pathway can equally be described by a list of crossed bridges. The transmitter will 
mark the points (spots) on the pathway corresponding to the plaintext, then describe the same 
pathway by marking the crossed bridges, and when the list of crossed bridges is assembled, it is 
communicated to the recipient.  

The recipient on his part will use the ciphertext to mark the same pathway on their copy of 
the map. Once marked the recipient will read out the visited spots and mark the letters 
represented by these spots in a sequence -- thereby reconstructing the plaintext.  

The attacker without possession of the map (the key) will not be able to reverse the 
ciphertext into the plaintext. The configuration of the map is randomized; the marking of the 
points on the map and the markings on the bridges are all highly randomized, subscribing only to 
a weak restriction. Thereby the map projects no analytic complexity. It is fair to say that only 
brute force has a prayer and a hope to crack this cipher.  

It is worth noting that the attacker does not know how big the map is. Each spot and each 
bridge can be visited and crossed countless times. So a very small map will encrypt and decrypt a 
very long message if necessary without betraying the size of its key.  

Building a large key is providing share randomness, K. Albeit, BitMap will allow a 
transmitter to inject unshared randomness as follows: the plaintext alphabet A' is deemed to be 
comprised of l -1 letters. Another letter, letter number l is then added by injecting it between any 
two successive letters that are identical (in the plaintext). This operation removes all instances 
where two instances of same letter are written one after the other. The transmitter can now 
replace any letter in the l letters alphabet, A, of the plaintext, with any number of identical letters 
next to each other. This inflates the plaintext to any desired size. Doing so will in turn lead to an 
inflated pathway and an inflated ciphertext. The recipient though, recovering the long plaintext, 
will simply shrink all letter repetition to a single letter and thereby extract the original plaintext.  

Illustration: the string ABC will become AAAABBBBBBCCCCCC. This inflated plaintext 
will then mark a much longer pathway on the map. This longer pathway will be translated to a 
long ciphertext that would confound the attacker. The intended recipient will extract the inflated 
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ciphertext but will shrink it to size. Every string of consecutive same letter, like AAAA and 
BBBBBB, will be replaced by a single same letter: AAAABBBBBBCCCCCC → ABC.  

The attacker, in possession of the ciphertext does not see the duplication. It does not show 
on the bridge-list. As a result the attacker wrestles with a long ciphertext, not knowing which 
parts, if any, are the real concealed message and which parts are confounding noise.  

 

4.3 BitFlip 

This is a brief overview of the cipher described in detail in "BitFlip: A Randomness Rich Cipher" [7]; 
“BitFlip Cyber Demonstration" [65]; “Transmitter for Encoding Information with Randomly Flipped 
Bits and Transmitting That Information Through a Communication Channel” US Patent 10,728,028, 

[76]; “Advanced BitFlip: Threat Adjusted, Quantum Ready, Battery Friendly, Application Rich 
Cipher” US Patent 10,541,808, [77].  

The idea behind BitFlip is to have a large number of ciphertext letters map into a single 
plaintext letter in parallel to having a large number of ciphertext letters map into no plaintext 
letter. The first attribute resists pattern recognition through randomized selection of ciphertext 
letters among the many which map into a given plaintext letter. The latter attribute allows the 
user to freely inflate the ciphertext with false letters, which the intended reader will readily 
recognize as such, while the attacker will have to regard them as message bearing. By carefully 
subjecting all choices to randomization, the users expunge any pattern from the construction of 
the cipher, cornering the attacker to brute force attack strategy -- the efficiency of which can be 
credibly assessed by the BitFlip users.  

BitFlip works on some alphabet A comprising l letters. Each letter, Li (i=1,2,..l ) is 
represented by a bit string of size n bits -- selected randomly. Each letter is associated with 
"Hamming distance" value, hi, where 0 ≤ hi ≤ n. A ciphertext letter c is a bit string of size n. 
Letter c is decrypted to plaintext letter Li iff: 

H(c, Li) = hi  

where H(c, Li) is the Hamming distance between c and Li.  

Ciphertext letters that don't decrypt to any of the l plaintext letters are discarded.  

The selection of the n-bit string representation for each of the l letters is randomized. The 
selection of the l hi values is randomized, the selection of the ciphertext letter that decrypts to a 
given plaintext letter is randomized. The peppering of the ciphertext with so called decoy 
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ciphertext letters that are meaningless, is also randomized. There is no thread of pattern to crack 
here. The attacker is cornered to brute force attack strategy.  

 
4.4 The Unary Cipher 

This is a brief overview of the cipher described in detail in "A Unary Cipher with Advantages over the 
Vernam Cipher" [3]; “Unary Cryptography Demonstration Site” [64]; "Mixed Unary Cryptography" 

US Patent Application 17/323,908.  

A bit string x indicating an integer of value v, can be expressed through a string of (v+1) 
"0", concatenated to list of (r+1) "1", where r is the number of leading zeros in x. This, so called 
unary expression is larger in bit count, but it is otherwise equivalent to the original expression. 
The two can be derived one from the other.  

This property can be used as follows: a plaintext P is randomly broken down to n 
consecutive substrings: P1, P2, ... Pn. The value of n, and the size of the substrings |Pi| for 
i=1,2,...n is randomly selected, as long as:  

|P| = Σ |Pi|...... for i= 1,2,...n  

Each Pi is then mapped to its corresponding unary expression, thereby writing P in a 
combined unary fashion, P*. P* may be peppered with "0,1" element because these elements 
vanish when transposed back from unary format.  

P* is then transformed with a complete transposition key as discussed above: P* → P*T.  

P*T is the ciphertext. P*T = C  

It can be shown that any value of P' from some high level Q > P to zero may be encrypted to 
the same ciphertext C, thereby projecting functional equivalent with Vernam. Its advantage over 
Vernam is that the key (the transposition key) can be used over and over again, no 
synchronization needed.  

P* may be wrapped with a header of the form 00....1 and a trailer of the form 11.....0. These 
are two more options to pad the ciphertext in a way that would not confuse the intended reader, 
but will build a growing cryptanalytic burden.  

To further increase the cryptanalytic burden one will prepare the pre-transposition string as 
one with equal count of zeros and ones, as follows: (i) compute P^ = P ⊕ 11......1 (ii) 
concatenate P with P^: P** = P* || P^, then transpose P** (of size 2|P|).  
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To the extent that the transposition operation is complete, this cipher projects Vernam grade 
security over its secret size key. 

 

5.0 Split Security Solutions 

The price paid for randomness-based security is a large key, and in many cases a large 
ciphertext. In order to keep projecting high security from the same key, k, the ciphertext will 
have to be longer and longer than the plaintext.   This increased ciphertext length is looming to 
become a more and more serious problem for large plaintexts. When the materials to be 
encrypted are audio files, images, or video files then the much larger ciphertext may be 
prohibitive. This challenge can be handled via Entropic Impact Discrimination. 

 
5.1 Entropic Impact Discrimination 

This is a brief overview of the cipher described in detail in "Split Security Solutions", US Patent 
Application 17/510,324 [78]  

A plaintext P may be divided to meaning-bearing elements m1, m2, .... mt. Each meaning-
bearing element is associated with an entropic impact that reflects the advantage gained by an 
adversary in case this element is exposed. The elements may then be divided to low impact 
elements which have an entropic impact below a given threshold and high-impact elements 
which have an entropic impact above that threshold. The latter are slated to be encrypted with a 
Trans Vernam cipher, and the former are encrypted with a size preserving cipher. Thereby the 
users decide how much inconvenience (large ciphertext) to put up with, in order to get a given 
level of security.  

The high impact selection may be automatic. For example, facial recognition software will 
identify faces in an image or in a video, and mark these faces for TVC encryption. The rest will 
be encrypted with size-preserving ciphers. In the worst case scenario the adversary will see what 
the image shows, but will not figure out who the people in the image are.  

 
6.0 Spontaneous Cryptography 

In the 1970s cryptographic science has made a dramatic leap ahead. It enabled two strangers 
to practice cryptographic protocols despite having no prior shared key to rely on. Spontaneous 
cryptography, or cryptography between strangers, revolutionized the practice of commerce; it 
became a key enabler of our migration towards cyber space. Alas, the prevailing schemes are 
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heavily reliant on mathematical pattern, which very likely hides deeper patterns with which to 
crack this cryptography. So in order to maintain the great benefits introduced by spontaneous 
cryptography it is suggestive to investigate constructing bilateral secrecy on randomness.  

Here too, a scroll back to the pages of history proves helpful. Much as Vernam revisited 
helps us with ordinary encryption, so Ralph Merkle is a new pointer for spontaneous encryption. 
Unlike his followers Diffie and Hellman, Ralph Merkle based his original idea for strangers 
developing a bilateral secret while exposed on the network, not on mathematical complexity but 
rather on a temporary advantage claimed by two communicators, who can solve a riddle a bit 
faster than their attacker. The communicators then use this temporary secret to secure a 
permanent secret. Merkle's idea was for one communicator to present the other a list of difficult 
computational tasks, for which the submitter already knew the answers. The recipient chooses 
randomly one of the various computational tasks, computes it, and communicates the result to 
the sender. The value of the answer tells the transmitter which one of the tasks the recipient 
chose, and that information qualifies as a temporary secret until the attacker will compute the 
entire list and also find out which task the recipient chose.  

An advanced version of Merkle's randomness (not pattern) based spontaneous cryptography 
is offered by FigLeaf. 

6.1 FigLeaf 

This is a brief overview of the cipher described in detail in "Randomized Bilateral Trust (RABIT): 
Trust Building Connectivity for Cyber Space (FigLeaf)" U. S. Patent 10,798,065, [79].  

The FigLeaf idea is based on the familiar "birthday paradox": it turns out that a group of 
only 23 people have a 50% chance to include two people with the same birthday, month and day 
of the month. Similarly two strangers would agree to randomly pick n mathematical items from a 
large list L of such items. The value of n can be adjusted to make it x% likely for the two items 
selectors to have picked the same item (a picked item remains in L). The two then start a 
dialogue. The selected items have various properties. One communicating stranger randomly 
selects a property and tells the other the n values of this property in the n items she selected. The 
other communicator can then exclude any of his selections for which the value of this property is 
not on the list submitted by the first communicator. His list shrinks n → n'. Next the list-
recipient, selects another property, and hands over the list of its n' values. The first 
communicator will delete from his list all the items that have a value for that property that is not 
in the submitted list. This will shrink her list n → n". By repeating this protocol the two strangers 
would either realize that they have no item in common, and in that case they will restart the 
protocol, or they would both identify the one item they both randomly picked. It will take an 
outside observer much longer time to use the information exposed in the protocol to spot the 
shared item. Any of the unused properties of the shared item will qualify as a temporary secret, 
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which the communicators will use to secure a permanent secret key if necessary. For cases like 
money transfer the temporary secret will do. Once the money is transferred the shared secret 
becomes useless.  

Unlike the Diffie-Hellman scheme, FigLeaf is randomness based, and the only route of 
attack is brute force.  

 

7.0 Extended Applications 

The power of cryptography to hide a secret in an exposed capsule (a ciphertext) serves a 
variety of applications beyond enabling a conversation in a hostile environment. Most common 
among them are (i) cryptographic authentication, applicable to humans and things alike, (ii) 
pattern concealment, and (iii) graded randomness applications. To the extent that mathematical 
cryptography is vulnerable to the original application, it is similarly vulnerable to its extended 
applications. And to the extent that Trans Vernam Ciphers cure the vulnerability of nominal 
cryptography for secret communication, it similarly cures the vulnerability presented itself when 
used to authenticate a document, a person, a thing.  

Presenting (i) authentication applications, (ii) pattern concealment.  

 
7.1 Authentication 

Authentication is a process where a Verifier verifies that another party, "The Prover", is in 
possession of a piece of information, P. The challenge is repetition: to ensure that the proof does 
not disclose to an attacker how to falsely claim bona fide possession of P. Hence, direct exposure 
of P is not an option. There are three prevailing ways to hide P: (i) pass P within a secure 
channel, (ii) apply private-public key, (iii) apply randomness. The second option is by far the 
most popular. Yet, it is the first target for quantum cryptanalysis, and its days are numbered. 
Good alternatives are in order.  

Presenting: (i) challenge-response authentication (ii) randomized authentication protection 

7.1.1 Challenge-Response Authentication 

The following is a short overview of the cipher, defined in "Efficient Proof of Knowledge of Arbitrarily 
Large Data Which Remains Undisclosed" US Patent 10,594,480 [67]  
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To prove possession of a body of data, P, by a "Prover", the "Verifier" will randomly pick a 
number R, and a function f, and pass both to the prover (in the open). The prover will use R, and 
f to transform P into a bit string Q: Q = f(R,P). Next the prover will parcel out Q to n distinct 
concatenated substrings q1, q2, ..... qn.  

Q = q1 || q2 || ..... ||qn  

The breakdown of Q to n substrings will be carried out according to a shared rule which 
will ensure that:  

qi ≠ qj, ..... for i≠j, and i,j = 1,2,....n,  

The breakdown rule is not secret. The prover will then apply the Complete Transposition 
Cipher, as described above, to reshuffle the n substrings to a transposed Q: QT.  

QT will be passed to the verifier. The verifier will similarly identify the n substrings q1, 
q2,.... qn, and confirm that QT can be constructed from q1, q2,.... qn in some order.  

One may note that the verifier may verify the prover being in possession of P, without the 
verifier being in possession of P. All that the Verifier needs in order to do their job is to have n 
substrings: q1, q2,.... qn, without having knowledge of the particular permutation thereto that 
assembles them to Q.  

Since the transposition is complete, the attacker in possession QT will have first to list all 
the possible ways, m, in which QT can be divided to an unknown number of substrings, n1, n2, .... 
nm, compliant with the substrings division rule, then for each possible number of strings consider 
all the permutations thereto.  

By selecting f, and R so as to generate Q of any desired size, the verifier will ensure that the 
brute force load on the attacker will exceed their ability to extract P in a timely manner. Because 
the combination of R and f is not repeated, the attacker will have to extract P from QT in order to 
prove possession thereof.  

7.1.2 Protecting Authentication Databases 

The following is a short overview of the ciphers, defined in "Method for Inhibiting Mass Credentials 
Theft" US Patent 10,395,053 [70]  

Identity authenticators happen to be organizations serving a large number of customers. 
Using secure channels these authenticators receive the credentials of their customers, compare 
them to their records, and thereby authenticate them. The records kept by these organizations are 
at the cross hair of sophisticated attackers, since a single penetration will net private data of all 
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the customers of the victim organization. This can be prevented by allowing the authenticators to 
perform the authentication without keeping their customers' data in their authentication records. 
It seems impossible at first glance, how would one authenticate unknown data? It can be done 
through zero knowledge techniques that are math-loaded. Here we present a randomness-based 
solution.  

Information submitted for authentication is written as bit strings. Bit strings are 
conveniently written in Base64. Base64 is a language comprised of 64 letters. We map letter 
number i in this alphabet (i = 1,2,...64) to a bit string comprising i bits -- disregarding the identity 
of the bits. We now determine the identities of these message bearing bits through a source of 
randomness. This will yield a fully randomized layout, R, of the message A submitted for 
authentication. Let's divide A to n bits segments: A = a1 || a2 || ..... am where |ai| = n. Each segment 
will also be randomized. Let us now flip h < n bits in each segment. Such flipping will not affect 
the prime message, written in Base64, but it will shift the bit expression of the Base64 letters. 
Each message ai will be shifted to a'i, where ai and a'i exhibit a Hamming distance h between 
them:  

h = Hamming(ai, a'i)..... for i=1,2,...,m  

We now can store the shifted expression: A' = a'1 || a'2 || ..... a'm in the server's database, and 
send the customer the message A = a1 || a2 || ..... am to use when authenticating herself.  

The prime message (written in Base64) will be the same both for the record kept on the 
customer's phone and for the record kept in the server's database. When the server receives the 
message from the customer, the server first authenticates the prime message (account number, 
name, password etc.), and then examines the bit identities of the submitted bit string.  

If the Hamming distance between the customer’s record and the server’s record for all 
sections of A is h, then the transaction goes through. If the test fails, the transaction stops, and a 
response protocol is activated.  

Should a hacker break in to the server and copy its records, they will not harvest the 
customers' record. They will get a hold of the server's data. Should a hacker attempt to steal a 
customer's identity using her credentials that were stolen from the server, then the server will 
immediately realize that the Hamming distance between its records and the data submitted for 
authentication is zero and not h.   An alarm will sound to alert the server and conclude that a 
hacker pretends to be a customer.  The server is further alerted to the fact that the server was 
compromised. Once so realized the server will simply refresh its records, maintain the prime 
message but change the Hamming distance from h to h' ≠ h. This simple act will void the 
hacker's harvest. The stolen data which has a Hamming distance h from the customer's record 
will not enable the hacker to contrive credentials that would exhibit a Hamming distance h' from 



 
 

21 

the servers' records. That is because the hacker does not know which bits were flipped and which 
were not -- this choice was made randomly. The net effect of this tool is that (i) a breach is 
instantly discovered, and (ii) is readily recovered from. This recovery is swift and painless 
without bothering the customer.  

 

7.1.3 Authentication of Material Items 

The following is a short overview of the technology defined in "Proving Material Identity with 
Quantum Randomness -- Financial and General Applications" US Patent 10,754,326. [74], "BitMint 
Hard Wallet: Digital Payment without Network Communication: No Internet, yet Sustained Payment 

Regimen between Randomness-Verifiable Hard Wallets" [75].  

Counterfeiting material items is an advanced fraud industry, affecting mainly manufactured 
items of value. Governments are in a race with counterfeiters over banknotes, passports, and 
various licenses and documents. Manufacturers suffer when the market is flooded with look-
alike products that steal their customers and destroy their reputation.  

Much as the prevailing cryptography is opting for greater and greater mathematical 
complexity to fend off cryptanalysis, so do manufacturers, adding hologram signatures and other 
physical complexities to remain one step ahead of the counterfeiters. We have seen how 
randomness is an alternative solution strategy against cryptanalysis; the very same principle 
applies to material authentication: chucking the unified complexity race in favor of randomized 
complexity.  

A pattern-loaded manufacturing complexity will eventually be deciphered. And once so the 
counterfeiter will flood the market with hard to detect counterfeits. Applying randomness, each 
item has its own unpredictable signature, so there is no one 'secret' that works for all items of the 
same kind. The counterfeiter will have to tailor the counterfeit to individual signatures. What is 
more, the randomized signature is comprising a very large number of measured properties. Some 
are published on a public ledger, allowing the verifier to compare the published and the 
measured. Albeit, many more properties are not published a-priori, and only released to the 
public upon demand. The verifier will check the submitted item against the just released 
properties -- a counterfeit will fail the test.  

 

7.2 Pattern Concealment 

The following is a short overview of the cipher, defined in "Effective Concealment of Communication 
Pattern (BitGrey, BitLoop)" US Patent 10,673,822, [71]  
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In many practical circumstances attackers gain a consequential advantage by analyzing the 
pattern of communication traffic: who writes to whom, when, how much, how often, etc. While 
encryption per se hides the content of the communication, it does expose its pattern. Trans-
Vernam ciphers can be used to cure this deficiency. TVC may inflate the ciphertext at will, while 
the intended reader will not be confused by the meaningless bits and properly interpret the 
meaningful bits, as described herein. This situation may be exploited by establishing a fixed bit 
rate among the communicators. The bit flow will range from no-messaging, all bits are 
meaningless, to all-messaging, no bits are meaningless, and any state in between. The 
communicators will read only the messages intended for them, but attackers will see a steady 
unchanging bit flow rate, remaining in the dark as to whether anybody talks to anybody, or who 
talks to whom, how often and how much.  

 

8.0 Randomness Technology 

The most popular source for randomness are algorithms that generate bits sequences that 
comply with a given (arbitrary) set of rules. John Von Neumann said that anyone generating 
randomness from algorithms does not understand, neither randomness, nor algorithms. Indeed it 
makes little sense to abolish mathematical complexity with randomness that is itself a product of 
mathematical complexity. There are two classes of non-algorithmic randomness: (i) physical 
complexity, (ii) quantum randomness. The former is based on the formidable amount of real time 
knowledge that must be processed in order to defeat it, and the latter is based on a first principle 
of quantum mechanics.  

It is noteworthy that perfect randomness can be theorized, not proven. No matter how many 
tests are conducted over a source of randomness, the results can always be explained as coming 
from a source where the deviation from perfect randomness is too small to detect in this finite 
test. This fact casts a thin but present shadow on the assertions for security claimed herein.  

Presenting: (i) quantum randomness technology, (ii) physical complexity randomness 
technology.  

8.1 Quantum Randomness Technology 

The following is a short overview of the technology, defined in "Rock of Randomness" US Patent 
10,467,522, [73] and in "The Rock of Randomness: A physical oracle for securing data off the digital 

grid” [42]  

Commercial outfits today offer elaborate apparatuses generating quantum grade randomness 
[72]. What is needed then is (i) robust packaging, and (ii) effective duplication, (iii) copy 
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protection. These three needs have been satisfied through "The Rock of Randomness". It packs 
randomness in the chemical structure of the material constituents of the rock. The data, hence, is 
off the digital grid, which means it is beyond the territory that is subject to digital compromise. 
One needs to have access to the Rock itself, in order to read its data. The Rock packs very large 
quantities of data in its molecular composition. It is measured in an analog format, then digitized. 
Even a small piece of rock may pack an enormous amount of data, beyond what is practical to 
image in a database.  

The Rock is not vulnerable to accidental physical punishment, nor to happenstance 
chemical obstruction. Melting will destroy it, but otherwise it keeps. The manufacturing of the 
Rock can be duplicated, but given a manufactured Rock it is infeasible to duplicate it. 
Communicators holding a duplicate of the same Rock each, will enjoy the full power of Trans 
Vernam Ciphers.  

 

8.2 Physical Complexity Technology 

The following is a short overview of the technology, specified in US Patent Application #17063523.  

Quantum randomness enjoys the credibility of the most elevated scientists who claim it to 
be perfect. Only that the generators of this randomness are embedded in complex electronics, 
which is subject for attack. So while the created bit flow is unbiased, the bit sequence that is 
poured to its consumers may be contaminated. This is one argument in favor of a closer source 
based on sufficient real-world complexity that is per symmetry tests devoid of any pattern  [29]. 
One such source is a contraption wherein insulating bubbles rise in a conductive liquid, and 
reduce its effective conductivity. The reduced conductivity suppresses the bubbles flow, 
(feedback cycle) which in turn increases the effective conductivity, that now increases the flow 
of bubbles. The mechanism varies the quantities of the rising gas, as well as its distribution over 
a range of bubble size. The conductivity variance is translated into a randomized bit stream.  

This bubbles randomizer will be external to the consuming computers, and be readily 
replaceable. Unlike a quantum source, this complexity apparatus hinges on a feedback cycle, so 
that any disturbance will be diffused to high quality randomness.  

*  *  * 
 
A Note on the Innovation Solution Protocol: This presentation is a case study for the 

innovation path known as historic retrace in which one traces the innovative history of a present 
state, revisits innovative forks of the roads, and examines roads not taken. The idea being that in 
hindsight the unselected options in that junction point may look more attractive than when first 
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encountered. Pursuing those untried avenues is a choice loaded with possibilities. Progress from 
natural evolution to science and technology is a zig-zagging path. This thesis emerges from a 
rigorous practice of the Innovation Solution Protocol (InnovationSP) [5, 60]. It identified the 104 
years old Vernam cipher as the fork in the road from where cryptography selected the small-key 
path, which was the wise choice for the technology of the day. Albeit with the tools we have at 
present, the road not taken -- projecting security through randomness, not through math -- is the 
road that leads to new cyber vista. 
 

Allegory: The following short tale illustrates the message contained in this article. Two 
pals, Alice and Bob play a game of dice. One throws, the other guesses. A right guess will move 
1$ from the dice thrower to the dice guesser. Playing for hours both players end up with just 
about the same amount of money they brought to the match. This is very disappointing for Alice 
who is much better educated than Bob, and knows everything there is to know about 
probabilities and computing. So she proposes to Bob to introduce a tiny variation to the game. 
Instead of throwing one dice, they will each throw two. Instead of guessing in the range 1-6, they 
will be guessing in the range 2-12. Bob innocently accepts, but no sooner do they switch to two 
dice than Alice cleans Bob wallet to his last dollar. While innocent Bob randomly guesses a 
choice from 2-12, Alice uses her probability education and guesses 7 every time. Bob is losing 
money every night, blaming his bad luck.  

One bright day Bob realizes that his losses occurred when the game was switched from one 
dice to two dice, so he insists on returning to the original mode. Lo and behold Alice advantage 
vanishes.  

Trans Vernam ciphers -- return to Vernam philosophy (not to the Vernam protocol) -- are 
tantamount to innocent Bob returning to the one dice mode where no matter how smart, or how 
stupid a player is their playing field is level.  
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Outlook 

For decades national security agencies around the world operated on the premise that they 
are one step ahead of their adversaries in terms of mathematical insight, and computational 
power. They have opted for a state of affairs where their adversaries trust and use a cipher that 
these agencies can secretly compromise on account of their technological edge. If the targets of 
these agencies will shift from pattern-loaded to pattern-void encryption, then this decades-old 
paradigm will exhaust its efficacy. From the public point of view, Trans Vernam Ciphers do 
level the playing field.  Ordinary citizens will be able to kick-start spontaneous cryptography and 
then communicate with mathematically guaranteed security, withstanding any assaults by math 
and machine; randomness is unassailable.  

This prospective empowerment of the global individual citizen comes about just when the 
vision of Web 3.0 is picking up steam. Perfect timing.  
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