
Compressed SIKE Round 3 on ARM Cortex-M4

Mila Anastasova1, Mojtaba Bisheh-Niasar1, Reza Azarderakhsh1,2 and Mehran
Moza�ari Kermani3

1 Computer and Electrical Engineering and Computer Science Department and
I-SENSE at Florida Atlantic University, Boca Raton, FL, USA

(manastasova2017, mbishehniasa2019, razarderakhsh)@fau.edu
2 PQSecure Technologies, LLC, Boca Raton, FL, USA

3 Computer Engineering and Science Department at University of South Florida,
Tampa, FL, USA,
mehran2@usf.edu

Abstract. In 2016, the National Institute of Standards and Technology
(NIST) initiated a standardization process among the post-quantum se-
cure algorithms. Forming part of the alternate group of candidates after
Round 2 of the process is the Supersingular Isogeny Key Encapsulation
(SIKE) mechanism which attracts with the smallest key sizes o�ering
post-quantum security in scenarios of limited bandwidth and memory
resources. Even further reduction of the exchanged information is of-
fered by the compression mechanism, proposed by Azarderakhsh et al.,
which, however, introduces a signi�cant time overhead and increases the
memory requirements of the protocol, making it challenging to integrate
it into an embedded system. In this paper, we propose the �rst com-
pressed SIKE implementation for a resource-constrained device, where
we targeted the NIST recommended platform STM32F407VG featuring
ARM Cortex-M4 processor. We integrate the isogeny-based implementa-
tion strategies described previously in the literature into the compressed
version of SIKE. Additionally, we propose a new assembly design for the
�nite �eld operations particular for the compressed SIKE, and observe a
speedup of up to 16% and up to 25% compared to the last best-reported
assembly implementations for p434, p503, and p610.

Key Words: Compressed Supersingular Isogeny Key Encapsulation (SIKE),
Post-Quantum Cryptography (PQC), ARM Cortex-M4

1 Introduction

Public key cryptography is essential for the con�dentiality and integrity of data
transmitted through an insecure channel. The classical schemes used nowadays
such as RSA and the ECC family, however, are going to be broken when a large-
scale quantum computer is developed. Driven by the technology progress the Na-
tional Institute of Standards and Technology (NIST) [1] initialized a standardiza-
tion process aiming at optimizing and evaluating the post-quantum candidates.
In 2020, Round 3 of the competition has started, where the post-quantum se-
cure Key Encapsulation Mechanisms are divided into two subgroups � �nalists

and alternate candidates. Forming part of the alternate candidates is the only
isogeny-based cryptosystem � Supersingular Isogeny Key Encapsulation (SIKE)
mechanism, which, based on the Supersingular Isogeny Di�e-Hellman (SIDH)
algorithm [2], attracts with the smallest public key and ciphertext sizes (i.e.,
330 and 346 bytes for the NIST security level 1 implementation). Thus, it en-
sures negligible communication latency of the algorithm and comes into use in
a bandwidth-limited environment.

In 2016, Azarderakhsh et al. proposed even further reduction of the trans-
mitted information in [3] where the team reduced the size of the data by a factor
of 2 by applying a novel idea for compression mechanism. The signi�cant tim-
ing overhead introduced when using the compression incited optimizations in
the computational cost of the scheme presented in [4], [5], and [6]. The com-
pression mechanism, however, still introduces a non-negligible timing overhead
and requires more available memory, making the protocol execution di�cult on
low-end devices which o�er limited resources.

The compressed SIKE is the algorithm with the closest communication la-
tency to today's cryptosystems. The extremely compact key sizes o�ered by the
Elliptic Curve Cryptography (ECC) family lead to multiple optimizations of the
algorithm targeting software and hardware [7], [8], [9], [10] reporting indisputable
time and energy e�ciency. Nevertheless, despite the inexpensive computational
cost and the extremely low key sizes, this classical crypto scheme will not en-
sure secure data transmission in the scenario of large quantum computers which
leads to the NIST post-quantum standardization e�ort, where the complexity of
some algorithms, such as SIKE, introduces higher computational cost. Thus, sev-
eral researchers have centered their work on improving the e�ciency of the PQ
scheme on software [11], [12], [13], [14], [15], targeting ARMv7-M, ARMv7-A and
ARMv8 ARM-based architectures, and hardware [16], [17], [18], [19] targeting
the Xilinx Virtex 7 FPGA family hardware platform.

Contribution. In this work, we propose the �rst implementation of com-
pressed SIKE, targeting the resource-restricted processor ARM Cortex-M4. We
integrate the �nite �eld strategies proposed in [12] and [11] into the compressed
SIKE implementation, we hand-code additional subroutines and report the achieved
results. Our contributions are itemized as follows:

� We propose optimal usage of the memory, increasing the size of the stack to
128KB and creating a memory region in the Core Coupled Memory (CCM
RAM) increasing the RAM from 112KB as proposed in PQM4 [20] to 192KB.
For the correct execution of compressed SIKEp610, we split large structures
residing in the memory into parts and allocate them in the stack and the
CCM RAM ensuring that the program does not overwrite illegal memory
regions exceeding the size of the stack.

� We implement additional subroutines particular for compressed SIKE in an
e�cient assembly language - multi-precision subtraction with correction 2p
and 4p and multi-precision multiplication of 256 × 256- and 320 × 320-bit
length, where we apply the strategies described in the isogeny-based works
[12] and [11].

Public Parameters: p = 2eA3eB − 1, E0/Fp2 , {PA, QA} and {PB , QB}
Alice Bob

Input: -
Output: s, skA, pkA
1. skA ∈R Z/2eAZ
2. φA : E0 → EA with
ker(φA) = 〈PA + [skA]QA〉
3. pkA = (EA, φA(PB), φA(QB))
4. s ∈R {0, 1}t
Compress public key

Input: s, skB , pkB , c
Output: ss
Decompress ciphertext
1. φ′A : EB → EBA with
ker(φ′A) = 〈φB(PA) + [skA]φB(QA)〉
2. m′ = c1 ⊕K(j(EBA))
3. r′ = H(m′||pkA)mod3eB
4. φ′′A : E0 → EB′ with
ker(φ′′A) = 〈PB + [r′]QB〉
5. pk′B = {EB′ , φ′′A(PA), φ

′′
A(QA)}

6. IF pk′B = pkB
ss = (J(m′||c))

ELSE ss = (J(s||c))

pkA
−→
c
←−

Input: pkA
Output: c, ss
Decompress public key
1. m ∈R {0, 1}t
2. r = H(m||pkA)mod3eB
3. φB : E0 → EB with
ker(φB) = 〈PB + [r]QB〉
4. pkB = {EB , φB(PA), φB(QA)}
5. φ′B : EA → EAB with
ker(φ′B) = 〈φA(PB) + [r]φA(QB)〉
6. c = (c0, c1) = (pkB ,K(j(EAB))⊕m)
7. ss = (J(m||c))
Compress ciphertext

Fig. 1. SIKE algorithm [23]. H, K and J denote hash functions.

� We integrate the previous best-reported arithmetic operations optimizations
proposed in [12] and [11] and report a speedup of up to 25% and up to 16%,
respectively, after integrating the new subroutine implementation for p434,
p503, and p610 compressed SIKE primes.

2 Preliminaries

This section presents a detailed description of the (un)compressed SIKE protocol
and a description of the target platform. For a more comprehensive description
of the algorithms refer to [21] and [22].

2.1 SIKE

The Supersingular Isogeny Key Encapsulation mechanism forms part of the al-
ternate candidates after NIST Round 2, thus it is still going through signi�cant
improvements for the high- and low-end target devices. In this work, we present
the �rst design of the compressed SIKE protocol targeting ARM Cortex-M4
processor.

Detailed graphical representation of the steps performed by the communica-
tion parties during the execution of the SIKE protocol is shown in Fig. 1 where
they are described as follows:

Curve: E0/Fp2 : y2 = x3 + 6x2 + x

Parameter Set
NIST Security Public Key Cipher Text Public Key Cipher Text

Level Size (B) Size (B) Size (B) Size (B)

Standard Compressed
SIKEp434 1 330 346 197 236
SIKEp503 2 378 402 225 280
SIKEp610 3 462 486 274 336
SIKEp751 5 564 596 335 410

Table 1. Round 2 SIKE public parameters [23].

� Public Parameters: Alice and Bob start from supersingular elliptic curve
E0/Fp2 with prime number p = 2eA3eB −1 along with basis points {PA, QA}
and {PB , QB} that generate E0[2

eA] and E0[3
eB], respectively.

� Key Generation: Alice computes a random integer skA ∈R Z/2eAZ and uses
it to compute a secret isogeny φA, where she uses the image curve EA and
the image points φA(PB), φA(QB) to form her public key pkA.

� Encapsulation: Bob computes his secret key r based on Alice's public key
and a random message m, which he uses to compute the kernel of his secret
isogeny and to form his public key as pkB = {EB , φB(PA), φB(QA)}. He
computes a second isogeny, which leads him to the �nal image curve EAB .
He generates a ciphertext appending the message m masked by j(EAB) of
the curve to his public key.

� Decapsulation: Alice uses her secret key and Bob's public key projection
points to reach curve EBA, which since it is isomorphic to EAB features the
same j−invariant. She uses the unmasked value m to obtain Bob's secret
key and uses it to re-compute his public key, where by comparing the result
with c0, she computes the shared secret or uses random value, preventing
further communication.

2.2 Compression Mechanism

The insigni�cant bandwidth required for the execution of SIKE motivated sev-
eral research teams to work and further optimize the size of the exchanged data.
As shown in Table 1, there is a considerable di�erence between the key sizes
of the standard and the compressed version of SIKE, which features the small-
est key sizes among the post-quantum candidates even before the compression
mechanism is applied.

The key compression mechanism has been proposed in 2016 and, due to the
applications of compressed SIKE into the IoT world where the resources are
strictly limited, it has gone through several modi�cations aiming at improving
the main drawback of the protocol � the performance. In Fig. 2, the compression
and decompression of the public information are shown, where the actual content
of the communicated information has been modi�ed with the improvements in-
troduced by several research groups. Nevertheless, the compression mechanism

requires the execution of three main steps: basis generation, pairing and dis-
crete logarithms computations, where these phases introduce a non-negligible
overhead to the execution of the algorithm.

The compression mechanism, proposed by Azarderakhsh et al. [3], reduces
the size of the Supersingular Isogeny Di�e-Hellman, base of SIKE, public infor-
mation by a factor of 2 � from 8log2p to 4log2p. The improvement is achieved
by replacing the previous public key tuple {EA, φA(PB), φA(QB)} by new rep-
resentation {j(EA) ∈ Fp2 , a1, a2, b1, b2 ∈ Z3e3} with the j−invariant of the curve
and four integers such that φA(PB) = a1R1 + a2R2 and φA(QB) = b1R1 + b2R2

for canonical basis {R1, R2} for EA[3
e3]. However, the additional computation of

new points of order 3e3 , the pairing algorithm revealing that the points actually
form basis for EA[3

e3] and discrete logarithms allowing the representation of the
two image points with 4 coordinates in Fp2 using only 4 values in Z3e3 , intro-
duces and overhead of more than 10× the execution time of the uncompressed
algorithm.

Costello et al. have proposed several computational optimizations of the com-
pression algorithm in [4], where they additionally achieve further key size reduc-
tion to 7

2 log2p by sending {j(EA) ∈ Fp2 , α, β, γ ∈ Z3e3} when normalizing three
of the elements with a deterministically chosen invertible element. Their com-
putation improvements are based on e�cient torsion basis generation, fast Tate
pairing [24], [25] (replacing the Weil pairing), SIDH speci�c inversion-free pair-
ing formulas, and highly optimized formulas for solving discrete logarithms. The
improvements made by the authors decrease the performance overhead of the
compression mechanism which leads to the integration of the proposed key size
optimizations into the NIST standardization process SIDH protocol proposal.

In [26], Zanon et al. have proposed the use of entangled basis generation,
which has further application in the isogeny-based hash functions and is proved
to be more than 15× more e�cient than the usual basis generation. They achieve
further performance improvement of the decompression by using shared elliga-
tor technique and reverse basis decomposition. The authors continue with the
optimizations by applying an optimal strategy for the discrete logarithms and
by exploiting particular characteristics of the entangled basis that speed up the
Tate pairing computation.

Later, Naehrig et al. [5] have reduced the compression overhead by integrat-
ing dual isogenies to pull back the deterministically generated basis points to the
original elliptic curve E. The use of dual isogeny φ̂ is applied in the basis gener-

ation and the pairing step, where the Tate pairings evaluate τ3e3 (PB , ˆφA(R1)),

τ3e3 (PB , φ̂A(R2)), τ3e3 (QB , φ̂A(R1)) and τ3e3 (QB , φ̂A(R2)) instead of τ3e3 (φA(PB), R1),
τ3e3 (φA(PB), R2), τ3e3 (φA(QB), R1) and τ3e3 (φA(QB), R2), leading to signi�cant
speedup since the computations are pulled back to the �xed starting curve and
no changes throughout di�erent executions of the protocol occur.

This work has been continued by Pereira et al. in [6] where they improve
further the shared elligator technique, which allows to deterministically �nd a
point on an elliptic curve, by integrating another two bits of information into the
public key, showing the correct ternary basis generators. The implementation is

Public Key (De)Compression

1. Compress Public Key
〈R1, R2〉 = EA [3eB]
c0, c1 : φA(PB) =
[c0]φ̂A(R1) + [c1]φ̂A(R2)
d0, d1 : φA(QB) =
[d0]φ̂A(R1) + [d1]φ̂A(R2)
IF d1mod3

eB = 0
α = −d−1

0 d1, β = c1d
−1
0 , γ = −c0d−1

0

ELSE
α = −d0d−1

1 , β = −c1d−1
1 ,γ = c0d

−1
1

pkA = pk_compA = {α, β, γ,A}

pkA
−→

2. Decompress Public Key
〈R1, R2〉 = EA [3eB]
IF d1mod3

eB = 0
ker(φ′B) =
〈R1 + [((α+ [r]γ)(1 + [r]β))−1]R2〉
ELSE
ker(φ′B) =
〈R1 + [((α+ [r]β)(1 + [r]γ))−1]R2〉

Ciphertext (De)Compression

4. Decompress Ciphertext
〈S1, S2〉 ∈ EB [2eA]
φ′A : EB → EBA with
ker(φ′A) =〈
S1 + [(skAa1 + a0)

−1(skAb1 + b0)]S2

〉
or
ker(φ′A) =
〈S1 + [(skAb1 + b0)

−1(skAa1 + a0)]S2〉

c
←−

3. Compress Ciphertext
〈S1, S2〉 ∈ EB [2eA]
a0, b0 : φB(PA) =
[a0]φ̂B(S1) + [b0]φ̂B(S2)
a1, b1 : φB(QA) =
[a1]φ̂B(S1) + [b1]φ̂B(S2)
c0 = (A, (a0, b0, a1, b1))

Fig. 2. Public Key/Ciphertext (De)Compression. For more details refer to [22].

performed by sharing two counter variables, generated during the compression
phase, which allow the decompression step to be straightforward executed �nding
the correct basis points of the curve by accessing speci�c entry of precomputed
tables. The authors also propose the use of x−only point addition formula which
results in a much more e�cient decompression step. The paper also proposed
an increase of the ciphertext size (eliminating the previous reduction proposed
in [4]), showing a trade-o� between transmitted data size and computational
overhead, which makes the comparison between the transmitted key and the
re-computed one easier and results in a speedup of the decapsulation phase.

Finally, Hutchinson et al. [27] propose techniques for reducing the pairing and
discrete logarithm tables by a factor of 4 by signed digit representation of ex-
ponents and torus-based representation of cyclotomic subgroup elements. These
techniques introduce a slight overhead, however, are crucial for the integration
of compressed SIKE into low-end devices with limited resources.

A detailed description of the compression and decompression steps taken by
Alice and Bob are presented in Fig. 2 which are described as follows:

� Public key compression: Alice computes the unique dual isogeny φ̂A of her
secret isogeny map which she uses to pull back the canonical basis points R1,
R2, generating EA [3eB], to the elliptic curve with Mongtomery coe�ecient

equal to 0 such that φ̂A(R1), φ̂A(R2) ∈ EA′=0. She then computes 4 discrete
logarithms, using optimal Pohlig-Hellman [28] strategy, c0, c1, d0, d1 and �-

nally obtains the value of α, β, γ ∈ (Z3e3)
3, that form part of the compressed

public key replacing φA(PB) and φA(QB).
� Public key decompression: Bob recovers the value of the canonical basis
points R1, R2 and uses them along with the triplet from Alice's public key
to compute the kernel of his second isogeny.

� Ciphertext compression: Bob computes canonical basis points S1, S2 to com-
press his public key, which forms part of the ciphertext. For e�ciency reasons
[6] the triplet is not computed but rather a linear combination of the four
values of a0, a1, b0, b1 are sent to Alice, introducing a tradeo� between ci-
phertext length and decompression (thus decapsulation) execution time.

� Ciphertext decompression: Alice computes the canonical basis S1, S2 and
uses the four values sent by Bob to compute her second isogeny and to reach
the elliptic curve φ′A : EB → EBA, featuring the same j−invariant as EAB

which helps her to recover the value of the masked message m.

2.3 ARMv7-M Architecture

The fast development of the Internet of Things world results in extremely high
demand for low-end devices, which can be integrated into any real-time embed-
ded system. Thus, NIST has announced the Reduced Instruction Set Computer
(RISC) ARM Cortex-M4-based microcontroller STM32F407VG as the target
microcontroller for the implementation and benchmarking of the post-quantum
secure schemes on resource-constraint devices. The standardization e�ort has
incited the implementation of the PQM4 library [20], which integrates test and
benchmark framework used in this work to perform the measurements.

The STM32F407VGmicrocontroller features 1MB of �ash memory and 192KB
of RAM. However, the memory map of the device Fig. 3 shows the division of the
RAM into 3 di�erent memory blocks � 2 consecutive SRAM blocks of 112KB and
16KB, and 1 Cored Coupled Memory (CCM RAM) block of 64KB in a separate
memory region. In PQM4, for e�ciency reasons, only the �rst SRAM memory
region is used for the execution of SIKE, thus the resources of the device are
brought down to only 112KB, which results to be insu�cient for the execution
of the compressed SIKE protocol.

The 3-stage pipeline of the ARMv7-M architecture allows the fast execution
of the instruction set, where most of the instructions require a single clock cycle.
However, the load/store design requires another extra cycle for the completion
of memory access instructions. In some particular cases, the instructions can
be scheduled, thus the additional cycle is absorbed by the following instruc-
tion, however, depending on the nature of the implemented crypto scheme, this
scheduling technique may be or may not be feasible to apply.

The platform, based on ARMv7-M architecture, features 16 32-bit Gen-
eral Purpose Registers (GPRs) and another 32 32-bit Floating-Point Registers
(FPRs). Two of the GPRs are reserved for the Stack Pointer and the Program
Counter, therefore, cannot be modi�ed by the programmer, whereas the use of
all FPRs is allowed, providing another 1024 bits of register space. Furthermore,
the access cost for the information stored in the FPRs consists of a single clock

Reserved
SRAM
(16KB)
SRAM

(112KB)

Reserved

0x2001 C000
 0x2001 FFFF

0x2000 0000
 0x2001 BFFF

512MB
Block 1 SRAM

512MB
Block 0 Code

0x2000 0000

 0x3FFF FFFF

0x0000 0000

 0x1FFF FFFF

CCM data RAM
(64KB data SRAM)

0x1000 0000
 0x1000 FFFF

Aliased memory

...

...

Fig. 3. Memory map of STM32F407VG device. The memory region used in
PQM4 library [20] for the execution of SIKE is marked in red.

cycle. The VMOV instruction ensures instant data transfer between the two regis-
ter sets, where it can be used to replace memory accesses, reducing the cost of
LDR and STR instructions.

The use of Multiply ACcumulate (MAC) instructions has been the focus of
several researchers in the last years due to the execution of up to 3 operations
in a single clock cycle, thus we have integrated the use of UMULL and UMAAL into
our work.

The procedure call standard for ARM architecture [29] states that the core
registers R4-R11 and �oating-point registers S16-S31 are not callee-saved, thus
their value should be preserved among function calls by (v)pushing them in the
stack at the beginning of a subroutine and (v)popping them at the end of a
function call.

3 Compressed SIKE on STM32F407VG

The resource-constrained target platform and the PQM4 library settings did
not allow the execution of the compressed SIKE for security levels 3 and 5. We
applied some changes to the architecture of the linker �le to make possible the
execution of compressed SIKEp610 on the STM32F407VG platform. Further-
more, we implemented �nite-�eld and multi-precision arithmetic particular for
compressed SIKE in assembly language to speed up further the execution time
of the protocol.

3.1 Con�guration Modi�cations

The PQM4 library, base of our benchmarking, provides an implementation of
the uncompressed SIKE, however, does not integrate the compressed SIKE due
to the resource limitations of the target platform. The library con�gurations
for SIKE are designed to �t the needs of the crypto scheme eliminating slow
SRAM regions overhead. Speci�cally, for the execution of SIKE, the authors
of the library integrate the use of only the �rst 112KB of SRAM, where the
following 16KB are not in use due to e�ciency reasons.

The execution of the compressed SIKE, however, requires large data struc-
tures, needed for the dual isogeny computation, which sizes increase with the
number of isogeny maps needed thus with the security level of the algorithm.
For the primes p610 and p751 the 112KB of SRAM were not enough to store
the allocated local tables and resulted in stack over�ow, causing the program to
break due to overwriting illegal memory regions.

To allow the correct execution of compressed SIKEp610, we increased the
size of the stack including the extra 16KB of SRAM by modifying the linker �le.
However, a total of 128KB of SRAM was still not enough for the compressed
SIKEp610 execution. Therefore, we created a new memory region, which we
placed inside the CCM RAM memory. We had to split the large dynamically
allocated data structures into parts and place them separately into the SRAM
(the stack) or the CCM RAM region. The CCM RAM memory is primarily de-
signed for running code fast (with zero wait states) thus, placing some variables
in this region may result in a speedup of the execution without any modi�-
cation on the algorithm design. However, for precise measurement results, the
PQM4 [20] benchmark framework suggests running the code @24MHz which
eliminates all wait states and ensures an accurate number of clock cycles. Thus,
the performance improvements discussed in this work are solely a result of the
hand-coded assembly subroutines described in the following sections. The mem-
ory increase allowed us to execute the compressed SIKEp610 algorithm, where
we had to perform some slight changes to the code, splitting the data struc-
tures and addressing them accordingly during the execution. The compressed
SIKEp751 requires more memory than the entire 192KB of RAM, thus, it is not
the focus of this work.

3.2 Field Subtraction and Multi-Precision Multiplication

In this work, we integrated the arithmetic operations underlying SIKE described
in [12] and [11] into the implementation of compressed SIKE. The compressed
crypto scheme, however, requires other functions, speci�c to the compression
mechanism of SIKE. We implemented them in assembly language, integrating
the strategies described in the literature, in particular, in [12] and [11], where,
due to the performance optimizations and the invocation rate of the subroutines,
we end up with a signi�cant speedup.

Field Subtraction The importance of long integer modular addition and sub-
traction for cryptography is undeniable and its high invocation rates incite con-
tinuous improvement of these arithmetic operations [30], [12], [11]. The imple-
mentation of long integer addition/subtraction requires proper management of
the carry/borrow propagation among the di�erent limbs of the operands. The
integration of correction step in the subtraction subroutine, bringing the integer
back into the �nite �eld speci�ed by the security level implementation of the
protocol, implies the execution of one extra long-integer addition, where in the
scope of the compressed SIKE there are two di�erent functions � subtract with

Carry
Activator

B2

A B

R
Bin

Sub

A2

P2

A B

R
Cin

Add

B0

A B

R Sub

A0

P0

A B

R Add

Bout

Cout

P1

A B

R Add

A1

B1

A B

R Sub

Cout

Bout

Cin

Bin
Borrow

Activator

Borrow
Catcher

Carry
Catcher

R0R1R2

Fig. 4. Subtraction with correction P , where P represents 2p or 4p.

correction 2p and 4p, performing a− b+2p and a− b+4p, respectively. We im-
plement these functions in an e�cient assembly code using the implementation
strategies described in [11].

First, we apply the blocking strategy, where we split the long integer into
several parts as shown in Fig. 4. We perform the subtraction and addition
steps to each block managing the carry/borrow propagation with the help of
carry/borrow catcher/activator, using the reduced instruction set SBC and RSBC.
This strategy allows to reduce the number of registers used for the carry/borrow
management and to increase the block size from 4 words per block to 5. Thus, the
memory access latency is reduced along with the number of multiple load/store
instructions which ensures scheduled code and minimal overhead.

Second, we integrate the block operation alternation, where we �ip the ap-
plied add/sub instructions as shown in Fig. 4 among consecutive blocks allowing
to manage the carry/borrow propagation using simply the ADCS / SBCS instruc-
tions. Therefore, we reduce the number of carry/borrow catchers/activators and
use fewer instructions per modular subtraction.

Multi-Precision Multiplication Due to the extremely high invocation rate of
the multi-precision multiplication in the scope of SIKE and compressed SIKE,
its fast implementation becomes crucial for the crypto scheme's performance.
Several research groups have been working on optimizing the multi-precision
multiplication function by applying the Karatsuba method [30], [31], focusing on
the powerful MAC instruction set [32], [33] and reducing the memory accesses
by reusing the loaded values in the register set as long as possible [34], [12].

The implementation of compressed SIKE integrates multiplication subrou-
tines of smaller sizes than the length of the primes, due to the new values
contained into the public key and the ciphertext messages. In particular, the
compressed SIKE uses multi-precision multiplication of two operands consisting

Table 2. Compressed SIKE arithmetic performance cost @24MHz.

Implementation
Timing [cc×106]

sub_2p sub_4p mul sub_2p sub_4p mul sub_2p sub_4p mul

SIKEp434 compressed SIKEp503 compressed SIKEp610 compressed

SIDH v3.31 577 579 4,940 656 656 4,940 813 813 8,034
This work 135 135 202 147 147 202 180 180 296

1 [35]

of 8 32-bit words for p434 and p503 and 10 32-bit words for p610. The multipli-
cation results are not reduced, therefore, the outputs are two times longer than
the operand sizes. In Fig. 5, we describe the implementations of both lengths
of multi-precision multiplications using the visual rhombus representation where
every diagonal line denotes a limb from the operand. The white dots show a
32× 32-bit multiplication of the words from the operands corresponding to the
crossing diagonals. The stroked white �elds represent the consecutive accumu-
lative multiplications and are referred to as rows in the literature. Finally, the
red numbers denote the �oating-point registers storing the partial results, where
they are used in a consecutive order increasing from right to left. To reduce the
execution timing of the multi-precision multiplication and thus to increase the
e�ciency of the entire protocol, we implemented the functions using assembly
code as proposed in [12] and [11]. We used the Multiply ACcumulate instructions
UMULL and UMAAL, implementing the Re�ned-Operand Caching design proposed
in [12] with a maximum row size equal to 4. We implemented 256 × 256− and
320×320−bit multiplications, where we use the FP register set as a cache mem-
ory, storing the partial result values resulting from the di�erent row calculations
as shown in Fig. 5, using the low-cost VMOV instruction.

Analysis of the Performance The implementation of all the �nite �eld oper-
ations is performed in constant time, including the work in [12] and [11], which
has been adapted to the compressed SIKE algorithm in the scope of this work.
We have performed our measurements, as described in Section 4, running the
algorithm @24MHz and @168MHz, for achieving a precise number of clock cycles
and for reporting the minimal timing that the protocol can be executed, respec-
tively. The underlying arithmetic operations are the reason for the performance
speedup of the entire protocol due to the pyramid-like structure of the isogeny-
based post-quantum scheme. In Table 2, we report the obtained performance
after we have implemented the subtraction and the multiplication functions in
assembly language. We compare our performance with the previous best (and
only) implementation of the given subroutines which we have obtained from
[35] implemented in portable C language. The comparison table shows that the
target-speci�c implementation of the subtraction and multiplication is improved
by 76.60% and 95.91%, respectively, for p434, 77,59% and 95.91% for p503, and
77.86% and 96.32% for p610. The global performance of compressed SIKE is

A[7]B[0]

A[7]B[7]

A[0]B[7]

A[0]B[0]

S4S10

...

1

2

2
1

3

A[9]B[0]

A[0]B[9]

A[0]B[0]

S7S9

S4S13
...

...
A[9]B[9]

Fig. 5. 256× 256− and 320× 320− bit multiplication, using the FPRs as cache
level 1 storing partial result values.

improved signi�cantly by the implementation optimizations of the functions but
also due to the high invocation ratio of these arithmetic operations.

4 Performance Evaluation

In this section, we present the results that we obtained after applying the op-
timization strategies (the changes described in Subsection 3.1 apply for com-
pressed SIKEp610 only). We performed our experiments and report the results
in Table 3, targeting the processor Cortex-M4 using the board STM32F407VG
and the benchmark framework PQM4 [20], running it @24MHz which sets the
processor to zero wait state, and @168MHz, providing the performance cost for
systems, running at the maximum controller speed, showing the protocol exe-
cution time in seconds. We have placed our code segment in the ROM memory
while the data segment is placed in the RAM region, where the use of the CCM
RAM is dedicated to the storage of large local data structures that exceed the
size of the stack. The obtained performance improvements are a result of the

Table 3. Compressed SIKE Round 3 performance cost and speedup @24MHz
aiming precision of the reported clock cycles and @168MHz reporting timing
results for real world scenario.

Implementation
Timing [cc×106] Speedup Timing Total

@24MHz @168MHz
KeyGen Encaps Decaps Total [%] [cc×106] [sec]

SIKEp434 compressed

SIDH v3.31 1,088 1,715 1,272 2,987 94.1 3,017 18.00
Seo et al.2 79 133 98 232 24.9 240 1.43

Anastasova et al.3 76 119 89 209 16.7 246 1.46
This work 68 99 74 174 - 212 1.26

SIKEp503 compressed

SIDH v3.31 1,638 2,601 1,920 4,521 94.5 4,519 27.00
Seo et al.2 111 181 137 319 21.8 333 1.98

Anastasova et al.3 99 164 125 289 13.9 359 2.14
This work 89 143 106 249 - 318 1.89

SIKEp610 compressed

SIDH v3.31 3,244 4,909 3,889 8,798 94.5 8,775 52.00
Seo et al.2 220 333 278 611 20.4 627 3.73

Anastasova et al.3 191 306 255 561 13.2 635 3.78
This work 187 267 219 487 - 564 3.36

1 [35],2 [12], 3 [11]

integration of the target-speci�c subroutine implementation since the slow fre-
quency used for the precise measurements ensures zero wait states thus the use
of the CCM RAM has no impact on the overall execution time. The reported
results show the performance of compressed SIKE Round 3, where the work
presented in [5] and [6] is adapted to the implementation design.

We compare the results with the previous best-reported implementation
strategies of the �nite �eld arithmetic needed for the long integer operations in
SIKE after integrating them into the compressed SIKE protocol. Even though
we propose the �rst integration of compressed SIKE on low-end Cortex-M4,
we integrate the code presented in [12] and [11] to provide comparison results.
Table 3 reports performance optimizations of 25%, 21% and 20% for SIKEp434,
SIKEp503 and SIKEp610, respectively, comparing our work with [12] and 16%,
14% and 13%, compared to the design in [11]. The measurements when run-
ning the board @24MHz represent a precise number of clock cycles, however,
for real-time applications, where the execution speed is of great importance, we
increase the frequency to 168MHz, o�ered by the STM32F407-Discovery board,
and report the performance in terms of clock cycles and seconds. We observe
that the execution of the compressed SIKE mechanism is signi�cantly improved,
where it still represents its main drawback, while o�ering the smallest key sizes,
and reducing the communication latency to minimal in comparison to the rest
of the post-quantum candidates.

Table 4. PQC Round 3 �nalists and alternate candidates timing results, memory
usage and transmitted data on STM32F407VG using PQM4 [20].

Implementation Timing [cc×106] Memory [B] Data [B]
KeyGen Encaps Decaps KeyGen Encaps Decaps pk+ct

Security Level I

Kyber512 0.46 0.57 0.53 2,396 2,484 2,500 1,568
ntruhps2048509 79.66 0.56 0.54 21,392 14,068 14,800 1,398

lightsaber 0.36 0.49 0.46 5,332 5,292 5,308 1,408
BIKE L1 25.06 3.40 54.79 44,108 32,156 91,400 3,113

FrodoKEM640aes 48.35 47.13 46.59 31,992 62,488 83,104 19,336
FrodoKEM640shake 79.33 79.70 79.15 26,600 51,976 72,592 19,336

SIKEp434compressed
68.26 99.50 74.86 68,636 41,380 7,940 433
65.4% 47.6% 3.9% 56.1%

SIKEp434 41.28 67.40 72.02 6,108 6,468 6,748 676

Security Level II

SIKEp503compressed
89.76 143.17 106.26 88,192 53,696 9,008 505
54.4% 49.9% 4.5% 54.5%

SIKEp503 58.12 95.53 101.73 7,360 7,736 8,112 780

Security Level III

Kyber768 0.76 0.92 0.86 3,276 2,968 2,988 2,272
ntruhps2048677 143.73 0.82 0.82 28,504 9,036 19,728 1,862

saber 0.66 0.84 0.79 6,364 6,316 6,332 2,080
ntruhrss701 153.10 0.38 0.87 27,560 7,400 20,552 2,276
ntrulpr761 0.74 1.29 1.39 13,168 20,000 24,032 2,206
sntrup761 10.83 0.70 0.57 61,508 13,320 16,952 2,197

SIKEp610compressed
187.67 267.35 219.80 85,740 78,532 11,524 616
76.9% 37.2% 12.1% 53.9%

SIKEp610 106.07 194.90 196.12 10,490 10,908 11,372 948

In Table 4, we present the compressed SIKE algorithm comparing it with the
rest of the post-quantum candidates in the NIST standardization e�ort to o�er
a better understanding of the advantages and disadvantages of each one of the
protocols and to stress again on the main bene�t of compressed SIKE � the key
sizes. Even though SIKE forms part of the alternate candidates in the NIST PQ
process, we believe that it is applicable in multiple scenarios, especially in low-
end real-time and IoT systems, where the data transmission latency should be
minimal and the resource capabilities of the devices are constrained. In Table 4,
we describe the timing of the post-quantum safe candidates, the memory require-
ments of each scheme, and the size of the public data. We denote the Round
3 �nalists in bold, where the rest of the schemes are alternate candidates. We
report the timing overhead introduced by the compression mechanism of SIKE
in red color and the public information overhead when running uncompressed
SIKE in green.

5 Conclusions

In this work, we presented the �rst implementation of compressed SIKE targeting
the low-end device STM32F407VG, which is the NIST recommended platform
for benchmarking the post-quantum secure protocols. We increased the stack
and added a new memory region placed in the CCM RAM memory, which al-
lowed to execute compressed SIKEp610 without corrupting the memory. Further,
we implement subtraction and multiplication compressed-speci�c subroutines in
assembly code to maximize the speedup.

We hope to push SIKE and compressed SIKE further in the PQC NIST
competition by continuing our optimization e�ort since they o�er the smallest
key sizes, therefore, ensure insigni�cant communication cost.

6 Acknowledgment

The authors would like to thank the reviewers for their detailed comments. This
work is supported in parts by an award from NSF 2101085.

References

1. T. N. I. of Standards and T. (NIST)., �Post-quantum cryptography standard-
ization, 2017-2018.� https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization, last accessed on June 6, 2021.

2. D. Jao and L. De Feo, �Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies,� in International Workshop on Post-Quantum Cryp-
tography. Springer, 2011, pp. 19�34.

3. R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi, �Key compression
for isogeny-based cryptosystems,� in Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, 2016, pp. 1�10.

4. C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik, �E�cient
compression of sidh public keys,� in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2017, pp. 679�706.

5. M. Naehrig and J. Renes, �Dual isogenies and their application to public-key com-
pression for isogeny-based cryptography,� in International Conference on the The-
ory and Application of Cryptology and Information Security. Springer, 2019, pp.
243�272.

6. G. Pereira, J. Doliskani, and D. Jao, �x-only point addition formula and faster
compressed sike,� Journal of Cryptographic Engineering, vol. 11, no. 1, pp. 57�69,
2021.

7. H. Fujii and D. F. Aranha, �Curve25519 for the Cortex-M4 and beyond,� in In-
ternational Conference on Cryptology and Information Security in Latin America.
Springer, 2017, pp. 109�127.

8. H. Seo, �Memory e�cient implementation of modular multiplication for 32-bit
ARM Cortex-M4,� Applied Sciences, vol. 10, no. 4, p. 1539, 2020.

9. M. B. Niasar, R. El Khatib, R. Azarderakhsh, and M. Moza�ari-Kermani, �Fast,
small, and area-time e�cient architectures for key-exchange on curve25519,� in
2020 IEEE 27th Symposium on Computer Arithmetic (ARITH). IEEE, 2020, pp.
72�79.

10. M. B. Niasar, R. Azarderakhsh, and M. M. Kermani, �E�cient hardware implemen-
tations for elliptic curve cryptography over curve448,� in International Conference
on Cryptology in India. Springer, 2020, pp. 228�247.

11. M. Anastasova, R. Azarderakhsh, and M. M. Kermani, �Fast Strategies for the
Implementation of SIKE Round 3 on ARM Cortex-M4.�

12. H. Seo, M. Anastasova, A. Jalali, and R. Azarderakhsh, �Supersingular Isogeny
Key Encapsulation (SIKE) Round 2 on ARM Cortex-M4,� IEEE Transactions on
Computers, 2020.

13. H. Seo, Z. Liu, P. Longa, and Z. Hu, �SIDH on ARM: faster modular multiplications
for faster post-quantum supersingular isogeny key exchange,� IACR Transactions
on Cryptographic Hardware and Embedded Systems, pp. 1�20, 2018.

14. B. Koziel, A. Jalali, R. Azarderakhsh, D. Jao, and M. Moza�ari-Kermani, �NEON-
SIDH: e�cient implementation of supersingular isogeny Di�e-Hellman key ex-
change protocol on ARM,� in International Conference on Cryptology and Network
Security. Springer, 2016, pp. 88�103.

15. H. Seo, P. Sanal, A. Jalali, and R. Azarderakhsh, �Optimized implementation of
SIKE Round 2 on 64-bit ARM Cortex-A processors,� IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, 2020.

16. R. Elkhatib, R. Azarderakhsh, and M. Moza�ari-Kermani, �E�cient and Fast
Hardware Architectures for SIKE Round 2 on FPGA,� Cryptology ePrint Archive
2020/611, Tech. Rep., 2020.

17. B. Koziel, A.-B. Ackie, R. El Khatib, R. Azarderakhsh, and M. M. Kermani,
�SIKE'd Up: Fast Hardware Architectures for Supersingular Isogeny Key Encap-
sulation,� IEEE Transactions on Circuits and Systems I: Regular Papers, 2020.

18. R. Elkhatib, R. Azarderakhsh, and M. Moza�ari-Kermani, �Highly optimized
montgomery multiplier for SIKE primes on FPGA,� in 2020 IEEE 27th Symposium
on Computer Arithmetic (ARITH). IEEE, 2020, pp. 64�71.

19. J.-H. Phoon, W.-K. Lee, D. C.-K. Wong, W.-S. Yap, and B.-M. Goi, �Area�Time-
E�cient Code-Based Postquantum Key Encapsulation Mechanism on FPGA,�
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 12,
pp. 2672�2684, 2020.

20. M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Sto�elen, �pqm4: Testing and
Benchmarking NIST PQC on ARM Cortex-M4,� 2019.

21. D. Jao and L. De Feo, �Towards Quantum-Resistant Cryptosystems from
Supersingular Elliptic Curve Isogenies,� in Post-Quantum Cryptography: 4th
International Workshop, PQCrypto 2011, 2011, pp. 19�34. [Online]. Available:
https://doi.org/10.1007/978-3-642-25405-5_2

22. SIKE, �Sike website,� https://sike.org/, last accessed on June 6, 2021.

23. D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess,
A. Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev,
and D. Urbanik, �Supersingular Isogeny Key Encapsulation,� Submission to
the NIST Post-Quantum Standardization Project, 2017. [Online]. Available:
https://sike.org/

24. P. S. Barreto, H. Y. Kim, B. Lynn, and M. Scott, �E�cient algorithms for pairing-
based cryptosystems,� in Annual international cryptology conference. Springer,
2002, pp. 354�369.

25. S. D. Galbraith, K. Harrison, and D. Soldera, �Implementing the tate pairing,� in
International Algorithmic Number Theory Symposium. Springer, 2002, pp. 324�
337.

https://doi.org/10.1007/978-3-642-25405-5_2
https://sike.org/

26. G. H. Zanon, M. A. Simplicio, G. C. Pereira, J. Doliskani, and P. S. Barreto,
�Faster key compression for isogeny-based cryptosystems,� IEEE Transactions on
Computers, vol. 68, no. 5, pp. 688�701, 2018.

27. A. Hutchinson, K. Karabina, and G. Pereira, �Memory Optimization Techniques
for Computing Discrete Logarithms in Compressed SIKE.�

28. S. Pohlig and M. Hellman, �An improved algorithm for computing logarithms over
gf (p) and its cryptographic signi�cance (corresp.),� IEEE Transactions on infor-
mation Theory, vol. 24, no. 1, pp. 106�110, 1978.

29. R. Earnshaw, �Procedure call standard for the ARM architecture,� ARM Limited,
October, 2003.

30. P. Koppermann, E. Pop, J. Heyszl, and G. Sigl, �18 Seconds to Key Exchange:
Limitations of Supersingular Isogeny Di�e-Hellman on Embedded Devices,� IACR
Cryptol. ePrint Arch., vol. 2018, p. 932, 2018.

31. F. De Santis and G. Sigl, �Towards side-channel protected X25519 on ARM Cortex-
M4 processors,� Proceedings of Software performance enhancement for encryption
and decryption, and benchmarking, Utrecht, The Netherlands, pp. 19�21, 2016.

32. M. Hutter and E. Wenger, �Fast multi-precision multiplication for public-key cryp-
tography on embedded microprocessors,� in International Workshop on Crypto-
graphic Hardware and Embedded Systems. Springer, 2011, pp. 459�474.

33. H. Seo and H. Kim, �Multi-precision multiplication for public-key cryptography on
embedded microprocessors,� in International Workshop on Information Security
Applications. Springer, 2012, pp. 55�67.

34. Seo, Hwajeong and Kim, Howon, �Consecutive operand-caching method for multi-
precision multiplication,� Journal of information and communication convergence
engineering, vol. 13, no. 1, pp. 27�35, 2015.

35. PQCryptov3.3, �Sidh library,� https://github.com/Microsoft/PQCrypto-SIDH.

	Compressed SIKE Round 3 on ARM Cortex-M4
	Mila Anastasova, Mojtaba Bisheh-Niasar, Reza Azarderakhsh, and Mehran Mozaffari Kermani

