
InterTrust: Towards an Efficient Blockchain Interoperability
Architecture with Trusted Services

†‡Gang Wang, †Mark Nixon
†Emerson Automation Solutions, Round Rock, USA

‡University of Connecticut, Storrs, USA
Email: email.gang.wang@gmail.com

Abstract—Blockchain as a potentially disruptive technology can ad-
vance many different fields, e.g., cryptocurrencies, supply chains, and the
industrial Internet of Things. The next-generation blockchain ecosystem is
expected to consist of various homogeneous and heterogeneous distributed
ledgers. These ledger systems will inevitably require a certain level of
proper cooperation of multiple blockchains to enrich advanced function-
alities and enhance interoperable capabilities for future applications. The
interoperability among blockchains will revolutionize current blockchain
design principles, like the emergence of the Internet. However, the
development of cross-blockchain applications involves much complexity
regarding the variety of underlying cross-blockchain communication.
With that regard, we propose an efficient, interoperable blockchain
architecture, InterTrust, to support interoperability and trustworthiness
among arbitrary blockchain systems (including homogeneous and hetero-
geneous blockchains). It consists of an atomic cross-chain communication
protocol, which can be considered an agnostic protocol to integrate
existing blockchain systems smoothly. InterTrust is powered by two
innovative techniques: threshold signature scheme and trusted hardware.
The threshold signature scheme guarantees consistency and verifiability
in the target blockchain systems, and the trusted hardware guarantees
trusted services among distinct blockchain systems. Combining these two
techniques provides an efficient cross-chain communication protocol to
facilitate atomic swaps and interoperable operations between different
blockchain systems. Our interoperable architecture is robust to support
arbitrary blockchain systems. We also present the security analysis on
the scenarios of integrating our protocol into Byzantine fault tolerance
based blockchain systems.

Keywords—Blockchain Interoperability, Trusted Services, Cross-chain
Communication, Atomic Swaps.

I. INTRODUCTION

Blockchain has become a key enabler for implementing and
advancing distributed ledgers. It allows a group of participating nodes
(or parties) that do not trust each other to provide trustworthy and
immutable services. Distributed ledgers were initially used as tamper-
evident logs to record data. However, independent parties typically
maintain them without a central authority. The blockchain became
popular because of its success in cryptocurrencies, e.g., Bitcoin [1].
Emerging blockchain technological advances and applications have
earned tremendous attention from both industrial and academic do-
mains, promising to change all aspects of digital businesses of the
industry [2]. Essentially, blockchain is a kind of Decentralized Ledger
Technology (DLT) that heavily utilizes cryptographic primitives to
secure host applications, store data, and exchange information [3]. It
will profoundly impact and influence existing Internet infrastructures
and promote the development of the decentralized Internet.

Naturally, different use cases have different requirements and
thus demand different capabilities of blockchains. Some informa-
tion cannot be exchanged freely and directly between two distinct
blockchains due to various protocols and technologies. The devel-
opment of independent and incompatible blockchain technologies
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causes significant fragmentation of blockchain research since users
and developers have to choose from a set of blockchains for their use
cases. As a result, this leads to a certain level of incompatibility and
isolation in today’s blockchain ecosystem, and we see many distinct
blockchains. It is desirable to achieve some interoperable blockchain
schemes to freely exchange information in future infrastructures, e.g.,
as a global value-exchange network [4], without involving significant
changes on their underlying blockchain infrastructures. Originally,
interoperability is the ability of two or more components/systems to
cooperate despite differences in language, interface, and execution
platform [5]. While in the context of blockchain, interoperability
means connecting multiple blockchains to access information and act
on that information by changing their own state or the state of another
blockchain. Optimally, this would be achieved without compromising
the blockchain’s premise in decentralization and trustworthiness [6].

Blockchain interoperability requires that assets be moved from
one blockchain to another, or users have the ability to access informa-
tion from one blockchain inside another without any additional efforts
from a third party. Currently, the notion of blockchain interoperability
is still in a conceptual stage. It has limited practice since successful
blockchain interoperability requires at least two blockchains to freely
exchange information in a way that the information exchanges via
the Internet. It not only needs to consider public blockchains but
also needs to cooperate with private and consortium blockchains.
However, due to the security and privacy issues, private and con-
sortium blockchains may not be willing to share their information
with the public [7]. Therefore, it is highly desirable to provide a
generic framework to cover most existing blockchain systems without
compromising the original properties of a blockchain system.

To achieve blockchain interoperability, we require the devel-
opment of cross-blockchain protocols to accomplish communica-
tion between distinct blockchains. According to how information
is exchanged, there exist different kinds of classifications on cross-
blockchain protocols, e.g., the classifications in works [8] [9] [10].
We can consider a cross-blockchain communication protocol as an
exchange protocol with some specific features, e.g., atomicity and
consistency. Typically, an exchange protocol requires an atomic swap
of two (or more) digital assets, e.g., x on chain X and y on
chain Y . This kind of protocol, in practice, consists of a two-
phase commit (2PC) mechanism, where the involved parties can
explicitly abort the exchange in case of failure to reach an agreement.
For example, hashed time-locks contracts (HTLCs) belong to this
category. However, the work [11] shows the impossibility of a cross-
blockchain communication protocol without a trusted third party for
the fair exchange problem [12]. Thus, we need to establish some trust
models between involved blockchains. These trust models should have
the ability to provide trustworthiness to a blockchain (e.g., virtually
as a component in the decentralized Internet).



Among many trust models, trusted hardware is a good candidate
to provide trustworthiness between blockchains, even in a decen-
tralized network. Trusted hardware, e.g., Intel SGX [13]) and ARM
TrustZone [14], can create a secure (tamper-proof and confidential)
execution environment (aka trusted execution environment (TEE)),
which further enables secure and trust communication among the
involved parties. For example, in Intel SGX, the TEE technology
allows applications to be executed within a protected environment
called an enclave, which ensures confidentiality and software integrity.
An enclave is essentially a CPU-protected address space that is
accessible by no other entities but the enclave owner. In addition,
it provides a level of attestation. For example, a user can verify if a
specific TEE is correctly instantiated and running at a remote host
via a remote attestation protocol. Our atomic swap protocol utilizes
trusted hardware to facilitate trusted communication and services
across distinct blockchains, such that transactions that exchange assets
are in an all-or-nothing manner.

The exchanged information or assets also require an atomic
swapping process, which can guarantee integrity and consistency
among different blockchain networks. Roughly speaking, in an atomic
swap, two parties trade their assets from different blockchains with
each other. Both parties are required to have an account or an address
on the other blockchain, and the trades must happen simultaneously
on both blockchains. It needs to guarantee that either both trans-
fers happen or neither of them happens. This property is called
“atomicity”, whose swapping process is indivisible [15] [16]. Each
blockchain system can be considered as an Autonomous System (AS),
which has its consensus protocol to guarantee consistency among all
honest AS members. The communication between ASs (aka. cross-
AS communication) must also be atomic to guarantee the overall
consistency among all ASs. In this paper, we propose an efficient
atomic cross-AS protocol, InterTrust, with the help of a threshold
signature scheme and trusted hardware, to achieve interoperability
and trusted services among blockchain systems. Our atomic cross-
AS protocol assembles the two-phase commit (2PC) mechanism
and the hash-locking scheme to achieve the atomicity of exchanged
information. We leverage trusted hardware as interfaces between
distinct ASs to provide trustworthiness. Instead of using the hash as
the lock-in assets in the hash-locking scheme, we utilize a threshold
signature scheme to prove the achieved agreement on the transaction
between distinct ASs. And the threshold signature provided by one
AS can be considered as an attestation on the state update of the other
AS. By integrating both trusted hardware and threshold signature to
our atomic swapping process, our scheme can achieve consistency
and trustworthiness for cross-AS communication. We should mention
that, in InterTrust, the trusted hardware is not a kind of trusted third
party, and there is no centralized authority or entity to control this
trusted hardware. Each trusted hardware still works in a decentralized
manner. In the following description, we interchangeably use the
terms “cross-AS” and “cross-chain”, as both represent the same
scenario on cross-blockchain communication.

The rest of the paper is organized as follows. Section II introduces
some preliminary information on blockchain interoperability, thresh-
old signature scheme, and trusted hardware. Section III discusses the
system and threat models that our protocol is based on. Section IV
gives the detailed cross-AS communication protocol. Section V
provides some security analysis of the protocol when combined with
BFT consensus protocols. Section VI provides an evaluation of the
proposed scheme. Section VII summarizes some related works on
blockchain interoperability, and section VIII concludes this paper.

II. PRELIMINARIES

This section introduces some basic information on blockchain
interoperability, followed by the concept of threshold signature and
trusted hardware, both of which are key primitives of our InterTrust
scheme to guarantee both interoperability and trustworthiness of a
cross-AS communication.

A. Blockchain Interoperability

Cross-chain communication is one of the primary design consider-
ations when designing an interoperable blockchain system. Currently,
each blockchain system operates as an isolated information island,
where it is difficult to obtain external data, and each blockchain exe-
cutes transactions on its own ledger [17]. Blockchain interoperability
requires that disparate blockchain systems can communicate with each
other, with the ability to share, access, and exchange information
across blockchain networks without the help of some intermediaries
(e.g., a centralized authority). Thus, blockchain interoperability re-
quires that assets can be moved from one blockchain platform to
another or the users have the ability to access information from
one blockchain inside another without resorting to any extra efforts
from some third parties. The information exchanged also requires
some atomic swapping process that is used to guarantee integrity and
consistency among different blockchain networks. The term “atomic”
is borrowed from database systems, where atomicity or an atomic
transaction is limited to a set of binary outputs (e.g., either 0 or
1) [18]. We can adapt the concept of atomic swap to a multi-
blockchain scenario, which is referred to as an atomic cross-chain
swapping process.

In general, atomic swap is considered a basic operation to achieve
interoperability among multiple blockchain systems. And, there ex-
ist different schemes to achieve blockchain interoperability, e.g.,
sidechain, notary scheme, and hash-locking [8] [9] [10]. The initial
goal of a sidechain scheme is to extend functionalities of interoperable
blockchain networks, where data can be sent and received between
interconnected blockchain networks. Furthermore, this kind of design
philosophy helps the security of the whole system. For instance, by
isolating sidechains from the main chain, in case of cryptographic
breaks (or maliciously designed sidechains), the damage is entirely
confined to the sidechain itself. It will not affect the records on
the mainchain. Notary schemes utilize a third trusted entity as an
intermediary between blockchains. Thus, the notary’s role is to verify
the correctness and integrity of exchanged information to guarantee
consistency among blockchains. One significant advantage of notary
schemes is that it is simple, as no additional change is required to the
underlying blockchain systems. Hash-locking is another technique to
exchange assets without involving a trusted third party [19]. Roughly
speaking, the hash-locking technique utilizes a hash time-locked
system which puts a time lock on transactions so that both obligations
are fully met. Otherwise, no transaction will occur in the involved
blockchain systems, which is similar to the concept of the atomic
transaction [20] [9]. Thus, Hash-locking achieves the atomic assets
exchange through a time difference and the hidden hash value. Our
atomic swap follows the conceptual procedures of a hash-locking
scheme (e.g., with lock and unlock operations) without requiring a
trusted third party.

B. Threshold Signature

The transactions exchanged between blockchains require authen-
ticity, non-repudiation, and integrity, and in general, a digital signature
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scheme can offer these features. To guarantee consistency within a
blockchain system (e.g., consensus on a block), a group of participants
are required to sign the transactions, and a threshold signature scheme
is an ideal option. A threshold signature scheme can guarantee that
for a given threshold parameter k (1 ≤ k ≤ n), any k signers from
the total of n signers can be collaboratively used to generate (or
recover during decryption) a valid signature for any given message.
However, there is no way to do so when the number of signers is less
than the threshold k. Thus, in a threshold signature, each signer is
required to hold its distinct private signing key, and this signing key is
used to produce a valid signature share [21]. A (k, n) threshold digital
signature scheme allows a set of signers to generate a digital signature
as a single logical entity despite (k− 1) faulty results (e.g., provided
by malicious signers). By dividing a private key into n shares, each
one is owned by a signer. Each signer uses its key share to generate
a partial signature on a message m and sends its partial signature
to a combiner signer, which combines the partial signatures into a
threshold signature on m [22].

Depending on the underlying crypto-primitives, various threshold
signature schemes exist, e.g., threshold RAS signature and threshold
BLS signature. Following the basic digital signature scheme, all
these schemes contain at least three functional algorithms: KeyGen
(a key generation algorithm), Sign (a signing algorithm), and Ver (a
verification algorithm). According to the underlying crypto-primitives,
these functional algorithms may be different. By leveraging these
three algorithms, a threshold signature scheme can guarantee the
integrity of messages. Due to the lack of trust between blockchains’
participants, in our scheme, we utilize a threshold signature scheme
working with the underlying consensus protocol to guarantee the
properties of authenticity, integrity, and consistency on exchanged
messages. Besides, a valid threshold signature can be considered
as a commitment scheme that allows one or more participants to
commit to a chosen value while keeping it hidden from others [23].
This commitment scheme means we can use a threshold signature
between blockchains to attest to the integrity and consistency of
one blockchain. Different from the usages of threshold signatures
in consensus protocols (e.g., BFT-based schemes on SMChain [24],
HotStuff [25], and SBFT [26]), the threshold signature scheme in our
InterTrust is a protocol-agnostic scheme, which provides a verifiable
service as a commitment.

C. Trusted Hardware

Trusted computing has been widely recognized as a useful and
essential extension in traditional security mechanisms [27]. A third
trusted party is vulnerable to many weak points [28], and trust is one
of the major concerns in large-scale open distributed and decentralized
systems. Trusted Platform Module (TPM) [29], such as Intel Software
Guard Extension (Intel SGX) [13]), is one of the most popular types of
trusted hardware. Intel SGX is an example, and this technology allows
applications to be executed within a protected environment called an
enclave, ensuring confidentiality and software integrity. The enclave
enables an isolated, tamper-free environment that can attest that an
output represents the result of such execution and allows remote users
to ensure that the attestation is correct. The wide adoption of TPM in
the industry offers many security features, e.g., prevention of rollback,
protection of data at rest, and early launch of anti-malware [30].
Equipped with encryption keys whose private parts never leave a
TPM hardware chip, this reduces the possibility that those keys
may be compromised. TPM provides a small set of primitives that
can offer a high level of security assurance in many ways, e.g., by

offering machine-based solid identities and preventing unauthorized
attacks [30]. Both the industry and academia communities have
adopted these primitives as building blocks in a variety of security
systems. TPM hardware, together with its supporting software and
firmware, offers a root-of-trust platform. This trust can be extended
to other platform components by building a chain of trust, where
each component extends its trust to the next one. And the trusted
hardware can also be directly used in blockchain to provide some
trusted services.

We may argue that trusted hardware can be considered as a trusted
third party. However, this kind of trusted third party is not controlled
by any entity. This makes the trusted hardware schemes more secure
than platforms that rely on centralized servers. We should note that
the trusted hardware in our scheme is only used to provide trusted
services among ASs, and the trustworthiness within one AS is still
provided by its underlying consensus protocol.

In general, cross-blockchain atomicity is critical to the correctness
and robustness of multiple interoperable blockchain systems. In
InterTrust, we combine the threshold signature scheme and trusted
hardware to provide a trusted relay between different blockchains.
By deploying a threshold signature scheme on trusted hardware,
the messages exchanged between blockchain interfaces are trusted.
Furthermore, the recipient can use the threshold signature scheme to
verify the validity of received messages.

III. MODELS

This section presents the system and threat models that our
interoperable blockchain architecture is based on.

A. System Model

Our system model considers the concept of an Autonomous
System (AS), and each AS is responsible for one blockchain system.
For example, each AS has its own network topology, consensus
mechanism, rewarding mechanism, and the activities performed on
each AS can be considered as internal operations. We assume that
each participant in an AS has a public/private key pair (pk, sk),
and the public key pk is used to define its identity. The senders’
private key authenticates all messages sent over the network. Although
we do not have many restrictions on operations within each AS,
we put prerequisites on the communication between ASs to achieve
required features, e.g., atomicity, integrity, and trustworthiness. The
participants within each AS may have different capabilities, e.g.,
computational capability and hardware equipment. We assume each
AS must equip with at least one participating node/gateway with
trusted hardware (aka. trusted gateway or trusted relay), and the cross-
AS communication must happen via these trusted gateways. We can
roughly consider this trusted gateway as an edge gateway to facilitate
the trusted communication and trusted services between autonomous
systems. We also consider that the communication model between
ASs is based on some asynchronous network model where messages
are eventually delivered.

Our interoperable blockchain architecture assumes that each
participating AS is either a private blockchain or a consortium
blockchain, both of which require some permissions to participate
in the construction of a blockchain. Also, we assume that each AS
must have an eventual consensus protocol to get a block finalized
in its blockchain. However, the eventual consensus protocols may be
different for different ASs, and the usage and discussion on these
consensus protocols are out of the scope of this paper.
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Fig. 1. Overall architecture of interoperable blockchains. The bold circled
gateways equipped with trusted hardware.

B. Threat Model

In general, our interoperable architecture achieves its trustwor-
thiness and interoperability by relying on a trusted execution en-
vironment (TEE) and atomic swapping technology with the help
of threshold signature. We assume two types of nodes, clients and
participants. The participants actively participate in the construction
of blockchain. The clients do not actively engage in the construction
of blockchain (e.g., via consensus protocol) and only send messages
to the connected participants. We assume that the clients are honest all
the time (e.g., whose messages are trustable or whose messages can
be verified by participants), but a participant can be either honest or
malicious (e.g., Byzantine). An honest participant faithfully follows
its consensus protocol. In contrast, a malicious participant may behave
arbitrarily, e.g., it may refuse to participate in a consensus protocol,
or it may collude with others to carry out some attacks. To ease
the understating, we assume the malicious participants behave like a
Byzantine. Even under Byzantine, however, we do assume that the
codes that run inside the TEE enclave can neither be observed nor
tampered with.

We assume trusted gateways in an AS know the basic information
of their AS, e.g., the number of participants in AS, the public keys
of AS members, and the adopted consensus protocol. And, these
pieces of information are critical to the adoption of the threshold
signature scheme. For example, if an AS utilizes Byzantine Fault-
tolerant (BFT) protocol with an assumption of n ≥ 3f+1 (where f is
the maximal number of Byzantine participants and n is the number of
total participants in its AS), then the threshold k in a (k, n) threshold
scheme must be at least f +1 to get a correct result. We assume that
the trusted gateway in an AS has the ability to dynamically adjust
this threshold parameter to fulfill the requirement of the underlying
consensus protocol. Also, the communication between ASs is via
trusted gateways, and we assume the communication between trusted
gateways is reliable. However, we do not fix a trusted gateway pair
between any ASs. There exist multiple choices on the connections
between ASs, and these connections can be dynamically adjusted.

Fig. 1 shows an overall architecture of interoperable blockchains,
which consists of two ASs. Each AS is an independent blockchain
system, and all cross-AS communication is through the trusted
gateways (the bold ones) atomically via our atomic cross-AS swap
protocol. Also, the trusted gateways function as interfaces to facilitate
trusted communication and trusted services across distinct ASs.
We will discuss the proposed atomic cross-AS swap protocol in
Section IV.

IV. INTEROPERABLE ARCHITECTURE

This section presents the detailed architecture design of InterTrust
and its cross-AS communication protocol by leveraging the primitives

Fig. 2. A visual representation of message passing across different
blockchains.

of the threshold signature scheme and trusted hardware. From a high-
level perspective, the threshold signature is mainly used to guarantee
the integrity and atomicity of information within an AS and for the
cross-AS communication protocol. In contrast, the trusted hardware
is used primarily to ensure trusted services among ASs.

In one AS, a transaction may involve other participants in a
different AS. Typically, it is a challenging task to achieve consistency
since state-updating of the involved participants occurs independently
in different ASs. Thus, cross-AS atomicity is one of the key features
to achieve an interoperable blockchain architecture. We propose an
efficient atomic cross-AS swap protocol with the help of a threshold
signature to ensure the atomicity of transactions across blockchains.
Our atomicity protocol allows the interleaving of transactions in an
asynchronous and lock-free manner to keep ASs concurrent and fully
utilized. The proposed atomicity protocol is with the help of trusted
gateways (e.g., equipping with trusted hardware) and the threshold
signature scheme to decouple a cross-AS transaction into a multi-
round communication, and each round communication is trustable.
This section first describes the overall of our interoperable architecture
and then presents the details of the atomic cross-AS swap protocol.

A. System Design

Before discussing the detailed interoperable communication pro-
tocol, we first exemplify a high-level scenario on how a cross-AS
protocol processes a transaction, which can be easily extended to
other scenarios. Without loss of generality, we consider a cross-AS
transaction. The transaction instance involves two participating nodes
from different ASs, e.g., AS A and AS B, as shown in Fig. 1. A visual
representation of message passing is provided in Fig. 2. Typically,
the message passing of a cross-AS transaction involves two opposite
operations, e.g., lock and unlock operations in Fig. 2. In this case,
the lock operation, which only involves the state change in AS A, is
handled by the participating nodes of AS A. If the specified conditions
of the cross-AS transaction are met, this transaction will only be
locked in a block (e.g., block i+1 in Fig. 2) of AS A. Once the lock
operation is done, AS A will compose a relay transaction carrying
proof of the locking operation, and this relay transaction will be
forwarded to AS B for further processing to complete this cross-
AS transaction. After verifying the validity of the relay transaction
(with the attached proof), the participants in AS B will execute the
unlock operation to claim the cross-AS transaction. Once the unlock
transaction is executed and appended to the blockchain (e.g., block
j + 1 in Fig. 2) of AS B, this cross-AS transaction completes.
Section IV-B will detail the operational process and the handling of
unsuccessful execution. We note that the consensus protocol of each
AS will guarantee consistency within its blockchain.

Atomicity across ASs requires to capture the all-or-nothing set-
tlement [31]. Given a transactions tx1 of ASA (short for AS A) and a
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transaction tx2 for ASB (short for AS B), an all-or-nothing settlement
is protocol that guarantees that: 1) Both transactions get confirmed at
their representative ASs; or 2) Neither transaction will get confirmed
at its AS. A generic cross-AS communication protocol, which is used
to achieve atomicity, typically consists of several sequential steps [11].
We briefly discuss a generic four-step protocol to help understand our
atomic cross-AS protocol.

1) Setup Phase: Before two blockchains communicate, each
blockchain needs to know some parameters of the other blockchain,
which is similar to a negotiation process in an Internet transmission
protocol. This step is called a setup. Typically, the setup process
occurs out-of-band between the involved blockchains (or between the
agents of blockchains), and thus we can omit this step.

2) Commit Phase: Upon successful setup, the cross-AS protocol
goes to a commit phase, alternatively called (pre-)commit phase, in
which the transaction is not finalized. The commit phase typically in-
volves the locking and unlocking of assets on blockchains, determined
by the request of the consensus protocol. This phase requires some
techniques, as coordinators, to perform the locking and unlocking
operations. For example, we can use some hash locking schemes or
threshold signature schemes to facilitate these operations.

3) Verification Phase: The verification phase is used to verify
the commitment of the execution. For example, if we consider two
blockchains, source chain A and target chain B, the correctness
of the commitment on A should be verified by the participants of
B. Depending on the content to be verified, the actual verification
process may be different, e.g., the verification on the consensus
agreement on a stage or a specific state transition of a transaction.
Upon successful verification, a publicly verifiable commitment is
published and executed on-chain B.

4) Abort Phase: The abort phase is optional and is encountered
typically in exchange protocols. If the verification fails or the execu-
tion on chain B fails, an abort phase will be performed. Based on
the adopted commit protocol in commit phase, it may have different
operations. For instance, if the commit phase adopts a locking scheme,
then the locked assets will be released.

In general, our cross-AS protocol follows the generic com-
munication patterns mentioned above, with our customized atomic
commitment scheme with the help of the threshold signature scheme
and trusted hardware.

One key feature provided by our InterTrust is the trusted services
between ASs. Each AS is an autonomous eco-system, which has
provided some interfaces to external ASs (e.g., via gateways or edge
gateways as the agents or representatives of its AS). We require that
such interfaces must be robust enough to provide trusted services
to the outside ASs. This requirement is much realistic and practical
for almost all application scenarios. For example, a corporation has
its own private blockchain and provides outsourcing services to its
customers. The interface for outsourcing services must be robust
enough to the outside customers. We can consider such a kind of
interface as a representative of its blockchain system to interoperate
with outside blockchains. In our InterTrust, we require that such
interface must equip with some trusted hardware to provide trusted
service to other ASs, and the other recipient ASs also are required to
equip with trusted hardware. In this way, they can establish a trusted
interface between ASs, and the corresponding services between them
are trustworthy. As shown in Fig. 1, the atomic swap happens between
trusted gateways, and their communication and services are trusted.

We need to mention that, for any gateway, as long as it equips with
trusted hardware, it can serve as this kind of interface to communicate
with other ASs, and we do not specify a designated gateway as
an interface to all other ASs. For example, we can utilize some
randomized algorithms to assign a trusted gateway for one round
of communication (i.e., one round of atomic swap), and for the next
round, it may assign a different trusted gateway to provide trusted
services. By randomizing communication connections, it can decrease
the chance of some potential attacks on some target gateways, and the
communication between them is decentralized. Or, we can parallel the
trusted communications between trusted gateways. But, the cross-AS
communication must be performed between trusted gateways so that
it can guarantee trusted services. The algorithm or scheme to assign
these trusted gateways (as the interfaces of AS) is out of the scope
of this paper.

B. Atomic Cross-AS Protocol

Our atomic cross-AS protocol is with the help of a threshold
signature scheme and trusted hardware to achieve trustable atomicity
between ASs. Considering heterogeneity among the participants of
an AS, we require each honest participant at least has the ability to
perform the basic verification and signing operations of a threshold
signature scheme, and the trusted gateways must have the ability
to perform the full functionalities of a threshold signature scheme
(e.g., generating threshold share secrets, verifying signed shares,
and combining operations on signed shares). This would help the
verification of the messages from other ASs. For example, if an
incoming message does not pass the verification of trusted gateways,
this message will not be broadcast to its AS members. This will
potentially reduce the number of broadcast messages. There are
typically two kinds of transactions: intra-AS transactions and inter-
AS transactions (aka, cross-AS transactions). The communication of
intra-AS transactions is restricted within one AS, and for blockchain
interoperability, we do not care about this kind of transaction. In
the following description, we only discuss the cross-AS transactions
and ignore the cases on intra-AS transactions. A simple Distributed
Hash Table (DHT) can be employed to distinguish if a transaction
is a cross-AS transaction or an intra-AS transaction. We consider a
cross-AS transaction tx involves two independent ASs, a source AS
X running a process ρ on ledger LX (e.g., a withdraw operation), a
destination AS Y running a process θ on ledger LY (e.g., a deposit
operation). Processes ρ and θ work on these own eventual consensus
protocols, respectively.

When a client submits a cross-AS transaction tx to the process ρ
of AS X , this transaction tx will be broadcast to all participants of
AS X . This transaction also is relayed to trusted gateways of AS X .
There may exist different numbers of trusted gateways. Furthermore,
the topologies on these trusted gateways may be different, which
means there may exist many connections between two AS via these
trusted gateways. Here we assume only one pair of selected trusted
gateways (e.g., gateways GX and GY ) are interfaces to perform the
atomic cross-AS communication between AS X and AS Y . The
trusted gateways of the involved ASs will start a negotiation process
to exchange some parameters of their representative ASs, which is
a setup phase with an intention to start a cross-AS communication.
Considering the privacy-preserving on the blockchain of each AS, we
do not require them to exchange too much information, and we only
require that each AS provides its publicly available information, e.g.,
the number of participants in its AS and the corresponding public keys
of each participant. And that public information is enough to perform
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Fig. 3. Abstract of atomic cross-AS protocol. The blue boundaries represent
trusted gateways to provide trusted service between ASs, and the communi-
cation between trusted gateways and its AS members are broadcast.

a threshold signature scheme. Practically, our efficient atomic cross-
AS communication protocol consists of four phases as follows. And
Fig. 3 shows an abstract atomic cross-AS communication protocol,
in which the blue boundaries represent trusted gateways to provide
trusted services between ASs.

Setup: The trusted gateway GX of AS X initializes the commu-
nication by sending an initialization message to the target gateway
GY of AS Y to request the configuration information of AS Y . The
initialization information contains the hash of tx and the configuration
information of AS X (e.g., the number of participants n in X and
their corresponding public keys). Upon receiving this initialization
message from X and being willing to access this initialization
message, the trusted gateway of AS Y will run a (k, n)−threshold
signature scheme to generate n shares of secrets and each participant
in X will get one secret share. Note that the generation algorithm
in the threshold signature scheme requires a random seed. We can
use the hash of tx as this seed. After the secret shares are generated,
the trusted gateway GY will compose a response message for this
cross-AS request of GX , whose response message includes the basic
configuration of AS Y , the hash of tx, and the generated secret shares.
Then, GY will send this response message back to the trusted gateway
GX .

Lock: Upon receiving the response message from GY , GX will
distribute this response message to each replica, and each replica
will get a secret share. According to the hash of tx (a kind of token
for the processed message for this round) in the response message,
a replica will perform a lock operation on this transaction tx if
this transaction tx is valid. Then, the replica first signs the locked
transaction using its secret share from trusted gateway GY , and then
signs the signed transaction using its own private key, and finally,
sends its signed transaction (including two signatures) to the trusted
gateway GX . Meanwhile (during replicas sign the transaction), the
trusted gateway GX also performs the key generation algorithm of
(k′,m)−threshold signature scheme to generate m shares of secrets,
where m is the number of participants in AS Y (getting this parameter
from the response message of GY during setup phase). If GX

receives enough validly signed transactions from AS X , it will first
perform a verification to verify if he can recover the signed tx to the
original transaction tx. If so, the collected signatures together with
the generated m secret shares for AS Y will be forwarded to GY .
Otherwise, it will withhold until receiving enough valid signatures.

Verification: Upon receiving these signatures and secret shares
from GX , GY will distribute these signatures to each replica, and
each replica will perform verification on these signatures and recover
the transaction tx. After the transaction tx is obtained, the replica will
perform verification to see if the transaction is valid in AS Y . If the
execution of the transaction tx is valid, then it will include an unlock
signal and sign it (and possibly include the exchanged information
or assets) by its secret share from GX and sign the signed signature
with its own private key. If the execution of the transaction tx is
not valid (e.g., conflicted with previous transactions or failed to pass
some smart contracts), it will include a release signal to abort this
transaction, and this release signal also will be signed by both secret
share from GX and its own private key. These signed messages will
be transmitted to GY for verification, and similarly, GY will first
perform the verification and then release them to trusted gateway
GX if the GY got enough valid messages from its own AS.

Unlock/Release: According to the received signal (either unlock
or release) from GY , GX will first verify and then distribute that
received message. If a replica in AS X recovers it into a unlock
signal, the transaction tx will be unlocked and executed as a valid
transaction and finally attached into blockchain LX via consensus
protocol. If a replica recovers it into a release signal, it indicates the
transaction tx is not valid and is aborted at the target AS Y , and this
transaction tx will not be included in the blockchain. As we assume
the communication between trusted gateways is reliable, if the replica
does not receive any message about transaction tx within a predefined
time interval (e.g., the time of eventual consensus at target AS plus
the transmission time), it considers the transaction to be aborted. And,
the AS X will notify the execution result of this cross-AS transaction
tx to its client.

A transaction involving lock and unlock operations should be
atomic to ensure the correctness of the ledgers among different ASs.
Our atomic cross-AS protocol assembles a two-phase commit (2PC)
mechanism and hash-locking scheme to achieve its atomicity with
the known lock/unlock operations. In our protocol, we allow the
operations in the target AS to confirm first, interleaving with other
transactions, then the corresponding operations to be settled later.
What is achieved is that once the verification phase in the target
AS is confirmed, the transaction in the source AS will be executed
eventually. We call such atomicity eventual cross-AS atomicity. We
optimistically assume the transaction in the source AS will be even-
tually picked as long as there exists an eventual consensus protocol in
that AS. Theoretically, there may exist bad-behaved participants. As
long as the transaction is pre-verified and gets agreed by the majority
of participants (the number of “majority” depending on the consensus
protocol used), the transaction will finally be appended to its ledger.
Otherwise, these transactions will be unlocked.

With the help of a threshold signature scheme and trusted hard-
ware, we can achieve an efficient atomic cross-AS communication
protocol and further advance an interoperable blockchain architecture
with trusted services.
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V. SECURITY ANALYSIS

Our InterTrust scheme focuses on architecture design to facilitate
the interoperability among blockchain by utilizing both threshold
signature and trusted hardware. In general, each AS can have its own
consensus protocol to get an agreement as long as (a) it supports the
operations of threshold signature (e.g., signing and verifying), and (b)
there exist trusted hardware equipped gateways to transmit messages
among distinct ASs. Even though we do not put any constraints on the
underlying consensus protocol within each AS, we do prefer each AS
utilizing a BFT-based consensus protocol, taking advantage of instant
finality and quick responsiveness. Another advantage of utilizing the
BFT protocol in each AS is that we can directly apply the underlying
threshold signature scheme to scale its consensus process and advance
the responsiveness. There exist several works, e.g., SMChain [24] and
SBFT [26], on integrating threshold signature with BFT protocol to
achieve linear scalability.

We use a leader-based BFT protocol, as an instance, together
with our threshold signature scheme to conduct security analysis with
regard to its safety and liveness. Following the terminologies in BFT
protocols, we consider each participating node as an active replica
(either honest or Byzantine) within an AS. Safety is the property
that if any two honest replicas commit on a decision block for a
given sequence number, the two blocks must be the same. liveness is
to ensure that the consensus protocol makes progress in the current
view and moves to a new view, which means clients (aka. other AS’s
trusted gateways) eventually receive replies to their requests. Besides,
we assume n >= 3f + 2 = (3f + 1) + 1, where n is the number
of replicas, f is the number of Byzantine replicas, and the extra
one replica is the trusted gateway. In addition, at most f replicas
are passive replicas (e.g., no response) so that the total participating
replicas are at least 2f + 2. In following discussions, h = H(r||v),
where r is a request (req) from a client and v is the current view
number, and σTC(h) is a signature operation on h. Also, we set the
threshold to recover a message is f+1 in a 3f+1 system (as this does
not include the trusted gateway in a consensus process). In addition,
we follow a scalable BFT protocol in SBFT [26] as its consensus
protocol for an AS.

A. Safety

If a non-faulty replica commits due to a signature σTC(h) which
is induced by req, then at least f+1 non-faulty replicas have received
h as a hash. So at most f replicas can send a different message with
h′ ̸= h. Hence, req or r is the unique value in the current view v
that receives at least f +1 messages. Because of (f + 1, n)-threshold
signature scheme, the adversary cannot create a signature σTC(h

′)
where h′ ̸= h. This guarantees that, for the current view v, there do
not exist honest replicas who will commit to any h′ that is not h.

In case of the view-change process to a new view, e.g., v′ >
v, we can prove that the new primary Sp′ of BFT protocol with a
view v′ will still pick up the value req. We will use induction to
show it. For the base case where the new view is v′ = v + 1, in
order to successfully switch to this new view, at least f + 1 non-
faulty replicas must work together to participate in the process of
reporting the existence of faults to the new primary Sp′ on the current
view v. Otherwise, there is no view-change process due to the f +1
rule in the threshold signature scheme. For the base case, the view
v′ becomes the only highest candidate view that can be possibly
adopted. This view v′ will be accepted as a new view during the view-
change process. The conditions for the inductive process is almost

similar, that is, every new elected primary must accept the request
req provided by its previous replicas, since this indicates either there
are f+1 non-faulty replicas report that fault happened, or there exists
a signature σTC(h

′) where h′ consists of req. However, due to the
setting of the threshold signature, we know that σTC(h

′) will not
be accepted for verification. Therefore, this inductive argument will
always be held for the induction processes, and the corresponding
proof is to be held for any view v′ > v by induction.

Considering both views v and v′ in the view-change process,
there must have only one primary that adopts the hash h that consists
of the request req. From the above proof, as long as the new elected
primary with the view v′ is honest, it will adopt the request req into
its decision block. Otherwise, it may start a cascading view-change
process, which does not affect the security. This indicates that only a
replica (e.g., a trusted gateway) receives enough signed request shares.
It can have the ability to recover and accept the corresponding request.

B. Liveness

The consensus process is supposed to return the reply message
to the client to notify that the client’s requests have been completed
with a correct view. The liveness ensures if the primary is correct,
then a view is stable. By integrating the threshold signature scheme,
we will show that we can obtain a stable state in an AS.

In a stable view, a request req from a client will complete. In
the consensus protocol, if the primary Sp is honest, a valid message
containing req will be sent to all the active replicas. If all the active
replicas behave correctly (e.g., verifying message and signing it using
its secret share), the request req can be completed with at least f +1
replicas, and the request will get verified.

If there is a faulty replica, say Sf , it might behave arbitrarily,
e.g., keeping silent, or replying with a wrong message or share. If
the primary is honest, the faulty replica Sf will be detected, and it will
be isolated. When the number of faulty replicas reaches a threshold
number, honest replicas will initiate the view-change process, which
will continue until an honest primary Sp′ is selected. Thus, the request
req from an honest primary will be completed provided that the
number of non-primary faulty replicas is no more than f .

If the view is not stable and at least f +1 honest replicas request
a view-change, the view will eventually be changed to a stable view.
This may happen in three different scenarios.

(a). The new selected primary Sp′ behave honestly, and all other
f active replicas who behave honestly have received a valid new-
view message from the new primary. Thus, the system can switch to
a stable view successfully.

(b). If no honest replicas receive the valid new-view message from
the new primary, another view-change process will be initiated with
another new primary. And this process will continue until a stable
view can be reached.

(c). There is a case that the number of honest replicas who
received the valid new-view message is less than f + 1. This case
has two effects. (1) The faulty replicas can also behave honestly,
e.g., temporarily following the protocol, to make the honest replicas
move toward a non-stable view. (2) When detecting faulty messages,
other honest replicas will send out a new REQ-VIEW-CHANGE, e.g.,
due to the timeout; however, this round of view-change process will
not move forward since the number of view-change messages is less

7



than f +1. When the faulty replicas start to behave maliciously, e.g.,
deviating from the protocol, the honest replica will trigger a new
view-change process to a new view. Eventually, the protocol will
reach case (a), and a stable view will be reached.

In all three scenarios, all replicas will eventually go into a stable
view, and the clients’ requests can complete. If the view is not stable
and less than f+1 honest replicas request a view change, a stable view
can also be achieved. If all active replicas (either faulty or honest)
follow the protocol, the request req can be completed successfully.
Otherwise, the req cannot be completed successfully, e.g., due to a
timeout. All honest replicas will then launch a view-change process,
and the system goes to the case (a) above.

From the above analysis, by integrating the threshold signature
scheme into a leader-based BFT protocol, it is easy to achieve safety
and liveness. Both properties will guarantee the consistent state within
an AS, and via the trusted gateway, the message will forward to other
ASs for verification.

C. Trusted Services among ASs

Trusted hardware equipped gateways guarantee trusted services,
and the communication between ASs must be via these trusted
gateways. When a cross-AS transaction is processed by the source
AS, it must first get verified by a trusted gateway before sending it to
the destination AS. Suppose the processed cross-AS transaction does
not pass the verification process (e.g., without getting enough signed
shares from its AS members to verify the validity of messages) on
the trusted gateway. In that case, the cross-AS transaction will not
be forwarded to the destination AS. Instead, the trusted gateway will
attach proof showing that the exchanged message has been verified
and certified by its source AS if successfully getting verified. Doing
so (e.g., certified by trusted hardware) can establish trusted services
between the source AS and destination AS.

In general, there may establish multiple pairs of trusted con-
nections between source AS and destination AS in a decentralized
manner for one cross-AS transaction. Each trusted connection works
independently. As long as one trusted connection gets established,
it can successfully perform the atomic cross-AS swap protocol. We
assume the destination AS has the ability to filter out the duplicated
messages via the hash of transaction as the hash of transaction can be
viewed as a token being processed. Only a valid cross-AS transaction
can be forwarded to the destination AS when combined with a thresh-
old signature. This means once the destination AS receives exchanged
messages, these messages are trusted and validated. Thus, with the
help of threshold signature and trusted hardware, our InterTrust can
achieve both interoperability and trusted services among distinct ASs.

VI. PERFORMANCE

In this section, we evaluate the performance using a prototype
of the InterTrust scheme. InterTrust aims to achieve interoperability
among multiple blockchains by using a threshold signature scheme
and trusted hardware. However, due to the lack of practical blockchain
systems, we only evaluate part of its performance. Specifically, we
evaluate the overhead when applying a threshold signature scheme in
one AS, in which it utilizes a scalable BFT-based consensus protocol.
This will account for most of the overhead of our scheme. We
develop a robust prototype by reusing and improving the original
codebase of PBFT [32], and utilizing some libraries from BLS-
based threshold signature scheme [33] [34]. This section shows some
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Fig. 4. The average time for each round run with various consensus group
sizes and different f/n ratios.

simulation results on the overhead of the applied threshold signature
scheme to demonstrate its efficiency. Our simulation overhead not
only includes the overhead of the threshold signature scheme, but also
includes the overhead of a scalable BFT-based consensus protocol.
We combine the adopted threshold signature scheme into a BFT
consensus protocol, whose communication pattern is linear with the
number of participating nodes.

1) Simulation Setup: Especially, our simulation utilizes a generic
crypto library. Cryptographic primitives, such as SHA 256, are
implemented using the Crypto++ library [35]. For threshold signature,
we use Baek and Zheng’s scheme [36] to encrypt a 256-bit ephemeral
key, followed by ALT BN128 Elliptic Curve in CBC mode over the
actual payload, and the PBC library [33]. The threshold signature
scheme requires a symmetric bilinear group; and the adopted Boneh-
Lynn-Shacham (BLS) group heuristically offers 128 bits of secu-
rity [37] [38]. We implement a threshold signature based consensus
prototype in Python. We then perform our simulations on an Ubuntu
18.04 LTE system, equipped with Intel Core i7-3520M CPU @
2.9GHz, 2 cores, and 8GB RAM. All the simulations are run on
this system. And, we set 10ms as the network transmission delay.

2) Performance: Our simulations follow the scalable linear mes-
sage communication patterns and the adopted threshold signature
scheme. The implemented prototype simulates the average time for
each round run based on the above setting. For each simulation, we
run each round 100 times, and then get an average measurement. Note
that our current prototype does not include the interaction with other
blockchain systems, whose interaction in the prototype will be future
work. We only simulate the overhead within one AS to get a verified
message with a consensus procedure. In general, the performance of
the threshold signature scheme is highly affected by the total number
of participating nodes n and the total number of faulty nodes f . Thus,
we take the ratio of f/n as one parameter to evaluate the overhead of
our scheme. Fig. 4 shows the simulation result with various consensus
group sizes and various f/n ratios. The consensus group size ranges
from 64 to 800, and the f/n ratio ranges from 1/6 to 1/3.

From Fig. 4, we can clearly see with the increase in the number
of participating nodes, the average run time for each round increases.
This is mainly due to the increased communication messages in
each round. For example, when the number of participating nodes
is 200, the average time per round is less than 200ms; while when
the number of participating nodes is 800, its time can be up to more
than 1000ms. With different f/n ratios, the run time also is affected
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a lot. In general, with fewer faulty nodes, the run time for each round
goes down. For example, when the number of participating nodes is
800 and the f/n ratio is 1/6, the average time is less than 700ms,
while when its faulty ratio is set to 1/3, the average time can be up
to 1340ms. This is mainly caused by the increased communication
messages and the operations on the threshold signature scheme. Our
threshold signature scheme is set to f + 1 out of n scheme, where
f = ⌊(n − 3)/3⌋. With the increase of ratio, it takes more time to
perform each threshold signature related operation.

In general, for blockchain interoperability, reaching a consensus
within one AS would take the most overhead of the whole inter-
operable process, as the overhead (e.g., transmission time) between
trusted gateways can be negligible. From the above simulation, we
can get when designing the scheme for a large-scale application, it
is necessary to consider both the number of participating nodes and
the ratio of f/n. Both parameters highly affect the performance of
blockchain interoperability.

VII. RELATED WORK

Blockchain interoperability is a promising and broad research
area. Many efforts from both industry and academia have been per-
formed on building interoperable blockchain architecture and proto-
cols which allow cross-blockchain communication between different
networks and facilitate the exchange of transactions [39].

Li et al. [40] proposed a multi-blockchain architecture model
explicitly devised to meet industrial standards. It utilizes the notion of
Satellite chains that can privately run different consensus protocols in
parallel, thereby considerably boosting the scalability premises of a
system. The assets can be transferred between satellite chains through
a transaction process based on predefined policies. Cross-chain com-
munication is via some special nodes that facilitate the transactions
for the connected satellite chains. Typically, each satellite chain is
secured by its own consensus mechanism. The model also accounts
for a hands-off regulator that oversees the entire networks, which
further enforce the policies that are deployed in the form of smart
contracts and auditors. By doing so, it can monitor the transaction
activities. Wang et al. [17] proposed a cross-chain communication
protocol called blockchain router to empower blockchains to connect
and communicate cross chains, which is similar to the concept of an
Internet router. Each independent blockchain network is a sub-chain
that connects to the “router” through a connector, and the sub-chain
holds a copy of the connected blockchain data. The connector serves
as an interface between the sub-chain and the router. The blockchain
may take different roles. For example, some blockchains play the
role of a router that analyses and transmits communication requests
according to the communication protocol, dynamically maintaining a
topology structure of the blockchain network.

Kan et al. [41] proposed a component-based framework for
exchanging information across arbitrary blockchain systems, called
interactive multiple blockchain architecture. In their architecture, a
dynamic network of multichain is created for inter-blockchain com-
munication, and an inter-blockchain connection model (or connector)
is proposed for routing management and message transferring. The
cross-chain communication occurs via an inter-blockchain connector
of a routing management system that is used to maintain routing
information of the involved blockchain networks. Each blockchain
system is required to choose a router to communicate with other
systems, in which the router nodes establish and exchange the network
information with their neighbors. Once router information is updated,

all router nodes consent to the newest routing table. Besides, this
framework presents a transaction design that enables heterogeneous
blockchains to communicate through standard crossing-chain trans-
actions. HyperService [42] is a platform that delivers interoperability
and programmability across heterogeneous blockchains. The platform
can execute many customized and decentralized applications (dApps)
by interacting with verifiable execution systems (VESes) that process
and execute the requests from dApp to the blockchain network.
HyperService is powered by two innovative designs: (i) a developer-
facing programming framework that allows developers to build cross-
chain applications in a unified programming model; and (ii) a se-
cure blockchain-facing cryptography protocol that provably realizes
those applications on blockchains. Before HyperService, a similar
multichain scheme [43] is proposed as an off-the-shelf configurable
platform. However, it can only work with homogeneous networks.

Weber et al. [44] proposed a scalable platform architecture for
multi-tenant blockchain-based systems to ensure data integrity while
maintaining data privacy and performance isolation. Each tenant has
an individual permissioned blockchain to maintain its own data and
smart contracts. All tenant chains are anchored into the main chain
in a way that minimizes cost and load overheads. Ding et al. [45]
proposed a “InterChain” framework that supports blockchain inter-
operability between blockchain networks. The framework consists
of some independent blockchain networks (called sub-chains) and
a mother blockchain (called Interchain) that connects all sub-chains
together. The participating nodes in Interchain have different roles,
e.g., validators to validate the transaction and gateway nodes to
relay the cross-chain transactions. This work only provides a very
high-level design without providing any detailed information on the
involved components. Besides these efforts, some projects are aiming
to create an Internet of blockchain that connects different chains, e.g.,
Cosmos [46] via Cosmos Hub design, Polkadot [47] via a relay chain
design, and Quant Overledger [48].

Besides the above-related work, in literature, there exist several
excellent review papers on blockchain interoperability, such as Bu-
terin’s review paper [9], Wang’s SoK paper [8] and Belchior et al.’s
survey paper [10].

VIII. CONCLUSION

This paper proposes an efficient blockchain interoperability
scheme, InterTrust, which achieves interoperability and trusted ser-
vices at the same time. InterTrust leverages both a threshold sig-
nature scheme and trusted hardware to achieve an atomic cross-
AS communication. The threshold signature scheme is used to
guarantee the consistency and verifiability of exchanged messages
in the target blockchain system, and the trusted hardware is used
to guarantee trusted services among distinct blockchain systems.
By combining these two techniques, InterTrust can achieve robust
blockchain interoperability. As future work, we plan to implement the
proposed InterTrust scheme and thoroughly evaluate the throughput
and transaction latency performance on real-world applications.
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